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FINITENESS OF THE POINT SPECTRUM FOR SOME 
INTEGRO-DIFFERENTIAL OPERATORS 
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In this paper, we find sufficient conditions on the coefficients and the kernels 
of a general class of nonselfadjoint integro-differential operators of any order that 
guarantee the finiteness of the point spectrum of these operators. The results are 
obtained by the direct investigation of the analyticity of the resolvent function near 
the essential spectrum and its holomorphic extension through the continuous 
spectrum. The problem is motivated by applied problems from quantum mechanics, 
plasma oscillation theory, and neutrons diffusion. 
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1. Introduction 

In this work we study the finiteness of the point spectrum of some 
nonselfadjoint integro-differential operators of arbitrary order. By contrast with 
the case of selfadjoint operators, for which various fine methods have been 
elaborated thanks to fundamental theorem of spectral analysis, in the case of 
nonselfadjoint operators the problem of finiteness of the point spectrum is usually 
reduced to the uniqueness theorem of holomorphic operator-valued functions. 
Using this method, the finiteness of the point spectrum of various classes of 
nonselfadjoint operators have been investigated by many authors: differential 
operators of second and fourth order [1, 2]; nonselfadjoint Schrödinger operator  
[3-5]; perturbed differential operators with periodic coefficients see [6]; Friedrics 
model see [7-9]; the finite difference operators [10, 11]; perturbed integral 
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Wiener-Hopf operators [12-14]; Hill operator see [15]; equation of a 
nonhomogeneous damped string see [16]. Some general results have been 
presented in [17] and [6].   

In the present paper the problem of the finiteness of the point spectrum is 
solved by methods from perturbation theory and a direct investigation of 
analyticity of the resolvent function. Some results have been announced (without 
proofs) in [18]. In this paper, we present the detailed, more elegant and easier 
proofs. 

It should be mentioned that similar problems for selfadjoint operators have 
been studied in [19-21]. 

The paper is organized as follows: we start Section 2 by presenting the main 
result and we discuss the methodology of the proof. Subsection 2.1 is dedicated to 
abstract results on the finiteness of the point spectrum of nonselfadjoint operators. 
The proof of the main theorem is split in several auxiliary lemmas that are given 
in Subsection 2.2. We conclude the paper with some applications of the general 
theorem to concrete differential operators (Section 3). All obtained results are in 
concordance with existing literature. For simplicity of writing we consider the 
case of the half line, but all results remain true for the whole real line, with 
appropriate adjustments. 

2. Theoretical results 

In the space )(2 +RL  we consider the differential operator 
dx
diD =  with its 

domain of definition determined by the set of all functions )(2 +∈ RLu , absolutely 
continuous on every bounded interval of the positive half-line, with generalized 
derivative 'u  (in the sense of distributions) belonging to )(2 +RL , and zero 
boundary condition 0)0( =u . 

Let us consider the following integro-differential operator 

∑
=

=
n

DMDH
0,

*

βα

β
αβ

α ,                                               (1) 

where 
,)(),()()()())(( ∫

+

++=
R

dyyuyxkxuxqxuaxuM αβαβαβαβ   n...,,0, =βα ; 

)(⋅αβq  and ),( ⋅⋅αβk  are some measurable functions on +R  and ++ × RR  
respectively (generally speaking with complex values); 0)( =xqnn , 0),( =yxknn , 

αβa  are complex numbers, ,βααβ aa =  1;,...,0, == nnanβα . We assume that the 
operator H  acts on its maximal domain.  
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The differential operator 

                                       ∑
=

=
n

DDaA
0,

*

βα

βα
αβ ,                                               (2) 

of order n2  is a self-adjoint operator and its spectrum )(Aσ  is the set of all values 
of the polynomial (called the symbol of the operator A ) 

( ) ,
0,

∑
=

+=
n

aA
βα

βα
αβξξ    ,+∞<<∞− ξ   

namely ( ) [ )∞+= ,aAσ , where ( ){ }RAa ∈= ξξmin , and the point spectrum of A  is 
empty, where )(Apσ  is the set of all eigenvalues of the operator A . The operator 
H  can be viewed as a perturbation of the operator A  with the following 
subordinated (of order less than n2 ) integro-differential operator 

