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function f: A — B. These observations are the basis of the following definition.
Tn this definition, we merely are saying that the function is the sort of collection
of ordered pairs that we have been discussing.

Derivrrion. Let A4 and B be sets. A function with domain A and range B 1s a
collection f of ordered pairs (g, b), such that

(1) for each (a,b) inf, a € 4;
(2) each a in A is the first term of exactly one pair (a, b) in f; and
(3) for each (a,b)inf, b € B.

When we write b = f(a), we mean that (a, b) belongs to the collection f. From
here on, we proceed to handle functions exactly as before.

A somewhat similar device enables us to give an explicit definition of the idea
of a relation defined on a set A. We have been using this idea somewhat informally,
writing o < b to mean that a has the relation < to b, and, more generally, a * b
is written to mean that a has the relation * to b. Now, given a relation *, defined
on the set A, we can form the collection

{(a, b)|a * b}.

Conversely, given any collection of ordered pairs of elements of A, we can define
a relation *, by saying that a = b if the pair (a, b) belongs to the collection. In
the following definition, we are saying that the relation s the collection. Recall,
of course, that 4 X A is the set of all ordered pairs of elements of A.

DerFINiTION. A relation defined on a set A is a subset of A X A.

TFor example, let
A= {1,263},
and let
» = {(1,2), (1, 3), (2, 3)}.

Then * is a relation. (It is, in fact, the usual relation <.)
It is not necessary, of course, to denote relations by peculiar symbols. Tor
example, if A = {1, 2, 3}, as before, we may let

¢ = {20,610 32

Thus 2Gt, 3G1 and 3G2, because (2, 1), (3, 1), and (3, 2) belong to G. (In fact,
@ is the relation >.)

ProsLEM SET 3.2
1. Let A = {1,2 3, 4}. Let
G = {(41 2)! (4-1 1): (4: 3)) (2: 1): (21 3): (1) 3)}‘

Is @ a relation? Is G an order relation?

THE DISTANCE FUNCTION 47
2. Let A be as before, and let & be the set of all ordered pairs (a, b) such that ¢ and b
belong to 4 and @ # b. Is G a relation? Is G an order relation? ‘

3. Is the following collection a function? If so, what are its domain and image?
{(0,00, (1, 1), (2,4), (3,2), (4, 2), (5,4, (6, 1)}

Can you see a systematic way in which this collection might have been constructed?
4. Is the following collection a function?

{(0, 1), 1, 0), (0, 0)}

5. Let f be the set of all ordered pairs (z, y) such that z and y belong to Rand y = 22
Is this a function? '

6. The same question is asked for the set of all ordered pairs (z, y) such that z and y
belong to B and z = y2.

7. Consider a rectangular coordinate system in the plane, in the usual sense of analytic
geometry. Every point has a pair of coordinates (z, y). For the purposes of this question
let us regard points as indistinguishable from the ordered pairs (z, y) that describe themi
Thus every figure, that is, every set of points, becomes a collection of ordered pairs of
real numbers. Under what conditions, if any, do the following ficures represent functions?

(a) atriangle

(b) a single point

(¢) aline

(d) a cirele

(e) a semicircle, including the end points
(f) an ellipse

Wbat. In general, is the geometric condition that a figure in the coordinate plane must
satisfy, to be a function?

3.3 THE DISTANCE FUNCTION
So far, the structure dealt with in our geometry has been the triplet
(5, &, @.

Ws? shall now add to the structure by introducing the idea of distance. To each
pair of points there will correspond a real number called the distance between them.
Thus we want a distance function d, subject to the following postulates.

D-0. d is a function
d:8§ X 8§ —=R.

D-1. Torevery P,Q,d (P,Q) = 0.
D-2. d{f, Q) = 0if and only if P = Q.

D-3. d(P,Q) = d(Q, P) for every P and Q in S.
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Here we have numbered our first postulate -0 because it is never going to l_)e
cited in proofs; it merely explains what sort of object d is. Of course d(P, @) will
be called the distance between P and @, and, for the sake of brevity, we shall
write d(P, Q) simply as PQ. (We shall be using distances so ofte-.n that we ought
to reserve for them the simplest notation available, and “PQ” is absolute rock-
bottom.)

Surely any reasonable notion of distance ought to satisfy D-1 through D-3.
We might have required also that

PR+ QR = PR,

which would say, approximately, that “a straight line is the shortgst distance
between two points.” But as it happens, we don’t need to make t}-ns statement
a postulate, because it can be proved on the basis of other geometric postulates,
to be stated later. _ ‘ .
" Henceforth, until further notice, the distance function d is going to be part of
our structure. Thus the structure, at the present stage, is

S, 2, @, d.

The distance function is connected up with the rest of the geometry by the ruler
postulate D-4, which we shall state presently. - . . -
We ordinarily think of the real numbers as being arranged on a line, like this:

Ficure 3.1

If the “lines” in our geometry, that is, the elements of £, really “behave like lin‘es, Y
then we ought to be able to apply the same process in reverse .a,nd label the pollnfas
of any line L with numbers in the way that we label the points of the r-axis in
analytic geometry:
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Freure 3.2

1f this is done in the usual way, then we have a one-to-one correspondence,
f:L <R

between the points of L and the real numbers. This correspo?ldence will tl}rn
out to be a coordinale sysiem, in a sense which we shall soon define. Meanwhile,
therefore, if © = f(I?), we shall refer to = as the coordinate of P In the figure,
the coordinates of P, @, R, and T are 0, x4, 1, and x5. If the coordinates ave related
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to distance in the usual way, then
PQ=lvy] and PT = |ay|.
In fact, no matter where @ and T may lie on the line, we will always have
QT = |z — 4.

