Math 333 Quiz 8 - April 8, 2013

Question 1

Consider the function

$$
f(z)=\frac{1}{z(z-2)} .
$$

Question 1.a

Identify and classify the singularities of this function.

Answer 1.a

The function f is a quotient of two polynomials, so we automatically know that any singularities will either be removable or poles, but not essential. The numerator will never be 0 , so we can never have removable singularities; therefore, any singularities are poles.

The denominator is equal to 0 when $z=0$ or $z=2$, therefore both those points are poles. The order of the poles can be determined by looking at the power of the factor - in this case, both poles are order 1.

Question 1.b

Expand this function in a series which is convergent in the domain $0<|z|<2$.

Answer 1.b

This question calls for a series centered at $z_{0}=0 . f(z)$ has two components, one of which is already centered at $z_{0}=0: 1 / z$. We need to convert the other part to a series centered at $z_{0}=0$:

$$
\begin{aligned}
\frac{1}{z-2} & =-\frac{1}{2} \frac{1}{1-z / 2} \\
& =-\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{z}{2}\right)=-\frac{1}{2}-\frac{1}{4} z-\frac{1}{8} z^{2}-\ldots
\end{aligned}
$$

This is a geometric series, valid when $|z / 2|<1$, or equivalently, $|z|<2$. Substituting into our original $f(z)$ gives

$$
\begin{aligned}
f(z) & =\frac{1}{z} \frac{1}{z-2} \\
& =\frac{1}{z}\left(-\frac{1}{2}-\frac{1}{4} z-\frac{1}{8} z^{2}-\ldots\right) \\
& =-\frac{1}{2} \frac{1}{z}-\frac{1}{4}-\frac{1}{8} z-\ldots
\end{aligned}
$$

Question 2

This question deals with residues.

Question 2.a

Given a generic Laurent expansion for a function f :

$$
f(z)=\ldots+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

identify the center of the series and the residue of f at that center.

Answer 2.a

The center of the series is z_{0} and the residue is a_{-1}.

Question 2.b

Cauchy's Residue Theorem states that

$$
\oint_{C} f(z) d z=2 \pi \imath \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right)
$$

for C a closed contour, and f analytic except at z_{k} within C. $\operatorname{Res}\left(f, z_{k}\right)$ is the residue of f at z_{k}. Use this theorem to evaluate the integral

$$
\oint_{C} \frac{2 z+5}{z^{2}+4} d z, \quad C:|z-\imath|=2 .
$$

You can evaluate the residue of an order 1 pole of f at $z=z_{k}$ with

$$
\operatorname{Res}\left(f, z_{k}\right)=\lim _{z \rightarrow z_{k}}\left(z-z_{k}\right) f(z) .
$$

Answer 2.b

For this problem, $f(z)$ is a rational function. Its poles can be found by solving $z^{2}+4=0$, which can be factored as $(z+2 \imath)(z-2 \imath)=0$ and has solutions $z= \pm 2 \imath$. Neither of those values causes the numerator to be zero, so their are both poles of order 1 .

Only the pole $z_{0}=2 \imath$ is inside the closed contour C, so only it contributes to the value of the integral. The residue at that point can be computed with the formula provided:

$$
\operatorname{Res}(f, 2 \imath)=\lim _{z \rightarrow 2 \imath}(z-2 \imath) \frac{2 z+5}{z^{2}+4}=\lim _{z \rightarrow 2 \imath} \frac{2 z+5}{z+2 \imath}=\frac{4 \imath+5}{4 \imath} .
$$

Plugging that in to the residue theorem gives

$$
\oint_{C} \frac{2 z+5}{z^{2}+4} d z=2 \pi \imath \operatorname{Res}(f, 2 \imath)=2 \pi \imath\left(\frac{4 \imath+5}{4 \imath}\right)=\frac{\pi}{2}(4 \imath+5) .
$$

