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Abstract: The aim of this paper is to study the optimal investment problem by using coher-
ent acceptability indices (CAIs) as a tool to measure the portfolio performance.
We call this problem the acceptability maximization. First, we study the one-
period (static) case, and propose a numerical algorithm that approximates the
original problem by a sequence of risk minimization problems. The results are ap-
plied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted
return on capital and the tail-value-at-risk based CAI. In the second part of the
paper we investigate the acceptability maximization in a discrete time dynamic
setup. Using robust representations of CAIs in terms of a family of dynamic
coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the
corresponding family of DCRMs is recursive (i.e. strongly time consistent) and
assuming some recursive structure of the market model, then the acceptability
maximization problem reduces to just a one period problem and the maximal
acceptability is constant across all states and times. On the other hand, if the
family of DCRMs is not recursive, which is often the case, then the accept-
ability maximization problem ordinarily is a time-inconsistent stochastic control
problem, similar to the classical mean-variance criteria. To overcome this form
of time-inconsistency, we adapt to our setup the set-valued Bellman’s princi-
ple recently proposed in Kováčová and Rudloff (2019) applied to two particular
dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic
gain-to-loss ratio. The obtained theoretical results are illustrated via numeri-
cal examples that include, in particular, the computation of the intermediate
mean-risk efficient frontiers.
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1 Introduction

The renowned Sharpe ratio, introduced in Sharpe (1964), besides being one of the best known tools
in measuring the performance of financial portfolios, also played an important role in developing the
portfolio optimization theory. It is well-known that one of the major shortcomings of the Sharpe
ratio, as a performance measure, is its lack of monotonicity, i.e. a portfolio with strictly larger future
gains may have a smaller Sharpe ratio. Over the years, in particular to overcome this drawback,
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a number of performance measures were introduced such as the Gini ratio (Shalit and Yitzhaki,
1984), the MAD ratio (Konno and Yamazaki, 1991), the minimax ratio (Young, 1998), the gain-
to-loss ratio (Bernardo and Ledoit, 2000), the Sortino-Satchell ratio (Sortino and Satchell, 2001),
among many others; see Cheridito and Kromer (2013) or Ortobelli et al. (2005) for a comprehensive
survey of ratio type performance measures. This naturally raises the question which properties –
and, consequently, which performance measures – are desirable. Cherny and Madan (2009) took an
axiomatic approach to performance measurement, in line with the classical axiomatic approach to
risk measurement by Artzner et al. (1999). In Cherny and Madan (2009) the authors introduce the
concept of a coherent acceptability index (CAI) as a measure of performance that satisfies a set of
desirable properties – monotonicity, quasi-concavity, scale invariance and the Fatou property. It was
proved that an unbounded CAI α admits a robust representation in terms of a family of coherent risk
measures (CRMs) (ρx)x∈(0,∞) given by

α(D) = sup{x ∈ (0,∞) : ρx(D) ≤ 0}. (1.1)

Equivalently, the representation (1.1) can be stated in terms of a family of acceptance cones, or in
terms of a family of sets of probability measures. The concept of a coherent acceptability index in
a dynamic setup was first studied in Bielecki et al. (2014), and consequently in Bielecki et al. (2016,
2015); Rosazza Gianin and Sgarra (2013); Biagini and Bion-Nadal (2014).

The main goal of this paper is to study the optimization problem of the form

max
D∈D

α(D), (1.2)

where α is a static or dynamic CAI and D is a set of feasible positions. We refer to this problem
as acceptability maximization. The obtained results contribute to the rich literature on optimal port-
folio selection or optimization of performance, such as classical mean-variance portfolio analysis or
Sharpe ratio maximization (Agarwal and Naik, 2004; Goetzmann et al., 2002). Clearly, acceptability
maximization is a practically important and natural problem to study. Closest to the spirit of our
study is Eberlein and Madan (2014), where the authors solve an acceptability maximization problem
for some specific choices of static CAIs (AIMIN, AIMAX, AIMINMAX and AIMAXMIN) which are
represented through families of distortion functions (or Choquet integrals). To the best of our knowl-
edge, this is the only work that considers optimal control problems with CAI criteria. The proposed
solution in Eberlein and Madan (2014) fundamentally relies on the representation of CAIs in terms
of distortion functions.

In contrast to Eberlein and Madan (2014), in this work we mostly exploit the representation (1.1),
and we consider both the static and the dynamic case. We start by considering the one-period
(static) setup, presented in Section 2. First, we recall some key definitions and relevant results on
CAIs (Section 2.1), and then we propose a numerical algorithm for solving (1.2) that approximates
the maximal acceptability by a sequence of risk minimization problems (Section 2.2). In Section 2.3
we apply this algorithm to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted
return on capital and the tail-value-at-risk based CAI.

Undoubtedly, for many practical purposes, acceptability or performance needs to be measured
in a multi-period setting where the investor dynamically rebalances her portfolio. We study this in
Section 3. As was noted in Bielecki et al. (2015) and later systemically addressed in Bielecki et al.
(2017, 2018), the time consistency property stays at the heart of the matter when studying dynamic
coherent acceptability indices (DCAIs) and their robust representations of the form (1.1) in terms of
families of dynamic coherent risk measures (DCRMs) (ρxt )

x>0
t=0,...,T . We prove that if for every x > 0 the
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DCRM (ρxt )t=0,...,T is recursive (or strongly time consistent as a DCRM), and assuming some recursive
structure of the underlying market model, then the maximal acceptability is constant across all times
and states. Thus, in this case, it is enough to solve the corresponding optimization problem only once,
at one state and one period of time; see Section 3.2.1 for details. However, in many relevant examples
of DCAIs, (ρxt )t=0,...,T are not strongly time consistent, and, similar to the classical control problems
with mean-variance criteria, problem (1.2) is time-inconsistent in the sense that the (naive) dynamic
programming principles does not hold true. To overcome this challenge, we adapt to our setup the
set-valued Bellman’s principle recently proposed in Kováčová and Rudloff (2019). This approach
also provides the intermediate mean-risk efficient frontiers, in the spirit of the mean-variance efficient
frontier. Within this approach, we consider two specific performance measures - the dynamic risk-
adjusted return on capital (Section 3.2.2) and the dynamic gain-to-loss ratio (Section 3.2.3). The
majority of the proofs are deferred to the appendices.

As mentioned above, this is the first attempt to study stochastic control problems with dynamic
CAI criteria. While the static case is now relatively well understood, the acceptability maximization
problem in a dynamic setup appears to be an interesting research area, with many open problems,
primarily due to the time-inconsistent nature of such problems, as argued in this manuscript. In
particular, it would be far-reaching to develop a Bellman’s principle of optimality for a class of DCAIs,
beyond particular examples. In addition, from a practical point of view, it would be important to
study the acceptability maximization problem for a larger classes of indices, for example not necessarily
coherent ones. The authors plan to treat these problems in future works.

2 Acceptability Maximization in the Static Setting

In this section, we consider the static setting, before moving to the dynamic one in Section 3. First,
we recall the definition of a coherent acceptability index and its connection to coherent risk mea-
sures. This serves as our framework for studying the maximization of performance, i.e., acceptability
maximization. In Subsection 2.2 we provide a way to solve the acceptability maximization problem
through a sequence of risk minimizations. At the end of the section, we provide examples of this
approach. Proofs can be found in Appendix A.

2.1 Static Coherent Acceptability Indices and Risk Measures

We start by briefly reviewing the notion of a (static) coherent acceptability index (CAI) and its
connection to (static) coherent risk measures (CRMs), following Cherny and Madan (2009). The
concept of acceptability was developed as a methodology to define axiomatically minimal desirable
properties of a functional that is meant to measure or assess the performance of a financial position
or trading portfolio. As usual, we consider an underlying probability space (Ω,F ,P), and we denote
by L∞ := L∞(Ω,F ,P) the space of essentially bounded random variables on this space. In what
follows, all equalities and inequalities between random variables will be understood in a P almost
surely sense. In this section, an element D ∈ L∞ can be viewed as a discounted terminal cash flow of
a zero-cost self-financed portfolio, or the terminal profit and loss (P&L) of a financial position. The
mapping D 7→ α(D) ∈ [0,∞] assigns to the portfolio D the degree of its acceptability, with higher
values corresponding to more desirable positions.

Definition 2.1. A coherent acceptability index (CAI) is a function α : L∞ → [0,∞] satisfying
for all positions D,D′ ∈ L∞ and any level x ∈ (0,∞)
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(A1) Monotonicity: if D ≤ D′, then α(D) ≤ α(D′),

(A2) Scale invariance: α(λD) = α(D) for all λ > 0,

(A3) Quasi-concavity: if α(D) ≥ x and α(D′) ≥ x, then α(λD + (1− λ)D′) ≥ x for all λ ∈ [0, 1],

(A4) Fatou property: if |Dn| ≤ 1, α(Dn) ≥ x for all n ≥ 1, and Dn
P→ D, then α(D) ≥ x.

In Cherny and Madan (2009) four further properties – law invariance, consistency with the second
order stochastic dominance, arbitrage consistency and expectation consistency – are discussed. These
are not required for the coherent acceptability index, but, as the authors argue, they are desirable.
Additionaly, coherent acceptability indices are closely related to coherent risk measures, a concept
introduced in Artzner et al. (1999).

Definition 2.2. A coherent risk measure (CRM) is a function ρ : L∞ → R satisfying for any
D,D′ ∈ L∞

(R1) Monotonicity: if D ≤ D′, then ρ(D) ≥ ρ(D′),

(R2) Positive homogeneity: ρ(λD) = λρ(D) for all λ > 0,

(R3) Translation invariance: ρ(D + k) = ρ(D)− k for all k ∈ R,

(R4) Subadditivity: ρ(D +D′) ≤ ρ(D) + ρ(D′),

(R5) Fatou property: if |Dn| ≤ 1, for all n ≥ 1, and Dn
P→ D, then ρ(D) ≤ lim infn→∞ ρ(Dn).

