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Abstract

The aim of the present paper is to estimate and control the Type I and Type II errors of a
simple hypothesis testing problem of the drift/viscosity coefficient for stochastic fractional heat
equation driven by additive noise. Assuming that one path of the first N Fourier modes of
the solution is observed continuously over a finite time interval [0, T ], we propose a new class
of rejection regions and provide computable thresholds for T , and N , that guarantee that the
statistical errors are smaller than a given upper bound. The considered tests are of likelihood
ratio type. The main ideas, and the proofs, are based on sharp large deviation bounds. Finally,
we illustrate the theoretical results by numerical simulations.
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1 Introduction

Under assumption that one path of the first N Fourier modes of the solution of a Stochastic Partial
Differential Equation (SPDE) is observed continuously over a finite time interval, the parameter
estimation problem for the drift coefficient has been studied by several authors, starting with the
seminal paper [HKR93]. Consistency and asymptotic normality of the MLE type estimators are well
understood, at least for equations driven by additive noise; see for instance the survey paper [Lot09]
for linear SPDEs, and [CGH11] for nonlinear equations, and references therein. Generally speaking,
the statistical inference theory for SPDEs did not go far beyond the fundamental properties of MLE
estimators, although important and interesting classes of SPDEs driven by various noises were
studied. The first attempt to study hypothesis testing problem for SPDEs is due to [CX13], where
we investigated the simple hypothesis for the drift/viscosity coefficient for stochastic fractional
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heat equation driven by additive noise, white in time and colored in space. Therein, the authors
established ‘the proper asymptotic classes’ of tests for which we can find ‘asymptotically the most
powerful tests’ – tests with fastest speed of error convergence. Moreover, we provided explicit forms
of such tests in two asymptotic regimes: large time asymptotics T →∞, and increasing number of
Fourier modes N →∞. By its very nature, the theory developed in [CX13] is based on asymptotic
behavior, T,N → ∞, and a follow-up question is how large T or N should we take, such that the
Type I and Type II errors of these tests are smaller than a given threshold. The main goal of
this paper is to develop feasible methods to estimate and control the Type I and Type II errors
when T and N are finite. Similar to [CX13], we are interested in Likelihood Ratio type rejection
regions RT = {UNT : lnL(θ0, θ1, U

N
T ) ≥ ηT} and RN = {UNT : lnL(θ0, θ1, U

N
T ) ≥ ζMN}, where UNT

is the projected solution on the space generated by the first N Fourier modes, L is the likelihood
ratio, MN is a constant that depends on the first N eigenvalues of the Laplacian, and η, ζ are some
constants that depend on T and N . We will derive explicit expressions for η and ζ, and thresholds
for T , and respectively for N , that will guarantee that the corresponding statistical errors are
smaller than a given upper bound. However, this comes at the cost that these tests are no longer
the most powerful in the class of tests proposed in [CX13]. The key ideas, and the proofs of main
results, are based on sharp large deviation principles (both in time and spectral spatial component)
developed in [CX13]. On top of the theoretical part, we also present some numerical experiments as
a coarse verification of the main theorems. We find some bounds for the numerical approximation
errors, that will also serve as a preliminary effort in studying the statistical inferences problems
for SPDEs under discrete observations. Finally, we want to mention that the case of large T and
N = 1 corresponds to classical one dimensional Ornstein-Uhlenbeck process, and even in this case,
to our best knowledge, the obtained results are novel.

The paper is organized as follows. In Sect. 1.1 we set up the problem, introduce some necessary
notations, and discuss why for the tests proposed in [CX13] it is hard to find explicit expressions
for T and N in order to control the statistical errors. Since sharp large deviation principles from
[CX13] play fundamental role in the derivation of main results, in Sect. 1.2 we briefly present them
here too. Sect. 2 is devoted to the case of large time asymptotics, with number of observable
Fourier modes N being fixed. We show how to choose T and η such that both Type I and Type II
errors, associated with rejection region RT , are bounded by a given threshold. Similarly, in Sect. 3
we study the case of large N while keeping the time horizon T fixed. In Sect. 4 we illustrate
the theoretical results by means of numerical simulations. We start, with the description of the
numerical methods, and derive some error bounds of the numerical approximations. Consequently,
we show that while the thresholds for T,N derived in Sects. 2 and 3 are conservative, as one may
expect, they still provide a robust practical framework for controlling the statistical errors. Finally,
in Sect. 5 we discuss the advantages and drawbacks of the current results and briefly elaborate on
possible theoretical and practical methods of solving some of the open problems.

1.1 Setup of the problem and some auxiliary results

In this section we will set up the main equation, briefly recall the problem settings of hypothesis
testing for the drift coefficient, and present some needed results from [CX13]. Also here we give
the motivations that lead to the proposed problems.

Similar to [CX13], on a filtered probability space (Ω,F , {Ft}t≥0,P) we considered the following
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stochastic evolution equation

dU(t, x) + θ(−∆)βU(t, x) dt =σ
∑
k∈N

λ−γk hk(x) dwk(t), t ∈ [0, T ],

U(0, x) =U0, x ∈ G,
(1.1)

where θ > 0, β > 0, γ ≥ 0, σ ∈ R\{0}, U0 ∈ Hs(G) for some s ∈ R, wj ’s are independent standard
Brownian motions, G is a bounded and smooth domain in Rd, ∆ is the Laplace operator on G
with zero boundary conditions, hk’s are eigenfunctions of ∆. It is well known that {hk}k∈N form
a complete orthonormal system in L2(G). We denote by ρk the eigenvalue corresponding to hk,
and put λk :=

√
−ρk, k ∈ N. Under some fairly general assumptions, Eq. (1.1) admits a unique

solution in the appropriate Sobolev spaces (see for instance [CX13]).
We assume that all parameters are known, except the drift/viscosity coefficient θ which is the

parameter of interest, and we use the spectral approach (for more details see the survey paper
[Lot09]) to derive MLE type estimators for θ. In what follows, we denote by uk, k ∈ N, the Fourier
coefficient of the solution u of (1.1) with respect to hk, k ∈ N, i.e. uk(t) = (U(t), hk)0, k ∈ N.
Let HN be the finite dimensional subspace of L2(G) generated by {hk}Nk=1, and denote by PN the
projection operator of L2(G) into HN , and put UN = PNU , or equivalently UN := (u1, . . . , uN ).
Note that each Fourier mode uk, k ∈ N, is an OrnsteinUhlenbeck process with dynamics given by

duk = −θλ2βk uk dt+ σλ−γk dwk(t), uk(0) = (U0, hk), t ≥ 0. (1.2)

We denote by PN,Tθ the probability measure on C([0, T ];HN ) w C([0, T ];RN ) generated by UN .