.))((
0,

*∑
=

+=
n

DKxqDB
βα

β
αβαβ

α  

Thus BAH += .  
Note that if the functions nq ,...,0,, =βααβ , vanish as +∞→x  and the 

integral operators ∫
+

=∈= +
R

nRxdyyuyxkxuK ,...,0,;,)(),())(( βααβαβ , are 

compact, then, since A is self-adjoint, due to Weyl’s type theorems (see Chapter 
XIII, [22]), the perturbed operator H has the same essential spectrum. However, 
the operator H can have infinitely many eigenvalues.  

The main goal of this paper is to establish sufficient conditions on the 
functions αβq  and the kernels nk ,...,0,, =βααβ , that guarantee that the point 
spectrum ( )Hpσ  of the perturbed operator H is a finite set. Next, we formulate 
the main result of this paper. 

Theorem If there exists a positive constant τ such that  
                         ( ) )( +∞∈ RLxqe x

αβ
τ ,   ,,...,0, n=βα                           (3) 

and the integral operators with kernels 
                                 ( ) ),,( yxke yx

αβ
τ +   ,,...,0, n=βα                              (4)   

are bounded in )(2 +RL , then the point spectrum of the operator H  is finite and 
all eigenvalues have finite multiplicity. 

The proof of the theorem is based on the so called method of the extension 
of the resolvent function of unperturbed operator through its continuous spectrum 
(see for instance [6] for a general framework). For sake of completeness, we 
present here a version of this method, which will be applied consequently to the 
operator H of form (1). 
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2.1. Abstract Scheme 

Let G  and 1G  be two Hilbert spaces, and denote by ),( 1GGC  the set of all 
linear, closed and densely defined operators acting between G and 1G . Similarly, 
we denote by ),( 1GGB  the set of all linear and bounded operators, and 
by ),( 1GGB∞  the set of compact operators. If G = 1G , then we write )(GC , )(GB  
and )(GB∞ . 

Throughout this subsection we assume that 
BAH += , 

where A and B are linear operators acting on G, such that the following conditions 
hold true:   

(i) The operator A  is self-adjoint on G , and =)(Apσ ∅; 
(ii) The operator B  can be represented as  

RTSB = , 
where  

)(),,(),,( 111 GBTGGCRGGCS ∞∈∈∈  
with  

)()()( * ADRDSD ⊃∩  
and )(SD  denoting the domain of definition of the operator S . 

(iii) There exists ( )Az ρ∈0  such that the operator RIzAS 1
0 )( −−  admits 

a bounded extension. Denote this extension by )(zQ . 
(iv) There exists ),(lim)(~

0
ελλ

ε
iQsQ ±−=

+→± for all R∈λ . 

Remark. Note that by conditions (ii) and (iii) the operator 
RzIAS 1)( −− admits a bounded extension for every )(Az ρ∈ . 

In what follows we denote by )(λ±Q  the operator-valued function defined 
on ±Π that is equal to )(λQ  if ±Π∈λ , and to )(~ λ±Q  if R∈λ , where 

{ }0Im >=Π+ zz  and { }0Im <=Π− zz .  
One can prove the following results. 
Proposition 1. (see [6]) If (i)-(iv) hold true, and if )(Hpσλ ∈ , then there 

exists 0,1 ≠∈ ϕϕ G , such that 
( )( ) 0=+ ± ϕλ TQI .                                              (5) 

By Proposition 1, it is clear that if equality (5) holds true for a finite set of  
values C∈λ , then the point spectrum of the perturbed operator H is finite. Thus, 
the original problem is reduced to choose appropriately the operators R,T,S such 
that (i)-(iv) are satisfied and (5) holds true for a finite number of values C∈λ . To 
show the latter, we will use the theorem about the finiteness of the zeros of an 
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analytic operator-valued function (see for instance Theorem XIII.13, [22], and 
Theorem 5.1, [23]). Of course, the function ±Q  is analytic on ±Π only, and the 
analyticity is lost near the spectrum of  the unperturbed operator A; however, with 
proper chosen R,T,S, and some additional assumptions on B, we will show that the 
function )(λ±Q  can be extended analytically on a neighborhood  of λ  (on a 
Riemann surface), for any )(Aσλ ∈ . Hence the name of the method: extension of 
the resolvent function of unperturbed operator through its continuous spectrum. 