A family of coherent risk measures (ρx)x∈(0,∞) is called increasing if x ≥ y > 0 implies ρx(D) ≥
ρy(D) for any D ∈ L∞.

As was proved in Cherny and Madan (2009), there is a strong connection between CAIs and
increasing families of CRMs. Namely, the following robust representation type result holds true: A
map α : L∞ → [0,∞], unbounded from above, is a coherent acceptability index if and only if there
exists an increasing family of coherent risk measures (ρx)x∈(0,∞) such that

α(D) = sup{x ∈ (0,∞) : ρx(D) ≤ 0} (2.1)

with the convention sup ∅ = 0. Equivalently, the representation (2.1) can be formulated in terms of
a family of acceptance sets, or an increasing family of sets of probability measures associated with
dual representations of CRMs (see also Section 2.3). For various degrees of generalization of (2.1) see,
for instance, Madan and Schoutens (2016); Bielecki et al. (2016, 2015); Rosazza Gianin and Sgarra
(2013); Biagini and Bion-Nadal (2014).

2.2 Algorithm for Acceptability Maximization: the Static Case

We fix a set D ⊂ L∞ of available or feasible positions. For example, D could be the P&Ls of portfolios
that satisfy certain trading or other constraints. Our aim is to identify among the available positions
the ones with the highest degree of acceptability. Namely, we wish to solve the following optimization
problem,

max
D∈D

α(D). (A)
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We denote the maximal acceptability by

α∗ := sup
D∈D

α(D) (2.2)

and the set of maximally acceptable (optimal) portfolios by D∗ := {D ∈ D : α(D) = α∗}. Generally
speaking, a maximally acceptable portfolio may not exist, i.e. the set D∗ is empty if α∗ is not attained
as a maximum. For ε > 0 we define the set of ε-optimal positions

Dε := {D ∈ D : α(D) ≥ α∗ − ε}.

The following Lemma summarizes the properties of these sets.

Lemma 2.3.

1. If the feasible set D is convex, then the sets D∗ and Dε are convex, for any ε > 0.

2. The sets D∗ and Dε are nested: D∗ ⊆ Dε1 ⊆ Dε2, for any ε2 > ε1 > 0.

3. D∗ =
⋂
ε>0

Dε.

Proof. The proof is deferred to Appendix A.

To solve the maximization problem (A), we will use the robust representation (2.1), with (ρx)x∈(0,∞)

denoting the corresponding increasing family of CRMs. For a given level x > 0 we consider the problem
of minimizing risk over the feasible set D,

min
D∈D

ρx(D). (Px)

We denote the optimal value of the risk minimization problem (Px) by p(x) := inf
D∈D

ρx(D), and its

optimal solution by Dx ∈ arg min
D∈D

ρx(D), assuming that the infimum p(x) is attained. In what follows

we make the following standing assumption:

Assumption 2.4. The acceptability index α is unbounded from above, and for every x ∈ (0,∞) the
risk minimization problem (Px) attains its minimum.

The unboundness from above of α is usually satisfied in all practically important cases, while
attainability of the min in (Px) can be guaranteed, for example, by assuming that D is compact.
With this at hand, and in view of (2.1), we note that:

• if the risk minimization problem (Px) has a positive optimal value, then no portfolio in D has
a degree of acceptability above x;

• if the risk minimization problem (Px) has a non-positive optimal value, then some portfolio in
D has a degree of acceptability of at least x.

The next result summarizes the above observations, which are used in developing Algorithm 1
that solves the acceptability maximization problem (A).

Lemma 2.5. Let Assumption 2.4 hold and let x ∈ (0,∞).

1. If p(x) > 0, then x ≥ α∗.
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2. If p(x) ≤ 0, then x ≤ α∗.

3. If x < α∗, then p(y) ≤ 0 for all y ≤ x.

4. If x > α∗, then p(y) > 0 for all y ≥ x.

Proof. The proof is given in Appendix A.

The main idea of the proposed numerical solution of (A) is to approximate the maximal accept-
ability by a sequence of risk minimization problems (Px) for some appropriately chosen levels - a
variation of the bisection method that will find a pair (x,D) maximizing the level x while satisfying
ρx(D) ≤ 0. First, find two levels with opposite signs of the minimal risk p(x), namely find a lower
and upper bound on the maximal acceptability α∗. Then, iteratively decrease the distance between
the two bounds. This replaces one acceptability maximization problem (A) with a sequence of risk
minimization problems (Px). This becomes particularly useful if the acceptability maximization is
complicated and the risk minimization is easier to solve. Note that if the feasible set D is convex,
then the risk minimization becomes a convex optimization problem.

Input: initial level x0 ∈ (0,∞), max. iterations M̄ ∈ N of Step 1, tolerance ε > 0.
Step 1: Find an initial interval xL ≤ α∗ ≤ xU
Set n := 0; xL := 0; xU :=∞; D̄ := null ;
while (xL == 0 or xU ==∞) and (n < M̄) do

if The optimal value of (Pxn) is positive then
xU := xn, select xn+1 := xU/2 ;

else
xL := xn, select xn+1 := 2 · xL, assign D̄ := Dxn ;

end
n := n+ 1 ;

end
Step 2: Decrease the length of the interval [xL, xU ] (via bisection)
while (xU − xL ≥ ε) and (n < M̄) do

Select x := (xU + xL)/2 ;
if The optimal value of (Px) is positive then

xU := x ;
else

xL := x, assign D̄ := Dx ;
end

end
Output: Interval [xL, xU ] as an approximation to α∗, portfolio D̄ as approximately optimal one

Algorithm 1: Approximating maximal acceptability α∗ via risk minimization

The next result summarizes the key features of Algorithm 1.

Lemma 2.6. Suppose that Assumption 2.4 holds, and let x0 ∈ (0,∞) be the initial (seed) value,
M̄ ∈ N be the maximal number of iterations (of Step 1) and ε > 0 be the tolerance level. Denote

α := x0 · 2−M̄+1, α := x0 · 2M̄−1.

1. If α∗ ∈ [0, α), then Algorithm 1 returns α as an upper bound for α∗, no acceptable portfolio is
found.
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2. If α∗ ∈ (α,∞], then Algorithm 1 returns α as a lower bound for α∗ and a portfolio with (at
least) this degree of acceptability.

3. If α∗ ∈ (α, α), then

(a) Algorithm 1 returns bounds xL and xU such that xL ≤ α∗ ≤ xU and xU − xL < ε,

(b) Algorithm 1 returns an ε-solution, i.e. D̄ ∈ Dε,
(c) Step 2 of Algorithm 1 terminates after at most

⌈
log2

x0

ε
+ M̄ − 2

⌉
iterations.

Proof. The proof is postponed to Appendix A.

Remark 2.7. Several comments are in order:

(i) In Step 1, instead of the halving (xn+1 := xU/2), respectively the doubling (xn+1 := 2 · xL), one
could select any xn+1 < xU , respectively xn+1 > xL. Similarly, in Step 2 one could replace the
bisection with any choice of x ∈ (xL, xU). The results of Lemma 2.6 would differ in the interval
(α, α) on which α∗ is identified and the number of iterations.

(ii) The case α∗ = x is not included in Lemma 2.5. If α∗ = x, then we can only say that p(y) ≤ 0 for
all y < x. The sign of p(α∗) is not clear, since we do not know if the suprema in (2.2) and (2.1)
are attained as maxima. Consequently, in the cases α∗ ∈ {α, α} we cannot derive the behaviour
of Algorithm 1.

(iii) Assumption 2.4 allows us to merge the case p(x) = 0 with the case p(x) < 0. Without it,
we would need to distinguish between attained and not attained infimum for p(x) = 0. If the
infimum p(x) = 0 is attained for some portfolio D̃ ∈ D, then ρx(D̃) = 0 and x is a lower bound
on α∗. If the infimum is not attained, then for all positions D ∈ D we have ρx(D) > 0, so x is
an upper bound on α∗. This distinction would need to be built into Algorithm 1. Alternatively,
if p(x) = 0, this level x could be discarded and the iteration repeated with some other choice of
level in the appropriate interval. However, it is not clear how many such repetitions might be
needed.

(iv) Instead of specifying the maximal number of iterations M̄ and the initial value x0 we could
directly specify the interval [α, α] in which the optimal α∗ would be searched. Then, Step 1
of the algorithm would need to check the signs of p(α) and p(α) and terminate immediately if
α∗ lies in the interval [0, α) or (α,∞]. Step 2 would require

⌈
log2

α−α
ε

⌉
iterations to terminate,

assuming bisection steps. This might be of interest especially if the risk measure is well defined
also for the limiting cases x = 0 and x =∞, see Section 2.3 for an example.

Algorithm 1 with tolerance ε outputs an ε-solution to the acceptability maximization problem, an
element of the set Dε. We also know that the sets of ε-solutions are nested and intersect in the set
of optimal solutions. Therefore, it is natural to ask about the convergence of the algorithm output
as the tolerance ε vanishes. As the next result shows, such convergence holds true if the feasible set
D is compact. Generally speaking, for a non-compact D it is possible to construct counter-examples,
where the ε-solutions Dε ∈ Dε converge to an (infeasible) element outside of a (non-empty) optimal
set D∗, or diverge.

Lemma 2.8. Let α∗ ∈ (α, α) and suppose that the feasible set D is a compact set w.r.t. the topology
of convergence in probability. Let {Dεn}n∈N be a sequence of solutions outputed from Algorithm 1 for a
sequence of tolerances {εn}n∈N with lim

n→∞
εn = 0. Then {Dεn}n∈N has an P-a.s. convergent subsequence

whose limit belongs to the set of optimal solutions D∗.
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Proof. The proof is given in Appendix A.