The measures PN,Tθ , θ > 0, are equivalent to each other, with the Radon-Nikodym derivative, or
the likelihood ratio, of the form

L(θ0, θ;U
N
T ) =

PN,Tθ

PN,Tθ0

= exp

(
−(θ − θ0)σ−2

N∑
k=1

λ2β+2γ
k

×
(∫ T

0
uk(t)duk(t) +

1

2
(θ + θ0)λ

2β
k

∫ T

0
u2k(t)dt

))
, (1.3)

where UNT denotes the trajectory of UN over the time interval [0, T ]. Maximizing the Log of the
Likelihood Ratio with respect to θ, we get the Maximum Likelihood Estimator (MLE)

θ̂NT = −
∑N

k=1 λ
2β+2γ
k

∫ T
0 uk(t)duk(t)∑N

k=1 λ
4β+2γ
k

∫ T
0 u2k(t)dt

, N ∈ N, T > 0. (1.4)

In [CX13], we established the strong consistency and asymptotic normality of the MLE, when T
or N goes to infinity.

In this work we consider a simple hypothesis testing problem for θ, assuming that the parameter
θ can take only two values θ0, θ1, with the null and the alternative hypothesis as follows

H0 : θ = θ0,

H1 : θ = θ1.

Without loss of generality, we will assume that θ1 > θ0, and σ > 0. Throughout, we fix a significant
level α ∈ (0, 1). Suppose that R ∈ B(C([0, T ];RN )) is a rejection region for the test, i.e. if UNT ∈ R
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we reject the null and accept the alternative. The quantity PN,Tθ0
(R) is called the Type I error of

the test R, and respectively 1 − PN,Tθ1
(R) is called the Type II error. Naturally, we seek rejection

regions with Type I error smaller than the significance level α:

Kα :=
{
R ∈ B(C([0, T ];RN )) : PN,Tθ0

(R) ≤ α
}
.

Let us denote by R∗ the rejection region (likelihood ratio test) of the form

R∗ = {UNT : L(θ0, θ1, U
N
T ) ≥ cα},

where cα ∈ R, such that PN,Tθ0
(L(θ0, θ1, U

N
T ) ≥ cα) = α. In [CX13] we proved that R∗ is the most

powerful test (has the smallest Type II error) in the class Kα,

PN,Tθ1
(R) ≤ PN,Tθ1

(R∗), for all R ∈ Kα.

While this gives a complete theoretical answer to the simple hypothesis testing problem, generally
speaking there is no explicit formula for the constant cα. The main contribution of [CX13] was
to find computable rejection regions, and the appropriate class of tests, by so called asymptotic
approach. The authors study two asymptotic regimes: large time asymptotics, while fixing the
number of Fourier modes N , and large number of Fourier modes, while time horizon is fixed. We
will outline here the case of large time asymptotics. Let (R]T )T∈R+ and K]α be defined as follows:

K]α =

{
(RT ) : lim sup

T→∞

(
PN,Tθ0

(RT )− α
)√

T ≤ α1

}
,

R]T =
{
UNT : L(θ0, θ1, U

N
T ) ≥ c]α(T )

}
,

c]α(T ) = exp

(
−(θ1 − θ0)2

4θ0
MT − θ21 − θ20

2θ0

√
MT

2θ0
qα

)
,

M =
N∑
k=1

λ2βk ,

where qα is α-quantile of standard Gaussian distribution, and α1 is a constant that depends on α.
The class K]α essentially consists of tests with Type I errors converging to α from above with rate
at least α1T

−1/2. It was proved that

lim inf
T→∞

1− PN,Tθ1
(RT )

1− PN,Tθ1
(R]T )

≥ 1, for all (RT )T∈R+ ∈ K]α. (1.5)

In other words, R]T has the fastest rate of convergence of the Type II error, as T →∞, in the class

K]α. We proved analogous results for N →∞, and T being fixed, by taking

R]N =
{
UNT : L(θ0, θ1, U

N
T ) ≥ c̃α(N)

}
, N ∈ N,

K̃]α =

{
(RN ) : lim sup

N→∞

(
PN,Tθ0

(RN )− α
)√

M ≤ α̃1

}
,
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where c̃α(N) is a constant depending on N and α only, and α̃1 is a constant that depends on α.
We refer the reader to [CX13] for further details.

However, by their very nature of being asymptotic type results, one cannot assess how large T
(or N) shall be taken to guarantee that the error is smaller than a desired tolerance. The main
goal of this manuscript is to investigate the corresponding error estimates for fixed values of T and
N .

Let us start with some heuristic discussion on why for the tests R]T and R]N one cannot easily
find computable expressions for T or N that will guarantee certain bounds on statistical errors.
As it was shown in [CX13, Lemma 3.13], for sufficiently large T , we have the following asymptotic
expansion under the null hypothesis H0:

PN,Tθ0
(R]T ) = α+ α1T

−1/2 +O(T−1).

Hence, for T large enough, we will have the estimate∣∣∣PN,Tθ0
(R]T )− α

∣∣∣ ≤ C1T
−1/2,

where C1 is a constant independent of T . Similarly (cf. [CX13, Lemma 3.21]), we have the asymp-
totic expansions

PN,Tθ0
(R]N ) =α+ α̃1M

−1/2 + o(M−1/2), if β/d > 1/2,

PN,Tθ0
(R]N ) =α+

(
α̃1 +

√
2β/d+ 1

cβ
α̃2

)
M−1/2 + o(M−1/2), if β/d = 1/2.

Since λk ∼ k1/d, for β/d ≥ 1/2, we get∣∣∣PN,Tθ0
(R]N )− α

∣∣∣ ≤ C2N
−β/d−1/2,

where C2 is a constant independent of N .
Due to lack of knowledge of the behavior of higher order terms in the above asymptotics,

practically speaking, the above constants C1 and C2 cannot be easily determined. The case of
large Fourier modes is especially intricate, since the asymptotic expansion of Type I error is done
in terms of M rather than N . To overcome this technical problem, we propose a new test, which
may not be asymptotically the most powerful, but which is convenient for the errors’ estimation.
Moreover, we validate the obtained results by numerical simulations.

1.2 Sharp Large Deviation Principle

The main results presented in this paper, and the ideas behind them, rely on some results on
sharp large deviation bounds obtained in [CX13]. While the sharp deviations results for large
time asymptotics T →∞ are comparable in certain respects with those from Stochastic ODEs (cf.
[BR01, Kut04, Lin99]), the results for large number of Fourier modes N → ∞ are new, and by
analogy we refer to them also as sharp large deviation principle. For convenience, we will briefly
present some of needed results here too.

