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FINITENESS OF THE POINT SPECTRUM FOR SOME
INTEGRO-DIFFERENTIAL OPERATORS
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In this paper, we find sufficient conditions on the coefficients and the kernels
of a general class of nonselfadjoint integro-differential operators of any order that
guarantee the finiteness of the point spectrum of these operators. The results are
obtained by the direct investigation of the analyticity of the resolvent function near
the essential spectrum and its holomorphic extension through the continuous
spectrum. The problem is motivated by applied problems from quantum mechanics,
plasma oscillation theory, and neutrons diffusion.
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1. Introduction

In this work we study the finiteness of the point spectrum of some
nonselfadjoint integro-differential operators of arbitrary order. By contrast with
the case of selfadjoint operators, for which various fine methods have been
elaborated thanks to fundamental theorem of spectral analysis, in the case of
nonselfadjoint operators the problem of finiteness of the point spectrum is usually
reduced to the uniqueness theorem of holomorphic operator-valued functions.
Using this method, the finiteness of the point spectrum of various classes of
nonselfadjoint operators have been investigated by many authors: differential
operators of second and fourth order [1, 2]; nonselfadjoint Schrodinger operator
[3-5]; perturbed differential operators with periodic coefficients see [6]; Friedrics
model see [7-9]; the finite difference operators [10, 11]; perturbed integral
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Wiener-Hopf operators [12-14]; Hill operator see [15]; equation of a
nonhomogeneous damped string see [16]. Some general results have been
presented in [17] and [6].

In the present paper the problem of the finiteness of the point spectrum is
solved by methods from perturbation theory and a direct investigation of
analyticity of the resolvent function. Some results have been announced (without
proofs) in [18]. In this paper, we present the detailed, more elegant and easier
proofs.

It should be mentioned that similar problems for selfadjoint operators have
been studied in [19-21].

The paper is organized as follows: we start Section 2 by presenting the main
result and we discuss the methodology of the proof. Subsection 2.1 is dedicated to
abstract results on the finiteness of the point spectrum of nonselfadjoint operators.
The proof of the main theorem is split in several auxiliary lemmas that are given
in Subsection 2.2. We conclude the paper with some applications of the general
theorem to concrete differential operators (Section 3). All obtained results are in
concordance with existing literature. For simplicity of writing we consider the
case of the half line, but all results remain true for the whole real line, with
appropriate adjustments.

2. Theoretical results

In the space L,(R,) we consider the differential operator D = idi with its
X

domain of definition determined by the set of all functions u € L, (R, ), absolutely
continuous on every bounded interval of the positive half-line, with generalized
derivative u' (in the sense of distributions) belonging toL,(R,), and zero
boundary condition u(0)=0.

Let us consider the following integro-differential operator

H= Y D"M,zD", (1)
a, =0
where
(M yu)(x) = a,5u(X)+q,4(x)u(x)+ Ikaﬁ (x, u(ydy, a,p=0,..,n;

R

+

9. () and k,; () are some measurable functions on R, and R, xR,
respectively (generally speaking with complex values); ¢,,(x)=0, &, (x,»)=0,
agp are complex numbers, a,, = Eﬁa, a,=0,..,n;a, =1. We assume that the

operator H acts on its maximal domain.



Finiteness of the point spectrum for some integro-differential operators 179

The differential operator

A=Y a,D"D", )
a,p=0
of order 2n is a self-adjoint operator and its spectrum o (A) is the set of all values

of the polynomial (called the symbol of the operator A4)
Al)= Dae ' —w<E<on,

a,p=0
namely o(4)=[a,+x), where a = min{A(§)| e R}, and the point spectrum of 4 is
empty, where o ,(A4) is the set of all eigenvalues of the operator 4. The operator

H can be viewed as a perturbation of the operator A4 with the following
subordinated (of order less than 2n ) integro-differential operator

B= > "D"(q,,(x)+K,)D".
a,f=0
ThusH =A4+B.

