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Online Appendix A

Introduction to Matrix
Computations

A.1 Vectors and Matrices

A.1.1 Linear Vector Spaces

In this appendix we recall basic elements of finite-dimensional linear vector spaces and
related matrix algebra, and introduce some notations to be used in the book. The exposition
is brief and meant as a convenient reference.

We will be concerned with the vector spaces Rn and Cn, that is, the set of real or
complex n-tuples with 1 ≤ n < ∞. Let v1, v2, . . . , vk be vectors and α1, α2, . . . , αk

be scalars. The vectors are said to be linearly independent if none of them is a linear
combination of the others, that is,

k∑
i=1

αivi = 0 ⇒ αi = 0, i = 1 : k.

Otherwise, if a nontrivial linear combination of v1, . . . , vk is zero, the vectors are said to be
linearly dependent. Then at least one vector vi will be a linear combination of the rest.

A basis in a vector space V is a set of linearly independent vectors v1, v2, . . . , vn ∈ V
such that all vectors v ∈ V can be expressed as a linear combination:

v =
n∑

i=1

ξivi .

The scalars ξi are called the components or coordinates of v with respect to the basis {vi}.
If the vector space V has a basis of n vectors, then every system of linearly independent
vectors of V has at most k elements and any other basis of V has the same number k of
elements. The number k is called the dimension of V and denoted by dim(V).

The linear space of column vectors x = (x1, x2, . . . , xn)
T , where xi ∈ R is denoted

Rn; if xi ∈ C, then it is denoted Cn. The dimension of this space is n, and the unit vectors
e1, e2, . . . , en, where

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T ,
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constitute the standard basis. Note that the components x1, x2, . . . , xn are the coordinates
when the vector x is expressed as a linear combination of the standard basis. We shall use
the same name for a vector as for its coordinate representation by a column vector with
respect to the standard basis.

An arbitrary basis can be characterized by the nonsingular matrixV = (v1, v2, . . . , vn)

composed of the basis vectors. The coordinate transformation reads x = V ξ . The standard
basis itself is characterized by the unit matrix

I = (e1, e2, . . . , en).

IfW ⊂ V is a vector space, thenW is called a vector subspace of V . The set of all
linear combinations of v1, . . . , vk ∈ V form a vector subspace denoted by

span {v1, . . . , vk} =
k∑

i=1

αivi, i = 1 : k,

where αi are real or complex scalars. If S1, . . . ,Sk are vector subspaces of V , then their
sum defined by

S = {v1 + · · · + vk| vi ∈ Si , i = 1 : k}
is also a vector subspace. The intersection T of a set of vector subspaces is also a subspace,

T = S1 ∩ S2 · · · ∩ Sk.
(The union of vector spaces is generally not a vector space.) If the intersections of the
subspaces are empty, Si ∩ Sj = 0, i �= j , then the sum of the subspaces is called their
direct sum and denoted by

S = S1 ⊕ S2 · · · ⊕ Sk.
A function F from one linear space to another (or the same) linear space is said to be

linear if
F(αu+ βv) = αF(u)+ βF(v)

for all vectors u, v ∈ V and all scalars α, β. Note that this terminology excludes nonho-
mogeneous functions like αu + β, which are called affine functions. Linear functions are
often expressed in the form Au, where A is called a linear operator.

A vector space for which an inner product is defined is called an inner product space.
For the vector space Rn the Euclidean inner product is

(x, y) =
n∑

i=1

xiyi . (A.1.1)

Similarly Cn is an inner product space with the inner product

(x, y) =
n∑

k=1

x̄kyk, (A.1.2)

where x̄k denotes the complex conjugate of xk .
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Two vectors v and w in Rn are said to be orthogonal if (v,w) = 0. A set of vectors
v1, . . . , vk in Rn is called orthogonal with respect to the Euclidean inner product if

(vi, vj ) = 0, i �= j,

and orthonormal if also (vi, vi) = 1, i = 1 : k. An orthogonal set of vectors is linearly
independent.

The orthogonal complement S⊥ of a subspace S ∈ Rn is the subspace defined by

S⊥ = {y ∈ Rn| (y, x) = 0, x ∈ S}.
More generally, the subspaces S1, . . . , Sk of Rn are mutually orthogonal if, for all 1 ≤ i, j ≤
k, i �= j ,

x ∈ Si, y ∈ Sj , ⇒ (x, y) = 0.

The vectors q1, . . . , qk form an orthonormal basis for a subspace S ⊂ Rn if they are
orthonormal and span {q1, . . . , qk} = S.

A.1.2 Matrix and Vector Algebra

A matrix A is a collection of m × n real or complex numbers ordered in m rows and n

columns:

A = (aij ) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. For some
problems it is more relevant and convenient to work with complex vectors and matrices;
Cm×n denotes the set of m × n matrices whose components are complex numbers. If
m = n, then the matrix A is said to be square and of order n. If m �= n, then A is said to be
rectangular.

A matrixA ∈ Rm×n or Cm×n can be interpreted as representing a linear transformation
on finite-dimensional vector spaces over Rn or Cn. Consider a linear function u = F(v),
v ∈ Cn, u ∈ Cm. Let x and y be the column vectors representing the vectors v and F(v),
respectively, using the standard basis of the two spaces. Then there is a unique matrix
A ∈ Cm×n representing this map such that

y = Ax.

This gives a link between linear maps and matrices.
We will follow a convention introduced by Householder191 and use uppercase letters

(e.g., A,B) to denote matrices. The corresponding lowercase letters with subscripts ij then
refer to the (i, j) component of the matrix (e.g., aij , bij ). Greek letters α, β, . . . are usually
used to denote scalars. Column vectors are usually denoted by lower case letters (e.g., x, y).

191A. S. Householder (1904–1993), at Oak Ridge National Laboratory and University of Tennessee, was a pioneer
in the use of matrix factorization and orthogonal transformations in numerical linear algebra.
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Two matrices in Rm×n are said to be equal, A = B, if

aij = bij , i = 1 : m, j = 1 : n.
The basic operations with matrices are defined as follows. The product of a matrix A with
a scalar α is

B = αA, bij = αaij .