(You can check this for the cases zo < 3 < 0,22 <0 <2,and 0 < 25 < 4.
There 1s no harm in assuming that z, < x;, because when z1 and zs are inter-
changed, both sides of our equation are unchanged.)

Obviously nothing can be proved by this discussion, because the postulates that
we have stated so far do not describe any connection at all between the distance
function and lines. All that we have been trying to do is to indicate why the
following definition, and the following postulate, are reasonable.

DermNiTION., Let
f:L< R

be a one-to-one correspondence between a line L and the real numbers. If for
all points P, Q of L, we have

PQ = [1(P) — f(Q)],

then f is a coordinate system for L. For each point P of L, the number z = f(P)
is called the coordinate of P.

D-4. The Ruler Postulate. Every line has a coordinate system.

The postulate D-4 is called the ruler postulate because, in effect, it furnishes
us with an infinite ruler which can be laid down on any line and used to measure
distances along the line. This kind of ruler is not available in classical Euclidean
geometry. When we speak of “ruler-and-compass constructions” in classical geom-
etry, the first of these abstract drawing instruments is not really a ruler, because
1t has no marks on it. Tt is, properly speaking, merely a straight-edge. You can

~ use 1t to draw the line containing two different points, but you can’t use it to

measure distances with numbers or even to tell whether two distances PQ, RT
are the same. '

As it stands, D-4 says merely that every line has at least one coordinate system.
It 1s easy to show, however, that there are lots of others.

Theorem 1. If f is a coordinate system for L, and
9(P) = —f(P)
for each point P of L, then g is a coordinate system for L.

Proof. Tt is plain that the condition g(P) = —f(P) defines a function L — R.
And this function is one to one, because if z = g(P), it follows that —z = f(P),
and P = f~'(—x), so that P is uniquely determined by z.
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It remains to check the distance formula. Given that

z=gP), y=g@),
we want to prove that
PQ = |z — yl
We know that
—z = f(P), —y = f(@).

Since f is a coordinate system, it follows that
PQ = [{(—z) — (—u)|.

PQ = [y — a
= |x — y|.

Therefore

which was to be proved.
-Theorem 1 amounts to a statement that if we reverse the direction of the co-
ordinate system, then we get another coordinate system. We can also shift the

coordinates to left or right.

Theorem 2. Let f be a coordinate system for the line L. Let a be any real number;
and for each P € L, let
g(P) = f(P) + a.

Then g: L — R is a coordinate system for L.

The proof is very similar to that of the preceding theorem. Combining the
two, we get the following theorem.

Theorem 3. The Ruler Placement Theorem. Let L be a line, and let P and @
be any two points of L. Then L has a coordinate system in which the coordinate
of P is 0 and the coordinate of @ is positive.

Proof. Let f be any coordinate system for L. Let a = f(P); and for each point
T of L, let g(T) = f(T) — a.

Then g is a coordinate system for L; and g(P) = 0. If g(Q) > 0, then g is the
gystem that we were looking for. If g(@) < 0, let (T) = —g(T") for every
T & L. Then h satisfies the conditions of the theorem.

ProBrLEM SET 3.3

1. Show that D-1, D-2, and D-3 are consequences of the ruler postulate.

3.4 BETWEENNESS

One of the simplest ideas in geometry is that of betweenness for points on a line.
In fact, Euclid seems to have regarded it as too simple to analyze at all, and he
uses it, without comment, in proofs, but doesn’t mention it at all in his postulates.
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hkRQEghly speaking, B is between 4 and C on the line L if the points are situated
e this:

P |
| I '
4 B e

Ficure 3.3
or like this:
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A —

Ficure 3.4

(Logically speaking, of course, the second figure is superfluous, because on a line
there is no way to tell left from right or up from down.) What we need, to handlt;
betweenness mathematically, is an exact definition which CONVeys our common-
sense idea of what betweenness ought to mean. One such definition is as follows.

Derinrrion. Let 4, B, and € be three collinear points. If
AB + BC = AC,
then B s between 4 and C. In this case we write A-B-C.

As we shall see, this definition is workable. It enables us to prove that between-
ness has the properties that it ought to have.

Theorem B-1. If A-B-C, then C-B-A.

This is a triviality. If AB + BC = AC, thenCB + BA = CA.
The rest of the basic theorems on betweenness are going to depend essentially
on the ruler postulate.

Bet*fveenness for real numbers is defined in the expected way; y is between z
and z if either z < y < zorz < y < z. In this case we write z-y-z. (Confusion

with subtraction is unlikely to occur, because “z minus y minus z” would be
ambiguous anyway.)

Lem‘mu 1. C_Tiven a line I with a coordinate system f and three points A, B,
C with coordinates z, y, 2, respectively. If 2-y-z, then A-B-C.

Proof of lemma. (1) If x < y < 2, then
AB = |y — 2| = y — g,
because y — x > 0. For the same reasons,

BC=|e—gyl=2—y

and

AC = |z — 2| = 2 — =