Note that if the functions ¢, ,a,=0,...,n, vanish as x -+ and the

integral  operators (K ,u)(x) = J.kaﬂ (x,»)u(y)dy,xeR ;a,p=0,.,n, are
R,
compact, then, since 4 is self-adjoint, due to Weyl’s type theorems (see Chapter
XII1, [22]), the perturbed operator H has the same essential spectrum. However,
the operator A can have infinitely many eigenvalues.
The main goal of this paper is to establish sufficient conditions on the
functions ¢,z and the kernels &, @, f=0,...,n, that guarantee that the point

spectrum o ,(H) of the perturbed operator H is a finite set. Next, we formulate

the main result of this paper.
Theorem If there exists a positive constant T such that

" qu(x)e L(R), &, =0,....n, (3)
and the integral operators with kernels
ek (x,), &, B =0,...n, “

are bounded inL,(R,), then the point spectrum of the operator H is finite and

all eigenvalues have finite multiplicity.

The proof of the theorem is based on the so called method of the extension
of the resolvent function of unperturbed operator through its continuous spectrum
(see for instance [6] for a general framework). For sake of completeness, we
present here a version of this method, which will be applied consequently to the
operator H of form (1).
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2.1. Abstract Scheme

Let G and G; be two Hilbert spaces, and denote by C(G,G,) the set of all
linear, closed and densely defined operators acting between G and G;. Similarly,
we denote by B(G,G,) the set of all linear and bounded operators, and
by B, (G,G,) the set of compact operators. If G =G, then we write C(G), B(G)
and B_(G).

Throughout this subsection we assume that

H=A4+8B,
where 4 and B are linear operators acting on G, such that the following conditions
hold true:

(1) The operator 4 is self-adjoint on G, and o, (4) =9;

(i1) The operator B can be represented as

B =RTS,

where

S € C(GaGl)’ R € C(GI’G)a T € Boo(Gl)
with

D(S)ND(R") > D(A)
and D(S) denoting the domain of definition of the operator S.
(iii)  There exists z, € p(4) such that the operator S(4—z,/)"'R admits

a bounded extension. Denote this extension by Q(z) .

(iv)  There exists O, (1) =s— lim O(2 % i¢), forall A€ R.

Remark. Note that by conditions (ii) and (iii) the operator
S(A - zI)™" Radmits a bounded extension for every z € p(A4).

In what follows we denote by O, (A) the operator-valued function defined
on Il. that is equal to Q(A) if Aell,, and to O,(A) if AeR, where
I1, = {z| Imz > 0} and I1_= {z| Imz <0}.

One can prove the following results.

Proposition 1. (see [6]) If (i)-(iv) hold true, and if A € o ,(H), then there
exists ¢ € Gy, p #0, such that

(1+0.(A)T)p=0. (5)

By Proposition 1, it is clear that if equality (5) holds true for a finite set of
values A € C, then the point spectrum of the perturbed operator H is finite. Thus,
the original problem is reduced to choose appropriately the operators R,7,S such
that (i)-(iv) are satisfied and (5) holds true for a finite number of values 2 e C. To
show the latter, we will use the theorem about the finiteness of the zeros of an
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analytic operator-valued function (see for instance Theorem XIII.13, [22], and
Theorem 5.1, [23]). Of course, the function(, is analytic onII, only, and the
analyticity is lost near the spectrum of the unperturbed operator 4; however, with
proper chosen R, 7,S, and some additional assumptions on B, we will show that the
function Q,(4) can be extended analytically on a neighborhood of A (on a
Riemann surface), for any A € o(A4). Hence the name of the method: extension of
the resolvent function of unperturbed operator through its continuous spectrum.

2.2. Proof of the main theorem

As mentioned in the previous subsection, the task is to choose the operators
R, TS such that (i)-(iv) are satisfied and Q,(A4) admits analytic extensions,

through the spectrum of unperturbed operator 4, on half-plane I and I
respectively. With this in view, we consider the following construction.
Let G; be the Hilbert space equal to the direct sum of 2(n+1) copies of

n
G:=L,(R,), namely G; = > ®G. Let § be a positive real number, and define
k=0
the operators S:G — Gy, T:G; —> Gy, R:G; — G as follows