The sum of two matrices A and B in Rm×n is

C = A+ B, cij = aij + bij . (A.1.3)

The product of two matrices A and B is defined if and only if the number of columns in A

equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p, then

C = AB ∈ Rm×p, cij =
n∑

k=1

aikbkj , (A.1.4)

and can be computed with 2mnp flops. The product BA is defined only if m = p.
Matrix multiplication satisfies the distributive rules

A(BC) = (AB)C, A(B + C) = AB + AC. (A.1.5)

Note, however, that the number of arithmetic operations required to compute, respectively,
the left- and right-hand sides of these equations can be very different. Matrix multiplication
is, however, not commutative, that is, even when both products are defined AB �= BA, in
general. In the special case that AB = BA the matrices are said to commute.

The transpose AT of a matrix A = (aij ) is the matrix whose rows are the columns
of A, i.e., if C = AT , then cij = aji . For the transpose of a product we have

(AB)T = BTAT , (A.1.6)

i.e., the product of the transposed matrices in reverse order. For a complex matrix, AH

denotes the complex conjugate transpose of A

A = (aij ), AH = (āji),

and it holds that (AB)H = BHAH .
A column vector is a matrix consisting of just one column and we write x ∈ Rn

instead of x ∈ Rn×1. Note that the Euclidean inner product (A.1.1) can be written as

(x, y) = xT y.

If A ∈ Rm×n, x ∈ Rn, then

y = Ax ∈ Rm, yi =
n∑

j=1

aij xj , i = 1 : m.

A row vector is a matrix consisting of just one row and is obtained by transposing a column
vector (e.g., xT ).
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It is useful to define array operations, which are carried out element by element on
vectors and matrices. Let A = (aij ) and B = (bij ) be two matrices of the same dimensions.
Then the Hadamard product192 is defined by

C = A . ∗ B ⇔ cij = aij · bij . (A.1.7)

Similarly A ./B is a matrix with elements aij /bij . For the operations + and − the array
operations coincide with matrix operations so no distinction is necessary.

A.1.3 Rank and Linear Systems

For a matrix A ∈ Rm×n the maximum number of independent row vectors is always equal
to the maximum number of independent column vectors. This number r is called the rank
of A and thus we have r ≤ min(m, n). If rank (A) = n, A is said to have full column rank;
if rank (A) = m, A is said to have full row rank.

The outer product of two vectors x ∈ Rm and y ∈ Rn is the matrix

xyT =
 x1y1 . . . x1yn

...
...

xmy1 . . . xmyn

 ∈ Rm×n. (A.1.8)

Clearly this matrix has rank equal to one.
Asquare matrix is nonsingular and invertible if there exists an inverse matrix denoted

by A−1 with the property that
A−1A = AA−1 = I.

This is the case if and only if A has full row (column) rank. The inverse of a product of two
matrices is

(AB)−1 = B−1A−1;
i.e., it equals the product of the inverse matrices taken in reverse order.

The operations of taking transpose and inverse commutes, i.e., (A−1)T = (AT )−1.
Therefore, we can denote the resulting matrix by A−T .

The range and the nullspace of a matrix A ∈ Rm×n are

R(A) = {z ∈ Rm| z = Ax, x ∈ Rn}, (A.1.9)

N (A) = {y ∈ Rn| Ay = 0}. (A.1.10)

These are related to the range and nullspace of the transpose matrix AT by

R(A)⊥ = N (AT ), N (A)⊥ = R(AT ); (A.1.11)

i.e., N (AT ) is the orthogonal complement toR(A) and N (A) the orthogonal complement
toR(AT ). This result is sometimes called the Fundamental Theorem of Linear Algebra.

192Jacques Salomon Hadamard (1865–1963) was a French mathematician active at the Sorbonne, Collège de
France and Ècole Polytechnique in Paris. He made important contributions to geodesics of surfaces and functional
analysis. He gave a proof of the result that the number of primes ≤ n tends to infinity as n/ ln n.
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A square matrix A ∈ Rn×n is nonsingular if and only if N (A) = {0}. A linear
system Ax = b, A ∈ Rm×n, is said to be consistent if b ∈ R(A) or, equivalently if
rank (A, b) = rank (A). A consistent linear system always has at least one solution x. If
b �∈ R(A) or equivalently, rank (A, b) > rank (A), the system is inconsistent and has no
solution. If m > n, there are always right-hand sides b such that Ax = b is inconsistent.

A.1.4 Special Matrices

Any matrix D for which dij = 0 if i �= j is called a diagonal matrix. If x ∈ Rn is a vector,
then D = diag (x) ∈ Rn×n is the diagonal matrix formed by the elements of x. For a matrix
A ∈ Rn×n the elements aii , i = 1 : n, form the main diagonal of A, and we write

diag (A) = diag (a11, a22, . . . , ann).

For k = 1 : n − 1 the elements ai,i+k (ai+k,i), i = 1 : n − k, form the kth superdiagonal
(subdiagonal) of A. The elements ai,n−i+1, i = 1 : n, form the (main) antidiagonal of A.

The unit matrix I = In ∈ Rn×n is defined by

In = diag (1, 1, . . . , 1) = (e1, e2, . . . , en),

and the kth column of In is denoted by ek . We have that In = (δij ), where δij is the
Kronecker symbol δij = 0, i �= j , and δij = 1, i = j . For all square matrices of order n,
it holds that AI = IA = A. If desirable, we set the size of the unit matrix as a subscript of
I , e.g., In.

A matrix A for which all nonzero elements are located in consecutive diagonals is
called a band matrix. A is said to have upper bandwidth r if r is the smallest integer
such that

aij = 0, j > i + r,

and similarly to have lower bandwidth s if s is the smallest integer such that

aij = 0, i > j + s.

