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A General Perspective on Graph Coloring

Graph G

{1,2} {1,2}

{1,2}{1,2}

Colors for G Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G.
Picking a coloring of G corresponds to choosing an
independent set of order n in the cover.
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Graph G A Cover for G Another Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G.
Picking a coloring of G corresponds to choosing an
independent set of order n in the cover.



A General Perspective on Graph Coloring

Graph G A Cover for G Another Cover for G

A cover of G can be expressed with a permutation on each
edge of G. The permutation models the conflict betwwen
those colors.



A General Perspective on Graph Coloring

A topological aside:

What we are informally calling cover of a graph, can be
formally defined in the language of covering map. A graph
is a topological space, a one-dimensional simplicial
complex, and covering maps can be defined and studied
for graphs.

A surjective map ϕ : V (H) → V (G) where G, H are graphs
is a covering map if for every x ∈ V (H), the neighbor set
NH(x) is mapped bijectively to NG(ϕ(x)). When such a
mapping exists and is k -to-1, we say that H is a k -lift, or
k -fold cover of G.



A General Perspective on Graph Coloring

A topological aside:

What we are informally calling cover of a graph, can be
formally defined in the language of covering map. A graph
is a topological space, a one-dimensional simplicial
complex, and covering maps can be defined and studied
for graphs.

Lifts of graphs have been studied in
- algebraic/ topological graph theory since 1980s (see
Negami’s Planar Cover Conjecture (1988); Godsil & Royle,
Algebraic Graph Theory (2001));
- random graph theory since 2000 (see seminal papers of
Linial).



Classical Coloring
Classical graph coloring assigns to each vertex in a graph
some color, which we will represent as a natural number.
A k -coloring of a graph G is a function ϕ : V (G) → [k ],
where [k ] = {1,2, . . . , k}.
A proper k -coloring is a k -coloring ϕ such that every pair of
adjacent vertices in G are assigned different colors, i.e.
ϕ(u) ̸= ϕ(v) for all uv ∈ E(G).
The chromatic number of G, χ(G) is the smallest k such
that G is proper k -colorable.

1

2 1

2
χ(C4) = 2.



List Coloring
Introduced by Vizing (1976) and Erdös, Rubin and Taylor
(1979).
For graph G, suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. L is an
k -assignment if |L(v)| = k for all v ∈ V (G).
An L-coloring for G is a proper coloring, ϕ, of G such that
ϕ(v) ∈ L(v) for all v ∈ V (G) and ϕ(u) ̸= ϕ(v) ∀ uv ∈ E(G).
The list chromatic number of G, χ

ℓ
(G) is the smallest k

such that G is L-colorable for all k -assignments L.

{ 1⃝,2}

{ 2⃝,3} { 1⃝,3}

{1, 2⃝}



DP Coloring

{ 1⃝,2}

{ 2⃝,3} { 1⃝,3}

{1, 2⃝} 2
1

2
1

3
2 1

3

Introduced by Dvor̆ák and Postle (2015).

A DP cover is a tuple H = (L,H) where H is a graph and
L : V (G) → 2V (H) satisfying:
(i) V (H) = ∪v∈V (G)L(v),
(ii) For adjacent u, v ∈ V (G), EH (L(u),L(v)) forms a
matching,
(ii) There are no other edges in H.



DP Cover

For G = C4 A DP cover of C4

DP-cover Intuition:
Blow up each vertex u in G into an independent set of size
|L(u)|;
Add a matching (possibly empty) between any two such
independent sets for vertices u and v if uv is an edge in G.



DP Coloring

A transversal of H = (L,H) is a set of vertices T ⊆ V (H)
such that |T ∩ L(v)| = 1 for all v ∈ V (G).

T is an independent transversal if it is an independent set
in H.

If H has an independent transversal, we say that G is
H-colorable.
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If H has an independent transversal, we say that G is
H-colorable.

For H from the previous slide, C4 is H-colorable.
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DP Coloring

H = (L,H) is a k -fold cover of G if |L(v)| = k for all
v ∈ V (G). H is full if every matching in it is perfect.

The DP chromatic number χDP (G) is the smallest k such
that G is H-colorable for every k -fold cover H.
χ(G) ≤ χ

ℓ
(G) ≤ χDP (G).

χDP (C4) > 2.