2.3 Numerical Examples

We will illustrate the proposed algorithm with three examples of CAIs: the acceptability index corre-
sponding to the tail-value-at-risk (AIT), the gain-to-loss ratio (GLR) and the risk-adjusted return on
capital (RAROC). First, we define these CAIs as well as identify the families of risk measures from
the robust representation (2.1).

1. The TV@R at level q ∈ (0, 1) is defined as

TV@Rq(D) =
1

q

q∫
0

V@Rp(D) dp,

where V@Rp(D) := inf{r ∈ R : P(D + r < 0) ≤ p} is the value-at-risk at level p ∈ (0, 1). It is
well known that V@R is not a coherent risk measure, while TV@R is a coherent risk measure.
Moreover, using TV@R as a family of CRMs, we define the the acceptability index

AIT(D) := sup
{
x ∈ (0,∞) : TV@R 1

1+x
(D) ≤ 0

}
.

It is easy to show that AIT indeed is a CAI that is also law invariant, consistent with second order
stochastic dominance, and arbitrage and expectation consistent; for more details see (Cherny
and Madan, 2009, Section 3.5). However, one notable drawback of AIT is that it ignores the
gains and only takes into account the tail corresponding to losses.

2. The gain-to-loss ratio is a CAI, popular among practitioners, and defined as the ratio of the
mean and the expectation of the negative tail, namely

GLR(D) :=
(E[D])+

E[D−]
,

where D− = max{0,−D}, D+ = max{D, 0} and the convention a
0

:= +∞ for all a ≥ 0 is used.
For additional properties of GLR see, for instance, (Cherny and Madan, 2009, Section 3.2). We
recall several representations of GLR, useful for our purposes. The representation of the form
(2.1) is given in terms of expectiles. We recall that the expectile eq(D) of a random variable D
at level q ∈ (0, 1) is defined by a first-order condition

qE[(D − eq(D))+] = (1− q)E[(D − eq(D))−],

or as a minimizer of an asymmetric quadratic loss, see Bellini and Di Bernardino (2015) for
more details. The expectile-V@R,

EV@Rq(D) := −eq(D),

for q ≤ 1/2, is an increasing family of CRMs. One can show, for example by using that

AEV@Rq =
{
D | E(D+)

E(D−)
≥ 1−q

q

}
is the acceptance set of EV@Rq, that the representation (2.1) for

GLR has the form

GLR(D) := sup
{
x ∈ (0,∞) : EV@R 1

2+x
(D) ≤ 0

}
.

8



Alternatively, one can use the system of supporting kernels corresponding to GLR, as well as
the explicit form of the extreme measures, cf. (Cherny and Madan, 2009, Proposition 2). It
is also clear that for x > 0, GLR(D) ≥ x if, and only if, E[−D] + xE[D−] ≤ 0, which can be
conveniently used for computation purposes. This is not linked to the robust representation
(2.1) since the mappings D 7→ E[−D] + xE[D−] are not CRMs (for instance they are not
translation invariant). Finally, we remark that there is another popular version of GLR, defined

as GLR(D) = E[D+]
E[D−]

. This version of GLR is also monotone, scale invariant and has the Fatou

property, but lacks quasi-concavity, and thus GLR is not coherent. The two are connected via
GLR(D) = max{GLR(D)− 1, 0}.

3. The risk-adjusted return on capital, similar to GLR, is a reward-risk type ratio, formally defined
as

RAROC(D) :=
(E[D])+

(π(D))+
, (2.3)

where π is a fixed CRM. The corresponding family of CRMs is given by

ρx(D) = min

{
π(D),

1

1 + x
E[−D] +

x

1 + x
π(D)

}
.

For risk measures π satisfying E[−D] ≤ π(D) this simplifies to ρx(D) = 1
1+x

E[−D] + x
1+x

π(D).
For more details see (Cherny and Madan, 2009, Section 3.4). In our numerical examples we will
use RAROC with π = TV@R0.01, also known as the stable tail-adjusted return ratio (see, for
instance, Martin et al. (2003)).

In our numerical examples below, we maximize the acceptability index over the set of profits
and losses that are possible to attain by investing in the market with d (risky) assets. Without loss
of generality, thanks to scale invariance of CAIs, we fix the initial investment to 1. For numerical
tractability, we assume that Ω is finite. The (gross or total) returns Sj1/S

j
0, j = 1, . . . , d, of these d

assets are modeled as a matrix R ∈ Rd×|Ω|. Then, the sets of available profits and losses, with or
without short-selling, become

D = {RTh− 1 : 1Th = 1} or D = {RTh− 1 : 1Th = 1, h ≥ 0},

where 1 = (1, 1, . . . , 1)T. So, h corresponds to the trading strategy (the amount invested in each
asset) and D(h) = RTh− 1 to the corresponding terminal P&L.

To illustrate the main features of the proposed algorithm, we first consider a toy market model,
consisting of d = 2 assets and with returns given in Table 1, Panel A. Generally speaking, it is
reasonable to select the input parameters such that that ε ≤ α. Panel B of Table 1 summarizes
the iterations of the algorithm with the following input parameters: the starting (seed) acceptability
level set to x0 = 2, the tolerance ε = 10−4 and the maximal number of iterations M̄ = 15 of Step
1. The algorithm outputs bounds on the maximal acceptability and an ε-optimal solution hε; see the
last two rows of Table 1, Panel B. For each of the three acceptability indices, the optimal portfolio
puts more weight on the first asset, with AIT being the most balanced and RAROC being the most
extreme. This is because the first asset carries (in some sense) less risk, although at the cost of lower
mean return than the second one. All three considered CAIs are loss based measures, but each in a
different way. The AIT measures how far and how deep into the tail the losses can go. The optimal

9



position for AIT balances the return in the second and the third state of the world. The GLR treats
loss directly through the expectation of effective losses (the negative part of the P&L). Thus, the
corresponding optimal position is in the range where the portfolio return is negative in only one state
of the world. Since we are using TV@R0.01 in defining the RAROC, only the worst-case scenario
(state of the world) is considered, which is the reason why the corresponding optimal position relies
heavily on the first asset, for which the worst-case loss is lower. We also remark that in this market
model, the short-selling constraints do not change the results.

For the sake of completeness, we also show the iteration of the modified algorithm outlined in
Remark 2.7(iv). We use the fact that for each of the three indices – AIT, GLR, RAROC – the
corresponding risk measures are well-defined for the limiting parameter values x = 0 and x = ∞.
Since the bisection cannot be done on an interval of infinite length, we index the families of risk
measures by a parameter q = 1

1+x
on a bounded interval [0, 1], or, respectively by q = 1

2+x
on

[0, 0.5]. Then, the bisection is performed with respect to the parameter q. The iterations for GLR are
presented in Table 2, see the modified algorithm. This modification avoids the risk of failing to find a
lower or upper bound for a badly chosen starting point x0 (compare to Table 3). Moreover, zero and
infinite acceptability are often determined after solving two risk minimization problems, instead of
M̄. On the other hand, one needs to treat the tolerance parameter ε carefully: although the bisection
is performed on the parameter q, the termination criterion needs to be set on x in order for the error
not to be distorted (see Table 2). A mixed version of the algorithm is also provided – it switches
to a bisection on the original parameter x, as soon as a finite upper bound is found. The iterations
for GLR are also given in Table 2, see the mixed algorithm. In addition, we also make the following
slight modification to the algorithm: at each iteration a risk minimization problem P (x) is solved,
finding its optimal solution Dx. If the considered level is found to be a lower bound then the maximal
acceptability, then the position Dx is used for updating the optimal solution of the acceptability
maximization. Otherwise, it is not used at all. One can easily see that given a fixed position Dx, all
levels y satisfying ρy(Dx) ≤ 0 are lower bounds on the maximal acceptability. Hence, if it is relatively
easy to find a level y such that ρy(Dx) = 0, then it can be used to update the lower bound. For the
CAIs used in this example such level y can be found without any further optimization. We refer to
this modification of the original algorithm as zero-level version.

We also run the proposed algorithm on a more realistic market model, consisting of d = 10 stocks
and |Ω| = 1000 states of the world. The return matrix is obtained as draws from a multivariate
Student’s t-distribution. In Table 3 we report the results for various input parameters x0, ε and M̄ .
The results are intuitively clear, and expected: the distance of the initial guess x0 from the true α∗

affects the number of iterations needed to find the upper and lower bound (Step 1). The tolerance ε
determines the number of iterations in Step 2. We also note that for a badly chosen starting point
the algorithm can fail to find a lower or an upper bound unless M̄ is increased. We also note that
the maximal acceptability differs in a market with and without short-selling, but the impact of the
parameters is the same. Similar to the toy model, we list in Table 4 the results for different versions
of the algorithm – original one, modified, mixed and zero-level. We also present the results both with
and without short-selling constraints. These results show that neither of the versions of the algorithm
is performing strictly better than the others. Similar conclusions were observed for various other sets
of parameters.
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3 Acceptability Maximization in the Dynamic Setting

In this section, we consider the acceptability maximization problem in a dynamic setting. We use the
theory of dynamic coherent acceptability indices introduced in Bielecki et al. (2014) and their link
to dynamic coherent risk measures. We briefly recall the key definitions and results from Bielecki
et al. (2014), and then focus on acceptability maximization in the context of optimal investment in
a multi-period market model. It turns out that the maximal acceptability is constant in a setting
when the determining family of dynamic coherent risk measures is recursive and when the underlying
market has a recursive structure. We conclude by considering the non-recursive case by focusing on
two specific performance measures – the dynamic risk-adjusted return on capital and the dynamic
gain-to-loss ratio – where we use the specific structure of the problem to introduce a solution scheme
tailored to these performance measures.

