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Exponentially Many Colorings of Planar Graphs!

The history of coloring of planar graphs and its subfamilies,
is intertwined with the related conjectures and results on
existence of exponentially many such colorings
(exponential in n, the number of vertices) going back at the
least to Birkhoff’s and Whitney’s works in 1930s.



Exponentially Many Colorings of Planar Graphs!

Four Colors for the World Map

(c) Wikimedia



Exponentially Many Colorings of Planar Graphs!

Coloring a Planar Graph
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Exponentially Many Colorings of Planar Graphs!

Francis Guthrie (October 23, 1852): Do Four colors suffice
for any planar graph?

Kempe (1879) published a proof claiming to solve it.
Honored as Fellow of the Royal Society and elected
President of LMS.
Heawood (1890) found an error in Kempe’s proof.
The fixed proof showed: Five colors suffice for any planar
graph.



Exponentially Many Colorings of Planar Graphs!

Birkhoff (1912): Chromatic Polynomial, P(G, k), the
number of colorings of G using k colors.

Birkhoff and Lewis (1946) conjectured:
For any planar graph G,
P(G, k) ≥ k(k − 1)(k − 2)(k − 3)n−3 for all real numbers
k ≥ 4.

They (essentially, Birkhoff (1930)) proved this is true for
k ≥ 5, thus giving exponentially many 5-colorings of planar
graphs: P(G,5) > 2n.



Exponentially Many Colorings of Planar Graphs!

Grötzsch (1959): P(G,3) > 0, for any triangle-free planar
graph.

Appel and Haken (1976): Four Color Theorem!
P(G,4) > 0 for every planar graph G.



Exponentially Many Colorings of Planar Graphs!

Vizing (1975), Erdös, Rubin, and Taylor (1979): Introduced
List Coloring. Instead of same colors for each vertex,
vertices are assigned lists of (possibly different) colors.
Kostochka and Sidorenko (1990): List Color Function,
Pℓ(G, k), the guaranteed number of list colorings of G, no
matter which lists of k -colors are assigned to each vertex.
Pℓ(G, k) ≤ P(G, k).

Thomassen (1995): Pℓ(G,5) > 0 for any planar graph G.
Thomassen (2007): Pℓ(G,5) > 2n/9 for any planar graph
G.



Exponentially Many Colorings of Planar Graphs!

Thomassen (2007): Pℓ(G,5) > 2n/9 for any planar graph
G.

Since 2000s, there has been much work done on showing
that planar graphs and their subfamilies have exponentially
many list k -colorings for appropriate k ∈ {3,4,5}.

These proofs are typically intricate topological arguments
specialized to the family of planar graphs under
consideration.

Can we unify these results and arguments in a systematic
way?



Classic Graph Coloring

Color vertices of a graph so that any vertices with an edge
between them must get different colors.

A proper k -coloring of a graph G is a labeling
c : V (G) → {1, . . . , k}, such that c(u) ̸= c(v) whenever u
and v are adjacent in G.

Each vertex has the same list of colors [k ] available to it.



A More General Perspective

Graph G

{1,2} {1,2}

{1,2}{1,2}

Colors for G Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G. Picking a coloring of G
corresponds to choosing an independent set of order n in
the cover.



A More General Perspective

Graph G A Cover for G Another Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G. Picking a coloring of G
corresponds to choosing an independent set of order n in
the cover.



A More General Perspective

A topological aside:

What we are informally calling cover of a graph, can be
formally defined in the language of covering map. A graph
is a topological space, a one-dimensional simplicial
complex, and covering maps can be defined and studied
for graphs.

A surjective map ϕ : V (H) → V (G) where G, H are graphs is a
covering map if for every x ∈ V (H), the neighbor set NH(x) is
mapped bijectively to NG(ϕ(x)). When such a mapping exists
and is k -to-1, we say that H is a k -lift, or k -fold cover of G.

Lifts of graphs have been studied in algebraic/ topological graph
theory since 1980s (see Godsil & Royle, Algebraic Graph Thry);
and in random graph theory since 2000 (see seminal papers of
Linial).



