Math 333 Quiz 6 - March 6, 2013

Question 1

A path independent integral can be evaluated by
| @iz =P =P PG = 1)
where the contour C' begins at the point zg and ends at the point z;.

Question 1.a

What condition must f satisfy in order for this theorem to apply?

Answer l.a

f must be analytic to invoke path independence.

Question 1.b

Using this theorem, evaluate the integral
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c

1
C:.y=—, 1<x <2,
T

along the curve

To save time, the answer does not need to be in x + 1y form.

Answer 1.b

We know that e is analytic, because it was proven earlier. That means that we do not need
to parameterize, but rather just use path independence. This integral moves along the curve

z(t) =t +1/t, which means that
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/ e“dz = / e“dz.
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This integral is pretty easy, leaving the answer
/ e?dz = eQ—i—z/Q _ el'H,
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which for this problem is simplified enough.



Question 2

The Cauchy Integral Formula states that
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where C' is a closed contour and zq lies inside C.

Question 2.a

What condition must f satisfy in order for this formula to apply?

Answer 2.a

f must be analytic inside the closed contour C' to invoke the Cauchy Integral Formula.

Question 2.b

Evaluate the integral
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using the Cauchy Integral Formula.

Answer 2.b

We need to write this integral in two components: a numerator which is analytic, and a denominator
with an exposed singularity. We know that
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SO we can write
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Because f = Zj__ll is analytic inside C| this form is acceptable. For this integral, n = 1 and zg = —1,
SO
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