2.2. Proof of the main theorem 

As mentioned in the previous subsection, the task is to choose the operators 
R,T,S such that (i)-(iv) are satisfied and )(λ±Q  admits analytic extensions, 
through the spectrum of unperturbed operator A , on half-plane −Π  and +Π  
respectively. With this in view, we consider the following construction. 

Let 1G  be the Hilbert space equal to the direct sum of )1(2 +n  copies of 

)(: 2 += RLG , namely ∑
=
⊕=

n

k
GG

0
1 . Let δ  be a positive real number, and define 

the operators GGRGGTGGS →→→ 1111 :,:,:  as follows 

),,...,( 0 uSuSSu n=  ),(
2

0
α

α

SDomu
n

∩
=

∈  

),,...,(, 20

2

0

2

0
n

n
n

vvvvTTv =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==
∑

αβ
βαβ  

,
2

0
∑
=

=
n

vRRv
α

αα  ,2,...,0),(
0

nRDomv
n

=∈
=

αβ
β

α ∩  

where 
nDeS x ,...,0, == − ββδ

β  

nnDeS nx 2,...,1, +== − βδ
β  

neDR x ,...,0,1* == −− αδα
α , 

nneDR xn 2,...,1,* +== − αδ
α , 

                                     neDqeT xx ,...,0,,1
1,1, == −
−− βαδ

βα
δ

βα ,                                  (6) 

neqDeT x
n

x
n ,...,2,,2

1*
, == −

−
+ αδ

α
δ

αα , 

neDqeT x
n

x
nn ,...,0,1

1,, == −
−+ αδ

α
δ

α , 
x

nn
x

nn eqDeT δδ
,1

1*
1,1 −

−
++ = , 
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and all other operators βα ,T  being zero. 
Under these assumptions the operator B  has the following decomposition 

,
2

0,
∑

=

=
n

STRB
βα

βαβα  

or 
.RTSB =  

Recall that the operator A defined by (2) is selfadjoint with empty point 
spectrum, and hence (i) is satisfied. Since, the operators αS  and βR , n2,...,0=α , 
are differential operators of order at most n, multiplied by a bounded function, we 
have that )()( RDSD ∩  is larger than the domain of the differential operator A of 
order 2n. Note that the assumptions (3) and (4) guarantee that T is a compact 
operator, for any τδ < . Hence condition (ii) from the abstract scheme is satisfied. 
Also, one can check directly that (iv) is satisfied (in fact for all )(Az ρ∈ ). 

Due to the here-above representation of B, the condition (iv) and the 
analyticity of the function ( )λ±Q  are equivalent to the study of the operator-
valued functions of the form 

,)()( 1
αββα λλ RIASQ −−=  ,,...,0, n=βα  

which will be split in several proposition below.  
Proposition 2. For every C∈0λ , there exists a neighborhood )( 0λU  of 0λ , 

such that the functions )(λ±Q  have an analytic extension from ±Π∩)( 0λU  to 
)( 0λU , with 0λ  being an algebraic ramification point. 
Proof.  If )(0 Aρλ ∈ , the result follows immediately since the resolvent 

function is analytic on the resolvent set. 
Let )(0 Aσλ ∈  and denote by ,2,...,2,1, nkk =ξ  all the solutions of equation 

( ) 00 =− λξA . Since ( ) ( )ξξ AA = , the number of solutions of equation ( ) 00 =− λξA  
from +Π  coincides with the number of solutions from −Π .  