A More General Perspective

Graph G A Cover for G Another Cover for G

A cover of G can be expressed with a permutation on each
edge of G. The permutation models the conflict betwwen
those colors.



S-labeling and coloring

Jin, Wang, Zhu (2019):

Let A be a finite set, |A| = k , and S ⊆ SA be a subset of
the permutations of A. Think of A as “colors”.

An S-labeling of G is a pair (D, σ) consisting of an
orientation D of G and an edge labeling σ : E(D) → S.



S-labeling and coloring

Let A be a finite set, |A| = k , and S ⊆ SA be a subset of
the permutations of A. Think of A as “colors”.
An S-labeling of G is a pair (D, σ) consisting of an
orientation D of G and an edge labeling σ : E(D) → S.

Let A = {0,1,2} and S = SA.

0 0>
021

Not proper
2 1>

021

Not proper
1 1>

021

Proper

021 denotes the permutation
(

0 1 2
0 2 1

)
.



S-labeling and coloring

Let A be a finite set, |A| = k , and S ⊆ SA be a subset of
the permutations of A. Think of A as “colors”.
An S-labeling of G is a pair (D, σ) consisting of an
orientation D of G and an edge labeling σ : E(D) → S.

Let A = {0,1,2} and S = SA.

0

1

2

0

1

2

1 1>
021

Proper

An S-k -coloring of (D, σ) is κ : V (G) → A such that for
each edge (u, v) ∈ E(D) if π = σ(u, v) then
π(κ(u)) ̸= κ(v).



S-labeling and coloring

We call G S-k -colorable if there exists an S-k -coloring for
every S-labeling of G.

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.



S-labeling and coloring

We call G S-k -colorable if there exists an S-k -coloring for
every S-labeling of G.

S = {idA} gives classical coloring.
S ⊆ L, linear permutations, gives Signed-coloring.
Introduced in 1930s (formally, the seminal paper of
Zaslavsky (1982))with many applications in context of
psychological models, root systems, Ising model, etc.
Signed Zk -coloring.
Group Zk -coloring; Field coloring.
Coloring of Gain graphs.
S = SA gives DP-coloring. Introduced in 2015 by Dvořák
and Postle and widely studied since then.



Counting Colorings of S-labeled Graphs

PS(G, k) = min
S-labelings

#{S-k -colorings of G}.

Let A = {0,1} and S = SA.

>

∧∨

<

10

0101

01

No S-2-colorings

>

∧∨

<

01

0101

01

Two {idA}-k -colorings

PS(C4,2) = 0

PSA(G, k) = PDP(G, k), DP Color Function.



Counting Colorings

Let A be a finite set of “colors”, |A| = k , and S ⊆ SA be a subset of
the permutations of A.

PS(G, k) = min
S-labelings

#{S-k -colorings of G}.

Chromatic Polynomial, P(G, k) = P{idA}(G, k).



Counting Colorings

Let A be a finite set of “colors”, |A| = k , and S ⊆ SA be a subset of
the permutations of A.

PS(G, k) = min
S-labelings

#{S-k -colorings of G}.

Chromatic Polynomial, P(G, k) = P{idA}(G, k).

(Dahlberg, K., Mudrock, (2023+)) k -colorings of Signed
Graphs are k -colorings of S-labeled graphs for some
S ⊆ Lk , where Lk is the set of all linear permutations on A.

Signed chromatic function, the guaranteed number of
signed colorings of G, P±(G, k) ≥ PLk (G, k).



Counting Colorings

Let A be a finite set of “colors”, |A| = k , and S ⊆ SA be a subset of
the permutations of A.

PS(G, k) = min
S-labelings

#{S-k -colorings of G}.

Chromatic Polynomial, P(G, k) = P{idA}(G, k).

Signed chromatic function, the guaranteed number of
signed colorings of G, P±(G, k) ≥ PLk (G, k).

DP Color Function, PDP(G, k) = PSA(G, k).