2n
Su=(S,u,..,S,u), ue ﬂDom(Sa),

a=0
o 2n
Tv = ZTaﬁvﬁ 5 V:(VO,...,VZn)’
p=0 a=0
2n n
Rv= ZORava , V, € /DDom(Rﬂ), a=0,..2n,
a= =0

where
Sﬂ = ei(sxDﬁ, ,B =0,...,n
Sy =e D", B=n+1,..2n
R,=D"“""e¢’",a=0,..,n,
R,=D"e’"  a=n+1,..2n,
T p :edxqa—l,ﬂ—lD_ledx,a,ﬂZ0,...,n, (6)

Sx *—1 Sx
T =e""D q,,,e" ,a=2,.,n,

a,a+n

Sx -1 _ox
T =e""q,,,D e, a=0,.,n,

n,a+n

_ Ox y*1 Sx
T =e”" D q,,,¢

n+l,n+1 >
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and all other operators 7, , being zero.

Under these assumptions the operator B has the following decomposition
2n

B= YR,T,S,,
a,p=0
or
B = RTS.
Recall that the operator 4 defined by (2) is selfadjoint with empty point
spectrum, and hence (i) is satisfied. Since, the operators S, and R;, a=0,.2n,

are differential operators of order at most n, multiplied by a bounded function, we
have that D(S)nD(R) is larger than the domain of the differential operator 4 of

order 2n. Note that the assumptions (3) and (4) guarantee that 7 is a compact
operator, for any & <. Hence condition (ii) from the abstract scheme is satisfied.
Also, one can check directly that (iv) is satisfied (in fact for all z € p(A)).

Due to the here-above representation of B, the condition (iv) and the
analyticity of the function Q,(4) are equivalent to the study of the operator-

valued functions of the form
Qs (D) =8,(4- ADT'R,, a,B=0,..,n,
which will be split in several proposition below.

Proposition 2. For every A, € C, there exists a neighborhood U(A,) of 4,,
such that the functions Q,(A) have an analytic extension from U(A,)(I1, to
U(4,), with Ay being an algebraic ramification point.

Proof. If A, € p(4), the result follows immediately since the resolvent

function is analytic on the resolvent set.
Let A4, € 0(4) and denote by &, k =1,2,...,2n, all the solutions of equation

A(£)- 2y =0. Since 4(¢) = A(E), the number of solutions of equation A(&)— 4y =0

from IT4+ coincides with the number of solutions from ..
Thus, we have the representation

A2, =T~

where &...,&, ells,and &,,,,....&, € ..

Case 1: assume that all roots of the polynomial 4(£)— A, are simple. By
[22], there exists U(A,) such that the functions &, =&, (/1),k=1,2,...,2n, are
holomorphic for all A eU(4,). For simplicity we will study the case when all

roots belong to the real line R, that is
& ell, k=1,.,nm,AeUL,)NIT,,
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& ell Jk=n+1..2nA€U(4,)NI1,,
E (L) eER k=12,..2n.
If A€U(4,)NII, then the operator (A—Al)"' can be represented as
follows:
(4=21)" =(D=&, 1) - (D=&,.0) (D" =& 1) (D" =£1)". (D)
Since o(D) = I1. and o(D") = I1_, we conclude that every factor in (7) is a
bounded operator. Thus, using (6) we conclude
Qs N f,0)=((D"=&D) " (D" =&, 1) D™ e f, 8)
(D" =&, )" (DT =&, D) D e )
where o <n,f<n,f,geL,(R,) and 6> 0.
Note that

[TE-&) "% =Y aq(E-&) " +ag,

k=1 k=1
and
2n n _ _
[T €-&) "'l = biu(E-& )" +bo,
k=n+1 k=1

where a, =a,(1),b, =b, (1), k=0,,..,n, are analytic functions on U(4,),

being linear combinations of analytic functions. This implies that (8) can be
written as

©p(D)].8)= Zn:af'bk (D =& D) e f(D =&, D) e g)+

jk=1

+ b, (€ (D —E ) e g)+ )

+> ab,(D =& D7 e feg),
=1

where f,g e L,(R,) and §>0. Thus the analyticity of (0,51 f,g) with respect

to A is equivalent to the analyticity of functions of the form

(D" =& D" e f(D =& D) e g) = (10)

where f,geL,(R,) and 6 >0, j,k=1,...n.
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We choose the neighborhood U(4,) such that |Im & j| <r<d, for every
AeU(4,y), j=12,..2n. We claim that the following inequality holds true