3.1 Dynamic CAIs and dynamic CRMs

The concept of a coherent acceptability index was first extended to a dynamic setting in Bielecki
et al. (2014) and consequently studied in Bielecki et al. (2016, 2015); Rosazza Gianin and Sgarra
(2013); Biagini and Bion-Nadal (2014). A dynamic coherent acceptability index (DCAI) is meant to
measure the performance of financial positions or instruments over time, accounting for the incoming
flow of information. We start by briefly recalling the setup of Bielecki et al. (2014), where DCAIs
are designed to measure the performance of (discounted) cash flows or dividend streams or unrealized
P&Ls. Most of the properties from the static setup are naturally transferred to the dynamic case.
An addition is the time consistency property, which stays at the core of financial interpretations of
DCAIs, but is also fundamentally used in establishing the dual representations. We refer to Bielecki
et al. (2017, 2018) for an in-depth discussion of various forms of time-consistency in decision making,
in particular those arising in the theory of dynamic risk and performance measures. Following Bielecki
et al. (2014), we take a discrete and finite state setting by denoting T := {0, 1, . . . , T} for some fixed
T ∈ N, and letting (Ω,F ,F = (Fs)s∈T ,P) be a filtered probability space, with P having full support.
We will write Et instead of the conditional expectation given Ft. Without loss of generality, we will
assume that F0 is trivial. The dividend streams or unrealized P&Ls will be modeled as F-adapted
real-valued stochastic process D = {Dt}Tt=0. We will denote by D the set of all such processes, and
by Lt = Lt(Ω,Ft,P) the Ft-measurable random variables. As usual, for A ⊂ Ω will 1A denote the
indicator function which is equal to one for ω ∈ A and zero otherwise. Without loss of generality, we
assume a zero interest rate, or, view D ∈ D as discounted cash flows. Operations between random
variables, such as minimum, maximum, product, or sum will be understood ω-wise.

Definition 3.1. A dynamic coherent acceptability index (DCAI) is a function α : T ×D×Ω→
[0,∞] satisfying for all times t ∈ T , all cash flows D,D′ ∈ D, all events A ∈ Ft, and all random
variables λ ∈ Lt

(A1) Adaptiveness: αt(D) is Ft-measurable,

(A2) Independence of the past: if 1ADs = 1AD
′
s for all s ≥ t, then 1Aαt(D) = 1Aαt(D

′),

(A3) Monotonicity: if Ds ≥ D′s for all s ≥ t, then αt(D) ≥ αt(D
′),

(A4) Scale invariance: αt(λD) = αt(D) for all λ > 0,

(A5) Quasi-concavity: αt(λD + (1− λ)D′) ≥ min{αt(D), αt(D
′)} for 0 ≤ λ ≤ 1
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(A6) Translation invariance: αt(D +m1{t}) = αt(D +m1{s}) for any m ∈ Lt and s ≥ t,

(A7) Dynamic consistency: if Dt ≥ 0 ≥ D′t and there exists an m ∈ Lt such that αt+1(D) ≥ m ≥
αt+1(D′), then αt(D) ≥ m ≥ αt(D

′).

A DCAI α is normalized if for all t ∈ T , ω ∈ Ω, there exist D,D′ ∈ D such that αt(D,ω) = +∞
and αt(D

′, ω) = 0. It is right-continuous if lim
c→0+

αt(D + c1{t}, ω) = αt(D,ω) for any t ∈ T , D ∈
D, ω ∈ Ω.

As in the static case, DCAIs are closely related to dynamic coherent risk measures (DCRMs).

Definition 3.2. A dynamic coherent risk measure (DCRM) is a function ρ : T ×D×Ω→ R
satisfying for all times t ∈ T , all cash flows D,D′ ∈ D, all states ω ∈ Ω, all events A ∈ Ft, and all
random variables λ ∈ Lt

(R1) Adaptiveness: ρt(D) is Ft-measurable,

(R2) Independence of the past: if 1ADs = 1AD
′
s for all s ≥ t, then 1Aρt(D) = 1Aρt(D

′),

(R3) Monotonicity: if Ds ≥ D′s for all s ≥ t, then ρt(D) ≤ ρt(D
′),

(R4) Homogeneity: ρt(λD) = λρt(D) for all λ > 0,

(R5) Subadditivity: ρt(D +D′) ≤ ρt(D) + ρt(D
′)

(R6) Translation invariance: ρt(D +m1{s}) = ρt(D)−m for any m ∈ Lt and s ≥ t,

(R7) Dynamic consistency: 1A

(
min
ω∈A

ρt+1(D,ω)−Dt

)
≤ 1Aρt(D) ≤ 1A

(
max
ω∈A

ρt+1(D,ω)−Dt

)
.

A family of dynamic coherent risk measures (ρx)x∈(0,∞) is called increasing if x ≥ y > 0 implies
ρxt (D) ≥ ρyt (D) for any t ∈ T , D ∈ D. It is left-continuous at x0 > 0 if lim

x→x−0
ρxt (D,ω) = ρx0

t (D,ω)

for any t ∈ T , D ∈ D, ω ∈ Ω.

Originally, DCRMs were introduced in Riedel (2004), although with a different (stronger) notion
of time-consistency, which will be discussed in Section 3.2.1. As proved in Bielecki et al. (2014), there
is a one-to-one relationship between a DCAI and an increasing family of DCRMs, similar to (2.1).
Namely, the following assertions hold true:

1. For a normalized dynamic coherent acceptability index α the functions (ρx)x∈(0,∞) defined as

ρxt (D,ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x}, . (3.1)

form an increasing, left-continuous family of dynamic coherent risk measures.

2. For an increasing family of dynamic coherent risk measures (ρx)x∈(0,∞) a function α defined as

αt(D,ω) = sup{x ∈ (0,∞) : ρxt (D,ω) ≤ 0} (3.2)
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is a normalized, right-continuous dynamic coherent acceptability index. Moreover, there exists
an increasing sequence of sets of probability measures {Qxt }t∈T ,x≥0 such that

ρxt (D,ω) = − sup
Q∈Qx

t

EQ
t

[
T∑
s=t

Ds

]
, x > 0, t ∈ T . (3.3)

The converse implication is also true, under an additional technical property of time consistency
of {Qxt }t∈T ,

3. If α is a normalized, right-continuous dynamic coherent acceptability index, then there exists
an increasing, left-continuous family of dynamic coherent risk measures (ρx)x∈(0,∞), such that
representation (3.2) holds. Vice versa, for an increasing, left-continuous family of dynamic
coherent risk measures (ρx)x∈(0,∞) there exists a normalized, right-continuous dynamic coherent
acceptability index α, such that (3.1) holds.

Similar to the static case, we are interested in finding the position with highest degree of accept-
ability. Given a set of available, or feasible, cash flows D ⊆ D, the problem of interest is

max
D∈D

α0(D). (3.4)

It is straightforward to adapt Algorithm 1 to the dynamic setup to solve the corresponding version
of (3.4) for a given t ∈ T and ω ∈ Ω. However, this approach, generally speaking, is computationally
not feasible. Usually one would aim to establish a recursive set of equations in the form of a dynamic
programming principle or Bellman’s principle of optimality that would solve (3.4), which will be
provided in the next section for the optimal investment problem.

3.2 Optimal portfolio selection problem

In this section, we consider the acceptability maximization problem in the context of optimal portfolio
selection in a market model with d available assets. We denote by Rs+1 = (R1

s+1, . . . , R
d
s+1) the vector

of assets (total or gross) returns between time s and time s+ 1, namely, if Sjs denotes the price of the

j-th asset at time s, then Rj
s+1 :=

Sj
s+1

Sj
s

. We assume that R1, . . . , RT are independent and identically

distributed on a probability space (Ω,F ,P), and denote by (Fs)s∈T the natural filtration generated by
the process (Rs)s=1,...,T . In addition, we assume that all one step asset returns Rj

s are strictly positive.
Note that we implicitly assume that these assets do not pay dividends.

We assume that the investor starts with a positive initial wealth V0 > 0, and invests it in the d avail-
able assets by following a self-financing trading strategy, possibly with some additional trading con-
straints. A trading strategy is an adapted stochastic process h = (hs)s=0,...,T−1 with hs = (h1

s, . . . , h
d
s),

where his is the monetary amount invested in asset i between time s and s+ 1. The portfolio value at
time s+ 1 arising from the trading strategy h is given by Vs+1(h) = RT

s+1hs for any s = 0, . . . , T − 1.
We consider two feasible sets in particular, one with no trading constraints and one with short-selling
constraints. The set of all self-financing trading strategies with initial value V0 is

H0(V0) := {(hs)s=0,...,T−1 | 1Ths = Vs, Vs+1 = RT
s+1hs, s = 0, . . . , T − 1}.

Correspondingly, the set of feasible trading strategies with short-selling constraints is

H+
0 (V0) = {(hs)s=0,...,T−1 | h ∈ H0(V0), hjs ≥ 0, s = 0, . . . , T − 1, j = 1, . . . , d}.

The time t feasible sets Ht(Vt) and H+
t (Vt) are defined analogously. The next result shows that the

feasible sets are positive homogeneous and recursive.
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Lemma 3.3. 1. For a positive Ft-measurable wealth Vt the feasible sets scale as follows

Ht(Vt) = Vt · Ht(1) and H+
t (Vt) = Vt · H+

t (1).

2. The feasible sets are recursive,

Ht(Vt) =
{

(hs)s=t,...,T−1 | ht ∈ Ht(Vt), (hs)s=t+1,...,T−1 ∈ Ht+1(RT
t+1ht)

}
,

H+
t (Vt) =

{
(hs)s=t,...,T−1 | ht ∈ H+

t (Vt), (hs)s=t+1,...,T−1 ∈ H+
t+1(RT

t+1ht)
}
,

where Ht(Vt) = {ht | 1Tht = Vt} and H+
t (Vt) = {ht ∈ Ht(Vt) | ht ≥ 0}.