A Poset of Graph Coloring notions

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.

Any choice of subset of permutations S ⊆ SA leads to a
notion of coloring.
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A Poset of Graph Coloring notions

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.

Any choice of subset of permutations S ⊆ SA leads to a
notion of coloring.

For S ⊆ S′ ⊆ SA, PS′(G, k) ≤ PS(G, k).

PDP(G, k) ≤ . . . ≤ PS(G, k) ≤ · · · ≤ P(G, k)



A Poset of Graph Coloring notions

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.

Any choice of subset of permutations S ⊆ SA leads to a
notion of coloring.

PDP(G, k) ≤ . . . ≤ PS(G, k) ≤ · · · ≤ P(G, k)

The subset relation over the symmetric group, induces a
partial order on all these notions of coloring with
the DP coloring as the unique maximal element, and
the classical coloring as a minimal element.
In fact, it’s a distributive lattice of notions of colorings.



List Colorings

What about list colorings and the list color function
Pℓ(G, k)?

Even though list coloring does not fit into the framework of
S-labeling, we still have DP color function as a lower bound
on the list color function.



List Colorings

PDP(G, k) ≤ Pℓ(G, k) ≤ P(G, k).

In addition to, PDP(G, k) ≤ . . . ≤ PS(G, k) ≤ · · · ≤ P(G, k),
and in particular, PDP(G, k) ≤ PL(G, k) ≤ P(G, k).



List Colorings

PDP(G, k) ≤ Pℓ(G, k) ≤ P(G, k).

In addition to, PDP(G, k) ≤ . . . ≤ PS(G, k) ≤ · · · ≤ P(G, k),
and in particular, PDP(G, k) ≤ PL(G, k) ≤ P(G, k).

Exponential lower bound on PDP(G, k) would give an
exponential lower bound on all these (and more) colorings
of G.



Polynomial Method

In a survey article, Terrence Tao describes the polynomial
method as:

“strategy is to capture the arbitrary set of objects in the zero set
of a polynomial whose degree is in control; for instance the
degree may be bounded by a function of the number of the
objects.”

Then we use algebraic tools to understand this zero set.

This paradigm has been used for breakthrough results in
arithmetic combinatorics, additive combinatorics, number
theory, graph theory, discrete geometry, and more.



Number of non-zeros of a polynomial

Theorem (Alon, Füredi (1993))
Let F be an arbitrary field, let A1, A2, . . ., An be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that P ∈ F[x1, . . . , xn] is a

polynomial of degree d that does not vanish on all of B. Then, the
number of points in B for which P has a non-zero value is at least
min

∏n
i=1 qi where the minimum is taken over all integers qi such that

1 ≤ qi ≤ |Ai | and
∑n

i=1 qi ≥ −d +
∑n

i=1 |Ai |.

Corollary (B. Bosek, J. Grytczuk, G. Gutowski, O. Serra,
M. Zajac (2022))
Let F be an arbitrary field, let A1, A2, . . ., An be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that P ∈ F[x1, . . . , xn] is a

polynomial of degree d that does not vanish on all of B. If
S =

∑n
i=1 |Ai |, t = max |Ai |, S ≥ n + d, and t ≥ 2, then the number of

points in B for which P has a non-zero value is at least t (S−n−d)/(t−1).



Number of non-zeros of a polynomial

Corollary (B. Bosek, J. Grytczuk, G. Gutowski, O. Serra,
M. Zajac (2022))
Let F be an arbitrary field, let A1, A2, . . ., An be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that P ∈ F[x1, . . . , xn] is a

polynomial of degree d that does not vanish on all of B. If
S =

∑n
i=1 |Ai |, t = max |Ai |, S ≥ n + d, and t ≥ 2, then the number of

points in B for which P has a non-zero value is at least t (S−n−d)/(t−1).

To apply this to count colorings of a graph G, we need to
design a polynomial that has the property that its
non-zeros correspond to proper colorings of G.



