Math 333 Quiz 5 - March 4, 2013

Question 1

Evaluate the integral

$$
\int_{C} \bar{z} d z,
$$

by parameterizing C, defined by

$$
y=x^{2}, \quad 0 \leq x \leq 1
$$

Answer 1

We need to write our parameterization of $z(t)$:

$$
z(t)=t+\imath t^{2}, \quad 0 \leq t \leq 1 .
$$

and compute its derivative

$$
z^{\prime}(t)=1+22 t .
$$

Plugging this into the integral gives

$$
\begin{aligned}
\int_{C} \bar{z} d z & =\int_{0}^{1} \overline{\left(t+\imath t^{2}\right)}(1+2 \imath t) d t \\
& =\int_{0}^{1}\left(t-\imath t^{2}\right)(1+2 \imath t) d t \\
& =\int_{0}^{1}\left(t+\imath t^{2}+2 t^{3}\right) d t \\
& =\frac{1}{2} t+\frac{1}{3} \imath t^{3}+\left.\frac{1}{2} t^{4}\right|_{0} ^{1} \\
& =1+\frac{1}{3} \imath .
\end{aligned}
$$

Question 2

Question 2a

What is the value of

$$
\int_{C} f(z) d z
$$

where C is a closed contour and f is analytic inside C ?

Answer 2a

That integral is always 0 .

Question 2b

Evaluate the integral

$$
\int_{C} \frac{2 z}{z^{2}+4} d z, \quad C:|z+2 \imath|=2
$$

using partial fraction decomposition, properties of integrals, and the theorem

$$
\int_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z= \begin{cases}2 \pi \imath & \text { if } n=1 \\ 0 & \text { if } n \neq 1\end{cases}
$$

from chapter 18.2, where z_{0} is inside C.

Answer 2b

First, we need to do partial fraction decomposition on the integrand,

$$
\frac{2 z}{z^{2}+4}=\frac{1}{z+2 \imath}+\frac{1}{z-2 \imath} .
$$

Now we can write

$$
\int_{C} \frac{2 z}{z^{2}+4} d z=\int_{C} \frac{1}{z+2 \imath} d z+\underbrace{\int_{C} \frac{1}{z-2 \imath} d z}_{=0}
$$

The second integral is equal to 0 , because it is analytic inside C. The first integral can be evaluated with the theorem above, because the point where it is not analytic $z_{0}=-2 \imath$ is inside C. This means that

$$
\int_{C} \frac{2 z}{z^{2}+4} d z=2 \pi \imath+0=2 \pi \imath .
$$