J

R+
for every feL,(R,), j=0...2n and 1€U(4,). To show this, we use a Hardy type
inequality (see, for instance [24])

f

R

2

dec”f(ylzdy (11)

o]

J.ei'fj(."*x)e—é‘yf(y)dy

X

2

0

[ o(v)dy

X

L [l [ dy, (12)

dx <
(Re ) 7

+

where e C and Reu>0.
Since |lm§j| <7 <J, we have thatRe(6 —i&;) > 0, and using (12) the left

+

hand side of (11) can be estimated as follows

I :

dx <
R,

Inequality (11) is proved.
Thus, the function given by (10) is holomorphic on U(4,), and hence the

function ((Q4, )(A)f,g) is analytic on U(4,), forall « <n and g <n. Moreover,
by (10) and (11), we also have that

()N S| < 1|2

This implies that the bilinear form ((Qg, )(4)f,g) generates an operator-

o0

[ oy

X

1 2 1 2
milf(y)l dys§£|f(y)| dy.

, a<n,B<n.

valued function (é 5o J(A) with values in B(G), and since the strong analyticity of
operator-valued functions is equivalent to weak analyticity, we conclude that the
operator-valued  function (é o )(A) is  analytic  on  U(4,) and
(é 50 J(A) = (04, )(A), A €U(4,)NI1, . Due to the uniqueness of the analytic
extension, we get that 0, (4) is analytic on U(4,), and hence Q. (4) is analytic
on U(4,). Thus Case 1 is finished.

Case 2: the polynomial function A({)— A4, has real multiple roots. For
simplicity we assume that & has multiplicity m , namely

A=A =(6=6)" - (E=Spn) (6 =)

Similar to Case 1, we have the factorization
AE) =2y =(E=&EMNE=EP) - (E=&NE-&) - (=& -+
(&) (E=EMNE=E) (68,
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where p; +...+ p, =m, and fj(.”,jzl,...,k;yzl, 2,..,p;, are the branches of

multivalued function &;. The following decomposition holds true

EN =2+ 2 B(A= )", j=lek.
r=1

Without loss of generality, for simplicity of writing, we suppose that
m=4,k=2 and p, = p, =2. Thus,
A =2 ==&V (E =&V (E-&) - (E-&,0)

where £, &P are the branches of the function & (4). Furthermore, we suppose

that for 1eU(A,)NII1,, we have that &V eTl.,&® ell-, ¢&,,...&, ell,,
&3 Eny, €1, which implies that

(A=21)" =(D=&, D" - (D=-EPDH D =&, (D" =&
and consequently

(Qﬂa (ﬁ)f,g)= (D" —«:n])‘1 (D' _51(1)[)—2 Do

(D =&, D)7 (D" =EP DD e ), (13)
where f,geL,(R,),a<nand f+1<n.
Since
- a 1)\-2 -1 a] 612 ! ak
Here-anre-t0m=a o ey "2z,
and
2n b b 2n b
B _1(2)—2 _k—lzbo 12 22 - n+4—k’
k];!-:lg (5 SZ ) (5 6) +§_§1()+(§_§1()) +k;2§_§k
by (13) we get
((©Qp A S, 8) = Zaabﬁ (D" =&D7"e™ f(D =&, e g),

where r,s=1o0r 2, & =¢, = 1(1)’ St =8 = 1(2)-
Now, let us consider the function
(D" =& D7 e f(D" =& ) e g),
where &, =¢&,(1); &, =&, (4) (j,k = 1,...,n) and
ell,, j=L.,nsAeU(4)NII,
S ell |, k=L.,n; AeU(4,)NIIL_, (14)
¢ |<r<s, jhk=12,..m 2 eU(4).