Number of non-zeros of a polynomial

Corollary (B. Bosek, J. Grytczuk, G. Gutowski, O. Serra,
M. Zajac (2022))
Let F be an arbitrary field, let Ai , i = 1, . . . ,n, be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that P ∈ F[x1, . . . , xn] is a

polynomial of degree d that does not vanish on all of B. If
S =

∑n
i=1 |Ai |, t = max |Ai |, S ≥ n + d, and t ≥ 2, then the number of

points in B for which P has a non-zero value is at least t (S−n−d)/(t−1).

F = Fk where k = pr is a power of a prime.
B = Fn

k , k color choices for each vertex. Each Ai is Fk .

The graph polynomial of G is fG =
∏

ij∈E(G)

(xi − xj).

fG(x) ̸= 0 implies x = (x1, x2, . . . xn) gives a k -coloring.
χ(G) ≤ k & nk ≥ n + m =⇒ P(G, k) ≥ k (kn−n−m)/(k−1).



Number of non-zeros of a polynomial

Using the graph polynomial over the field of reals, we
easily get:

Proposition (Dahlberg, K., Mudrock (2023+))
Suppose G is an n-vertex graph with m edges, and k is a
positive integer greater than 1 satisfying χℓ(G) ≤ k. If
m ≤ (k − 1)n, then

Pℓ(G, k) ≥ kn− m
k−1 .

(We recently generalized this to counting “packings of list colorings”.)



Number of non-zeros of a polynomial

Using the graph polynomial over the field of reals, we
easily get:

Proposition (Dahlberg, K., Mudrock (2023+))
Suppose G is an n-vertex graph with m edges, and k is a
positive integer greater than 1 satisfying χℓ(G) ≤ k. If
m ≤ (k − 1)n, then

Pℓ(G, k) ≥ kn− m
k−1 .

But this doesn’t work with DP Color Function. Need to
work in Fk , a finite field, with a different polynomial.



A Polynomial for k = 3

We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Let A = F3 and S = SA.

vi vj
>

012

xi − xj
0 − 0 = 0
1 − 1 = 0
2 − 2 = 0

vi vj
>

021

xi + xj
0 + 0 = 0
1 + 2 = 0
2 + 1 = 0

vi vj
>

102

xi + xj − 1
0 + 1 − 1 = 0
1 + 0 − 1 = 0
2 + 2 − 1 = 0



A Polynomial for k = 3

We want to define for a S-labeling of G, (D, σ),
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∏
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021
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1 + 2 = 0
2 + 1 = 0

vi vj
>
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xi + xj − 1
0 + 1 − 1 = 0
1 + 0 − 1 = 0
2 + 2 − 1 = 0

Dahlberg, K., Mudrock (2023):
For F3, fσ(ij) = (xi + (−1)cij xj − βij) works, and gives f(D,σ)

of degree m, the same as the graph polynomial.



A Polynomial for k = 3

We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Dahlberg, K., Mudrock (2023):
For F3, fσ(ij) = (xi + (−1)cij xj − βij) works, and gives f(D,σ)

of degree m, the same as the graph polynomial.

This is based on the observation that
Suppose σ is a permutation of F3. Then, either z − σ(z) is
the same for all z ∈ F3, or z + σ(z) is the same for all
z ∈ F3.



A Polynomial for k = 3

We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Dahlberg, K., Mudrock (2023):
For F3, fσ(ij) = (xi + (−1)cij xj − βij) works, and gives f(D,σ)

of degree m, the same as the graph polynomial.

For k > 3, we are forced to use non-linear polynomials for
each edge, and the degree of our polynomial consequently
goes up.



A Polynomial for k ≥ 3

We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Our building blocks will be L-polynomials.
An L-polynomial is a polynomial in Fk [x , y ] constructed
from i , j ∈ Fk and π ∈ SFk given by

Lπ
i,j(x , y) := (j − i)(y − π(i))− (π(j)− π(i))(x − i)

Essentially, Lπ
i,j(x , y) will be zero on all points that lie on the

line between the points (i , π(i)) and (j , π(j)).