Comparing Classical, List, and DP Coloring
Classical Coloring List Coloring DP Coloring

1 2

12

{ 1⃝,2} {1, 2⃝}

{ 1⃝,2}{1, 2⃝}

2
1

2
1

2
1 1

2

{ 1⃝,2} {1, 3⃝}

{ 1⃝,3}{ 2⃝,3}

2
1

3
1

3
2 1

3



Our Question

The DP chromatic number offers a guarantee that we will
always be able to find an independent transversal.

If there is even a single k -fold cover of G that does not
have an independent transversal, then χDP (G) > k .

The question we ask is: “is there a threshold on the value
of k such that almost all k -fold covers of a graph have an
independent transversal above the threshold, and almost
none below the threshold?”

We initiate this study by considering full DP-covers
generated uniformly at random, and asking the natural
probabilistic questions that arise from that context.



Historical Notes

Random lists and Palette Sparsification.
The list assignments of a given graph G are generated
uniformly at random from a palette of given colors. Is there
a threshold size of the assignments that shows a transition
in the list colorability of G (parameterized by either the
order or the chromatic number of the graph)?
Introduced in 2004 by Krivelevich and Nachmias (”The
problem originated in the chemical industry and it is related to
scheduling problems occurring in the production of colorants.”).
Studied for powers of cycles, complete graphs, complete
multipartite graphs, graphs with bounded degree, etc.
Colorings from random list assignments – under the name
palette sparsification – has recently found applications in
the design of sublinear coloring algorithms starting from
the work of Assadi, Chen, and Khanna (2019).



Historical Notes

Random Lifts.
A full DP-cover of G is equivalent to the previously studied
notion of a lift (or a covering graph) of G. The notion of
random k -lifts was introduced in 2000 by Amit and Linial.
This work, and the large body of research following it
studies random k -lifts as a random graph model. Their
purpose was the study of the properties of random k -lifts,
such as chromatic number, connectivity, expansion
properties, etc., of a fixed graph G as k → ∞.



Random Cover Example

Select one of the full 2-fold covers of K3 uniformly at random.



Random Covers

The random k -fold cover of G, H(G, k), is one of the
k !|E(G)| full k -fold covers chosen uniformly at random.

We can think of this as creating a sample space of all full
k -fold covers of G, then selecting one uniformly at random,

Or, we can think of this as creating our lists of size k , and
selecting each perfect matching (or permutation) uniformly
at random from the k ! possibilities.
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probability p when P(G is H(G, k)-colorable) = p.



Random Covers
The random k -fold cover of G, H(G, k), is one of the k !|E(G)| full
k -fold covers chosen uniformly at random.

We study the probability that a random cover of a graph has an
independent transversal. G is k -DP-colorable with probability p
when P(G is H(G, k)-colorable) = p.

The density of graph G, d(G), is |E(G)|/|V (G)|. The
maximum density of G, ρ(G), is maxG′ d(G′), where the
maximum is taken over all nonempty subgraphs G′ of G.
A graph G is d-degenerate if there exists some ordering of
the vertices in V (G) such that each vertex has at most d
neighbors among the preceding vertices.
The degeneracy of a graph G is the smallest d ∈ N such
that G is d-degenerate.
Note that ρ(G) ≤ d ≤ 2ρ(G).



Random Cover Example

Select one of the full 2-fold covers of K3 uniformly at random.



Random Cover Example

K3 is 2-DP-colorable with probability 0.5



Threshold Behavior

Given a sequence of graphs G = (Gλ)λ∈N and a sequence of
integers κ = (kλ)λ∈N. We say that G is κ-DP-colorable with high
probability if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 1.

Similarly, we say that G is non-κ-DP-colorable w.h.p. if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 0.
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Given a sequence of graphs G = (Gλ)λ∈N and a sequence of
integers κ = (kλ)λ∈N. We say that G is κ-DP-colorable with high
probability if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 1.

Similarly, we say that G is non-κ-DP-colorable w.h.p. if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 0.

A function tG : N → R is called a DP-threshold function for
G:
if kλ = o(tG(λ)), then G is non-κ-DP-colorable w.h.p.,
while if tG(λ) = o(kλ), then G is κ-DP-colorable w.h.p.



Threshold Behavior
Given a sequence of graphs G = (Gλ)λ∈N and a sequence of
integers κ = (kλ)λ∈N. We say that G is κ-DP-colorable with high
probability if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 1.