From the above formulae, we deduce
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(D" =& D)7 f(D" =& e ™" g) =

B I[ IL i&,(y—x) féyT o/i7) =0 (1-y) f(t)dt}dy-

y

.T(eifk(yﬂeé‘}]g 16 (1=7) p=8 (1= Wt]dy}dx

X ¥
Similarly to Case 1, by consequently applying the inequality (11), we get the
estimates

QD) | <c:|f]- 2] f-8 € Li(R); A € U(Ry); @, B =1,.m
This implies that the function (O, (4)f,g) can be defined on U(4,) that

belongs to the first Riemann surface. Moving into the second Riemann surface,
the functions&”,k =1,2, also satisfy (14), so the function (©Qp D) f,8) s

defined on the neighborhood U(4,) of a point A, on the Riemann surface and it

is analytic on this neighborhood, 4, being an algebraic point.
Thus

(NGYRIEFIES W ACE N

where 8, = B,(f,g),j =L2,..;a <n, B <n. Therefore

© g
0 () =12, +Z;Bj(/1—/10)” :
where 1 eU(4,),and B, € B(G) j = 1,21,...; a < n; f < n. Proposition is proved.
Proposition 3. Let S : L,(R,)—> L,(R,) be the multiplication operator of
the form (§¢))(x) =e " p(x), for some & >0.
Then ||§(D+/11)'1(D* —/II)'1§|| — 0, as [}| >, and A€T1,.
Proof. Forevery AelIl, we have

(D+ADN(D" =AD" =(D'D-21)".
It is easy to show that

X

wvaWF%kammwﬁwm@mm%(m

0

forall pe L,(R,), £ € C\R. Next we will prove that
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2

e Jody| dx < e [|p(y)['dy (16)

R

—

=

+

and
2

0

e pdy| dx<c, [lp()['dy, (17)

X

—

R

+

forevery pe L,(R,), €Il , €>0.
For this, we will use the following Hardy-type inequality (see [24])

]

R,
Using this, we obtain

2
]‘!. dle‘!:e
Sch

R+

2
1 X
“Joidy| dr<aflofdy,  pely(r.).
0 R,

2

x
dx <

- i(ﬂ(y)dy

e“”jco(y)dy
0

+

2
dx <4c [|p()[dy,
R

+

%I(o(y)dy

2

and based on inequality I
0

T f()dt

dr < 4[|xf () [dx, we get
0

2

0

J. dx < 4”xe'”¢)(y) |2dy < 4cT|go(y) |2dy, pel,(R)).
0

0 0
Therefore the relations (16) and (17) hold true.
Let & elIl}, wherell = {z| Imz>-7,7 >O}. Then, by (16) and (17) we

+9

0

[e " p(3)dy

X

0

deduce
2

dx <

2

x <
2

x <

[er sin(£y)- e e p(y)dy
0

e 12
< j |eft5x‘et§x .

[[sin(z»)|-¢ | () |dy

e e oy
0
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¥ 2
SJUe”=e”¢¢oM@Jdxﬁqﬂe€*¢oﬂinqﬂ¢wnﬂ%
RO R, R.

where £ €Il and pe L,(R,), with O0<z<d and e=6-7.
Similarly

R+

< J.[| e " -sin(£ x) |2 .

2
dx <

2
x <

dr<c, [lo([dy.
R,

[e o sin(éx)- e - p(y)dy

Jle*]-e o |ty

2

0

< I(e” T |¢(y) |dyJ dx < I je’” -|¢)(y) |dy

R.

X X

From (15), and combining the above formulae, finally, we have the
estimates

M&Dvréﬁf§4=é{ﬂfé“sm@y»ﬁ“eﬂﬁmw@+
de]z <
dx]2 +

dx] < L reoldl =l

0

+ J.e"‘;x -sin(&)- €7 e’ - p(y)dy

X

el

[e sin(Ex)- € - p(y)dy
0

[eror-er sin(éy)- e - p(y)dy
0

4!

This implies that ||§ (D'D - 521)*‘§|| < % —0, for all £eTl+ and |& > o,
which ends the proof. B
Proposition 4. If A1 €11, then ||Qi (/1)” — 0, when |ﬂ| — o,
Proof. The operators (D" — A/ )’1§ , S (D+ AI)™" are bounded for A e . ,
and since (§ (D-AD"Y =(D" - Al )'S”, by Proposition 3, we conclude that
||§(D2 - /121)*1§|| - ||(D* D™ §|| 250,
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for |2| > 0, 2 € T This implies that (D" = 11)'S| >0, as |2| - o0, 2 e TL...