A Polynomial for k ≥ 3
We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Our building blocks will be L-polynomials.
An L-polynomial is a polynomial in Fk [x , y ] constructed
from i , j ∈ Fk and π ∈ SFk given by

Lπ
i,j(x , y) := (j − i)(y − π(i))− (π(j)− π(i))(x − i)

Essentially, Lπ
i,j(x , y) will be zero on all points that lie on the

line between the points (i , π(i)) and (j , π(j)).

The degree of the polynomial fσ(ij) build this way using the
L-polynomials can be as high as k − 2. We believe this is
the optimal degree (computationally verified for small
values of k ).



A Polynomial for k ≥ 3

We want to define for a S-labeling of G, (D, σ),
f(D,σ) =

∏
ij∈E(D) fσ(ij), such that

f(D,σ)(x) ̸= 0 =⇒ x is an S-k -coloring.

Our building blocks will be L-polynomials.
An L-polynomial is a polynomial in Fk [x , y ] constructed
from i , j ∈ Fk and π ∈ SFk given by

Lπ
i,j(x , y) := (j − i)(y − π(i))− (π(j)− π(i))(x − i)

Essentially, Lπ
i,j(x , y) will be zero on all points that lie on the

line between the points (i , π(i)) and (j , π(j)).

The degree of the polynomial fσ(ij) can be lowered to ⌊k/2⌋
but under additional assumptions about the DP-chromatic
number of an associated multigraph.



Main Theorem
Theorem (Dahlberg, K., Mudrock (2023+))
Let k = pr where p is prime, r ∈ N, and k > 2. Suppose G is a
connected n-vertex simple graph with m edges. Then the
following statements hold.

(i) If χDP(G) ≤ k and m ≤ 2n − k−3
k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

(ii) Let q = ⌊k/2⌋. Let G′ be the multigraph obtained from G by
adding (q − 1) parallel edges to each edge e ∈ E(G)− E(T ),
where T is a spanning tree of G.
If χDP(G′) ≤ k and m ≤ n(1 + (k − 2)/q)− 1 + 1/q, then

PDP(G, k) ≥ k (n(q+k−2)−qm+1−q)/(k−1).



Main Theorem
Theorem (Dahlberg, K., Mudrock (2023+))
Let k = pr where p is prime, r ∈ N, and k > 2. Suppose G is a
connected n-vertex simple graph with m edges.

If χDP(G) ≤ k and m ≤ 2n − k−3
k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

Corollary
Let c ≥ 2 and k = pr be a power of prime with c ≤ k. Suppose
G is a connected n-vertex simple graph with m edges. If
χDP(G) ≤ c and m ≤ n(c+k−4)

k−2 − k−3
k−2 , then

PDP(G, c) ≥ c(n(c+k−4)−(k−2)m−(k−3))/(c−1).



Linear S-labelings and Signed Colorings

Theorem (Dahlberg, K., Mudrock (2023+))
Let k = pr where p is prime, r ∈ N, and k > 2. If an n-vertex
graph G with m edges is S-k-colorable for some S ⊆ Lk and
m ≤ (k − 1)n, then

PS(G, k) ≥ k (kn−n−m)/(k−1) = kn− m
k−1

and particularly PL(G, k) ≥ kn− m
k−1 .

Corollary
Let G be an n-vertex signed graph with m edges. Let k be a
power of a prime. If χ±(G) ≤ k and m ≤ (k − 1)n, then

P±(G, k) ≥ kn− m
k−1 .



Exponentially Many Colorings of Sparse Graphs
Theorem (Dahlberg, K., Mudrock (2023+))
Let k = pr where p is prime, r ∈ N, and k > 2. Suppose G is a
connected n-vertex simple graph with m edges.

If χDP(G) ≤ k and m ≤ 2n − k−3
k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

Theorem (Dahlberg, K., Mudrock (2023+))
Let k = pr where p is prime, r ∈ N, and k > 2. If an n-vertex
graph G with m edges is S-k-colorable for some S ⊆ Lk and
m ≤ (k − 1)n, then

PS(G, k) ≥ kn− m
k−1

and particularly PL(G, k) ≥ kn− m
k−1 .