Similarly, we say that G is non-κ-DP-colorable w.h.p. if

lim
λ→∞

P(Gλ is H(Gλ, kλ)-colorable) = 0.

A function tG is said to be a sharp DP-threshold function for
G when for any ϵ > 0,
G is non-κ-DP-colorable w.h.p. when kλ ≤ (1 − ϵ)tG(λ) for
all large enough λ,
and it is κ-DP-colorable w.h.p. when kλ ≥ (1 + ϵ)tG(λ) for
all large enough λ.



Threshold Results

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

Let G = (Gλ)λ∈N be a sequence of graphs with |V (Gλ)|,
ρ(Gλ) → ∞ as λ → ∞.
Define a function tG(λ) = ρ(Gλ)/ ln ρ(Gλ).

If lim
λ→∞

ln ρ(Gλ)

ln ln |V (Gλ)|
= ∞,

then tG(λ) is a DP-threshold function for G.

If lim
λ→∞

ln ρ(Gλ)

ln |V (Gλ)|
= 1,

then tG(λ) is a sharp DP-threshold function for G.



Threshold Results

Corollary (Bernshteyn, Dominik, K., Mudrock (2025))

For G = (Kn)n∈N, the sequence of complete graphs,
tG(n) = n/(2 lnn) is a sharp DP-threshold function.

The existence of a (not necessarily sharp) DP-threshold function
of order Θ(n/ lnn) for the sequence of complete graphs was recently
proved by Dvořák and Yepremyan using different methods.

Corollary (Bernshteyn, Dominik, K., Mudrock (2025))

For G = (Km×n)n∈N with constant m ≥ 2, the sequence of
complete m-partite graphs with n vertices in each part,
tG(n) = (m − 1)n/(2 lnn) is a sharp DP-threshold function.



DP-colorability with Low Probability

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

Let ϵ > 0 and let G be a nonempty graph with ρ(G) ≥ exp(e/ϵ).
If 1 ≤ k ≤ ρ(G)/ ln ρ(G), then G is k-DP-colorable with
probability at most ϵ.

In fact, we prove a stronger result in context of fractional
DP-coloring. Let p∗(G, k) = sup{p : ∃a, b ∈ N s.t. a/b ≤
k and G is (a,b)-DP-colorable with probability p} .

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

Let ϵ > 0 and let G be a nonempty graph with ρ(G) ≥ exp(e/ϵ).
If 1 ≤ k ≤ ρ(G)/ ln ρ(G), then p∗(G, k) ≤ ϵ.



DP-colorability with High Probability for Dense Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ > 0 and s ∈ [0,1/3), there is n0 ∈ N such that the
following holds. Suppose G is a graph with n ≥ n0 vertices
such that ρ(G) ≥ n1−s, and

k ≥ (1 + ϵ)

(
1 +

s
1 − 2s

)
ρ(G)

ln ρ(G)

Then G is k-DP-colorable with probability at least 1 − ϵ.

Notice how the lower bound on k increases from ρ(G)
ln ρ(G) to 2ρ(G)

ln ρ(G)

as ρ(G) decreases from n1−o(1) to n2/3.



DP-colorability with High Probability for Dense Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ > 0 and s ∈ [0,1/3), there is n0 ∈ N such that the
following holds. Suppose G is a graph with n ≥ n0 vertices
such that ρ(G) ≥ n1−s, and

k ≥ (1 + ϵ)

(
1 +

s
1 − 2s

)
ρ(G)

ln ρ(G)

Then G is k-DP-colorable with probability at least 1 − ϵ.

This is proved through a long second-moment argument.

Can we lower the bound on ρ below n2/3 if we aim to keep the
bound on k at 2ρ(G)

ln ρ(G) (off by a factor of two from the first

moment bound of ρ(G)
ln ρ(G) )?



DP-colorability with High Probability for Sparse Graphs

We use degeneracy to push the bound on density down to
polylog(n).

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ ∈ (0,1/2), there is n0 ∈ N such that the following holds.
Let G be a graph with n ≥ n0 vertices and degeneracy d such
that d ≥ ln2/ϵ n. If k ≥ (1 + ϵ)d/ lnd, then G is k-DP-colorable
with probability at least 1 − ϵ.



DP-colorability with High Probability for Sparse Graphs

We use degeneracy to push the bound on density down to
polylog(n).

