Math 333 Quiz 4 - February 20, 2012

Question 1

For these problems, assume that $z=1+\imath$.

Question 1.a

Compute $\ln (z)$.

Answer 1.a

We need to write z in polar form $z=r \mathrm{e}^{2 \theta}$:

$$
\begin{aligned}
& r=|z|=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}, \\
& \theta=\arg (z)=\tan ^{-1}(1 / 1)=\pi / 4+2 \pi k, \quad k \in \mathbb{Z} .
\end{aligned}
$$

Plugging the polar form of z into $\ln (z)$ gives

$$
\ln (\sqrt{2} \exp (\pi / 4 \imath+2 \imath \pi k))=\log \sqrt{2}+\imath(\pi / 4+2 \pi k) .
$$

The value k can take infinitely many values, which means that \ln also has infinitely many values.

Question 1.b

Using the value above, determine what $\operatorname{Ln}(z)$ is.

Answer 1.b

When we compute $\operatorname{Ln}(z)$, we use the principal value of the angle θ, meaning that the polar form of z must include an angle in $(-\pi, \pi]$. In this case, that angle is $\operatorname{Arg}(z)=\pi / 4$, meaning that

$$
\operatorname{Ln}(z)=\log \sqrt{2}+\imath \pi / 4,
$$

which has only one value.

Question 2

Using the information

$$
\cosh (z)=\frac{1}{2}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right),
$$

derive the formula for $\cosh ^{-1}(z)$. Hint: Start by defining $\cosh (w)=z$, and use the substitution $u=\mathrm{e}^{w}$.

Answer 2

Let's follow the hint:

$$
\cosh (w)=z \quad \Leftrightarrow \quad w=\cosh ^{-1}(z) .
$$

Using the definition of cosh gives

$$
\frac{1}{2}\left(\mathrm{e}^{w}+\mathrm{e}^{-w}\right)=z
$$

Our goal now is to solve for w. Applying the substitution I suggested yields

$$
\begin{aligned}
\frac{1}{2}\left(u+\frac{1}{u}\right) & =z \\
u^{2}-2 z u & =-1 .
\end{aligned}
$$

This is a quadratic equation in u, so we can complete the square,

$$
\begin{aligned}
u^{2}-2 z u+z^{2} & =z^{2}-1, \\
(u-z)^{2} & =z^{2}-1, \\
u & =z+\left(z^{2}-1\right)^{1 / 2} .
\end{aligned}
$$

Notice the use of the complex square root notation $\left(z^{2}-1\right)^{1 / 2}$; this should remind you that there are 2 values to that expression. Returning back from our original substitution gives

$$
\begin{aligned}
\mathrm{e}^{w} & =z+\left(z^{2}-1\right)^{1 / 2} \\
w & =\ln \left(z+\left(z^{2}-1\right)^{1 / 2}\right) .
\end{aligned}
$$

Finally we can write the definition of $\cosh ^{-1}$ as

$$
\cosh ^{-1}(z)=\ln \left(z+\left(z^{2}-1\right)^{1 / 2}\right)
$$

