Question 1

For these problems, assume that z = 1 + i.

Question 1.a

Compute $\ln(z)$.

Answer 1.a

We need to write z in polar form $z = re^{i\theta}$:

$$r = |z| = \sqrt{(1)^2 + (1)^2} = \sqrt{2},$$

$$\theta = \arg(z) = \tan^{-1}(1/1) = \pi/4 + 2\pi k, \qquad k \in \mathbb{Z}.$$

Plugging the polar form of z into $\ln(z)$ gives

$$\ln\left(\sqrt{2}\exp(\pi/4i+2i\pi k)\right) = \log\sqrt{2} + i(\pi/4+2\pi k).$$

The value k can take infinitely many values, which means that \ln also has infinitely many values.

Question 1.b

Using the value above, determine what Ln(z) is.

Answer 1.b

When we compute Ln(z), we use the principal value of the angle θ , meaning that the polar form of z must include an angle in $(-\pi, \pi]$. In this case, that angle is $\text{Arg}(z) = \pi/4$, meaning that

$$\operatorname{Ln}(z) = \log \sqrt{2} + i\pi/4,$$

which has only one value.

Question 2

Using the information

$$\cosh(z) = \frac{1}{2}(e^{z} + e^{-z}),$$

derive the formula for $\cosh^{-1}(z)$. Hint: Start by defining $\cosh(w) = z$, and use the substitution $u = e^w$.

Answer 2

Let's follow the hint:

$$\cosh(w) = z \qquad \Leftrightarrow \qquad w = \cosh^{-1}(z).$$

Using the definition of cosh gives

$$\frac{1}{2}(\mathrm{e}^w + \mathrm{e}^{-w}) = z.$$

Our goal now is to solve for w. Applying the substitution I suggested yields

$$\frac{1}{2}\left(u+\frac{1}{u}\right) = z,$$
$$u^2 - 2zu = -1$$

This is a quadratic equation in u, so we can complete the square,

$$u^{2} - 2zu + z^{2} = z^{2} - 1,$$

$$(u - z)^{2} = z^{2} - 1,$$

$$u = z + (z^{2} - 1)^{1/2}.$$

Notice the use of the complex square root notation $(z^2 - 1)^{1/2}$; this should remind you that there are 2 values to that expression. Returning back from our original substitution gives

$$e^w = z + (z^2 - 1)^{1/2},$$

 $w = \ln \left(z + (z^2 - 1)^{1/2} \right).$

Finally we can write the definition of \cosh^{-1} as

$$\cosh^{-1}(z) = \ln\left(z + (z^2 - 1)^{1/2}\right).$$