Math 333 Quiz 7 - April 3, 2013

Question 1

Compute the Laurent series for the function

centered at zp = 0, and state the domain of convergence of that series. Recall the exponential series
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Answer 1
Using the series for e above, we know that
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which is a series centered at zp = 0. The other part of f(z), the 1/z term, is already a Laurent

series centered at zp = 0. Combining these two series gives
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To determine the convergence, we need the intersection of the domains of convergence of the two
components. 1/z converges when |z| > 0 (for any nonzero z) and the series for e~

everywhere, so the convergence for f(z) is |z| > 0.
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Question 2

Compute the Laurent series for the function
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centered at zg = 1, and state the domain of convergence of that series. Recall the geometric series
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Answer 2

Again we need a series for a function in two pieces. The term
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is already a series centered at zg = 1 (albeit a very short series), which is convergent for |z —1| > 0.
We now need to expand the other half of f(z) around z9 = 1. To do so,
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This series is a geometric series, which is convergent for
|z —1] < 1.

Plugging this series into f gives
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Again, to find the domain of convergence we take the intersection of the domains of convergence
of the components of this series, which gives

0<|z—-1] < 1.

The left portion of this inequality comes from the 1/z term, and the right portion comes from the
geometric series.