The number of nonzero elements in each row of A is then at most equal to w = r + s + 1,
which is the bandwidth of A. For a matrix A ∈ Rm×n which is not square, we define the
bandwidth as

w = max
1≤i≤m

{j − k + 1 | aij aik �= 0}.
Several classes of band matrices that occur frequently have special names. Thus, a

matrix for which r = s = 1 is called tridiagonal; if r = 0, s = 1 (r = 1, s = 0), it is
called lower (upper) bidiagonal, etc. A matrix with s = 1 (r = 1) is called an upper (lower)
Hessenberg matrix.

An upper triangular matrix is a matrix R for which rij = 0 whenever i > j . A
square upper triangular matrix has the form

R =


r11 r12 . . . r1n

0 r22 . . . r2n
...

...
. . .

...

0 0 . . . rnn

 .



dqbjVol1
2008/3/27
page A-7

A.1. Vectors and Matrices A-7

If also rij = 0 when i = j , then R is strictly upper triangular. Similarly a matrix L is lower
triangular if lij = 0, i < j , and strictly lower triangular if lij = 0, i ≤ j . Sums, products,
and inverses of square upper (lower) triangular matrices are again triangular matrices of the
same type.

A square matrix A is called symmetric if its elements are symmetric about its main
diagonal, i.e., aij = aji , or equivalently, AT = A. The product of two symmetric matrices
is symmetric if and only if A and B commute, that is, AB = BA. If AT = −A, then A is
called skew-symmetric.

For any square nonsingular matrix A, there is a unique adjoint matrix A∗ such that

(x,A∗y) = (Ax, y).

The matrix A ∈ Cn×n is called self-adjoint if A∗ = A. In particular, for A ∈ Rn×n with
the standard inner product, we have

(Ax, y) = (Ax)T y = xT AT y.

Hence A∗ = AT , the transpose of A, and A is self-adjoint if it is symmetric. A symmetric
matrix A is called positive definite if

xT Ax > 0 ∀x ∈ Rn, x �= 0, (A.1.12)

and positive semidefinite if xT Ax ≥ 0 for all x ∈ Rn. Otherwise it is called indefinite.
Similarly, A ∈ Cn×n is self-adjoint or Hermitian if A = AH , the conjugate transpose

of A. A Hermitian matrix has analogous properties to a real symmetric matrix. If A is
Hermitian, then (xHAx)H = xHAx is real, and A is positive definite if

xHAx > 0 ∀x ∈ Cn, x �= 0. (A.1.13)

Any matrix A ∈ Cn×n can be written as the sum of its Hermitian and a skew-Hermitian part,
A = H(A)+ S(A), where

H(A) = 1

2
(A+ AH), S(A) = 1

2
(A− AH).

A is Hermitian if and only if S(A) = 0. It is easily seen that A is positive definite if and
only if its symmetric part H(A) is positive definite. For the vector space Rn (Cn), any inner
product can be written as

(x, y) = xTGy ((x, y) = xHGy),

where the matrix G is positive definite.
Let q1, . . . , qn ∈ Rm be orthonormal and form the matrix

Q = (q1, . . . , qn) ∈ Rm×n, m ≥ n.

Then Q is called an orthogonal matrix and QTQ = In. If Q is square (m = n), then it
also holds that Q−1 = QT , QQT = In.

Two vectors x and y in Cn are called orthogonal if xHy = 0. A square matrix U for
which UHU = I is called unitary, and from (A.1.2) we find that

(Ux)HUy = xHUHUy = xHy.
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A.2 Submatrices and Block Matrices
A matrix formed by the elements at the intersection of a set of rows and columns of a matrix
A is called a submatrix. For example, the matrices(

a22 a24

a42 a44

)
,

(
a22 a23

a32 a33

)
are submatrices of A. The second submatrix is called a contiguous submatrix since it is
formed by contiguous elements of A.

Definition A.2.1.
A submatrix of A = (aij ) ∈ Rm×n is a matrix B ∈ Rp×q formed by selecting p rows

and q columns of A,

B =


ai1j1 ai1j2 · · · ai1jq
ai2j1 ai2j2 · · · ai2jq
...

...
. . .

...

aipj1 aipj2 · · · aipjq

 ,

where
1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

If p = q and ik = jk , k = 1 : p, then B is a principal submatrix of A. If in addition,
ik = jk = k, k = 1 : p, then B is a leading principal submatrix of A.

It is often convenient to think of a matrix (vector) as being built up of contiguous
submatrices (subvectors) of lower dimensions. This can be achieved by partitioning the
matrix or vector into blocks. We write, e.g.,

A =


q1 q2 . . . qN

p1 { A11 A12 · · · A1N

p2 { A21 A22 · · · A2N
...

...
...

. . .
...

pM { AM1 AM2 · · · AMN

, x =


p1 { x1

p2 { x2
...

...

pM { xM

, (A.2.1)

where AIJ is a matrix of dimension pI × qJ . We call such a matrix a block matrix. The
partitioning can be carried out in many ways and is often suggested by the structure of the
underlying problem. For square matrices the most important case is when M = N , and
pI = qI , I = 1 : N . Then the diagonal blocks AII , I = 1 : N , are square matrices.

The great convenience of block matrices lies in the fact that the operations of addition
and multiplication can be performed by treating the blocks AIJ as non-commuting scalars.

Let A = (AIK) and B = (BKJ ) be two block matrices of block dimensions M × N

and N × P , respectively, where the partitioning corresponding to the index K is the same
for each matrix. Then we have C = AB = (CIJ ), where

CIJ =
N∑

K=1

AIKBKJ , 1 ≤ I ≤ M, 1 ≤ J ≤ P. (A.2.2)
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Therefore many algorithms defined for matrices with scalar elements have another simple
generalization to partitioned matrices. Of course the dimensions of the blocks must cor-
respond in such a way that the operations can be performed. When this is the case, the
matrices are said to be partitioned conformally.