Generally speaking, we seek asymptotics expansion of the form

T−1 lnEθ
[
exp

(
ε lnL(θ0, θ1, U

N
T )
)]

= L(ε) + T−1H(ε) + T−1R(ε),
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for θ = θ0 or θ = θ1, and where L, H are some explicit functions of ε,N, θ0, θ1, and R is a residual
term. Similarly, we are looking for asymptotic expansion of M−1 lnEθ

[
exp

(
ε lnL(θ0, θ1, U

N
T )
)]

,
while T is fixed. With these at hand, we find a convenient representation of probabilities

PN,Tθj

(
lnL(θ0, θ1, U

N
T ) ≤ (or ≥)$

)
, j = 0, 1,

where $ has the form ηT or ηM for some constant η. Below we will present the explicit expressions
for functions L,H,R. Albeit the formulas are somehow cumbersome, their particular form is less
important at this stage.

Along these lines, we adapt the notations

LjT (ε) :=T−1 lnEθj
[
exp

(
ε lnL(θ0, θ1, U

N
T )
)]
,

LjN (ε) :=M−1 lnEθj
[
exp

(
ε lnL(θ0, θ1, U

N
T )
)]
,

for j = 0, 1. The following expansions hold true

LjT (ε) :=MLj(ε) + T−1NHj(ε) + T−1Rj(ε), (1.6)

LjN (ε) :=TLj(ε) +NM−1Hj(ε) +M−1Rj(ε), (1.7)

where ε > − θ2j
θ21−θ20

, and where

Lj(ε) =
1

2

(
θj + (θ1 − θ0)ε−

√
θ2j + (θ21 − θ20)ε

)
,

Hj(ε) =− 1

2
ln

(
1

2
+

1

2
Dj(ε)

)
, Dj(ε) =

θj + (θ1 − θ0)ε√
θ2j + (θ21 − θ20)ε

,

Rj(ε) =− 1

2

N∑
k=1

ln

(
1 +

1−Dj(ε)
1 +Dj(ε)

exp
(
−2λ2βk T

√
θ2j + (θ21 − θ20)ε

))
.

Using these results, one can show that the following identities are satisfied,

PN,Tθj

(
(−1)j lnL(θ0, θ1, U

N
T ) ≥ (−1)jηT

)
= AjTB

j
T , (1.8)

PN,Tθj

(
(−1)j lnL(θ0, θ1, U

N
T ) ≥ (−1)jηM

)
= ÃjN B̃

j
N , (1.9)

with

AjT = exp
[
T (LjT (εjη)− ηεjη)

]
, ÃjN = exp

[
M(LjN (ε̃jη)− ηε̃jη)

]
,

Bj
T = EjT

(
exp

[
−εjη(lnL(θ0, θ1, U

N
T )− ηT )

]
1{(−1)j lnL(θ0,θ1,UN

T )≥(−1)jηT}

)
,

B̃j
N = EjN

(
exp

[
−ε̃jη(lnL(θ0, θ1, U

N
T )− ηM)

]
1{(−1)j lnL(θ0,θ1,UN

T )≥(−1)jηM}

)
, (1.10)

where η is a number which may depend on T and N , εjη and ε̃jη are numbers which depend on η,
EjT and EjN are the expectations under Qj

T and Qj
N respectively with

dQj
T

dPN,Tθj

= exp
(
εjη lnL(θ0, θ1, U

N
T )− TLjT (εjη)

)
, (1.11)

dQj
N

dPN,Tθj

= exp
(
ε̃jη lnL(θ0, θ1, U

N
T )−MLjN (ε̃jη)

)
. (1.12)
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By taking εjη or ε̃jη such that ML′j(ε
j
η) = η or TL′j(ε̃

j
η) = η, for η < (θ1−θ0)M/2 or η < (θ1−θ0)T/2

respectively, we got

εjη =
(θ21 − θ20)2M2 − 4θ2j (−2η + (θ1 − θ0)M)2

4(θ21 − θ20)(−2η + (θ1 − θ0)M)2
, (1.13)

ε̃jη =
(θ21 − θ20)2T 2 − 4θ2j (−2η + (θ1 − θ0)T )2

4(θ21 − θ20)(−2η + (θ1 − θ0)T )2
, (1.14)

and then by direct computations we found that

AjT = exp (−Ij(η)T ) exp
[
NHj(εjη) +Rj(εjη)

]
, (1.15)

ÃjN = exp
(
−Ĩj(η)M

)
exp

[
NHj(ε̃jη) +Rj(ε̃jη)

]
, (1.16)

where

Ij(η) =− (4θjη + (−1)j(θ1 − θ0)2M)2

8(2η − (θ1 − θ0)M)(θ21 − θ20)
,

Ĩj(η) =− (4θjη + (−1)j(θ1 − θ0)2T )2

8(2η − (θ1 − θ0)T )(θ21 − θ20)
. (1.17)

Finally, also in [CX13] we derived the large deviation principles for considered SPDEs

lim
T→∞

T−1 lnPN,Tθ0

(
T−1 lnL(θ0, θ1, U

N
T ) ≥ η

)
= −I0(η),

η ∈
(
−(θ1 − θ0)2

4θ0
M,

θ1 − θ0
2

M

)
, (1.18)

lim
T→∞

T−1 lnPN,Tθ1

(
T−1 lnL(θ0, θ1, U

N
T ) ≥ η

)
= −I1(η),

η ∈
(

(θ1 − θ0)2

4θ1
M,

θ1 − θ0
2

M

)
, (1.19)

It should be mentioned that in [CX13] the relations (1.6)–(1.19) were derived only under the
alternative hypothesis, θ = θ1, however, the corresponding results for θ = θ0 are obtained in a very
similar manner. The main difference is that θ1 in the PDE obtained by Feynman-Kac formula is
replaced by θ0, but the method of solving it remains of course the same. We admit that some parts
of these derivations may appear technically challenging, but nevertheless we felt unnecessary to
mimic them here.

2 The case of large times

Throughout this section, we assume that the number of Fourier modes N is fixed. Recall that
without loss of generality we assume that θ1 > θ0 (the obtained results are symmetric otherwise).
We still consider tests of the form RT = {UNT : L(θ0, θ1, U

N
T ) ≥ cα(T )}, but for the sake of

convenience we write them equivalently as

RT = {UNT : lnL(θ0, θ1, U
N
T ) ≥ ηT}, (2.1)
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where, unless specified, η is an arbitrary number which may depend on N and T . Our goal is to
find a proper expression for η such that for T larger than a certain number, the Type I and Type II
errors are always smaller than a chosen threshold. Clearly, we are looking for η that is a bounded
function of T . Using the results on large deviations from Sect. 1.2, we will first give an argument
how to derive a proper expression of η, followed by main results and their detailed proofs.