Thus, we have the representation 

( ) ,)(
2

1
0 ∏

=

−=−
n

k
kA ξξλξ  

where +Π∈nξξ ,...,1 , and −+ Π∈nn 21,...,ξξ . 
Case 1: assume that all roots of the polynomial 0)( λξ −A  are simple. By 

[22], there exists )( 0λU  such that the functions ( ) ,2,...,2,1, nkkk == λξξ  are 
holomorphic for all ).( 0λλ U∈  For simplicity we will study the case when all 
roots belong to the real line R , that is  

,)(;,...,1, 0 ++ Π∈=Π∈ ∩λλξ Unkk  
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,)(;2,...,1, 0 +− Π∈+=Π∈ ∩λλξ Unnkk  
.2,...,2,1,)( 0 nkRk =∈λξ  

If +Π∈ ∩)( 0λλ U  then the operator 1)( −− IA λ  can be represented as 
follows: 

( ) ( ) ( ) ( ) ( ) 1
1

*1*1
1

1
2

1 −−−
+

−− −⋅⋅⋅−−⋅⋅⋅−=− IDIDIDIDIA nnn ξξξξλ .       (7) 

Since +Π=)(Dσ  and −Π=)( *Dσ , we conclude that every factor in (7) is a 
bounded operator. Thus, using (6) we conclude 

,)()((),)(( *1*1
1

* feDIDIDgfQ x
n

δα
βα ξξλ −−− −⋅⋅⋅−=                 (8) 

))()(, 1*1
1

*1
2

* geDIDID x
nn

δβξξ −+−
+

− −⋅⋅⋅−  
where )(,,, 2 +∈<≤ RLgfnn βα  and .0>δ  

Note that  

( ) ( )∏ ∑
= =

−− +−=−
n

k

n

k
kkk aa

1
0

1

11 ξξξξξ α , 

and 

( ) ( )∏ ∑
+= =

−
−

+− +−=−
n

nk

n

k
knkk bb

2

1
0

1

111 ξξξξξ β , 

where ,,...,1,0),(),( nkbbaa kkkk === λλ  are analytic functions on ),( 0λU  
being linear combinations of analytic functions. This implies that (8) can be 
written as 

+−−= −−−−

=
∑ ))(,)((),)(( 1*1*

1,
geIDfeIDbagfQ x

k
x

j

n

kj
kj

δδ
βα ξξλ  

                           +−+ −−−

=
∑ ))(,( 1*

1
0 geIDfeba x

k
x

n

k
k

δδ ξ                             (9) 

),)(( 1*

1
0 gefeIDba xx

j

n

j
j

δδξ −−−

=

−+∑ , 

where ( )+∈ RLgf 2,  and 0>δ . Thus the analyticity of ),)(( gfQ λαβ  with respect 
to λ  is equivalent to the analyticity of functions of the form 

=−− −−−− ))(,)(( 1*1* geIDfeID x
k

x
j

δδ ξξ                       (10) 

( ) ( )∫ ∫ ∫
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

∞ ∞
−−−−−

R x x

yxyiyxyi dxdyygeedyyfee kj )()( δξδξ , 

where )(, 2 +∈ RLgf  and nkj ,...,1,,0 =>δ .  
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We choose the neighborhood )( 0λU  such that δτξ <≤jIm , for every 

njU 2,...,2,1),( 0 =∈ λλ . We claim that the following inequality holds true 

( ) ( ) ( )∫∫ ∫
++

≤
∞

−−

RR x

yxyi dyyfcdxdyyfee j 2
2

δξ                    (11) 

for every ( ) njRLf 2,...,0,2 =∈ +  and ( )0λλ U∈ . To show this, we use a Hardy type 
inequality (see, for instance [24]) 

( )

( ) ∫∫ ∫
++

≤
∞

−

RR x

xy dyydxdyye ,)(
Re

1)( 2
2

2

ϕ
μ

ϕμ                    (12) 

where C∈μ  and 0Re >μ .  
Since δτξ <≤jIm , we have that ,0)Re( >− jiξδ  and using (12) the left 

hand side of (11) can be estimated as follows 

( )( ) ( ) ∫∫∫ ∫
+++

≤
+

≤
∞

−−

RRjR x

xyi dyyfdyyfdxdyyfe j 2
2

2

2

2

)(1
)Im(

1)(
δξδ

ξδ . 

Inequality (11) is proved.  
Thus, the function given by (10) is holomorphic on ),( 0λU  and hence the 

function ),))((( gfQ λβα  is analytic on )( 0λU , for all n≤α  and n≤β . Moreover, 
by (10) and (11), we also have that 

gfcgfQ ⋅≤),))((( λβα , nn ≤≤ βα , . 