The colon notation used in MATLAB is very convenient for handling partitioned
matrices and will be used throughout this volume:

j : k is the same as the vector [j, j + 1, . . . , k],
j : k is empty if j > k,
j : i : k is the same as the vector [j, j + i, , j + 2i, . . . , k],
j : i : k is empty if i > 0 and j > k or if i < 0 and j < k.

The colon notation is used to pick out selected rows, columns, and elements of vectors and
matrices, for example,

x(j : k) is the vector[x(j), x(j + 1), . . . , x(k)],
A(:, j) is the j th column of A,
A(i, :) is the ith row of A,
A(:, :) is the same as A,
A(:, j : k) is the matrix[A(:, j), A(:, j + 1), . . . , A(:, k)],
A(:) is all the elements of the matrix A regarded as a single column.

The various special forms of matrices have analogue block forms. For example, R is
block upper triangular if it has the form

R =


R11 R12 R13 · · · R1N

0 R22 R23 · · · R2N

0 0 R33 · · · R3N
...

...
...

. . .
...

0 0 0 · · · RNN

 .

Example A.2.1.
Partitioning a matrix into a block 2× 2 matrix with square diagonal blocks is partic-

ularly useful. For this case we have(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=
(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
. (A.2.3)

Be careful to note that since matrix multiplication is not commutative the order of the factors
in the products cannot be changed! In the special case of block upper triangular matrices
this reduces to(

R11 R12

0 R22

)(
S11 S12

0 S22

)
=
(
R11S11 R11S12 + R12S22

0 R22S22

)
.

Note that the product is again block upper triangular and its block diagonal simply equals
the products of the diagonal blocks of the factors.
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A.2.1 Block Gaussian Elimination

Let

L =
(
L11 0
L21 L22

)
, U =

(
U11 U12

0 U22

)
(A.2.4)

be 2× 2 block lower and block upper triangular matrices, respectively. We assume that the
diagonal blocks are square but not necessarily triangular. Generalizing (A.3.5) it then holds
that

det(L) = det(L11) det(L22), det(U) = det(U11) det(U22). (A.2.5)

Hence L and U are nonsingular if and only if the diagonal blocks are nonsingular. If they
are nonsingular, their inverses are given by

L−1 =
(

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

)
, U−1 =

(
U−1

11 −U−1
11 U12U

−1
22

0 U−1
22

)
. (A.2.6)

This can be verified by forming the products L−1L and U−1U using the rule for multiplying
partitioned matrices.

We now give some formulas for the inverse of a block 2× 2 matrix,

M =
(
A B

C D

)
, (A.2.7)

where A and D are square matrices. If A is nonsingular, we can factor M in a product of a
block lower and a block upper triangular matrix,

M =
(

I 0
CA−1 I

)(
A B

0 S

)
, S = D − CA−1B. (A.2.8)

This identity, which is equivalent to block Gaussian elimination, can be verified directly.
The matrix S is the Schur complement of A in M .193

From M−1 = (LU)−1 = U−1L−1, using the formulas (A.2.6) for the inverses of
2× 2 block triangular matrices we get the Banachiewicz inversion formula194

M−1 =
(
A−1 −A−1BS−1

0 S−1

)(
I 0

−CA−1 I

)
=
(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
. (A.2.9)

Similarly, assuming that D is nonsingular, we can factor M into a product of a block upper
and a block lower triangular matrix

M =
(
I BD−1

0 I

)(
T 0
C D

)
, T = A− BD−1C, (A.2.10)

193Issai Schur (1875–1941) was born in Russia but studied at the University of Berlin, where he became full
professor in 1919. Schur is mainly known for his fundamental work on the theory of groups, but he also worked
in the field of matrices.

194Tadeusz Banachiewicz (1882–1954) was a Polish astronomer and mathematician. In 1919 he became the
director of Cracow Observatory. In 1925 he developed a special kind of matrix algebra for “cracovians” which
brought him international recognition.
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where T is the Schur complement of D in M . (This is equivalent to block Gaussian
elimination in reverse order.) From this factorization an alternative expression of M−1 can
be derived,

M−1 =
(

T −1 −T −1BD−1

−D−1CT −1 D−1 +D−1CT −1BD−1

)
. (A.2.11)

If A and D are nonsingular, then both triangular factorizations (A.2.8) and (A.2.10) exist.
An important special case of the first Banachiewicz inversion formula (A.2.9) is when

the block D is a scalar,

M =
(
A b

cT δ

)
. (A.2.12)

Then if the Schur complement σ = δ− cT A−1b �= 0, we obtain for the inverse the formula

M−1 =
(
A−1 + σ−1A−1bcT A−1 −σ−1A−1b

−σ−1cT A−1 σ−1

)
. (A.2.13)

This formula is convenient to use in case it is necessary to solve a system for which the
truncated system, obtained by crossing out one equation and one unknown, has been solved
earlier. Such a situation is often encountered in applications.

The formula can also be used to invert a matrix by successive bordering, where one
constructs in succession the inverse of matrices

( a11 ) ,

(
a11 a12

a21 a22

)
,

(
a11 a12 a13

a21 a22 a23

a31 a32 a33

)
, . . . .

Each step is then carried by using the formula (A.2.13).
The formulas for the inverse of a block 2×2 matrix can be used to derive expressions

for the inverse of a matrix A ∈ Rn×n modified by a matrix of rank p. Any matrix of
rank p ≤ n can be written as BD−1C, where B ∈ Rp×n, C ∈ Rp×n, and D ∈ Rn×n is
nonsingular. (The factor D is not necessary but included for convenience.) Assuming that
A − BD−1C is nonsingular and equating the (1, 1) blocks in the inverse M−1 in (A.2.9)
and (A.2.11), we obtain the Woodbury formula,

(A− BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1. (A.2.14)

This gives an expression for the inverse of a matrix A after it has been modified by a
matrix of rank p, a very useful result in situations where p . n.