Proof. The proof is deferred to Appendix B.

Our aim is to find the optimal trading strategy among the feasible ones by maximizing the port-
folio’s acceptability as measured by a given DCAI α. We recall that the dynamic setup of Bielecki
et al. (2014) and Riedel (2004) assumes that the inputs D to a DCAI are (discounted) dividend
processes, a setup usually convenient for pricing purposes or assessing the performance or riskiness
of some dividend paying securities, or random future cash-flows (cf. Acciaio et al. (2012); Acciaio
and Penner (2011); Bielecki et al. (2013, 2015) and references therein). When dealing with optimal
investment (i.e. an optimal portfolio selection problem), traditionally and also more conveniently, one
works with the value process or the (discounted) cumulative dividend process. Given a portfolio with
value process V = (Vs)s=0,...,T , the corresponding dividend stream D = (Ds)s=0,...,T is defined as

Ds = Vs − Vs−1, s = 1, . . . , T,

and D0 = 0. Thus, the cumulative P&L up to time t becomes
∑t

s=0Ds = Vt − V0. We refer the
reader to Acciaio and Penner (2011); Bielecki et al. (2016) for a detailed discussion on use of dividend
streams and cumulative dividend streams within the general theory of assessment indices.

We denote by V (h) the wealth process generated by the trading strategy h and D(h) will stand
for the corresponding dividend stream. In addition, for a given dividend stream D = (D0, . . . , DT )
we define the time t tail dividend stream as D[t,T ] := (0, . . . , 0, Dt, . . . , DT ), and we also put D[t] :=
(0, . . . , 0, Dt, 0, . . . , 0).

The optimization problem we wish to solve at initial time is

max
h∈H+

0 (V0)
α0(D(h)) (A0(V0))

or the variant thereof, if short-selling is allowed, in which case the feasible set is H0(V0). By property
(A2), independence of the past of DCAIs, we have that αt(D) = αt(D

[t,T ]). This would suggest that
in order to solve A0(V0) we should consider the problems

max
h∈H+

t (Vt)
αt(D

[t,T ](h)). (At(Vt))

One certainly can study (At(Vt)), and try to establish a dynamic programming principle for this
stochastic control problem, although, generally speaking, this problem is not time consistent. More
importantly, from a practical point of view, including the change in portfolio value from time t− 1 to
t, namely the term Dt = Vt−Vt−1, in the optimization criteria at time t is less desirable. In particular,
using (3.3), one would optimize at time t a function that depends on VT −Vt−1, rather than a function
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depending on total future return VT − Vt. With this in mind, we introduce and focus our attention
on a family of auxiliary acceptability maximization problems

max
h∈H+

t (Vt)
αt(D

[t+1,T ](h)), (Ãt(Vt))

which are more in line with the setup from the optimal portfolio selection problem. Note that for
any trading strategy h the cash flows D(h) and D[1,T ](h) coincide, and hence at the initial time the
auxiliary problem Ã0(V0) is the same as the original problem A0(V0). Therefore, solving the auxiliary
family of problems, which we will address next, will lead to the solution of the original acceptability
maximization problem.

3.2.1 The Case of Recursive Risk Measures (ρxt )t∈T

As we already mentioned, the form of the time consistency property (R7) for DCRMs is tailored for
the robust representation (3.2) of DCAIs with the time consistency property (A7). This form of time
consistency is weaker than the so-called strong time consistency of risk measures:

(R7’) Strong time consistency: for any D,D′ ∈ D and t = 0, . . . , T − 1, if Dt = D′t and ρt+1(D) =
ρt+1(D′), then ρt(D) = ρt(D

′).

Strong time consistency (R7’) is the one usually associated with dynamic risk measures (cf. Riedel
(2004); Bielecki et al. (2017)), due to its natural financial interpretation, but also because of its
equivalence to:

(R7”) Recursiveness: ρt(D) = ρt
(
−ρt+1(D)1{t+1}

)
−Dt, for any D ∈ D and t = 0, . . . , T − 1.

One major benefit of having the recursive property is its direct applicability to stochastic control
problems. This very property makes many stochastic control problems with risk as the terminal
criteria to be time consistent. Note that such recursive property in principle can not be satisfied by
any DCAI, cf. Bielecki et al. (2018, 2017).

In this section, we study the acceptability maximization problem (Ãt(Vt)) assuming that the
corresponding family of risk measures is strongly time consistent. We work under the market setup
of Section 3.2 with short-selling constraints and with an initial value V0 > 0.

The one-step risk measures generated by ρx are defined as

ρxt,t+1(Z, ω) := ρxt (0 + 1{t+1}Z)(ω), t = 0, . . . , T − 1, ω ∈ Ω,

for any Ft+1-measurable random variable Z, here 0 denotes the zero process. In what follows we
assume that the one-step risk measures are identical across all nodes of the multinomial model.
Namely, with Pt denoting the partition of Ω that generates Ft, we assume that for any t, s ∈ T , and
any Ωt ∈ Pt and Ωs ∈ Ps

ρxt,t+1(Dt+1, ω) = ρxs,s+1(D′s+1, ω
′) (3.5)

for all ω ∈ Ωt, all ω′ ∈ Ωs and all D,D′ satisfying 1ΩtDt+1
(d)
= 1ΩsD

′
s+1 and zero otherwise. As

previously, we denote the maximal acceptability attainable at the market as

α∗t (Vt;ω) := sup
h∈H+

t (Vt)

αt(D
[t+1,T ](h);ω).

Under the above, what may appear, natural assumptions, we obtain a somehow surprising result:
the maximal acceptability α∗ is constant across wealth level, time and states of the world.
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Theorem 3.4. Let α be a normalized right-continuous DCAI and (ρx)x∈(0,∞) be the corresponding
family of DCRMs. Assume that for each x > 0 the DCRM ρx is strongly time consistent, and all the
one step risk measures ρxt,t+1 satisfy (3.5). Then, under the market model assumption of this section,
the maximal acceptability α∗t is independent of the wealth, time and state, that is,

α∗t (Vt;ω) = α∗0(1),

for all t ∈ T , ω ∈ Ω and positive Vt ∈ Lt.

Proof. The proof is given in Appendix B.

In view of Theorem 3.4 the auxiliary acceptability maximization has a constant optimal objective
value in time, and since at the initial time the auxiliary and the original problem coincide, we obtain
that it suffices to solve ÃT−1(1)(ω̄) for some ω̄ ∈ Ω instead of A0(V0). The next result shows how to
construct the corresponding optimal trading strategy.

Theorem 3.5. Assume that for some ω̄ ∈ Ω the supremum α∗T−1(1; ω̄) is attained and denote by
h∗ ∈ Rd the corresponding optimal position (given ω̄),

h∗ = arg max
hT−1∈H+

T−1(1)
αT−1(D[T ](hT−1); ω̄)(ω̄),

where H+
T−1(1) was defined in Lemma 3.3(2). Let (h̄s)s=0,...,T−1 be the trading strategy defined as

h̄0 = V0 · h∗,
h̄s = Vs(h̄s−1) · h∗, s = 1, . . . , T − 1.

Then, the trading strategy h̄ is an optimal solution of A0(V0), i.e. α0(D(h̄)) = α∗.

Proof. The proof is given in Appendix B.

The results of this subsection rely on the properties of the family of risk measures {(ρxt )t=0,...,T}x>0

corresponding to the DCAI α under consideration. Similar to the static case, one may be interested
in the risk minimization problem corresponding to a fixed level x > 0. As may be expected, the
recursive setting of this section has direct implications on the minimal achievable risk (infimum of the
risk minimization problem). It can be proved that the minimal risk is positively homogeneous and it
also has a recursive form. Unlike the maximal acceptability it is not constant, but it maintains the
same sign over all times and states. Furthermore, if an optimal solution (optimal trading strategy)
exists, it can be constructed recursively in the spirit of Theorem 3.5.

3.2.2 The Case of Dynamic RAROC

Using the definition of the static RAROC, the identity (2.3), as well as the representation (3.3), one
naturally defines the dynamic risk adjusted return on capital (dRAROC) as follows:

dRAROCt(D) =

(
Et
(∑T

s=tDs

))+

(
πt

(∑T
s=tDs

))+ , D ∈ D,

with the convention a
0

= +∞, where π is a given dynamic coherent risk measure (not to be confused
with the family of DCRMs corresponding to an acceptability index).
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As was shown in (Bielecki et al., 2014, Section 6), dRAROC fulfills the properties (A1)-(A6), but
it, in general, fails to satisfy the dynamic consistency property (A7), and therefore, it is not a DCAI.
Nevertheless, for some choices of π, dRAROC satisfies some weaker forms of time consistency. In
particular, if π is the dynamic version of TV@R, then the corresponding dRAROC is so-called semi-
weakly acceptance time consistent, but not semi-weakly rejection time consistent; for more details
see Bielecki et al. (2017, 2018). This will be the example we consider in our numerical experiment
below. With this in mind, we are interested in identifying an investment with the highest performance
measured by dRAROC, i.e. the maximization of the dRAROC-performance in the framework of self-
financing portfolios introduced in Section 3.2. Furthermore, we focus our attention only on the case
of a feasible set with short-selling constraints H+

0 (V0), but most of the results can be extended to the
case with no trading constraints. Hence, we wish to solve the following optimization problem:

max
h∈H+

0 (V0)
dRAROC0(D(h)). (3.6)

As already mentioned, this problem is time-inconsistent (in the sense of optimal control), and in view
of the above it does not fit the framework of Section 3.2.1.