Following the large deviation principle (1.18), let us assume that η is such that

−(θ1 − θ0)2

4θ0
M < η <

θ1 − θ0
2

M. (2.2)

Then, we have that ε0η > 0, and hence B0
T ≤ 1. Consequently, in view of (1.8), to get an upper

bound for the Type I error, it is enough to estimate A0
T . By (1.15), combined with (1.18), we note

that exp (−I0(η)T ) is the dominant term of asymptotic expansion of Type I error. Since we have
an explicit expression of the residual part exp

[
NH0(ε

0
η) +R0(ε

0
η)
]
, this suggest that if we simply

let the dominant part to be equal to the significance level α, that is

exp (−I0(η)T ) = α, (2.3)

we may be able to control the Type I error by a much simpler function. In fact, by solving Eq. (2.3),
that has two solutions, and since η has to satisfy (2.2), we choose

η = −(θ1 − θ0)2

4θ0
M +

(θ21 − θ20) lnα

2θ20T
+
θ21 − θ20

2θ20

√
−θ0MT−1 lnα+ T−2 ln2 α. (2.4)

Clearly η is a bounded function of T . Moreover, η indeed satisfies (2.2), a point made clear by (2.6)
below.

Next we present the first main result of this paper that shows how large T has to be so that
the Type I error is smaller than a given tolerance level.

Theorem 2.1. Assume that the test statistics has the form

R0
T =

{
UNT : lnL(θ0, θ1, U

N
T ) ≥ ηT

}
,

where η is given by (2.4). If

T ≥ max

{
− 256θ0 lnα

(θ1 − θ0)2M
,−16 lnα

θ0M
,−4(1 + %)2(θ1 − θ0)2(N + 1)2 lnα

%2θ0(θ1 + θ0)2M

}
, (2.5)

then the Type I error has the following bound estimate

PN,Tθ0

(
R0
T

)
≤ (1 + %)α,

where % denotes a given threshold of error tolerance1.

1Generally expected to be small, say less than 10%. Smaller % will yield larger T , and the final choice is left to
the observer.
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Proof. Let us consider

∆η := η +
(θ1 − θ0)2

4θ0
M =

θ21 − θ20
2θ20

−θ0MT−1 lnα

−T−1 lnα+
√
−θ0MT−1 lnα+ T−2 ln2 α

≤1

2
(θ21 − θ20)

√
−θ−30 M lnαT−1/2. (2.6)

Note that ∆η > 0, which implies that η > −(θ1 − θ0)2M/4θ0 − 0. Moreover, since ∆η → 0, as
T →∞, we also have that η < (θ1 − θ0)M/2, for sufficiently large T , and hence (2.2) is satisfied.

Substituting (2.4) into (1.13), by direct evaluations, we deduce

ε0η =
2θ0(θ

2
1 − θ20)M∆η − 4θ20∆η2

(θ21 − θ20)((θ21 − θ20)M/(2θ0)− 2∆η)2
≤ 2θ0M∆η

((θ21 − θ20)M/(2θ0)− 2∆η)2
. (2.7)

By (2.6) and (2.7), we conclude that, if

(θ21 − θ20)

√
−θ−30 M lnαT−1/2 ≤ (θ21 − θ20)M/(4θ0), (2.8)

then have the following estimate

0 < ε0η ≤
32θ30∆η

(θ21 − θ20)2M
≤ 16

√
−θ30 lnα

(θ21 − θ20)
√
M
T−1/2. (2.9)

A straightforward inspection of the derivative of D0(ε) implies that D0(ε) decreases for ε < θ0
θ1+θ0

,
and goes to 1, as ε→ 0+. Thus, using (2.9), if

16
√
−θ30 lnα

(θ21 − θ20)
√
M
T−1/2 <

θ0
θ1 + θ0

, (2.10)

then we can guarantee that 0 < D0(ε
0
η) < 1. From here, under assumption that (2.8) and (2.10)

hold true, we have

exp
[
R0(ε

0
η)
]

=
N∏
k=1

(
1 +

1−D0(ε
0
η)

1 +D0(ε0η)
exp

(
−2λ2βk T

√
θ20 + (θ21 − θ20)ε0η

))−1/2
< 1. (2.11)

Due to the fact that
√

1 + x < 1 + x/2, we get

D0(ε
0
η) ≥

θ0 + (θ1 − θ0)ε0η
θ0 + (θ21 − θ20)ε0η/(2θ0)

.

Therefore, under (2.8) and (2.10), we obtain

D0(ε
0
η)− 1 ≥− (θ1 − θ0)2

2θ0
(
θ0 + (θ21 − θ20)ε0η/(2θ0)

)ε0η ≥ −(θ1 − θ0)2

2θ20
ε0η

≥− 8(θ1 − θ0)
√
− lnα

(θ1 + θ0)
√
θ0M

T−1/2.
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From the above, and by means of Bernoulli inequality, we continue

exp
[
NH0(ε

0
η)
]

=

(
1 +

1

2

(
D0(ε

0
η)− 1

))−N/2
≤
(

1 +
1

2

(
D0(ε

0
η)− 1

))−b(N+1)/2c

≤
(

1 +
b(N + 1)/2c

2

(
D0(ε

0
η)− 1

))−1
≤
(

1− 2(N + 1)(θ1 − θ0)
√
− lnα

(θ1 + θ0)
√
θ0M

T−1/2
)−1

. (2.12)

Note that the above inequalities hold true if all the terms in the parenthesis are positive, for which
is enough to assume that

2(N + 1)(θ1 − θ0)
√
− lnα

(θ1 + θ0)
√
θ0M

T−1/2 < 1. (2.13)

Recall that ε0η > 0, and hence B0
T ≤ 1. Using (1.8) and (2.3), combined with (2.11) and (2.12), we

conclude that

PN,Tθ0

(
R0
T

)
= A0

TB
0
T ≤ α

(
1− 2(N + 1)(θ1 − θ0)

√
− lnα

(θ1 + θ0)
√
θ0M

T−1/2
)−1

.

Thus, in order to make the Type I error to satisfy the desire upper bound PN,Tθ0

(
R0
T

)
≤ (1 + %)α,

it is sufficient to require that

T ≥ −4(1 + %)2(θ1 − θ0)2(N + 1)2 lnα

%2θ0(θ1 + θ0)2M
, (2.14)

under assumption that (2.8), (2.10) and (2.13) hold true, which is satisfied due to original assump-
tion (2.5). This concludes the proof.

Next we will study the estimation of Type II error, as time T goes to infinity.