If we specialize the Woodbury formula to the case where D is a scalar and

M =
(

A u

vT 1/σ

)
,

we get the well-known Sherman–Morrison formula,

(A− σuvT )−1 = A−1 + α(A−1u)(vT A−1), α = σ

1− σ vT A−1u
. (A.2.15)

It follows that A − σuvT is nonsingular if and only if σ �= 1/vT A−1u. The Sherman–
Morrison formula can be used to compute the new inverse when a matrix A is modified by
a matrix of rank one.
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Frequently it is required to solve a linear problem where the matrix has been modified
by a correction of low rank. Consider first a linear system Ax = b, where A is modified by
a correction of rank one,

(A− σuvT )x̂ = b. (A.2.16)

Using the Sherman–Morrison formula, we can write the solution as

(A− σuvT )−1b = A−1b + α(A−1u)(vT A−1b), α = 1/(σ−1 − vT A−1u).

Here x = A−1b is the solution to the original system and vT A−1b = vT x is a scalar. Hence,

x̂ = x + βw, β = vT x/(σ−1 − vT w), w = A−1u, (A.2.17)

which shows that the solution x̂ can be obtained from x by solving the system Aw = u.
Note that computing A−1 can be avoided.

We caution that the updating formulas given here cannot be expected to be numeri-
cally stable in all cases. This is related to the fact that pivoting is necessary in Gaussian
elimination.

A.3 Permutations and Determinants
The classical definition of the determinant195 requires some elementary facts about per-
mutations which we now state.

Let α = {α1, α2, . . . , αn} be a permutation of the integers {1, 2, . . . , n}. The pair
αr, αs , r < s, is said to form an inversion in the permutation if αr > αs . For example,
in the permutation {2, . . . , n, 1} there are (n − 1) inversions (2, 1), (3, 1), . . . , (n, 1). A
permutationα is said to be even and sign (α) = 1 if it contains an even number of inversions;
otherwise the permutation is odd and sign (α) = −1.

The product of two permutations σ and τ is the composition στ defined by

στ(i) = σ [τ(i)], i = 1 : n.

A transposition τ is a permutation which interchanges only two elements. Any permutation
can be decomposed into a sequence of transpositions, but this decomposition is not unique.

A permutation matrix P ∈ Rn×n is a matrix whose columns are a permutation of
the columns of the unit matrix, that is,

P = (ep1 , . . . , epn
),

where p1, . . . , pn is a permutation of 1, . . . , n. Notice that in a permutation matrix every
row and every column contains just one unity element. Since P is uniquely represented by
the integer vector p = (p1, . . . , pn) it need never be explicitly stored. For example, the

195Determinants were first introduced by Leibniz in 1693 and then by Cayley in 1841. Determinants arise in
many parts of mathematics such as combinatorial enumeration, graph theory, representation theory, statistics, and
theoretical computer science. The theory of determinants is covered in the monumental five-volume work The
Theory of Determinants in the Historical Order of Development by Thomas Muir (1844–1934).
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vector p = (2, 4, 1, 3) represents the permutation matrix

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 .

If P is a permutation matrix, then PA is the matrix A with its rows permuted and AP is A
with its columns permuted. Using the colon notation, we can write these permuted matrices
as PA = A(p,:) and PA = A(:,p), respectively.

The transpose PT of a permutation matrix is again a permutation matrix. Any permu-
tation may be expressed as a sequence of transposition matrices. Therefore any permutation
matrix can be expressed as a product of transposition matricesP = Ii1,j1Ii2,j2 · · · Iik,jk . Since
I−1
ip,jp

= Iip,jp , we have

P−1 = Iik,jk · · · Ii2,j2Ii1,j1 = PT ;
that is, permutation matrices are orthogonal and PT performs the reverse permutation, and
thus,

PT P = PPT = I. (A.3.1)

Lemma A.3.1.
A transposition τ of a permutation will change the number of inversions in the per-

mutation by an odd number, and thus sign (τ ) = −1.

Proof. If τ interchanges two adjacent elements αr and αr+1 in the permutation {α1, α2, . . . ,

αn}, this will not affect inversions in other elements. Hence the number of inversions
increases by 1 if αr < αr+1 and decreases by 1 otherwise. Suppose now that τ interchanges
αr and αr+q . This can be achieved by first successively interchanging αr with αr+1, then
with αr+2, and finally with αr+q . This takes q steps. Next the element αr+q is moved
in q − 1 steps to the position which αr previously had. In all it takes an odd number
2q − 1 of transpositions of adjacent elements, in each of which the sign of the permutation
changes.

Definition A.3.2.
The determinant of a square matrix A ∈ Rn×n is the scalar

det(A) =
∑
α∈Sn

sign (α) a1,α1a2,α2 · · · an,αn , (A.3.2)

where the sum is over all n! permutations of the set {1, . . . , n} and sign (α) = ±1 according
to whether α is an even or odd permutation.

Note that there are n! terms in (A.3.2) and each term contains exactly one factor from
each row and each column in A. For example, if n = 2, there are two terms, and

det

(
a11 a12

a21 a22

)
= a11a22 − a12a21.
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From the definition, it follows easily that

det(αA) = αn det(A), det(AT ) = det(A).

If we collect all terms in (A.3.2) that contain the element ars , the sum of these terms
can be written as arsArs , where Ars is called the complement of ars . Since the determinant
contains only one element from row r and column s, the complement Ars does not depend
on any elements in row r and column s. Since each product in (A.3.2) contains precisely
one element of the elements ar1, ar2, . . . , arn in row r , it follows that

det(A) = ar1Ar1 + ar2Ar2 + · · · + arnArn. (A.3.3)

This is called to expand the determinant after the row r . It is not difficult to verify that

Ars = (−1)r+sDrs, (A.3.4)

where Drs is the determinant of the matrix of order n−1 obtained by striking out row r and
column s in A. Since det(A) = det(AT ), it is clear that we can similarly expand det(A)
after a column.

The direct use of the definition (A.3.2) to evaluate det(A) would require about nn!
operations, which rapidly becomes infeasible as n increases. A much more efficient way to
compute det(A) is by repeatedly using the following properties.

