Math 333 Quiz 6 - March 6, 2013

Question 1

A path independent integral can be evaluated by

$$
\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right), \quad F^{\prime}(z)=f(z)
$$

where the contour C begins at the point z_{0} and ends at the point z_{1}.

Question 1.a

What condition must f satisfy in order for this theorem to apply?

Answer 1.a

f must be analytic to invoke path independence.

Question 1.b

Using this theorem, evaluate the integral

$$
\int_{C} \mathrm{e}^{z} d z
$$

along the curve

$$
C: y=\frac{1}{x}, \quad 1 \leq x \leq 2 .
$$

To save time, the answer does not need to be in $x+\imath y$ form.

Answer 1.b

We know that e^{z} is analytic, because it was proven earlier. That means that we do not need to parameterize, but rather just use path independence. This integral moves along the curve $z(t)=t+\imath / t$, which means that

$$
\int_{C} \mathrm{e}^{z} d z=\int_{1+\imath}^{2+\imath / 2} \mathrm{e}^{z} d z
$$

This integral is pretty easy, leaving the answer

$$
\int_{C} \mathrm{e}^{z} d z=\mathrm{e}^{2+\imath / 2}-\mathrm{e}^{1+\imath},
$$

which for this problem is simplified enough.

Question 2

The Cauchy Integral Formula states that

$$
\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n}} d z=\frac{2 \pi \imath}{(n-1)!} f^{(n-1)}\left(z_{0}\right)
$$

where C is a closed contour and z_{0} lies inside C.

Question 2.a

What condition must f satisfy in order for this formula to apply?

Answer 2.a

f must be analytic inside the closed contour C to invoke the Cauchy Integral Formula.

Question 2.b

Evaluate the integral

$$
\int_{C} \frac{z^{2}-1}{z^{2}+1} d z, \quad C:|z+2 \imath|=2
$$

using the Cauchy Integral Formula.

Answer 2.b

We need to write this integral in two components: a numerator which is analytic, and a denominator with an exposed singularity. We know that

$$
z^{2}+1=(z-\imath)(z+\imath)
$$

so we can write

$$
\int_{C} \frac{z^{2}-1}{z^{2}+1} d z=\int_{C} \frac{z^{2}-1}{(z+\imath)(z-\imath)} d z=\int_{C} \frac{\left(\frac{z^{2}-1}{z-\imath}\right)}{z+\imath} d z
$$

Because $f=\frac{z^{2}-1}{z-\imath}$ is analytic inside C, this form is acceptable. For this integral, $n=1$ and $z_{0}=-\imath$, so

$$
\begin{aligned}
\int_{C} \frac{z^{2}-1}{z^{2}+1} d z & =\frac{2 \pi \imath}{1} \frac{(-\imath)^{2}-1}{-\imath-\imath} \\
& =2 \pi \imath \frac{-1-1}{-\imath-\imath} \\
& =2 \pi \imath \frac{1}{\imath} \\
& =2 \pi
\end{aligned}
$$