Theorem 2.2. Assume that the test R0
T is given as in Theorem 2.1. If

T ≥ max

{
−16(θ21 + 16θ20) lnα

θ0(θ1 − θ0)2M
,−16 lnα

θ0M
,−4(1 + %)2(θ1 − θ0)2(N + 1)2 lnα

%2θ0(θ1 + θ0)2M

}
, (2.15)

then the Type II error admits the following upper bound estimate

1− PN,Tθ1

(
R0
T

)
≤ (1 + %) exp

(
−(θ1 − θ0)2

16θ0
MT

)
. (2.16)
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Proof. Let η be as in (2.4). By direct evaluations, one can show that

H1(ε
1
η) = H0(ε

0
η), R1(ε

1
η) = R0(ε

0
η).

Recall that, from the previous theorem, assuming that (2.5) holds true, we have that

exp
[
NH1(ε

1
η) +R1(ε

1
η)
]

= exp
[
NH0(ε

0
η) +R0(ε

0
η)
]
≤ 1 + %. (2.17)

In view of (2.6) and (1.17), if we further require that

(θ21 − θ20)

√
−θ−30 M lnαT−1/2 ≤ (θ21 − θ20)(θ1 − θ0)

4θ0θ1
M, (2.18)

it can be easily deduced that

exp (−I1(η)T ) ≤ exp

(
−(θ1 − θ0)2

16θ0
MT

)
. (2.19)

By (2.9), assuming that (2.10) holds true, we also have that

ε1η = ε0η − 1 <
θ0

θ1 + θ0
− 1 < 0,

and hence

B1
T = E1

T

(
exp

[
−ε1η(lnL(θ0, θ1, U

N
T )− ηT )

]
1{lnL(θ0,θ1,UN

T )≤ηT}

)
< 1. (2.20)

Note that (1.8)-(1.15) imply that

1− PN,Tθ1

(
R0
T

)
=PN,Tθ1

(
lnL(θ0, θ1, U

N
T ) ≤ ηT

)
= A1

TB
1
T

= exp (−I1(η)T ) exp
[
NH1(ε

1
η) +R1(ε

1
η)
]
B1
T .

Therefore, (2.16) follows from (2.17), (2.19) and (2.20), under assumption that (2.5) and (2.18) are
satisfied, which is guaranteed by (2.15). This finishes the proof.

3 The case of large number of Fourier modes

In this section we study the error estimates for the case of large number of Fourier modes N , while
the time horizon T is fixed. The key ideas and the method itself are similar to those developed in
the previous section. We consider tests of the form

RN = {UNT : lnL(θ0, θ1, U
N
T ) ≥ ζM}, (3.1)

where ζ is some number depending on N and T , and where as before M :=
∑N

k=1 λ
2β
k . The goal

is to find ζ, as a bounded function of N , that will allow to controll the statistical errors when the
number of Fourier modes N is large.
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Similarly to T -part, for ζ > − (θ1−θ0)2
4θ0

T , we have that ε̃0ζ > 0, and hence B̃0
N ≤ 1. Thus, it is

enough to estimate Ã0
N , and by the same reasons as in Sect. 2, we let exp

(
−Ĩ0(ζ)M

)
= α, and

derive that the natural candidate for ζ has the following form

ζ = −(θ1 − θ0)2

4θ0
T +

(θ21 − θ20) lnα

2θ20M
+
θ21 − θ20

2θ20

√
−θ0TM−1 lnα+M−2 ln2 α. (3.2)

Next we provide the result on how large N should be (for a fixed T ) to guarantee that Type I
and Type II errors are smaller than a given tolerance level.

Theorem 3.1. Consider the test

R0
N =

{
UNT : lnL(θ0, θ1, U

N
T ) ≥ ζM

}
,

where ζ is given by (3.2).

(i) If

M ≥− 16 lnα

θ0T
max

{
16θ20

(θ1 − θ0)2
, 1

}
and

M

(N + 1)2

≥− 4(1 + %)2(θ1 − θ0)2 lnα

%2θ0(θ1 + θ0)2T
, (3.3)

then the Type I error has the following upper bound estimate

PN,Tθ0

(
R0
N

)
≤ (1 + %)α, (3.4)

where % denotes a given threshold of error tolerance.

(ii) If

M ≥− 16 lnα

θ0T
max

{
(θ21 + 16θ20)

(θ1 − θ0)2
, 1

}
and

M

(N + 1)2

≥− 4(1 + %)2(θ1 − θ0)2 lnα

%2θ0(θ1 + θ0)2T
, (3.5)

we have the following estimate for Type II error

1− PN,Tθ1

(
R0
N

)
≤ (1 + %) exp

(
−(θ1 − θ0)2

16θ0
MT

)
. (3.6)

The proof is similar2 to the proofs of Theorem 2.1 and Theorem 2.2, and we omit it here3.

2For most of the derivations one just needs to ‘exchange T with M .’ The results are, in a sense, symmetric with
respect to T and M . In (3.3) and (3.5) we separate the conditions for N into two inequalities, since we want to place
all the terms related to N on the left side of the inequalities.

3We need to point out that sometimes we may not be able to find N such that the conditions (3.3) and (3.5) are
satisfied. For example, if β/d ≤ 1/2 then M/(N + 1)2 is bounded for all N ∈ N, and if its bound is smaller than the
right hand side of the second inequality in (3.3) and (3.5), then the conditions (3.3) and (3.5) fail for all N . However,
for β/d ≤ 1/2 we might still be able to control the Type I and Type II errors by finite N , which requires a more
technical proof and is deferred to future study.
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4 Numerical Experiments

In this section we give a simple illustration of theoretical results from previous sections by means of
numerical simulations. Besides showing the behavior of Type I and Type II errors for the test R0

proposed in this paper, we will also display the simulation results for R] test mentioned in Sect. 1.1
and discussed in [CX13]. We start with description of the numerical scheme used for simulation
of trajectories of the solution (more precisely of the Fourier modes), and provide a brief argument
on the error estimates of the corresponding Monte Carlo experiments associated with this scheme.
In the second part of the section, we focus on numerical interpretation of the theoretical results
obtained in Sects. 2 and 3.