This implies that the bilinear form ),))((( gfQ λβα  generates an operator-

valued function ))(~( λβαQ  with values in ( )GB , and since the strong analyticity of 
operator-valued functions is equivalent to weak analyticity, we conclude that the 
operator-valued function ))(~( λβαQ  is analytic on )( 0λU  and 

+Π∈= ∩)(),)(())(~( 0λλλλ βαβα UQQ . Due to the uniqueness of the analytic 
extension, we get that )(λβαQ  is analytic on )( 0λU , and hence )(λ+Q  is analytic 
on )( 0λU . Thus Case 1 is finished. 

Case 2: the polynomial function 0)( λξ −A  has real multiple roots. For 
simplicity we assume that 1ξ  has multiplicity m , namely 

)()()()( 2110 nm
mA ξξξξξξλξ −⋅⋅⋅−⋅⋅⋅−=− + . 

Similar to Case 1, we have the factorization 
⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−−=− )())(())(()( )(

2
)1(

2
)(

1
)2(

1
)1(

10
21 ppA ξξξξξξξξξξλξ  

),())(()( )()1(
ps

p
kk

k ξξξξξξξξ −⋅⋅⋅−−⋅⋅⋅−⋅⋅⋅  
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where mpp k =++ ...1 , and ( )
jj pkj ...,,2,1;,...,1, == γξ γ , are the branches of 

multivalued function jξ . The following decomposition holds true 

( ) ( ) ,)(
1

00 ∑
∞

=

−+=
r

p
r

j
rj

jλλβλξ γ  kj ,...,1= . 

Without loss of generality, for simplicity of writing, we suppose that 
2,4 == km  and 221 == pp . Thus, 

),()()()()( 23
2)2(

1
2)1(

10 nA ξξξξξξξξλξ −⋅⋅⋅−−−=−  
where )2(

1
)1(

1 , ξξ  are the branches of the function ( )λξ1 . Furthermore, we suppose 
that for +Π∈ ∩)( 0λλ U , we have that ,,...,,, 3

)2(
1

)1(
1 +−+ Π∈Π∈Π∈ nξξξξ  

,,..., 23 −+ Π∈nn ξξ  which implies that 
( ) 2)1(

1
*1*2)2(

1
1

2
1 )()()()( −−−−− −⋅⋅⋅−−⋅⋅⋅−=− IDIDIDIDIA nn ξξξξλ  

and consequently 
( )( ) ,)()((, *2)1(

1
*1* feDIDIDgfQ x

n
δα

βα ξξλ −−− −⋅⋅⋅−=  

))()(, 1*2)2(
1

*1
2

* geDIDID x
n

δβξξ −+−− −⋅⋅⋅− ,                   (13) 
where nRLgf ≤∈ + α),(, 2  and n≤+1β . 

Since 

∑∏
==

−−

−
+

−
+

−
+=−−

n

k k

k
n

k
k

aaaa
3

2)1(
1

2
)1(

1

1
0

2

12)1(
1 )(

)()(
ξξξξξξ

ξξξξξ α  

and 

∑∏
+=

−+

+=
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−
+

−
+

−
+=−−

n

nk k

kn
n

nk
k

bbbb
2

2

4
2)2(

1

2
)2(

1

1
0

2

1

12)2(
1 )(

)()(
ξξξξξξ

ξξξξξ β , 

by (13) we get 

∑
=

−−
+

−− −−=
n

kj

xs
nk

xr
j geIDfeIDbagfQ

1,

** ),)(,)((),))((( δδ
βαβα ξξλ  

where 1, =sr  or 2 , )1(
121 ξξξ == , )2(

121 ξξξ == ++ nn . 
Now, let us consider the function 

))(,)(( 2*2* geIDfeID x
k

x
j

δδ ξξ −−−− −− , 
where ( )nkjkkjj ,...,1,)();( === λξξλξξ  and 

,+Π∈jξ  +Π∈= ∩)(;,...,1 0λλ Unj  
,−Π∈kξ  −Π∈= ∩)(;,...,1 0λλ Unk ,                                (14) 