Theorem A.3.3.
(i) The value of the det(A) is unchanged if a row (column) in A multiplied by a scalar is

added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in the main
diagonal; i.e., if U is upper triangular,

det(U) = u11u22 · · · unn. (A.3.5)

(iii) If two rows (columns) in A are interchanged, the value of det(A) is multiplied by
(−1).

(iv) The product rule det(AB) = det(A) det(B).

If Q is an orthogonal matrix, then QTQ = In. Then using (iv) it follows that

1 = det(I ) = det(QTQ) = det(QT ) det(Q) = (det(Q))2,

and hence det(Q) = ±1. If det(Q) = 1, then Q is a rotation.

Theorem A.3.4.
The matrix A is nonsingular if and only if det(A) �= 0. If the matrix A is nonsingular,

then the solution of the linear system Ax = b can be expressed as

xj = det(Bj )/ det(A), j = 1 : n. (A.3.6)
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Here Bj is the matrix A, where the j th column has been replaced by the right-hand side
vector b.

Proof. We have

a1jA1r + a2jA2r + · · · + anjAnr =
{

0 if j �= r ,
det(A) if j = r ,

(A.3.7)

where the linear combination is formed with elements from column j and the complements
of column r . If j = r , this is an expansion after column r of det(A). If j �= r , the expression
is the expansion of the determinant of a matrix equal to A except that column r is equal to
column j . Such a matrix has a determinant equal to 0.

Now take the ith equation in Ax = b,

ai1x1 + ai2x2 + · · · ainxn = bi,

multiply by Air , and sum over i = 1 : n. Then by (A.3.7) the coefficients of xj , j �= r ,
vanish and we get

det(A)xr = b1A1r + b2A2r + · · · bnAnr .

The right-hand side equals det(Br) expanded by its rth column, which proves
(A.3.6).

The expression (A.3.6) is known as Cramer’s rule.196 Although elegant, it is both
computationally expensive and numerically unstable, even for n = 2.

LetU be an upper block triangular matrix with square diagonal blocksUII , I = 1 : N .
Then

det(U) = det(U11) det(U22) · · · det(UNN), (A.3.8)

and thus U is nonsingular if and only if all its diagonal blocks are nonsingular. Since
det(L) = det(LT ), a similar result holds for a lower block triangular matrix.

Example A.3.1.
For the 2× 2 block matrix M in (A.2.8) and (A.2.10), it follows by using (A.3.8) that

det(M) = det(A− BD−1C) det(D) = det(A) det(D − CA−1B).

In the special case that D−1 = λ, B = x, and B = y, this gives

det(A− λxyT ) = det(A)(1− λyT A−1x). (A.3.9)

This shows that det(A−λxyT ) = 0 if λ = 1/yT A−1x, a fact which is useful for the solution
of eigenvalue problems.

196Named after the Swiss mathematician Gabriel Cramer (1704–1752).
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A.4 Eigenvalues and Norms of Matrices

A.4.1 The Characteristic Equation

Of central importance in the study of matrices are the special vectors whose directions are
not changed when multiplied by A. A complex scalar λ such that

Ax = λx, x �= 0, (A.4.1)

is called an eigenvalue of A and x is an eigenvector of A. Eigenvalues and eigenvectors
give information about the behavior of evolving systems governed by a matrix or operator
and are fundamental tools in the mathematical sciences and in scientific computing.

From (A.4.1) it follows that λ is an eigenvalue if and only if the linear homogeneous
system (A−λI)x = 0 has a nontrivial solution x �= 0, or equivalently, if and only if A−λI

is singular. It follows that the eigenvalues satisfy the characteristic equation

p(λ) = det(A− λI) = 0. (A.4.2)

Obviously, if x is an eigenvector, so is αx for any scalar α �= 0.
The polynomial p(λ) = det(A− λI) is the characteristic polynomial of the matrix

A. Expanding the determinant in (A.4.2), it follows that p(λ) has the form

p(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ)+ q(λ), (A.4.3)

where q(λ) has degree at most n − 2. Hence p(λ) is a polynomial of degree n in λ with
leading term (−1)nλn. By the fundamental theorem of algebra the matrix A has exactly n

(possibly complex) eigenvalues λi , i = 1, 2, . . . , n, counting multiple roots according to
their multiplicities. The set of eigenvalues of A is called the spectrum of A. The largest
modulus of an eigenvalue is called the spectral radius and denoted by

ρ(A) = max
i
|λi(A)|. (A.4.4)

Putting λ = 0 in p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) and (A.4.2), it follows that

p(0) = λ1λ2 · · · λn = det(A). (A.4.5)

Consider the linear transformation y = Ax, where A ∈ Rn×n. Let V be nonsingular
and suppose we change the basis by setting x = V ξ , y = V η. The column vectors ξ

and η then represent the vectors x and y with respect to the basis V = (v1, . . . , vn). Now
V η = AV ξ , and hence η = V −1AV ξ . This shows that the matrix

B = V −1AV

represents the operator A in the new basis. The mapping A → B = V −1AV is called a
similarity transformation. If Ax = λx, then

V −1AVy = By = λy, y = V −1x,

which shows the important facts that B has the same eigenvalues as A and that the eigen-
vectors of B can be easily computed from those of A. In other words, eigenvalues are
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properties of the operator itself and are independent of the basis used for its representation
by a matrix.

The trace of a square matrix of order n is the sum of its diagonal elements

trace (A) =
n∑

i=1

aii =
n∑

i=1

λi. (A.4.6)

The last equality follows by using the relation between the coefficients and roots of the
characteristic equation. Hence the trace of the matrix is invariant under similarity transfor-
mations.

A.4.2 The Schur and Jordan Normal Forms

Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that

UHAU = T =


λ1 t12 . . . t1n

λ2 . . . t2n
. . .

...