Since ρ(G) ≤ d ≤ 2ρ(G), we can compare this result to the
earlier ones in terms of density.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ ∈ (0,1/2), there is n0 ∈ N such that the following holds.
Let G be a graph with n ≥ n0 vertices such that ρ(G) ≥ ln2/ϵ n.
If k ≥ (1 + ϵ)2ρ(G)/ ln ρ(G), then G is k-DP-colorable with
probability at least 1 − ϵ.



DP-colorability with High Probability for Sparse Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ ∈ (0,1/2), there is n0 ∈ N such that the following holds.
Let G be a graph with n ≥ n0 vertices and degeneracy d such
that d ≥ ln2/ϵ n. If k ≥ (1 + ϵ)d/ lnd, then G is k-DP-colorable
with probability at least 1 − ϵ.

This is proved by analyzing a greedy algorithm for constructing
an independent (b-fold) transversal in a random k -fold cover.

The random variables for each vertex being unavailable to be
picked in the greedy transversal are negatively correlated.

And, use a form of the Chernoff–Hoeffding bound for negatively
correlated Bernoulli random variables due to Panconesi and
Srinivasan (1997).



What about very sparse graphs?

Proposition (Bernshteyn, Dominik, K., Mudrock (2025))

For any ϵ > 0 and n0 ∈ N, there is a graph G with n ≥ n0
vertices such that ρ(G) ≥ (lnn/ ln lnn)1/3 but, for every
k ≤ 2ρ(G), G is k-DP-colorable with probability less than ϵ.

We take G = tKq , the disjoint union of t copies of Kq , where
t = ln(1/ϵ) (q − 1)!(

q
2) and q is large enough.

A result of Bernshteyn (2019) shows: for each ϵ > 0, there is
Cϵ > 0 such that every triangle-free regular graph G with
ρ(G) ≥ Cϵ satisfies χDP(G) ≤ (1 + ϵ)2ρ(G)/ ln ρ(G),
and hence it is k -DP-colorable (with probability 1) for all
k ≥ (1 + ϵ)2ρ(G)/ ln ρ(G).



What about very sparse graphs?

Proposition (Bernshteyn, Dominik, K., Mudrock (2025))

For any ϵ > 0 and n0 ∈ N, there is a graph G with n ≥ n0
vertices such that ρ(G) ≥ (lnn/ ln lnn)1/3 but, for every
k ≤ 2ρ(G), G is k-DP-colorable with probability less than ϵ.

A result of Bernshteyn (2019) shows: for each ϵ > 0, there is
Cϵ > 0 such that every triangle-free regular graph G with
ρ(G) ≥ Cϵ satisfies χDP(G) ≤ (1 + ϵ)2ρ(G)/ ln ρ(G),
and hence it is k -DP-colorable (with probability 1) for all
k ≥ (1 + ϵ)2ρ(G)/ ln ρ(G).

So, for graphs with density below polylog(n), density alone is
not enough to determine probability of DP-colorability.



A Conjecture

We conjecture that for density above polylog(n), we should get
a sharp bound on k .

Conjecture (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ > 0, there exist C > 0 and n0 ∈ N such that the
following holds. Suppose G is a graph with n ≥ n0 vertices
such that ρ(G) ≥ lnC n, and

k ≥ (1 + ϵ)
ρ(G)

ln ρ(G)
.

Then G is k-DP-colorable with probability at least 1 − ϵ.



Summary of Results

Density lower bound Cover size P(G, k)

exp(e/ϵ) k ≤ ρ(G)

ln ρ(G)
≤ ϵ

n1−s for s ∈ [0,1/3) k ≥ (1 + ϵ)

(
1 +

s
1 − 2s

)
ρ(G)

ln ρ(G)
≥ 1 − ϵ

ln2/ϵ n k ≥ (1 + ϵ)
2ρ(G)

ln ρ(G)
≥ 1 − ϵ

No lower bound k > 2ρ(G) 1

P(G, k) is the probability that G is H(G, k)-colorable.



Fractional DP-Coloring

We saw χDP (C4) > 2.
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In fact, χDP (C4) = 3.
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Fractional DP-Coloring

Instead, let us look at a 5-fold cover of C4 and find an
independent 2-fold transversal in it.

χDP (C4) = 3.
We can see that C4 is (5,2)-DP-colorable and
χ∗

DP
(C4) ≤ 5/2.



Fractional DP-Coloring

Instead, let us look at a 7-fold cover of C4

χDP (C4) = 3.



