Math 333 Quiz 3 - February 18, 2012

Question 1

Assuming $z=x+\imath y$, write the following functions $f(z)$ in $u+\imath v$ form, and state explicitly what $u(x, y)$ and $v(x, y)$ are.

Question 1.a

$$
f(z)=z^{2}+z
$$

Answer 1.a

Substituting in $z=x+\imath y$, we get

$$
\begin{aligned}
f(z) & =(x+\imath y)^{2}+(x+\imath y) \\
& =x^{2}+2 \imath x y-y^{2}+x+\imath y \\
& =x^{2}-y^{2}+x+\imath(2 x y+y) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2}+x, \\
& v(x, y)=2 x y+y .
\end{aligned}
$$

Question 1.b

$$
f(z)=\frac{1}{1+z^{2}}
$$

Answer 1.b
Substituting in $z=x+\imath y$, we get

$$
\begin{aligned}
f(z) & =\frac{1}{1+(x+\imath y)^{2}} \\
& =\frac{1}{1+x^{2}-y^{2}+2 \imath x y} \\
& =\frac{1}{1+x^{2}-y^{2}+2 x x y} \frac{1+x^{2}-y^{2}-2 \imath x y}{1+x^{2}-y^{2}-2 \imath x y} \\
& =\frac{1+x^{2}-y^{2}-2 \imath x y}{\left(1+x^{2}-y^{2}\right)^{2}+(2 x y)^{2}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& u(x, y)=\frac{1+x^{2}-y^{2}}{\left(1+x^{2}-y^{2}\right)^{2}+(2 x y)^{2}}, \\
& v(x, y)=\frac{-2 x y}{\left(1+x^{2}-y^{2}\right)^{2}+(2 x y)^{2}} .
\end{aligned}
$$

Question 2

Determine if the function

$$
f(z)=z^{3}
$$

is analytic by testing the Cauchy-Riemann equations.

Answer 2

The function f can be written in $u+v$ form as

$$
\begin{aligned}
f(x+\imath y)=(x+\imath y)^{3} & =(x+\imath y)^{2}(x+\imath y) \\
& =\left(x^{2}-y^{2}+2 \imath x y\right)(x+\imath y) \\
& =x^{3}-x y^{2}-2 x y^{2}+\imath\left(2 x^{2} y+x^{2} y-y^{3}\right),
\end{aligned}
$$

which yields

$$
\begin{gathered}
u(x, y)=x^{3}-3 x y^{2}, \\
v(x, y)=3 x^{2} y-y^{3} .
\end{gathered}
$$

All first-order partial derivatives are

$$
\begin{array}{ll}
u_{x}=3 x^{2}-3 y^{2}, & u_{y}=-6 x y, \\
v_{y}=3 x^{2}-3 y^{2}, & v_{x}=6 x y .
\end{array}
$$

The Cauchy-Riemann equations are

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

and by plugging in our results above, we see that the Cauchy-Riemann equations are satisfied. That means that f is analytic.