We use the standard Euler-Maruyama scheme4 to numerically approximate the trajectories
of the Fourier modes uk(t) given by Eq. (1.2), and we apply Monte Carlo method to estimate the
Type I and Type II errors. We partition the time interval [0, T ] into n equality spaced time intervals
0 = t0 < t1 < . . . < tn = T , with ∆T = T/n = ti − ti−1, for 1 ≤ i ≤ n. Let m denote the number
of trials in the Monte Carlo experiment of each Fourier mode. Assume that ujk(ti) is the true value
of the k-th Fourier mode at time ti of the j-th trial in Monte Carlo simulation. Then, for every
1 ≤ k ≤ N , 1 ≤ j ≤ m, we approximate ujk(ti) according to the following recursion formula

ũjk(ti) = ũjk(ti−1)− θλ
2β
k ũ

j
k(ti−1)∆T + σλ−γk ξjk,i, ũjk(t0) = uk(0), 1 ≤ i ≤ n. (4.1)

where ξjk,i are i.i.d. Gaussian random variables with zero mean and variance ∆T . In what follows,

we will investigate how to approximate the Type I and Type II errors of R0 test using ũjk(ti)’s, and
how the numerical errors are related to n, m, T and N .

Throughout this section we consider Eq. (1.1), and consequently (4.1), with β = 1, in one
dimensional space d = 1, with the random forcing term being the space-time white noise γ =
0, σ = 1. We also assume that the spacial domain G = [0, π] and the initial value U0 = 0. In this
case λk = k, k ∈ N. We fix the parameter of interest to be θ0 = 0.1 and θ1 = 0.2. The general
case is treated analogously, the authors feel that a complete and detailed analysis of the numerical
results are beyond the scope of the current publication. The numerical simulations presented
here are intended to show a simple analysis of the proposed methods. We performed simulations
for other sets of parameters, and the numerical results were in concordance with the theoretical
ones. For example, for the case of large times, if one increases N , then the statistical errors are
reaching the threshold for smaller values of T - more information improves the rate of convergence.
Similarly, increasing T for the case of asymptotics in N , one needs to take fewer Fourier modes to
bypass the threshold of the statistical errors. Different ranges and magnitudes of the parameter of
interest θ were considered, and the outcomes are similar to those presented below. All simulations
and computations are done in MATLAB and the source code is available from the authors upon
request.

4.1 Description and analysis of the numerical experiments

Throughout C denotes a constant, whose value may vary from line to line, and whenever the
formulas or results are indexed by j, we mean that they hold true for all 1 ≤ j ≤ m. Using (1.3),

4Of course many other discretizations of Eq. (1.1) can be chosen, such as implicit Euler scheme, or exponential
Euler scheme, that can be computationally more efficient; cf. the monograph [JK11].
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and by Itō’s formula, we get

PN,Tθ0
(R0

T ) =PN,Tθ0
(lnL(θ0, θ1, U

N
T ) ≥ ηT )

=PN,Tθ0

(
−

N∑
k=1

λ2β+2γ
k

(∫ T

0
uk(t)duk(t)

+
θ1 + θ0

2θ0

∫ T

0
uk

(
σλ−γk dwk − duk

))
≥ σ2ηT

θ1 − θ0

)
=PN,Tθ0

(
N∑
k=1

λ2β+2γ
k

(
θ1 − θ0

2

(
u2k(T )− σ2λ−2γk T

)
−(θ1 + θ0)σλ

−γ
k

∫ T

0
ukdwk

)
≥ 2θ0σ

2ηT

θ1 − θ0

)
=PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥ 2θ0σ∆η

θ21 − θ20

√
T

)
, (4.2)

where η and ∆η are given by (2.4) and (2.6) respectively, and

XT :=

N∑
k=1

λ2β+2γ
k u2k(T ), YT :=

N∑
k=1

λ2β+γk

∫ T

0
ukdwk.

We approximate XT and YT as follows

X̃j
n,T :=

N∑
k=1

λ2β+2γ
k ũjk(tn)2, Ỹ j

n,T :=
N∑
k=1

λ2β+γk

n∑
i=1

ũjk(ti−1)ξ
j
k,i.

Define

R̃0,j
n,T :=

{
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃j
n,T − Ỹ

j
n,T /
√
T ≥ 2θ0σ∆η

θ21 − θ20

√
T

}
.

Then, naturally, the approximation of PN,Tθ0
(R0

T ) is given by

P̃m,n,N,Tθ0
(R0

T ) :=
1

m

m∑
j=1

1
R̃0,j

n,T
. (4.3)

Following [Bis08, Chapter 8], one can prove that

E
∣∣∣(YT − Ỹ j

n,T

)
/
√
T
∣∣∣2 = O(∆T ), E

∣∣∣XT − X̃j
n,T

∣∣∣ = O(∆T ). (4.4)

Consequently, for any ε > 0, we have

PN,Tθ0

(
R̃0,j
n,T

)
≤PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥ 2θ0σ∆η

θ21 − θ20

√
T − ε

)
+ PN,Tθ0

(∣∣∣YT − Ỹ j
n,T

∣∣∣ /√T ≥ ε/2)
+ PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T

∣∣∣XT − X̃j
n,T

∣∣∣ ≥ ε/2) .
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According to [CX13, Lemma 3.13], for large enough T , the following estimate holds true

PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥ 2θ0σ∆η

θ21 − θ20

√
T − ε

)
≤ PN,Tθ0

(R0
T )(1 + Cε).

By the above results, and Chebyshev inequality, we conclude that

PN,Tθ0

(
R̃0,j
n,T

)
≤PN,Tθ0

(R0
T )(1 + Cε) + Cε−1E

∣∣∣XT − X̃j
n,T

∣∣∣ /√T
+ Cε−2E

∣∣∣(YT − Ỹ j
n,T

)
/
√
T
∣∣∣2 .

Similarly, we have that

PN,Tθ0

(
R̃0,j
n,T

)
≥PN,Tθ0

(R0
T )(1− Cε)− Cε−1E

∣∣∣XT − X̃j
n,T

∣∣∣ /√T
− Cε−2E

∣∣∣(YT − Ỹ j
n,T

)
/
√
T
∣∣∣2 .

Combining the above two inequalities, we obtain that, for any ε > 0,∣∣∣PN,Tθ0

(
R̃0,j
n,T

)
− PN,Tθ0

(R0
T )
∣∣∣ ≤CεPN,Tθ0

(R0
T ) + Cε−1E

∣∣∣XT − X̃j
n,T

∣∣∣ /√T
+ Cε−2E

∣∣∣(YT − Ỹ j
n,T

)
/
√
T
∣∣∣2 .

This implies that ∣∣∣PN,Tθ0

(
R̃0,j
n,T

)
− PN,Tθ0

(R0
T )
∣∣∣ ≤ C0∆T

1/3, (4.5)

where C0 is a constant, which is small as long as PN,Tθ0
(R0

T ) is small. It is straightforward to check
that for large T

Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T

)
≤ C,

where C is a constant independent of T . From here and using (4.4), one can also show that

Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃j
n,T − Ỹ

j
n,T /
√
T

)
=Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T

)
+O(∆T ).