Exponentially Many Colorings of Planar Graphs

Giving an enumerative extension of the four color
conjecture, Birkhoff and Lewis (1946) conjectured:
For any planar graph G,
P(G, k) ≥ k(k − 1)(k − 2)(k − 3)n−3 for all real numbers
k ≥ 4.

They proved this is true for k ≥ 5, thus giving exponentially
many 5-colorings of planar graphs



Exponentially Many Colorings of Planar Graphs

After Thomassen (1994) proved all planar graphs are
5-choosable, it was asked whether there are exponentially
many 5-list-colorings of planar graphs.

Since then, there has been much work done on showing
that planar graphs and their subfamilies have exponentially
many list k -colorings for appropriate k ∈ {3,4,5}.



Exponentially Many Colorings of Planar Graphs

After Thomassen (1994) proved all planar graphs are
5-choosable, it was asked whether there are exponentially
many 5-list-colorings of planar graphs.

Thomassen(2007) proved Pℓ(G,5) ≥ 2n/9 where G is a
planar graph.
Extended by Postle and Smith-Roberge (2023+) to
PDP(G,5) ≥ 2n/67.

Dahlberg, K., Mudrock (2023+): P±(G,5) ≥ 5n/4.



Exponentially Many Colorings of Planar Graphs

The question of colorings of sparse planar graphs, where
sparsity is controlled by forbidding short cycles, also has a
long history.

For planar graph G of girth 5
Thomassen: G is 3-choosable (1995), and
Pℓ(G,3) ≥ 2n/1000 (2007).
Improved by Postle and Smith-Roberge (2023+) to
PDP(G,3) ≥ 2n/282.

Dahlberg, K., Mudrock (2024): PDP(G,3) ≥ 3n/6.



Our Applications - 1

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be an n-vertex graph of girth at least 5 embedded on a
surface of Euler genus g. Suppose G is DP-k-colorable for
some k, power of a prime. If n ≥ 5g, then
PDP(G, k) ≥ k (((n−5g)(k−2)/3)−(k−3))/(k−1).

This Theorem generalizes Thomassen(2007) that such graphs
have P(G,3) ≥ 2(n−5g)/9.



Our Applications - 2

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be an n-vertex planar graph, and k be a power of prime.

1 If G has no cycle of length in {4,5,6,7,8}, then
PDP(G, k) ≥ k

n
5

k−2
k−1−1 for k ≥ χDP(G).

2 If G has no cycle of length in {4,5,6,9}, then
PDP(G, k) ≥ k

n
11

k−2
k−1−1 for k ≥ 3. In particular, PDP(G,3) ≥ 3

n
22−1.

3 If G has no intersecting triangles and no cycle of length in
{4,5,6,7}, then PDP(G, k) ≥ k

2n
13

k−2
k−1−1 for k ≥ 3. In particular,

PDP(G,3) ≥ 3
n
13−1.

4 If G has no cycle of length in {4,5,6}, then
PDP(G, k) ≥ k

n
11

k−2
k−1−1 for k ≥ 4. In particular, PDP(G,4) ≥ 3

n
33−1.

5 If G has no cycle of length in {4,5,7,9}, then
PDP(G, k) ≥ k

2n
13

k−2
k−1−1 for k ≥ 3. In particular, PDP(G,3) ≥ 3

n
22−1.



Our Applications - 3

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be an n-vertex planar graph, and k be a power of prime.

1 P±(G, k) ≥ k
n(k−4)

k−1 for k ≥ 5, and in particular P±(G,5) ≥ 5
n
4 .

2 If G is triangle free, then P±(G, k) ≥ k
n(k−3)

k−1 for k ≥ 4. In
particular, P±(G,4) ≥ 4

n
3 .

3 If the girth of G is g ≥ 5, then P±(G, k) ≥ k
n(3k−8)
3(k−1) for k ≥ 3. In

particular, P±(G,3) ≥ 3
n
6 .