λn

 ,

where T is upper triangular. This is the Schur normal form of A. (A proof will be given
in Chapter 9 of Volume II.) Since

det(T − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ),

the diagonal elements λ1, . . . , λn of T are the eigenvalues of A.
Each distinct eigenvalue λi has at least one eigenvector vi . Let V = (v1, . . . , vk) be

eigenvectors corresponding to the eigenvalues X = diag (λ1, . . . , λk) of a matrix A. Then,
we can write

AV = VX.

If there are n linearly independent eigenvectors, then V = (v1, . . . , vn) is nonsingular and

A = VXV −1, X = V −1AV.

Then A is said to be diagonalizable.
A matrix A ∈ Cn×n is said to be normal if AHA = AAH . For a normal matrix the

upper triangular matrix T in the Schur normal form is also normal, i.e.,

T HT = T T H .

It can be shown that this relation implies that all nondiagonal elements in T vanish, i.e.,
T = X. Then we have AU = UT = UX, where X = diag (λi), or with U = (u1, . . . , un),

Aui = λiui, i = 1 : n.
This shows the important result that a normal matrix always has a set of mutually unitary
(orthogonal) eigenvectors.
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Important classes of normal matrices are Hermitian (A = AH ), skew-Hermitian
(AH = −A), and unitary (A−1 = AH ). Hermitian matrices have real eigenvalues, skew-
Hermitian matrices have imaginary eigenvalues, and unitary matrices have eigenvalues on
the unit circle (see Chapter 9 of Volume II).

An example of a nondiagonalizable matrix is

Jm(λ) =


λ 1

λ
. . .
. . . 1

λ

 ∈ Cm×m.

The matrix Jm(λ) is called a Jordan block. It has one eigenvalue λ of multiplicity m to
which corresponds only one eigenvector,

Jm(λ)e1 = λe1, e1 = (1, 0, . . . , 0)T .

A.4.3 Norms of Vectors and Matrices

In many applications it is useful to have a measure of the size of a vector or a matrix.
An example is the quantitative discussion of errors in matrix computation. Such measures
are provided by vector and matrix norms, which can be regarded as generalizations of the
absolute value function on R.

A norm on the vector space Cn is a function Cn → R denoted by ‖ · ‖ that satisfies
the following three conditions:

1. ‖x‖ > 0 ∀x ∈ Cn, x �= 0 (definiteness),

2. ‖αx‖ = |α| ‖x‖ ∀α ∈ C, x ∈ Cn (homogeneity),

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ Cn (triangle inequality).

The triangle inequality is often used in the form (see Problem A.11)

‖x ± y‖ ≥ ∣∣ ‖x‖ − ‖y‖ ∣∣.
The most common vector norms are special cases of the family of Hölder norms, orp-norms,

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞. (A.4.7)

The p-norms have the property that ‖x‖p = ‖ |x| ‖p. Vector norms with this property are
said to be absolute. The three most important particular cases are p = 1 (the 1-norm),
p = 2 (the Euclidean norm), and the limit when p →∞ (the maximum norm):

‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xHx)1/2, (A.4.8)

‖x‖∞ = max
1≤i≤n

|xi |.
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If Q is unitary, then
‖Qx‖2

2 = xHQHQx = xHx = ‖x‖2
2,

that is, the Euclidean norm is invariant under unitary (orthogonal) transformations.
The proof that the triangle inequality is satisfied for the p-norms depends on the

following inequality. Let p > 1 and q satisfy 1/p + 1/q = 1. Then it holds that

αβ ≤ αp

p
+ βq

q
.

Indeed, let x and y be any real number and λ satisfy 0 < λ < 1. Then by the convexity of
the exponential function, it holds that

eλx+(1−λ)y ≤ λex + (1− λ)ey.

We obtain the desired result by setting λ = 1/p, x = p log α, and y = q log β.
Another important property of the p-norms is the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q, 1

p
+ 1

q
= 1, p ≥ 1. (A.4.9)

For p = q = 2 this becomes the Cauchy–Schwarz inequality

|xHy| ≤ ‖x‖2‖y‖2.

Norms can be obtained from inner products by taking

‖x‖2 = (x, x) = xHGx,

where G is Hermitian and positive definite. It can be shown that the unit ball {x : ‖x‖ ≤ 1}
corresponding to this norm is an ellipsoid, and hence such norms are also called elliptic
norms. A special useful case involves the scaled p-norms defined by

‖x‖p,D = ‖Dx‖p, D = diag (d1, . . . , dn), di �= 0, i = 1 : n. (A.4.10)

All norms on Cn are equivalent in the following sense: For each pair of norms ‖ · ‖
and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′ ∀x ∈ Cn. (A.4.11)

In particular, it can be shown that for the p-norms we have

‖x‖q ≤ ‖x‖p ≤ n

(
1
p
− 1

q

)
‖x‖q, 1 ≤ p ≤ q ≤ ∞. (A.4.12)

We now consider matrix norms. We can construct a matrix norm from a vector norm
by defining

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖. (A.4.13)
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This norm is called the operator norm, or the matrix norm subordinate to the vector norm.
From this definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖, x ∈ Cn.

Whenever this inequality holds, we say that the matrix norm is consistent with the vector
norm. For any operator norm it holds that ‖In‖p = 1.

It is an easy exercise to show that operator norms are submultiplicative; i.e., whenever
the product AB is defined it satisfies the condition

4. ‖AB‖ ≤ ‖A‖ ‖B‖.

The matrix norms

‖A‖p = sup
‖x‖=1

‖Ax‖p, p = 1, 2,∞,

subordinate to the vector p-norms are especially important. The 1-norm and ∞-norm are
easily computable from

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, (A.4.14)

respectively. Note that the 1-norm equals the maximal column sum and the∞-norm equals
the maximal row sum of the magnitude of the elements. Consequently ‖A‖1 = ‖AH‖∞.