We will take the approach of Kováčová and Rudloff (2019) to deal with time-inconsistency of
(3.6). First we note that for a positive level x > 0

dRAROC0(D) ≥ x ⇔ min

{
π0

(
T∑
s=0

Ds

)
,−E0

(
T∑
s=0

Ds

)
+ xπ0

(
T∑
s=0

Ds

)}
≤ 0.

Using this, one could apply the idea of Algorithm 1 to the family of functions ρx0(·) = min{π0(·),−E0(·)+
xπ0(·)} for x > 0. In the nutshell, the procedure would consist of the following: First, minimize the
risk π0(·) among the feasible positions, i.e. solve the mean-risk problem with an infinite risk aversion.
If the optimal value were negative, an infinite performance measured by dRAROC0 would be implied.
Second, repeatedly minimize −E0(·)+xπ0(·) among the feasible positions for various levels x – that is,
solve the mean-risk problem for the risk aversion at various levels x. Therefore, the algorithm would
be iteratively computing elements of the mean-risk efficient frontier. If the (full) efficient frontier, i.e.
the set of all portfolios that are not dominated in terms of their mean and risk, was available instead,
the optimal solution of (3.6) could be found simply as the element of the frontier with the highest
ratio of the mean to the risk. Of course, applying Algorithm 1 is not computationally efficient in the
dynamic setup, but it motivates us to compute the efficient frontier, i.e. to consider the bi-objective
mean-risk problem

min
h∈H+

0 (V0)

(
− E0(VT (h)− V0)

π0(VT (h)− V0)

)
w.r.t. ≤R2

+
, (3.7)

where we used the fact that
∑T

s=0Ds(h) = VT (h)− V0. This will also overcome the problem of time-
inconsistency of (3.6) and thus lead to an efficient way to solve (3.6). As it turns out, problem (3.7) is
time consistent in the set-valued sense, i.e., the set-valued Bellman’s principle of optimality recently
proposed in Kováčová and Rudloff (2019) provides a way to solve the mean-risk problem (3.7) re-
cursively, assuming that the dynamic risk measure π is recursive, i.e. strongly time consistent. We
emphasis that the recursiveness of π does not imply the recursiveness of the members of the fam-
ily (ρx0)x∈(0,∞) and is a separate property from the dynamic consistency of the performance measure
dRAROC. The set-valued Bellman’s principle of optimality of Kováčová and Rudloff (2019) also
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provides the intermediate mean-risk efficient frontiers, namely it solves the sequence of mean-risk
problems

min
h∈H+

t (Vt)

(
− Et(VT (h)− Vt)

πt(VT (h)− Vt)

)
w.r.t. ≤Lt(R2

+),

for each time point t = 0, . . . , T − 1. Note that since dRAROC0 is equal to the ratio of the mean to
the risk, the element of the frontier of the time-consistent problem (3.7) with the highest ratio is the
optimal solution of the time-inconsistent problem (3.6). The same can be said about the intermediate
mean-risk efficient frontiers and (auxiliary) problems max

h∈H+
t (Vt)

dRAROCt(D
[t+1,T ](h)).

We illustrate this on a dynamic version of the example from Section 2.3. We consider the market
model with two assets, and with one-time-step asset returns Ri

t, i = 1, 2, having the probability law
given in Panel A of Table 1, and we take T = 6. We take the DCRM π to be the recursive dynamic
TV@R at significance level 1%. We recall that the dynamic TV@R is defined analogously to the
static TV@R by replacing V@R with the conditional V@R, which in turn is defined as a conditional
quantile.

In Figure 1 we display the mean-risk efficient frontier of problem (3.7), as well as the intermediate
frontiers. The bright green points correspond to the elements with the highest dRAROC.

Figure 1: Efficient frontiers (black) of the mean-risk problems and elements with the highest mean-
to-risk ratio (green). All frontiers are depicted in the (ρ,E) plane for the returns vT − vt with vt = 1.

The trading strategy (ht)t=0,...,T−1 corresponding to the highest-dRAROC0 element of the time
0 frontier can be recovered from the solution of the mean-risk problem, see Kováčová and Rudloff
(2019) for details. The mean-risk profiles, and the corresponding values of dRAROC, of this portfolio
in the subsequent time points are determined by the strategy itself and vary over times and states
of the world. They are depicted as yellow triangles for a selected state of the world ω in Figure 2.
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All of them lie on the efficient frontiers (yellow triangles), but, in general, do not coincide with the
highest-dRAROCt element (bright green points). This confirms the time-inconsistency of dRAROC
– the strategy optimal from the viewpoint of time t = 0 is not dRAROC-maximal at the subsequent
time instances.

For comparison, we include also a myopic (magenta square) and an inconsistent switching (red
diamond) approach. In the myopic case, the investor at each time solves a one step optimization
problem, hence looking always only one period ahead and chooses the position that maximizes the
RAROC over this one-period horizon. The switching strategy represents a time inconsistent behavior
in the sense that at time t the dRAROC-maximal element of the (time consistent) frontier is selected,

the trading strategy (h
(t)
s )s=t,...,T−1 corresponding to it is found, and the position h

(t)
t is taken. At the

next time t + 1 the previously found trading strategy (h
(t)
s )s=t+1,...,T−1 is discarded and a new one,

(h
(t+1)
s )s=t+1,...,T−1 corresponding to the dRAROC-maximal element of the t + 1 frontier, is selected.

Since each (efficient) trading strategy is discarded after one time period, none of the corresponding
(dRAROC-optimal) mean-risk profiles are ever realized. Figure 2 shows the actual means, risks and
values of dRAROC that these behaviors yield. Clearly, neither the myopic nor the switching give at
any time (except at T − 1) the maximal performance. They even lead to portfolios, which are not
mean-risk efficient at all, i.e. they do not lie on the frontier.

Figure 2: Efficient frontiers for returns over time. The mean-risk profiles and the corresponding values
of dRAROC are depicted for three trading strategies: the time consistent mean-risk strategy in one
state ω (yellow triangle), the switching strategy (red diamond) and the myopic strategy (magenta
square). The element of the frontier with the highest dRAROC is also depicted at each time (green
circle).

Finally, let us look again at the strategy depicted in yellow, namely the strategy that solves (3.6)
at time zero. While this stochastic control problem is time-inconsistent, one can ask which objective
does the optimal strategy maximize at the intermediate times. Note that the dRAROC0-maximal
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element of the time 0 frontier corresponds to a nonlinear scalarization(
− E0(VT (h)− V0)

ρ0(VT (h)− V0)

)
7→ E0(VT (h)− V0)

ρ0(VT (h)− V0)
.

Thus, we will concentrate on a class of non-linear scalarizations including the one above. Specifically,
we consider scalarizations of the time t frontier of the form(

− Et(VT (h)− Vt)
ρt(VT (h)− Vt)

)
7→ (Et(VT (h)− Vt))λt

ρt(VT (h)− Vt)
, (3.8)

where the mapping is fully determined by the value λt, which can be interpreted as a non-linear risk
aversion parameter. For any given efficient trading strategy, one can compute the value of λt, such that
the strategy is an optimal solution of a scalar problem with the objective (3.8). This way, a sequence
of λ0, . . . , λT−1 can be computed for the dRAROC0–optimal strategy (ht)t=0,...,T−1 (represented on the
frontiers by the yellow mean-risk pairs). Since the frontiers (and the mean-risk profiles) are adapted,
also the corresponding scalarization coefficient λt will be adapted. We computed the corresponding
λt in the given state of the world ω and depicted it also in Figure 2.

Thus, the sequence of scalar problems (3.8) is time consistent in the usual sense for the computed
risk aversion parameters λ0, . . . , λT−1. As λ0 = 1 is by construction included, a time zero member
of this time consistent family is the dRAROC0–maximization problem. Thus, an investor with a
dRAROC0 criteria at time zero and a dRAROCt like criteria, that differs only in a changed risk
aversion parameter λt, where λt is changing in a certain manner according to the changes in the
stock market, would behave time consistent in the classical sense. This is in line with the findings
about the moving scalarization (a time and state dependent risk aversion parameter) that leads to
a time consistent problem and a time consistent behaviour of the investor as also discussed in the
mean-risk portfolio optimization problem in Kováčová and Rudloff (2019) and for other otherwise
time inconsistent problems in Karnam et al. (2017).

3.2.3 The Case of Dynamic GLR

Similar to dRAROC, the dynamic gain-to-loss ratio (dGLR) is defined as

dGLRt(D) =

(
Et
(∑T

s=tDs

))+

Et
((∑T

s=tDs

)−) , D ∈ D, (3.9)

with the convention a
0

:= +∞. Unlike dRAROC, dGLR is a normalized and right-continuous DCAI
(see (Bielecki et al., 2014, Section 6)). Our aim is to identify among all self-financing portfolios the
ones with the highest dGLR, that is to solve the problem

max
h∈H0(V0)

dGLR0(D(h)). (3.10)

Similar to the static GLR, the family ρx of DCRM from the robust representation is identified by
the conditional expectiles, and since the conditional expectiles are not strongly time consistent, the
results of Subsection 3.2.1 do not apply here. As was also noted in the static case, instead of the
corresponding family of risk measures one can consider the family −E0(·) + xE0

(
(·)−

)
for x > 0.

