Math 333 Quiz 7 - April 3, 2013

Question 1

Compute the Laurent series for the function

$$
f(z)=\frac{\mathrm{e}^{-z}}{z}
$$

centered at $z_{0}=0$, and state the domain of convergence of that series. Recall the exponential series

$$
\mathrm{e}^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}, \quad z \in \mathbb{C}
$$

Answer 1

Using the series for e^{z} above, we know that

$$
\mathrm{e}^{-z}=\sum_{k=0}^{\infty} \frac{(-z)^{k}}{k!}=1-z+\frac{1}{2} z^{2}-\ldots,
$$

which is a series centered at $z_{0}=0$. The other part of $f(z)$, the $1 / z$ term, is already a Laurent series centered at $z_{0}=0$. Combining these two series gives

$$
\begin{aligned}
\frac{\mathrm{e}^{-z}}{z} & =\frac{1}{z}\left(1-z+\frac{1}{2} z^{2}-\ldots\right) \\
& =\frac{1}{z}-1+\frac{1}{2} z-\ldots
\end{aligned}
$$

To determine the convergence, we need the intersection of the domains of convergence of the two components. $1 / z$ converges when $|z|>0$ (for any nonzero z) and the series for e^{-z} is convergent everywhere, so the convergence for $f(z)$ is $|z|>0$.

Question 2

Compute the Laurent series for the function

$$
f(z)=\frac{1}{(z-1) z}
$$

centered at $z_{0}=1$, and state the domain of convergence of that series. Recall the geometric series

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}, \quad|z|<1
$$

Answer 2

Again we need a series for a function in two pieces. The term

$$
\frac{1}{z-1}
$$

is already a series centered at $z_{0}=1$ (albeit a very short series), which is convergent for $|z-1|>0$. We now need to expand the other half of $f(z)$ around $z_{0}=1$. To do so,

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{1+z-1} \\
& =\frac{1}{1-(-(z-1))} \\
& =\sum_{k=0}^{\infty}(-(z-1))^{k}=1-(z-1)+(z-1)^{2}-\ldots
\end{aligned}
$$

This series is a geometric series, which is convergent for

$$
|z-1|<1
$$

Plugging this series into f gives

$$
\begin{aligned}
f(z)=\frac{1}{z-1} \frac{1}{z} & =\frac{1}{z-1}\left(1-(z-1)+(z-1)^{2}-\ldots\right) \\
& =\frac{1}{z-1}-1+(z-1)-\ldots
\end{aligned}
$$

Again, to find the domain of convergence we take the intersection of the domains of convergence of the components of this series, which gives

$$
0<|z-1|<1 .
$$

The left portion of this inequality comes from the $1 / z$ term, and the right portion comes from the geometric series.