This implies that the error of Monte Carlo simulations can be controlled by m−1/2 uniformly with
respect to T and n. Therefore, we have the following error estimate∣∣∣P̃m,n,N,Tθ0

(R0
T )− PN,Tθ0

(R0
T )
∣∣∣ ≤ C1∆T

1/3 + C2m
−1/2, (4.6)

which holds true with high probability (confidence interval of the Monte Carlo experiment). Here
C1 is a constant which depends on PN,Tθ0

(R0
T ) (usually small), and C2 is a constant which only

depends on the confidence level of Monte Carlo simulations. Thus, the estimator P̃m,n,N,Tθ0
(R0

T )
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can be made arbitrarily close to the true value of PN,Tθ0
(R0

T ) with arbitrarily high probability, as
long as we take small enough time step ∆T and large enough number of trials m of Monte Carlo
simulations.

To approximate the value of PN,Tθ0
(R]T ), similarly to (4.2), we obtain

PN,Tθ0
(R]T ) = PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥ −σqα

√
M/2θ0

)
,

and we define

R̃],jn,T :=

{
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃j
n,T − Ỹ

j
n,T /
√
T ≥ −σqα

√
M/2θ0

}
.

Then, the approximation of PN,Tθ0
(R]T ) is given by

P̃m,n,N,Tθ0
(R]T ) :=

1

m

m∑
j=1

1
R̃],j

n,T
. (4.7)

Following the same proof we obtain error estimates similar to (4.6) for R]T .
Next we will present some numerical results that validate relationship (4.6). In Table 1, we list

simulation results of (4.3) for various value of the time step ∆T (or number of time steps n), while
keeping fixed time horizon T = 100, number of Monte Carlo simulations m = 20, 000, and number
of Fourier modes N = 3. For convenience, we present same results in graphical form, Figure 1.

∆T 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

n 100 111 125 143 167 200 250 333 500

P̃m,n,N,Tθ0
(R0

T ) 0.0475 0.0375 0.0342 0.0283 0.0239 0.0202 0.0165 0.0157 0.0129

P̃m,n,N,Tθ0
(R]T ) 0.0975 0.0897 0.0802 0.0746 0.0686 0.0620 0.0566 0.0515 0.0503

∆T 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02

n 1000 1111 1250 1429 1667 2000 2500 3333 5000

P̃m,n,N,Tθ0
(R0

T ) 0.0102 0.0111 0.0099 0.0101 0.0096 0.0108 0.0089 0.0078 0.0088

P̃m,n,N,Tθ0
(R]T ) 0.0453 0.0416 0.0443 0.0413 0.0428 0.0401 0.0421 0.0400 0.0385

Other parameters: m = 2× 104, α = 0.05, T = 100, θ0 = 0.1, θ1 = 0.2, N = 3, % = 0.1,
d = β = σ = 1, γ = 0

Table 1: Type I error for various time steps ∆T (or number of time steps n)

As shown in Figure 1 the value of P̃m,n,N,Tθ0
(R0

T ), and respectively P̃m,n,N,Tθ0
(R]T ), rapidly decays

(approximatively up to the point when n = 1000 or ∆T = 0.1), and then it steadily approaches
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Figure 1: Type I error as a function of number of time steps n. Graphical interpretation of Table 1

a certain ‘asymptotic level’, which, as suggested by (4.6), shall be the true value of PN,Tθ0
(R0

T ) (or

PN,Tθ0
(R]T )). This assumes a reasonable large value of m, in our case m = 20, 000. When ∆T gets

smaller, we notice small fluctuations around that ‘asymptotic level’, which are errors induced by
the Monte Carlo method, and one can increase the number of trials to locate more precisely that
true value. In our case the fluctuations are negligible comparative to the order of α.

Now we fix the time horizon T , and vary the number of Fourier modes N . Similarly to derivation
of (4.2), we have

PN,Tθ0
(R0

N ) = PN,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
M
XT − YT /

√
M ≥ 2θ0σ∆ζ

θ21 − θ20

√
M

)
,

where

∆ζ =
(θ21 − θ20) lnα

2θ20M
+
θ21 − θ20

2θ20

√
−θ0TM−1 lnα+M−2 ln2 α.

Next, we define

R̃0,j
n,N :=

{
(θ1 − θ0)

2σ(θ1 + θ0)
√
M
X̃j
n,T − Ỹ

j
n,T /
√
M ≥ 2θ0σ∆ζ

θ21 − θ20

√
M

}
.
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and approximate the probability PN,Tθ0
(R0

N ) by

P̃m,n,N,Tθ0
(R0

N ) :=
1

m

m∑
j=1

1
R̃0,j

n,N
. (4.8)

One can prove5 that for some ν ≥ 0,

E
∣∣∣(YT − Ỹ j

n,T

)
/
√
M
∣∣∣2 = O(Nν/n), E

∣∣∣XT − X̃j
n,T

∣∣∣ = O(Nν/n). (4.9)

Following the same procedure as for large time asymptotics, we get∣∣∣P̃m,n,N,Tθ0
(R0

N )− PN,Tθ0
(R0

N )
∣∣∣ ≤ C1N

ν/3n−1/3 + C2m
−1/2, (4.10)

where C1 is a constant which depends on PN,Tθ0
(R0

N ), and C2 is a constant which depends on the
confidence level of Monte Carlo experiment.

Similar results are obtained for the approximation of PN,Tθ0
(R]N ) and the Type II errors PN,Tθ1

(R0
N ),

PN,Tθ1
(R]N ), PN,Tθ1

(R0
T ) and PN,Tθ1

(R]T ), and for brevity we will omit them here.
We conclude that the errors due to the numerical approximations considered above are negli-

gible. Hence, the numerical methods we propose are suitable for our purposes of computing the
statistical errors of R0

T , R]T , R0
N and R]N tests, and we will use them for derivation of all numerical

results from the next sections.

4.2 Numerical tests for large times

We start with the case of large times T and fixed N , and the results discussed in Sect. 2. We
take that N = 3, i.e. we observe one path of the first three Fourier modes of the solution u over
some time interval [0, T ]. For convenience, we denote by T 1

b , and respectively T 2
b , the lower bound

thresholds for T from Theorem 2.1, relation (2.5), and respectively Theorem 2.2, relation (2.15).
In Table 2, we list the Type I error PN,Tθ0

(
R0
T

)
, along with corresponding values of T 1

b , for various
values of α. Note that for all values of α, the Type I error is smaller than the threshold (1 + %)α,
and as expected, being on conservative side.

α 0.1 0.05 0.01 0.005

T 1
b 629 818 1258 1447

PN,Tθ0

(
R0
T

)
0.021 0.010 0.0025 0.0015

Other parameters: θ0 = 0.1, θ1 = 0.2, N = 3, % = 0.1, d = β = σ = 1, γ = 0

Table 2: T = T 1
b given by Theorem 2.1 and Type I error for various α.