,Im δτξ <≤j )(;,...,2,1, 0λλ Unkj ∈= . 
From the above formulae, we deduce 
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=−− −−−− ))(,)(( 2*2* geIDfeID x
k

x
j

δδ ξξ  

( ) ( ) ( ) ( )∫ ∫ ∫
+
⎜
⎜

⎝

⎛
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∞ ∞
−−−−−

R x y

ytytiyxyi dydttfeeee jj δξδξ  

( ) ( ) ( ) ( ) .dxdydttgeeee
x y

ytytiyxyi kk

⎟
⎟

⎠

⎞
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅ ∫ ∫
∞ ∞

−−−−− δξδξ  

Similarly to Case 1, by consequently applying the inequality (11), we get the 
estimates 

nURLgfgfcgfQ ,...,1,);();(,),)(( 02 =∈∈⋅⋅≤ + βαλλλβα . 

This implies that the function ),)(( gfQ λβα  can be defined on )( 0λU  that 
belongs to the first Riemann surface. Moving into the second Riemann surface, 
the functions 2,1,)(

1 =kkξ , also satisfy (14), so the function ),)(( gfQ λβα  is 
defined on the neighborhood )( 0λU  of a point 0λ  on the Riemann surface and it 
is analytic on this neighborhood, 0λ  being an algebraic point. 

Thus 

,)(),)((
1

00 ∑
∞

=

−+=
j

p
j

jgfQ λλβλλβα   

where .,,...;2,1,),( nnjgfjj ≤≤== βαββ  Therefore 

∑
∞

=

−+=
1

00 )()(
j

p
j

jBQ λλλλβα , 

where )( 0λλ U∈ , and nnjGBB j ≤≤=∈ βα ;,...;2,1)( . Proposition is proved. 

Proposition 3. Let )()(:~
22 ++ → RLRLS  be the multiplication operator of 

the form ),())(~( xexS xϕϕ δ−= for some 0>δ . 

Then 0~)()(~ 1*1 →−+ −− SIDIDS λλ , as ,∞→λ and +Π∈λ .  

Proof.  For every +Π∈λ  we have 
12*1*1 )()()( −−− −=−+ IDDIDID λλλ . 

It is easy to show that 

⎥
⎦

⎤
⎢
⎣

⎡
+−=− ∫∫
∞

−

x

yi
x

xi dyyxedyyyexIDD )()sin()()sin(1)()(
0

12* ϕξϕξ
ξ

ϕξ ξξ ,     (15) 

for all )(2 +∈ RLϕ , RC \∈ξ . Next we will prove that 
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∫ ∫∫
+ +

≤−

R R

x
x dyycdxdyye 2

1

2

0

)()( ϕϕε                              (16) 

and 

∫ ∫∫
+ +

≤
∞

−

R Rx

y dyycdxdyye 2
2

2

)()( ϕϕε ,                           (17) 

for every )(2 +∈ RLϕ , +Π∈ξ , 0>ε .  
For this, we will use the following Hardy-type inequality (see [24]) 

,)(4)(1 2
2

0
∫ ∫∫
+ +

≤
R R

x

dyydxdyy
x

ϕϕ   ( )+∈ RL2ϕ . 

Using this, we obtain  

∫ ∫ ∫∫
+ +

≤
⋅

=−

R R

x

x

x
x dxdyy

xe
xdxdyye

2

0

2

0

)()( ϕϕ ε
ε  

dyycdxdyy
x

c
RR

x

∫∫ ∫
++

≤≤ 2
2

0

)(4)(1 ϕϕ , 

and based on inequality ∫ ∫∫
∞ ∞∞

≤
0 0

2
2

)(4)( dxxxfdxdttf
x

, we get  

,)(4)(4)(
0

2

0

2
2

0

dyycdyyxedxdyye y

x

y ∫∫∫ ∫
∞∞

−
∞ ∞

− ≤≤ ϕϕϕ εε  )(2 +∈ RLϕ . 