Note that for any fixed time instance one can view the problem as a static one, and thus one can
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apply Algorithm 1, but this would be, as discussed before, computationally infeasible to do for all
t ∈ T . Here, with the intention of obtaining a Bellman’s principle of optimality, we take an approach
inspired by the previous subsection and in the spirit of Kováčová and Rudloff (2019). Motivated by
the numerator and denominator of (3.9), we consider the bi-objective mean-loss problem

min
h∈H0(V0)

(
−E0(VT (h)− V0)

E0

(
(VT (h)− V0)−

)) w.r.t. ≤R2
+
. (3.11)

By the same argument as in the dRAROC case, the element of the efficient frontier with the highest ra-
tio corresponds to the portfolio with the highest value of dGLR0. The recursive approach of Kováčová
and Rudloff (2019), unfortunately, can not be applied directly here, due to the lack of translation
invariance of the objective function Et (X−) , which makes it impossible to express E0

(
(VT (h)− V0)−

)
through Et

(
(VT (h)− Vt)−

)
. Nevertheless, to solve (3.11), we consider the following sequence of bi-

objective problems

min
h∈Ht(Vt)

(
−Et(VT (h)− V0)

Et
(
(VT (h)− V0)−

)) w.r.t. ≤R2
+
, (3.12)

where V0 is the fixed initial wealth. Problem (3.12) does not have a natural interpretation as a
mean-loss problem, unless Vt = V0, however, it does give a recursive solution of (3.11) in terms of the
set-valued Bellman’s principle of Kováčová and Rudloff (2019).

We also note that the computational approach from Kováčová and Rudloff (2019) based on scaling
arguments is not applicable here either, and therefore one needs to solve (3.12) for any Vt. As the
problems (3.12) can be rewritten as bi-objective linear optimization problems and differ only in the
right-hand side of the constraints, they form a class of parametric bi-objective linear problems with
the parameter Vt. We solved these parametric problems via polyhedral projection (cf. Löhne and
Weißing (2016)).

We conclude this section by illustrating the solution to (3.10) in the same market model setup
as in Section 3.2.2 and by taking the initial wealth V0 = 0. Figure 3 contains the efficient frontier
at time t = 0 and the highest value of problem (3.10) given by dGLR0 = 0.27. As the intermediate
frontiers are computed for all possible values of Vt, we depict for illustration only those frontiers
corresponding to Vt = V0 for each time point t. The case of the current wealth Vt coinciding with the
initial wealth V0 would give problem (3.12) the interpretation as the mean-loss problem. Therefore
the corresponding maximal value of dGLRt can be obtained. Since the zero-cost trading strategy can
be scaled, the frontier is naturally a half-line. The highest value of dGLR corresponds to the slope
of the frontier. The optimal trading strategy of (3.10) can be deduced from the solution of (3.12).
Thus, an auxiliary, but time-consistent bi-objective problem (3.12) (following a backward recursion
by the set-valued Bellman’s principle of optimality) is used to compute the optimal solution of the
time-inconsistent problem (3.10).
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Figure 3: Efficient frontiers (black) of the problems (3.12) depicted for wealth Vt = 0. All frontiers
are depicted in the (Et(V −T ),Et(VT )) plane. The corresponding highest value of dGLR (the slope of
the frontier) is given.

A Proofs from Section 2

Proof of Lemma 2.3. The first property follows from the quasi-concavity of α, the second from the
definition of the sets, for the third consider⋂

ε>0

Dε = {D ∈ D : α(D) ≥ α∗ − ε, ∀ε > 0} = D∗.

Proof of Lemma 2.5. 1. The positive value of the risk minimization problem p(x) > 0 means that
all portfolios have positive risk at level x - that is ρx(D) > 0 for all D ∈ D. Therefore all
portfolios have acceptability at most x - that is α(D) ≤ x for all D ∈ D. Consequently, α∗ ≤ x.
We do not obtain a strict inequality as we have no information about the continuity of the risk
measure in the parameter x.

2. The assumption of attainment of the infimum implies that there exists D̃ ∈ D such that ρx(D̃) ≤
0. Then α(D̃) ≥ x and α∗ ≥ x.

3. The maximal acceptability α∗ above x means that there exists some portfolio D̃ ∈ D with
α(D̃) > x. From the monotonicity of the family of risk measures and (2.1) it follows that
ρy(D̃) ≤ 0 for all y ≤ x and therefore p(y) ≤ 0.

4. The maximal acceptability α∗ below x means that α(D) < x for all D ∈ D. Consequently, for
all D ∈ D it holds ρx(D) > 0. Since by Assumption 2.4 the infimum of the risk minimization
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problem is attained, also p(x) > 0. The same follows for all y ≥ x as the family of risk measures
is increasing.

Proof of Lemma 2.6. 1. Let α∗ < α. With the halving update rule, at iteration n (counting from
0) the tested value is xn = 2−n · x0 and by Lemma 2.5 at each step p(xn) > 0. Therefore after
M̄ iterations the algorithm is terminated and no non-zero lower bound on the acceptability is
found. The portfolio D̄ is never assigned, as no portfolio with a known lower bound on the
acceptability is found.

2. Let α∗ > α. With the doubling update rule, at iteration n (counting from 0) the tested value
is xn = 2n · x0 and by Lemma 2.5 at each step p(xn) ≤ 0. Therefore, after M̄ iterations the
algorithm is terminated and no finite upper bound on the acceptability is found. The optimal
solution DxM̄−1 of the risk minimization problem P (xM̄−1) is outputted as D̄. It has a degree
of acceptability of at least α = xM̄−1.

3. (a) According to Lemma 2.5 for α∗ ∈ (α, α) it holds p(α) ≤ 0 < p(α), therefore Step 1 of
Algorithm 1 identifies both lower and upper bound, xL and xU . Lemma 2.5 also guarantees
that the found values are true bounds, xL ≤ α∗ ≤ xU . Step 2 continues until the length of the
interval is sufficiently small.

(b) The optimal solution to the risk minimization problem P (xL) is returned as D̄. By As-
sumption 2.4 it holds ρxL(D̄) ≤ 0, so α(D̄) ≥ xL. From part (a) it follows that xL > α∗ − ε, so
D̄ ∈ Dε.
(c) The worst-case scenario for the length of the interval after Step 1 is xL = x0 · 2M̄−2, xU =
x0 · 2M̄−1. Since the bisection step decreases the length of the interval by half, after i bisection
iterations the length of the interval would be x0 · 2M̄−2−i. To obtain a length below ε we need
i > log2

x0

ε
+ M̄ − 2.

Proof of Lemma 2.8. By Lemma 2.6 the algorithm for the tolerance ε outputs Dε ∈ Dε. Since D
is compact, there is a subsequence {Dεnk}nk∈N with a limit, denoted D̃, in the feasible set. The
compactness also implies there exists C < ∞ such that |D| ≤ C for all feasible positions D ∈ D.

Then, since | 1
C
Dεnk | ≤ 1 and 1

C
Dεnk

p−→ 1
C
D̃, scale invariance and the Fatou property of α imply for

any fixed δ > 0

∀εnk ≤ δ : α(Dεnk) ≥ α∗ − δ ⇒ α(D̃) ≥ α∗ − δ.

Letting δ go to zero, we obtain α(D̃) ≥ α∗. Therefore, D̃ is an element of the set D∗.
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B Proofs from Section 3

Proof of Lemma 3.3. For the first part, positive homogeneity follows from the self-financing property
and the linearity of the portfolio value Vs. As for the second part, the recursiveness, we have

Ht(Vt) := {(hs)s=t,...,T−1 | 1Ths = Vs, Vs+1 = RT
s+1hs, s = t, . . . , T − 1}

= {(hs)s=t,...,T−1 | 1Tht = Vt, Vt+1 = RT
t+1ht,

1Ths = Vs, Vs+1 = RT
s+1hs, s = t+ 1, . . . , T − 1}

= {(hs)s=t,...,T−1 | ht ∈ Ht(Vt), (hs)s=t+1,...,T−1 ∈ Ht+1(RT
t+1ht)}.

The result for the set H+
t (Vt) is obtained similarly.

Proof of Theorem 3.4. First we note that α∗ is scale invariant, i.e. α∗t (λVt) = α∗t (Vt) for any λ > 0, λ ∈
Ft, t ∈ T , which follows immediately from the scale invariance of the DCAI α and Lemma 3.3(1).
Thus, it is enough to prove that α∗0(1) = α∗t (1;ω), for all t ∈ T and ω ∈ Ω, which we will show next.

To prove the second claim we, use two types of sets of risks: the set of risks of one-step-ahead
dividends,

Qx
t (ω) := {ρxt (D[t+1](ht);ω) | ht ∈ H+

t (1)},

and the set of risks of feasible portfolios,

P x
t (ω) := {ρxt (D[t+1,T ](h);ω) | h ∈ H+

t (1)}.

The fact that the asset returns are iid and the assumption that the one-step risk measures are identical
imply that at a given level x the sets of one-step-ahead risks coincide across all times and all states,

Qx
t (ω1) = Qx

s(ω2) for all s, t ∈ T and all ω1, ω2 ∈ Ω. (B.1)

At time T − 1 the two types of sets of risks for a given level x coincide, Qx
T−1(ω) = P x

T−1(ω).
The relationship between the acceptability index α and the corresponding family of risk measures
(ρx)x∈(0,∞) implies the following two equivalence:

α∗t (1;ω) ≤ β ⇔ ∀y > β : P y
t (ω) ∩ R− = ∅, and

α∗t (1;ω) ≥ β ⇔ ∀x < β : P x
t (ω) ∩ R− 6= ∅.

(B.2)

We prove the claim by a backward induction. Let ω̄ ∈ Ω be an arbitrary state of the world and
set α∗ := α∗T−1(1; ω̄). In the first step of the induction we prove that α∗T−1(1;ω) = α∗ for all states
ω ∈ Ω: Consider a level y > α∗. According to (B.2) the set P y

T−1(ω̄) = Qy
T−1(ω̄) contains positive

elements only. Then, (B.1) implies that the same is true for the set P y
T−1(ω) = Qy

T−1(ω), which means
α∗T−1(1;ω) ≤ α∗. Now consider a level x < α∗. According to (B.2) the set P x

T−1(ω̄) = Qx
T−1(ω̄)

contains some non-positive element. By (B.1), the same is true for the set P x
T−1(ω) = Qx

T−1(ω), so
α∗T−1(1;ω) ≥ α∗.