Fractional DP-Coloring

Instead, let us look at a 7-fold cover of C4 and find an
independent 3-fold transversal in it.

χDP (C4) = 3.
We can see that C4 is (7,3)-DP-colorable and
χ∗

DP
(C4) ≤ 7/3.



Fractional DP-Coloring

Instead, let us look at a 9-fold cover of C4

χDP (C4) = 3.



Fractional DP-Coloring
Instead, let us look at a 9-fold cover of C4 and find an
independent 4-fold transversal in it.

χDP (C4) = 3.
We can see that C4 is (9,4)-DP-colorable and
χ∗

DP
(C4) ≤ 9/4.



Fractional DP-Coloring

χDP (C4) = 3.
In the limit we can see χ∗

DP
(C4) = 2.



Fractional DP-Coloring Defined

Given a graph G and H, a cover of G, then G is
(H,b)-colorable if H contains an independent b-fold
transversal.
A graph G is (a,b)-DP-colorable if G is (H,b)-colorable for
all a-fold covers H.
The fractional DP-chromatic number is

χ∗
DP
(G) = inf

{a
b
: G is (a,b)-DP-colorable

}
.

Introduced by Bernshteyn, Kostochka, and Zhu (2020).

χ∗(G) = χ∗
ℓ (G) ≤ χ∗

DP
(G) ≤ χDP (G).



Probability of Fractional-DP-Coloring

If G is κ-DP-colorable, then G is fractional-k -DP-colorable.
If G is non-k -DP-colorable, there may be some large a and
b that still allows G to be fractional-k -DP-colorable.
What is the probability of fractional-DP-colorability of G
over H(G, k)?



Probability of Fractional-DP-Coloring
Let p∗(G, k) = sup{p : ∃a, b ∈ N s.t. a/b ≤ k

and G is (a,b)-DP-colorable with probability p}.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

Let ϵ > 0 and let G be a graph with ρ(G) ≥ exp(e/ϵ).
If 1 ≤ k ≤ ρ(G)/ ln ρ(G), then p∗(G, k) ≤ ϵ.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all ϵ > 0, there is d0 ∈ N such that the following holds. Let
G be a graph with degeneracy d ≥ d0 and let
k ≥ (1 + ϵ)d/ lnd. Then p∗(G, k) ≥ 1 − ϵ.

This extends the earlier result, where we required degeneracy
d ≥ ln2/ϵ n, to any graph whose degeneracy is high enough as a
function of ϵ (regardless of how small it is when compared to the
number of vertices in the graph), at the cost of replacing
DP-coloring with fractional DP-coloring.



Degeneracy

v1

v2

v3

v4 v5

v6

v7

v1 v2 v3 v4 v5 v6 v7

A graph is d-degenerate if there is an ordering of its
vertices such that no vertex has more than d neighbors
preceding itself in the list.



Greedy Transversal Procedure

v1 v2 v3 v4 v5 v6 v7

Consider a random 3 fold cover of the graph from the
previous slide.
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Greedy Transversal Procedure

Select one available vertex from each list, starting with
L(v1) and ending with L(v7).



Greedy Transversal Procedure

Consider a random 3 fold cover of the graph from the
previous slide.
Select one available vertex from each list, starting with
L(v1) and ending with L(v7).
In the fractional setting, we pick b available vertices
sequentially from each list, in a random a-fold cover.



Analyzing the Greedy Transversal Procedure

Consider a random a-fold cover of a n-vertex graph G.
For each list in the cover. Pick b available vertices
sequentially, if possible. If not, then just pick any b vertices.
Output is a b-fold transversal which is independent if at
least b vertices are available at each step.

For each i ∈ [n] (one for each vertex of G) and j ∈ [a] (one for
each “color” in the lists of the cover), let Xi,j be the indicator
random variable of the event that the vertex vi,j is available
in the list L(vi).
Let Yi,j = 1 − Xi,j .



Analyzing the Greedy Transversal Procedure

For each i ∈ [n] (one for each vertex of G) and j ∈ [a] (one for
each “color” in the lists of the cover), let Xi,j be the indicator
random variable of the event that the vertex vi,j is available
in the list L(vi).
Let Yi,j = 1 − Xi,j .

Lemma
Consider the set of random variables Xi,j as defined above.

(i) For all i ∈ [n] and j ∈ [a], we have E(Xi,j) ≥
(

1 − b
a

)d

.