Therefore the relations (16) and (17) hold true. 
Let τξ +Π∈ , where { }0,Im >−>=Π+ τττ zz . Then, by (16) and (17) we 

deduce 

≤⋅⋅⋅⋅∫ ∫
+

−− dxdyyeeye
R

x
yxix

2

0

)()sin( ϕξ δξδ  

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅⋅⋅≤ ∫ ∫

+

−− dxdyyeyee
R

x
yxix

2

0

2
)()sin( ϕξ δξδ                     

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅⋅⋅≤ ∫ ∫

+

−− dxdyyeeee
R

x
yyxx

2

0

2
)(ϕδττδ  



188                         Igor Cialenco, Marius M. Stanescu, Dumitru Bolcu, Ion Ciuca 

∫ ∫
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅≤ −−

R

x
yx dxdyyee

2

0

)(ϕεε ,)()( 2
1

2

1 dyycdyyec
RR

y ∫∫
++

≤⋅≤ − ϕϕε  

where τξ +Π∈  and )(2 +∈ RLϕ , with δτ <<0  and τδε −= . 
Similarly 

≤⋅⋅⋅⋅∫ ∫
+

∞
−− dxdyyeexe

R x

yyix

2

)()sin( ϕξ δξδ  

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅⋅⋅≤ ∫ ∫

+

∞
−− dxdyyeexe

R x

yyix

2
2

)()sin( ϕξ δξδ                   

∫ ∫
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅≤
∞

−

R x

x dxdyye
2

)(ϕε dyycdxdyye
RR x

y ∫∫ ∫
++

≤⋅≤
∞

− 2
2

2

)()( ϕϕε . 

From (15), and combining the above formulae, finally, we have the 
estimates 

+
⎢
⎢
⎣

⎡
⎜
⎜
⎝

⎛
⋅⋅⋅⋅=− ∫ ∫

+

−−−

R

x
yxix dyyeeyeSIDDS

0

12* )()sin(1~)(~ ϕξ
ξ

ϕξ δξδ  

≤
⎥
⎥

⎦

⎤

⎟
⎟

⎠

⎞
⋅⋅⋅⋅+ ∫

∞
−−

2
1

2

)()sin( dxdyyeexe
x

yyix ϕξ δξδ  

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅⋅⋅≤ ∫ ∫

+

−−
2
1

2

0

)()sin(1 dxdyyeyee
R

x
yxix ϕξ

ξ
δξδ  

ϕ
ξ

ϕ
ξ

ϕξ
ξ

ξδ cccdxdyyexe
R

x
yix =+≤

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅⋅+ ∫ ∫

+

− )(1)()sin(1
21

2
1

2

0

. 

This implies that 0~)(~ 12* →≤− −

ξ
ξ cSIDDS , for all +Π∈ξ  and ∞→ξ , 

which ends the proof. 
Proposition 4.  If ,±Π∈λ  then 0)( →± λQ , when .∞→λ  

Proof. The operators SID ~)( 1* −− λ , 1)(~ −+ IDS λ  are bounded for +Π∈λ , 
and since *1**1 )())(~( SIDIDS −− −=− λλ , by Proposition 3, we conclude that   

0~)(~)(~ 21*122 →−=− −− SIDSIDS λλ , 
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for +Π∈∞→ λλ , . This implies that 0~)( 1* →− − SID λ , as +Π∈∞→ λλ , . 

Using the representation ,,)()(
2

1
+

=

Π∈−=− ∏ λξξλξ
n

k
kA and the fact that 

λξξ −=⋅⋅⋅ 0021 an , we get that if ∞→λ , then there exists +Π∈kξ , such that 

∞→kξ  (more precisely one root in +Π  and one root in −Π ).  

Let ∞→nξ  and ∞→∞→ λξ ,2n , with +Π∈nξ  and −Π∈n2ξ .  