4 If G doesn’t have any cycles of length in {4,5,6,7,8}, then

P±(G, k) ≥ k
n(5k−14)

5(k−1) for k ≥ 3. In particular, P±(G,3) ≥ 3
n
10 .



Our Applications - 4

Let G be a triangle-free planar n-vertex graph.

Grötzsch (1959): χ(G) ≤ 3.

However there exist triangle-free planar graphs that are not
3-choosable and hence not DP-3-colorable.

χℓ(G), χDP(G) ≤ 4, by degeneracy.



Our Applications - 4

Let G be a triangle-free planar n-vertex graph.

Thomassen (2007) Conjecture: G has exponentially many
3-colorings.

Asadi, Dvořák, Postle, Thomas (2013): P(G,3) ≥ 2
√

n/212.
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Let G be a triangle-free planar n-vertex graph.

Thomassen (2007) Conjecture: G has exponentially many
3-colorings.

Asadi, Dvořák, Postle, Thomas (2013): P(G,3) ≥ 2
√

n/212.

Dvořák, Postle (2022): The best we can hope for is 64n0.731

3-colorings.
The Thomassen conjecture is false!



Our Applications - 4

Conjecture (Dahlberg, K., Mudrock (2023+))
There exists a constant c > 1, such that for any triangle-free
planar n-vertex graph G, PDP(G,4) ≥ cn.



Our Applications - 4

Conjecture (Dahlberg, K., Mudrock (2023+))
There exists a constant c > 1, such that for any triangle-free
planar n-vertex graph G, PDP(G,4) ≥ cn.

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be an n-vertex triangle-free planar graph with m edges.

1 Pℓ(G,4) ≥ 4
n+4

3 .
2 P±(G,4) ≥ 4

n+4
3 .

3 Suppose there exists c > 0 such that m ≤ (2 − c)n and
n > 1/3c, then PDP(G,4) ≥ 4(4cn−1)/3.



Our Applications - 5

Question (K., Mudrock (2021))
If PDP(G, k) = P(G, k) for some k ≥ χ(G), does it follow that
PDP(G, k + 1) = P(G, k + 1)?

NO!!!!!!

Corollary (Dahlberg, K., Mudrock (2024))
There are infinitely many graphs G with the property that
χDP(G) = 3, PDP(G,3) = P(G,3), and PDP(G,m) < P(G,m)
for sufficiently large m.

There are no known counterexamples to the question if we
insist that χDP(G) > 3.
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Our Applications - 5

Question (K., Mudrock (2021))
If PDP(G, k) = P(G, k) for some k ≥ χ(G), does it follow that
PDP(G, k + 1) = P(G, k + 1)?

NO!!!!!!

Corollary (Dahlberg, K., Mudrock (2024))
There are infinitely many graphs G with the property that
χDP(G) = 3, PDP(G,3) = P(G,3), and PDP(G,m) < P(G,m)
for sufficiently large m.

There are no known counterexamples to the question if we
insist that χDP(G) > 3.

The corresponding question for the list color function
remains open.



Thank You!
Questions?

Is it true that for k , a power of a prime, PL(G, k) = PDP(G, k)?

Does there exist c > 1, such that for any triangle-free planar
n-vertex graph G, PDP(G,4) ≥ cn?

Given a graph G does there always exist an N ∈ N and a
polynomial p(k) such that PDP(G, k) = p(k) whenever k ≥ N?

For which graphs G does ∃N such that PDP(G, k) = P(G, k) for
all k ≥ N? That is, when is τDP(G) := N finite?

Given a graph G and p ∈ N, what is the value of τDP(Kp ∨ G)?

For fixed n what is the asymptotic behavior of τℓ(Kn,l) as l → ∞?

Kirov and Naimi 2016: If Pℓ(G, k) = P(G, k) for some k ≥ χ(G),
does it follow that Pℓ(G, k + 1) = P(G, k + 1)?
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