The 2-norm is also called the spectral norm,

‖A‖2 = sup
‖x‖=1

(xHAHAx)1/2 = σ1(A), (A.4.15)

where σ1(A) is the largest singular value of A. Its major drawback is that it is expensive
to compute. Since the nonzero eigenvalues of AHA and AAH are the same it follows that
‖A‖2 = ‖AH‖2. A useful upper bound for the matrix 2-norm is

‖A‖2 ≤ (‖A‖1‖A‖∞)1/2. (A.4.16)

The proof of this bound is left as an exercise.
Another way to proceed in defining norms for matrices is to regard Cm×n as an mn-

dimensional vector space and apply a vector norm over that space. With the exception of
the Frobenius norm197 derived from the vector 2-norm,

‖A‖F =
 m∑

i=1

n∑
j=1

|aij |2
1/2

; (A.4.17)

such norms are not much used. Note that ‖AH‖F = ‖A‖F . Useful alternative characteri-
zations of the Frobenius norm are

‖A‖2
F = trace (AHA) =

k∑
i=1

σ 2
i (A), k = min(m, n), (A.4.18)

197Ferdinand George Frobenius (1849–1917) a German mathematician, was a professor at ETH Zürich from
1875 to 1892 before he succeeded Weierstrass at Berlin University.
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where σi(A) are the nonzero singular values of A. The Frobenius norm is submultiplicative.
However, it is often larger than necessary, e.g., ‖In‖F = n1/2. This tends to make bounds
derived in terms of the Frobenius norm not as sharp as they might be. From (A.4.15) and
(A.4.18) we also get lower and upper bounds for the matrix 2-norm,

1√
k
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , k = min(m, n).

An important property of the Frobenius norm and the 2-norm is that both are invariant with
respect to unitary (real orthogonal) transformations.

Lemma A.4.1. For all unitary (real orthogonal) matrices U and V (UHU = I and
V HV = I ) of appropriate dimensions, it holds that

‖UAV ‖ = ‖A‖ (A.4.19)

for the Frobenius norm and the 2-norm.

We finally remark that the 1-, ∞- and Frobenius norms satisfy

‖ |A| ‖ = ‖A‖, |A| = (|aij |),
but for the 2-norm the best result is that ‖ |A| ‖2 ≤ n1/2‖A‖2.

One use of norms is in the study of limits of sequences of vectors and matrices (see
Sec. 9.2.4 in Volume II). Consider an infinite sequence x1, x2, . . . of elements of a vector
space V and let ‖ · ‖ be a norm on V . The sequence is said to converge (strongly if V is
infinite-dimensional) to a limit x ∈ V , and so we write limk→∞ xk = x if

lim
k→∞‖xk − x‖ = 0.

For a finite-dimensional vector space the equivalence of norms (A.4.11) shows that con-
vergence is independent of the choice of norm. The particular choice of ‖ · ‖∞ shows that
convergence of vectors in Cn is equivalent to convergence of the n sequences of scalars
formed by the components of the vectors. By considering matrices in Cm×n as vectors in
Cmn, we see that the same conclusion holds for matrices.

Review Questions
A.1. Define the following concepts:

(i) Real symmetric matrix. (ii) Real orthogonal matrix.

(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

A.2. (a) What is the Schur normal form of a matrix A ∈ Cn×n?

(b) What is meant by a normal matrix? How does the Schur form simplify for a normal
matrix?
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A.3. Define the matrix norm subordinate to a given vector norm.

A.4. Define the p-norm of a vector x. Give explicit expressions for the matrix p-norms for
p = 1, 2,∞. Show that

‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞,

which are special cases of (A.4.12).

Problems
A.1. Let A ∈ Rm×n have rows aTi , i.e., AT = (a1, . . . , am). Show that

ATA =
m∑
i=1

aia
T
i .

If A is instead partitioned into columns, what is the corresponding expression for
ATA?

A.2. (a) Show that if A and B are square upper triangular matrices, then AB is upper
triangular, and that A−1 is upper triangular, if it exists. Is the same true for lower
triangular matrices?
(b) Let A,B ∈ Rn×n have lower bandwidth r and s, respectively. Show that the
product AB has lower bandwidth r + s.

(c) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1. Using
the result in (a) deduce that the product of H and an upper triangular matrix is again
an upper Hessenberg matrix.

(d) Show that if R ∈ Rn×n is strictly upper triangular, then Rn = 0.

A.3. Use row operations to verify that the Vandermonde determinant is

det

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 = (x2 − x1)(x3 − x1)(x3 − x2).

A.4. To solve a linear system Ax = b, A ∈ Rn×n, by Cramer’s rule (A.3.6) requires the
evaluation of n+ 1 determinants of order n. Estimate the number of multiplications
needed for n = 50 if the determinants are evaluated in the naive way. Estimate the
time it will take on a computer performing 109 floating point operations per second!

A.5. Consider an upper block triangular matrix,

R =
(
R11 R12

0 R22

)
,

and suppose that R11 and R22 are nonsingular. Show that R is nonsingular and give
an expression for R−1 in terms of its blocks.
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A.6. (a) Show that if w ∈ Rn and wTw = 1, then the matrix P(w) = I − 2wwT is both
symmetric and orthogonal.

(b) Let x, y ∈ Rn, x �= y, be two given vectors with ‖x‖2 = ‖y‖2. Show that
P(w)x = y if w = (y − x)/‖y − x‖2.

A.7. Show that for any matrix norm there exists a consistent vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ Rn, y �= 0.

A.8. Derive the formula for ‖A‖∞ given in (A.4.14).

A.9. Show that ‖A‖2 = ‖PAQ‖2 if A ∈ Rm×n and P and Q are orthogonal matrices of
appropriate dimensions.

A.10. Use the result ‖A‖2
2 = ρ(AT A) ≤ ‖ATA‖, valid for any matrix operator norm ‖ · ‖,

where ρ(AT A) denotes the spectral radius of ATA, to deduce the upper bound in
(A.4.16).

A.11. (a) Let T be a nonsingular matrix, and let ‖ · ‖ be a given vector norm. Show that the
function N(x) = ‖T x‖ is a vector norm.

(b) What is the matrix norm subordinate to N(x)?

(c) If N(x) = maxi |kixi |, what is the subordinate matrix norm?