Since the function SID ~)( 1* −− λ  is continuous on +Π , we have 

,~)( 1*
+

− ≤− MSID λ  

for every λ  from the disk of radius 0>R  intersected with +Π , and also 

,)(~ 1*
−

− ≤− MIDS λ                                           

for every λ  from the disk of radius 0>R  intersected with −Π . 
Thus, we have the following estimates 

≤−⋅⋅⋅−⋅−⋅⋅⋅−= −−−−
+ RIDIDIDDSQ nnn

1
1

*1*1
2

1
1 )()()()()( ξξξξλ  

⋅−⋅⋅⋅−≤ −−
+

+ 1
2

1
1

1 )()(~ IDIDDS nn ξξβ  

≤−⋅⋅⋅−⋅ −− SDIDID n
~)()( *1*1

1
* αξξ  

∑∑
=

−

=

−
+ ≤−⋅−≤

n

k
kk

n

k
nkk SIDaIDSb

0

1*

0

1 ~)()(~ ξξ  

,0~)()(~ 1*1
2 →−⋅−≤ −− SIDIDSc nn ξξ  

for ∞→λ  and +Π∈λ . Similarly, one can show that the above estimates hold 

true also for −Π∈λ . Proposition 4 is proved. 
Proposition 5. 0)( →± ϕλ TQ , when ∞→λ , and .±Π∈λ  
Proof. Indeed, by the above proposition  

,0)()()(
0,

1 →⋅⋅−≤⋅⋅≤ ∑
=

−
±±

n

TRIASTQTQ
βα

αβ ϕλϕλϕλ  

when ,∞→λ  for .±Π∈λ  
Proposition 6. The disk of radius 0>R , centered at zero, contains a finite 

number of zeros of the function .)( TQI λ±+  
Proof. It follows directly from the theorem about zeros of a holomorphic 

operator-valued function: operator TQ )(λ±  is compact for all λ  from the disk of 
radius R , and by Proposition 2,  TQ )(λ±  is holomorphic. 
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Finally, by Proposition 5, the operator-valued function TQI )(λ±+  is 
invertible outside a disk of sufficiently large radius, and by Proposition 6, the 
equality (5) is satisfied for a finite number of values C∈λ . 

This completes the proof of the main theorem. 

3. Examples 

1. Let 1H  be an operator of the form 

,)(),()()()())(( 012

2

1 ∫
+

+++−=
R

dyyuyxkxuxq
dx
duxq

dx
udxuH              

where )(xqi  and 1,0),,( =iyxk , are some measurable complex-valued functions 
defined on +R  and ++ × RR  respectively. We consider the operator 1H  acting in 

)(2 +RL  on its maximal domain.  

The unperturbed operator 
2

2

dx
udA −=  is a self-adjoint operator, and its 

spectrum )(Aσ  coincides with set of all values of the polynomial ,)( 2ξξ =A  
+∞<<∞− ξ , namely with the positive semi-axis. Moreover, the operator A  has 

not eigenvalues. 
The operator 1H  may be viewed as a perturbation of the operator A  with the 

integro-differential operator 

.)(),()()()())(( 01 ∫
+

++=
R

dyyuyxkxuxq
dx
duxqxBu  

Based on the theoretical results from the previous section, we have the 
following result. 

Corollary 1. If 1,0),()( =∈ +∞ iRLexq x
i

δ , for some 0>δ , and if the integral 
operator with the kernel ( ) ),( yxke yx+δ  is bounded in ),(2 +RL  then the operator 

1H  has a finite number of eigenvalues, each of them being of finite multiplicity. 
 
2. Let 2H  be the operator defined in the space )(2 +RL  as follows 

,)(),()()())(( 4

4

4

4

2 ∫
+

++=
R

dy
dy

yudyxkxuxP
dx

udxuH                    

where )(xP  and ),( yxk  are some measurable (generally speaking, with complex 
values) functions defined on +R , and ++ × RR  respectively. We consider the 
operator 2H  on its maximal domain. This example is similar to one considered in 
[2].  
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The unperturbed operator 4

4

dx
udA =  is self-adjoint, and its spectrum 

coincides with the positive semi-axis, with no eigenvalues. 
The operator 2H  can be represented as the sum ,2 BAH +=  where 

.)(),()()())(( 4

4

∫
+

+=
R

dy
dy

yudyxkxuxPxBu  

The following result holds true. 
Corollary 2. If ),()( +∞∈ RLexP xδ  for some 0>δ , and if the integral 

operator with kernel ( ) ),( yxke yx+δ  is bounded on )(2 +RL  for some 0>δ , then 
the operator 2H  has at most a finite set of eigenvalues. All possible eigenvalues 
have finite multiplicity. 
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