5As usually, the case of large N is more delicate and technically challenging, comparative to the case of large
times. Apparently, (4.9) holds true for some positive ν. The sharpest value of ν is not relevant for this paper, and
we defer the derivation of it to future study.
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In Table 3 we show that for T ≥ T 1
b , the error remains smaller than the chosen bound. In fact,

the Type I error is decreasing as T gets larger, with all other parameters fixed.

T T 1
b T 1

b + Tδ T 1
b + 2Tδ T 1

b + 3Tδ T 1
b + 4Tδ T 1

b + 5Tδ

PN,Tθ0

(
R0
T

)
0.0100 0.0097 0.0105 0.0100 0.0105 0.0102

PN,Tθ0

(
R]T

)
0.0540 0.0525 0.0505 0.0526 0.0512 0.0505

Other parameters: Tδ = 500, α = 0.05, θ0 = 0.1, θ1 = 0.2, N = 3, % = 0.1, d = β = σ = 1, γ = 0

Table 3: Type I error for various T ≥ T 1
b , with T

1
b as in Theorem 2.1

As already mentioned, the statistical test R]T derived in [CX13], while it is asymptotically the

most powerful in K]α, it will not guarantee that the statistical errors will be below the threshold for
a fixed finite T ; only asymptotically it will be smaller than α. Indeed, as Table 3 shows, the Type I
error for R]T fluctuates around α = 0.05, with no pattern. That was the very reason we proposed
the tests R0.

To illustrate the results from Theorem 2.2, and the behavior of Type II error 1 − PN,Tθ1

(
R0
T

)
,

one needs to look at very large values of T , which is beyond our technical possibilities and the goal
of this paper. We will only give the results for some reasonable large values of T ; see Table 4.
Note that indeed the Type II error is decreasing as time T gets larger. Also here, we show the
corresponding results for the test R]T .

T 10 20 30 40 50 60

exp
(
− (θ1−θ0)2

16θ0
MT

)
0.4169 0.1738 0.0724 0.0302 0.0126 0.0052

1− PN,Tθ1

(
R0
T

)
0.7155 0.3329 0.1148 0.0293 0.0070 0.0012

1− PN,Tθ1

(
R]T

)
0.7946 0.2402 0.0457 0.0060 0.0006 0.0002

Other parameters: α = 0.05, θ0 = 0.1, θ1 = 0.2, N = 3, % = 0.1, d = β = σ = 1, γ = 0

Table 4: Type II errors for various T ; Illustration of Theorem 2.2

4.3 Numerical tests for large number of Fourier modes

Now we do a similar analysis by varying number of Fourier coefficients N , while the time horizon
T = 1 is fixed. As mentioned above, the case of large N is much more delicate, and as it turns out,
according to the numerical results presented in Table 5, the error bounds for the statistical errors
from Theorem 3.1 are on conservative side. The decay of the errors obtained in our numerical
simulations is much faster than suggested by theoretical results, which from practical point of view
is a desired feature.
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N 10 20 30 40 50 60 70 80

PN,Tθ0

(
R0
N

)
0.007 0.012 0.010 0.017 0.012 0.014 0.010 0.013

PN,Tθ0

(
R]N

)
0.006 0.037 0.039 0.053 0.040 0.039 0.054 0.046

Other parameters: α = 0.05, θ0 = 0.1, θ1 = 0.2, T = 1, % = 0.1, d = β = σ = 1, γ = 0

Table 5: Type I errors for various N ; Theorem 3.1

5 Concluding remarks

On discrete sampling. Eventually, in real life experiments, the random field would be mea-
sured/sampled on a discrete grid, both in time and spatial domain. It is true that the main results
are based on continuous time sampling, and may appear as being mostly of theoretical interest.
However, as argued in the Sect. 4, the main ideas of this paper and [CX13] have a good prospect
to be applied to the case of discrete sampling too. The error bounds of the numerical results
presented herein contributes to the preliminary effort of studying the statistical inference prob-
lems for SPDEs in the discrete sampling framework. At our best knowledge, there are no results
on statistical inference for SPDEs with fully discretely observed data (both in time and space).
We outline here how to apply our results to discrete sampling, with strict proofs deferred to our
future studies. If we assume that the first N Fourier modes are observed at some discrete time
points, then, to apply the theory presented here, one essentially has to approximate some integrals,
including some stochastic integrals, convergence of each is well understood. Of course, the exact
rates of convergence still need to be established. The connection between discrete observation in
space and the approximation of Fourier coefficients is more intricate. Natural way is to use discrete
Fourier transform for such approximations. While intuitively clear that increasing the number of
observed spacial points will yield to the computation of larger number of Fourier coefficients, it is
less obvious, in our opinion, how to prove consistency of the estimators, asymptotic normality, and
corresponding properties from hypothesis testing problem.

On derivation of other tests. We want to mention that the (sharp) large deviations, appro-
priately used, can lead to other practically important family of tests. In fact, it is not difficult to
observe that, if we take RT with

η ∈
(
−(θ1 − θ0)2

4θ0
M,

(θ1 − θ0)2

4θ1
M

)
,

then both Type I and Type II errors will go to zero, as T →∞. Clearly, the motivation for doing
this is to have both errors as small as possible. Moreover, for such η the statistical errors will go
exponentially fast to zero. Of course, this will not be the most powerful test in the sense of [CX13],
since such chosen η will reduce the exponential rate of convergence of Type II error. However, by
shrinking the class of tests, one may preserve RT to be ‘asymptotically the most powerful’ in the
new class. For example, once the asymptotical properties of errors are well understood, one can
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consider a new class of tests of the form

Kα =

{
(RT ) : lim sup

T→∞

(
Tα2 exp (I(η)T + ηT )PN,Tθ0

(RT )− α0

)
Tα3 ≤ α1

}
,

where αi (0 ≤ i ≤ 3) are some parameters to be determined. Then, employing the same methodol-
ogy as in [CX13], one can show that RT is the most powerful in Kα, with only slight modification
of some technical results. Similar ideas can lead to corresponding results for N →∞.

On composite hypothesis. Despite of the fact simple hypothesis testing problems are rarely used
in practice, the efforts of this work, as well as those from [CX13], should be seen as a starting point
of a systematic study of general hypothesis testing problems and goodness of fit tests for stochastic
evolution equation in infinite dimensional spaces. As pointed out in [CX13], the developments of
‘asymptotic theory’ for composite hypothesis testing problem will follow naturally, and consequently
one can extend the results of this paper to the case of composite tests.
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