(ii) For each i ∈ [n], the variables (Yi,j)j∈[a] are negatively
correlated.



Analyzing the Greedy Transversal Procedure

A collection (Yi)i∈[k ] of {0,1}-valued random variables is
negatively correlated if for every subset I ⊆ [k ], we have
P
(⋂

i∈I{Yi = 1}
)
≤

∏
i∈I P(Yi = 1).

Sums of negatively correlated random variables satisfy
Chernoff–Hoeffding style bounds, as discovered by Panconesi
and Srinivasan (1997).

Lemma
Let (Xi)i∈[k ] be {0,1}-valued random variables. Set Yi = 1 − Xi
and X =

∑
i∈[k ] Xi . If (Yi)i∈[k ] are negatively correlated, then

P (X < E(X )− t) < exp

(
− t2

2E(X )

)
for all 0 < t ≤ E(X ).



Analyzing the Greedy Transversal Procedure

For each i ∈ [n] (one for each vertex of G) and j ∈ [a] (one for
each “color” in the lists of the cover), let Xi,j be the indicator
random variable of the event that the vertex vi,j in the cover is
available in the list L(vi).
Let Yi,j = 1 − Xi,j .

Lemma
Consider the set of random variables Xi,j as defined above.

(i) For all i ∈ [n] and j ∈ [a], we have E(Xi,j) ≥
(

1 − b
a

)d

.

(ii) For each i ∈ [n], the variables (Yi,j)j∈[a] are negatively
correlated.



Analyzing the Greedy Transversal Procedure

For each i ∈ [n] (one for each vertex of G) and j ∈ [a] (one for
each “color” in the lists of the cover), let Xi,j be the indicator
random variable of the event that the vertex vi,j in the cover is
available in the list L(vi).
Let Yi,j = 1 − Xi,j .

Let Xi =
∑

j∈[a] Xi,j the number of available vertices in L(vi).



Analyzing the Greedy Transversal Procedure

Let Xi =
∑

j∈[a] Xi,j the number of available vertices in L(vi).

We can show for degeneracy d ,

E(Xi) ≥ a
(

1 − b
a

)d
≥ b · (1 + ϵ/2) d

ln d ·
(

1 − ln d
(1+ϵ/2)d

)d
≥

b · (1 + ϵ/2) d
ln d · d−1/(1+ϵ/2) > b d ϵ/3

where the last step uses d is large as a function of ϵ.



Analyzing the Greedy Transversal Procedure

Let Xi =
∑

j∈[a] Xi,j the number of available vertices in L(vi).

We showed E(Xi) > b d ϵ/3.

Using Chernoff-Hoeffding for negatively correlated r.v.s, we
can show at least b vertices are available at each step pf
the GT Procedure with high probability,

P(Xi < b) ≤ P
(

Xi <
E(Xi )

2

)
< exp

(
−E(Xi )

8

)
≤ e−b/4 < ϵ

n
where the last inequality uses b is large enough as a
function of n.

By the union bound, it follows that
P(Xi < b for some i ∈ [n]) < ϵ.



Thank You!

Any Questions?
Question
Under what conditions on G = (Gλ)λ∈N will tG(λ) = ρ(Gλ)/ ln ρ(Gλ)
be a DP-threshold function or a sharp DP-threshold function for G?

Conjecture
For all ϵ > 0, there exist C > 0 and n0 ∈ N such that the following
holds. Suppose G is a graph with n ≥ n0 vertices such that
ρ(G) ≥ lnC n, and

k ≥ (1 + ϵ)
ρ(G)

ln ρ(G)
.

Then G is k-DP-colorable with probability at least 1 − ϵ.

Question
What about fractional DP-coloring?
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Negative Correlation by Coupling

A collection (Yi)i∈[k ] of {0,1}-valued random variables is
negatively correlated if for every subset I ⊆ [k ], we have
P
(⋂

i∈I{Yi = 1}
)
≤

∏
i∈I P(Yi = 1).

To prove that for each i ∈ [n], the variables (Yi,j)j∈[a] are
negatively correlated, we use a coupling argument.

Create two new probability spaces:
One finds the probability of getting certain matchings from all
matchings that leave the j th vertex available.
The other finds the probability of getting certain matchings
after “fixing” the set of matchings so that the j th vertex is
available.

Show that these probability measures are equivalent and
that we don’t lose any events.