The induction hypothesis assumes that α∗s(1) ≡ α∗ for all s > t. For levels y > α∗ this means that
the sets P y

t+1(ω) and the sets Qy
t (ω) (via (B.1) and the first step of the induction) contain positive

elements only. For levels x < α∗ this means that the sets P x
t+1(ω) and the sets Qx

t (ω) (via (B.1)
and the first step of the induction) contain some non-positive element. The adaptiveness (R1) and
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independence (R2) of the risk measure imply that there exists an element p̄ ∈ P x
t+1 that is non-positive

in all states of the world. The same is true also for the set Qx
t .

Inductive step: The properties of the risk measure imply the following form of the set P x
t ,

P x
t =

{
ρxt
(
− (Vt+1(ht) · p−Dt+1(ht)) 1{t+1}

)
| ht ∈ H+

t (1), p ∈ P x
t+1

}
.

Consider a level y > α∗. According to the induction hypothesis all p ∈ P y
t+1 are positive. Then, by

applying the monotonicity (R3), an arbitrary element of P y
t can be bounded by

ρyt
(
− (Vt+1(ht) · p−Dt+1(ht)) 1{t+1}

)
≥ ρyt

(
Dt+1(ht)1{t+1}

)
= ρyt

(
D[t+1](ht)

)
.

The risk ρyt
(
D[t+1](wt)

)
is an element of the set Qy

t , so by the induction hypothesis it is positive in
all states of the world. This shows α∗t (1) ≤ α∗.

Now consider a level x < α∗. Consider the elements of P x
t of the form{

ρxt
(
− (Vt+1(ht) · p̄−Dt+1(ht)) 1{t+1}

)
| ht ∈ H+

t (1)
}
,

where p̄ ≤ 0 is a non-positive element of P x
t+1, whose existence is guaranteed by the induction hy-

pothesis. Monotonicity of the risk measure bounds these risks by

ρxt
(
− (Vt+1(ht) · p̄−Dt+1(ht)) 1{t+1}

)
≤ ρxt

(
Dt+1(ht)1{t+1}

)
= ρxt

(
D[t+1](ht)

)
.

The risks ρxt
(
D[t+1](wt)

)
are elements of the set Qx

t , and by the induction hypothesis at least one of
them is non-positive. Therefore, the set P x

t contains at least one non-positive element and α∗t (1) ≥
α∗.

Proof of Theorem 3.5. Firstly, note that the construction of the trading strategy h̄ guarantees that it
is adapted and feasible. We prove the claim via backward induction by showing that

ρxt (D
[t+1,T ](h̄)) ≤ 0 for all x < α∗.

This suffices to show that αt(D
[t+1,T ](h̄)) ≥ α∗. Since α∗ is a supremum, equality follows.

Consider time T − 1. Optimality of the position h∗ and the positive homogeneity imply that

ρxT−1(D[T,T ](h̄); ω̄) ≤ 0

for all levels x < α∗. The iid asset returns and the identical one-step risk measures together with the
positive homogeneity give the same for all states ω ∈ Ω.

The induction hypothesis assumes that the risk

ρxt+1(D[t+2,T ](h̄)) ≤ 0 for all x < α∗.

For the inductive step we use the recursiveness of the risk measure to express the time t risk as

ρxt (D
[t+1,T ](h̄)) = ρxt

(
−
(
ρxt+1(D[t+2,T ](h̄))−Dt+1(h̄)

)
1{t+1}

)
.

At level x < α∗ the induction hypothesis and the monotonicity provide a bound

ρxt (D
[t+1,T ](h̄)) ≤ ρxt (D

[t+1](h̄)) ≤ 0.

The inequality ρxt (D̄
t+1(h̄)) ≤ 0 follows again from the iid asset returns, identical one-step risk mea-

sures, the positive homogeneity and the strategy h̄ corresponding to the scaled position h∗. We
conclude αt(D

[t+1,T ](h̄)) ≥ α∗.
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Table 3: The behavior of Algorithm 1 for various input parameters in a market model with d = 10
assets with short-selling constraints.

Panel A: AIT, maximal acceptability α∗ = 25.45.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)
2 10−4 15 5 [16, 32] 18 6.1e-05 3.78
20 10−4 15 2 [20, 40] 18 7.6e-05 3.40
200 10−4 15 4 [25, 50] 18 9.5e-05 3.56
2 10−8 15 5 [16, 32] 31 7.5e-09 6.22
220 10−4 15 15 [0, 64] no Step 2 1.88
220 10−4 30 17 [16, 32] 18 6.1e-05 4.67
2−10 10−4 15 15 [16,∞] no Step 2 4.61
2−10 10−4 30 16 [16, 32] 18 6.1e-05 7.15

Panel B: GLR, maximal acceptability α∗ = 279.62.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)
2 10−4 15 9 [256, 512] 22 6.1e-05 21.53
20 10−4 15 5 [160, 320] 21 7.6e-05 17.27
200 10−4 15 2 [200, 400] 21 9.5e-05 15.74
2 10−8 15 9 [256, 512] 35 7.5e-09 30.40
225 10−4 15 15 [0, 2048] no Step 2 6.50
225 10−4 30 18 [0.5, 1] 22 6.1e-05 23.91
2−10 10−4 15 15 [16,∞] no Step 2 13.41
2−10 10−4 30 20 [256, 512] 22 6.1e-05 30.27

Panel C: RAROC, maximal acceptability α∗ = 279.62.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)
2 10−4 15 2 [2, 4] 15 6.1e-05 7.20
20 10−4 15 4 [2.5, 5] 15 7.6e-05 9.41
200 10−4 15 8 [1.56, 3.13] 14 9.4e-05 12.84
2 10−8 15 2 [2, 4] 28 7.5e-09 11.07
220 10−4 15 15 [0, 64] no Step 2 10.55
220 10−4 30 20 [2, 4] 15 6.1e-05 19.59
2−15 10−4 15 15 [0.5,∞] no Step 2 7.04
2−15 10−4 30 18 [2, 4] 15 6.1e-05 13.41
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Table 4: A comparison of the different versions of the algorithm in a market with d = 10 assets and
|Ω| = 1000 states of the world both with and without short-selling. A tolerance ε = 10−4 is used
for all algorithms, the original and zero-level version use x0 = 2 and M̄ = 15. Obtaining the final
approximation [xL, xU ] is denoted in the table by α∗, values are listed to two decimal places.

Panel A: AIT, the maximal acceptability with short-selling constraints (h ≥ 0) is α∗ = 25.45, without
short-selling constraints (h free) it is α∗ = 25.72.

Algorithm
Step 1 Bisection on q Bisection on x xU − xL Run time

Iter [xL, xU ] Iter [xL, xU ] Iter [xL, xU ] (s)

h ≥ 0

Original 5 [16, 32] 18 α∗ 6.1e-05 3.32
Modified 2 [0,∞] 23 α∗ 8.3e-05 3.67
Mixed 2 [0,∞] 5 [15, 31] 18 α∗ 6.1e-05 3.90

Zero level 3 [23.42, 46.84] 18 α∗ 5.9e-05 2.96

h free

Original 5 [16, 32] 18 α∗ 6.1e-05 4.89
Modified 2 [0,∞] 23 α∗ 8.5e-05 5.11
Mixed 2 [0,∞] 5 [15, 31] 18 α∗ 6.1e-05 5.09

Zero level 3 [23.45, 46.89] 18 α∗ 5.1e-05 4.36

Panel B: GLR, the maximal acceptability with short-selling constraints (h ≥ 0) is α∗ = 279.62, without
short-selling constraints (h free) it is α∗ = 288.88.

Algorithm
Step 1 Bisection on q Bisection on x xU − xL Run time

Iter [xL, xU ] Iter [xL, xU ] Iter [xL, xU ] (s)

h ≥ 0

Original 9 [256, 512] 22 α∗ 6.1e-05 19.45
Modified 2 [0,∞] 29 α∗ 7.4e-05 18.42
Mixed 2 [0,∞] 8 [254, 510] 22 α∗ 6.1e-05 19.75

Zero level 3 [279.62, 559.24] 22 α∗ 6.7e-05 14.54

h free

Original 9 [256, 512] 22 α∗ 6.1e-05 39.56
Modified 2 [0,∞] 29 α∗ 7.9e-05 40.85
Mixed 2 [0,∞] 8 [254, 510] 22 α∗ 6.1e-05 41.66

Zero level 3 [288.88, 577.76] 22 α∗ 6.8e-05 32.17

Panel C: RAROC, the maximal acceptability with short-selling constraints (h ≥ 0) is α∗ = 2.98, without
short-selling constraints (h free) it is α∗ = 3.08.

Algorithm
Step 1 Bisection on q Bisection on x xU − xL Run time

Iter [xL, xU ] Iter [xL, xU ] Iter [xL, xU ] (s)

h ≥ 0

Original 2 [2, 4] 15 α∗ 6.1e-05 5.88
Modified 2 [0,∞] 18 α∗ 6.0e-05 5.88
Mixed 2 [0,∞] 2 [1, 3] 15 α∗ 6.1e-05 5.62

Zero level 2 [2.98, 5.96] 15 α∗ 9.1e-05 5.53

h free

Original 2 [2, 4] 15 α∗ 6.1e-05 6.91
Modified 2 [0,∞] 18 α∗ 6.3e-05 8.00
Mixed 2 [0,∞] 3 [3, 7] 18 α∗ 6.1e-05 8.12

Zero level 2 [3.08, 6.15] 15 α∗ 9.4e-05 7.04
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