2n

Using the representation A(&)—A = H(f -¢,), Ae€ll,,and the fact that
k=1

& &y, =agy — A, we get that if |/1| — oo, then there exists & eI, such that
€| — oo (more precisely one root in TT; and one root in IT-).
Let £,
Since the function (D" — AI )'1§ is continuous on I+ , we have

||(D* — D™ §|| <M,,

— 0, |4| >0, with &, eIl and &,, ell-.

— o0 and |&,,

for every A from the disk of radius R >0 intersected with I1. , and also
||§ (D" - /11)*1" <M,

for every A from the disk of radius R >0 intersected with .
Thus, we have the following estimates

low|=|s-¢&,.)" - (D-&,0)" (D -£D" - (D - &) R| <

< §Dﬁ+1(D - 5,1“[)71 e (D - §2nl)71|| ’

| =&n - -0 DS

| <

< Zn:bk”E(D - §k+n[)_]|| ’ Zn:ak" (D’k - é:kl)_] §|| <
k=0 k=0

<ds-&,n7||@ -£n"S| >0,
for [2| > o0 and 1ell. Similarly, one can show that the above estimates hold

true also for 4 e I1-. Proposition 4 is proved.
Proposition 5. |0, (1)Tg| — 0, when |A| >, and A eIl-.
Proof. Indeed, by the above proposition

lo.rel<fo.IIrl-lel< X|s, (40" R[-Ir]-Je] o

when |/1| —> o, for 1 e ..
Proposition 6. The disk of radius R >0, centered at zero, contains a finite
number of zeros of the function I+ Q, (A)T.

Proof. It follows directly from the theorem about zeros of a holomorphic
operator-valued function: operator Q,(4)T is compact for all A from the disk of

radius R, and by Proposition 2, Q,(A)T is holomorphic.
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Finally, by Proposition 5, the operator-valued function 7+ Q,(A1)T is

invertible outside a disk of sufficiently large radius, and by Proposition 6, the
equality (5) is satisfied for a finite number of values 1 e C.
This completes the proof of the main theorem.

3. Examples

1. Let H, be an operator of the form
2

(Hu)(x) = +q, (X) +qo (Vu(x) + Ik(x y)u(y)dy,

R

+

where ¢;(x) and k(x,y),i=0,1, are some measurable complex-valued functions
defined on R, and R, xR, respectively. We consider the operator H, acting in

L,(R,) on its maximal domain.

2

The unperturbed operator A:—d—g is a self-adjoint operator, and its
dx

spectrum o(A) coincides with set of all values of the polynomial A() = &2,
—o0 < £ <400, namely with the positive semi-axis. Moreover, the operator 4 has
not eigenvalues.
The operator H, may be viewed as a perturbation of the operator 4 with the
integro-differential operator
(BWOD=Q&U§%+QAMMW)+fMLyWCW@A

R

+

Based on the theoretical results from the previous section, we have the
following result.

Corollary 1. If q,(x)e’* e L (R,),i=0,1, for somed >0, and if the integral

operator with the kernel e‘s(”y)k(x, v) is bounded in L,(R,), then the operator
H,| has a finite number of eigenvalues, each of them being of finite multiplicity.

2. Let H, be the operator defined in the space L,(R,) as follows

wwm=2+mwmnhuw“”%a
dy

where P(x) and k(x,y) are some measurable (generally speaking, with complex
values) functions defined on R,, and R, xR, respectively. We consider the
operator H, on its maximal domain. This example is similar to one considered in

[2].
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4
d'u . .. :
The unperturbed operator 4= — I8 self-adjoint, and its spectrum
dx
coincides with the positive semi-axis, with no eigenvalues.
The operator H, can be represented as the sum H, = 4+ B, where

(Bu)(x) = P(x)u(x) + [k(x, y)%dy.

The following result holds true.
Corollary 2. If P(x)e’* e L (R,), for some §>0, and if the integral

operator with kernel e‘s(”y)k(x, y) is bounded on L,(R,) for some &>0, then

the operator H, has at most a finite set of eigenvalues. All possible eigenvalues
have finite multiplicity.
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