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Abstract

In this paper we provide a unified and flexible framework for study of the time consistency
of risk and performance measures. The proposed framework integrates existing forms of time
consistency as well as various connections between them. In our approach the time consistency is
studied for a large class of maps that are postulated to satisfy only two properties – monotonicity
and locality. This makes our framework fairly general. The time consistency is defined in terms
of an update rule – a novel notion introduced in this paper. We design various updates rules
that allow to recover several known forms of time consistency, and to study some new forms of
time consistency.
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1 Introduction

In the seminal paper by Artzner et al. [3], the authors proposed an axiomatic approach to defining
risk measures that are meant to give a numerical value of the riskiness of a given financial contract
or portfolio. Also in [3], the authors coined the notion of coherent risk measure - a real valued
function acting on the space of random variables (such as, payments at some future fixed time or
terminal cashflows) that is monotone, subaditive, positive homogenous and cash additive1. Each
of these properties have clear financial interpretation, and the values of these measures of risk
can be interpreted as the capital requirement for the purpose of regulating the risk assumed by
market participants (typically, by banks). In particular, the risk measures are generalizations of
the well-known Value-At-Risk (V@R).

Alternatively, one can view the risk measures as a tool that allows to establish preference orders
on the set of cashflows according to their riskiness. Assuming single time period market (static
case), and finite probability space, the authors in [3] also gave a numerical representation of such
measures in terms of sets of probability measures (or generalized scenarios). In the current literature
this type of representation is referred to as robust or dual representation.

1Precise definitions of all these notions are given in Section 2. We note that in the original paper Artzner et al.
[3], the term translation invariance corresponds to cash additivity in the present manuscript.
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Following [3], an extensive body of work was devoted to exploration of the axiomatic approach to
risk measures. One line of research is to consider a larger class of risk measures by imposing weaker
properties. For example, in the definition of coherent risk measures, subaditivity and positive
homogeneity can be replaced by convexity, which leads to a larger class of functions, called convex
risk measures (cf. [36, 40, 47, 6, 45]). Subsequently, Cheridito and Li [20], Biagini and Frittelli
[8] studied risk measures on Orlicz Hearts, law-invariant risk measures have been investigated by
Kusuoka [49] and Frittelli and Rosazza Gianin [42], general quasi-concave measures were studied
in Drapeau and Kupper [33]; for a systematic discussion of static risk measures we refer the reader
to the monographs by Delbaen [29] and Föllmer and Schied [37, Chapter 4].

Following a similar axiomatic approach, Cherny and Madan [26] introduced the notion of co-
herent acceptability index – function defined on a set of random variables that takes positive values
and that are monotone, quasi-concave, and scale invariant. Coherent acceptability indices can be
viewed as generalizations of performance measures such as Sharpe Ratio, Gain to Loss Ratio, Risk
Adjusted Return on Capital. Coherent acceptability indices appear to be a tool very well tailored
to assessing both risk and reward of a given cashflow.

Another line of research that branched out from [3] was dedicated to extension of the theory of
risk and performance measure to the dynamical, multi-period setup, where the flow of information
is modeled by a filtration, say F = (Ft)0≤t≤T , that is a component of the underlying probability
space (Ω,FT ,F, P ). In this case the risk measures are defined on the set of FT -measurable random
variables that correspond to terminal cashflows, or, more generally, on the set of adapted stochastic
processes that correspond to dividend streams or to cumulative cashflows. Most of the axioms from
static case are transferred to the dynamic setup in a natural way, with addition of requirement
that the measures are F-adapted and, frequently, that they are independent of the past. From
another point of view, an extension from one period to multi-period models can be realized through
robust representation theorems, essentially by replacing expectations with conditional expectations.
Dynamic risk measures obtained by this procedure are referred to as conditional risk measures (cf.
[53, 32, 14]).

As shown in one of the first papers that studied dynamic coherent risk measures, Riedel [52],
if one is concerned about making noncontradictory decisions (from the risk point of view) over the
time, then an additional axiom, called time consistency, is needed. Over the past decade significant
progress has been made towards expanding the theory of dynamic risk measures and their time
consistency. For example, so called cocycle condition (for convex risk measures) was studied in
[15, 35], recursive construction was exploited in [19], relation to acceptance and rejection sets
was studied in [30], the concept of prudence was introduced in [51], connections to g-expectations
were studied in [54], and the relation to Bellman’s principle of optimalty was shown in [4]. For
more details on dynamic cash-additive measures also called dynamic monetary risk measures, we
also refer the reader to [21, 22, 23, 28, 32, 44, 52, 43, 41, 53, 59, 31, 58, 39, 9], as well as to a
comprehensive survey paper [1] and the references therein.

Let us briefly recall the concept of strong time consistency of monetary risk measures, which is
one of the most recognized forms of time consistency. Assume that ρt(X) is the value of a dynamic
monetary risk measure at time t ∈ [0, T ], that corresponds to the riskiness, at time t, of the terminal
cashflow X, with X being an FT -measurable random variable. The monetary risk measure is said
to be strongly time consistent if for any t < s ≤ T , and any FT -measurable random variables
X,Y ∈ X we have that

ρs(X) = ρs(Y ) ⇒ ρt(X) = ρt(Y ). (1.1)
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The financial interpretation of strong time consistency is clear – if X is as risky as Y at some future
time s, then today, at time t, X is also as risky as Y . One of the main features of the strong time
consistency is its connection to dynamic programming principle. It is not hard to show that in the
L∞ framework, a monetary risk measure is strongly time consistent if and only if

ρt = ρt(−ρs), 0 ≤ t < s ≤ T. (1.2)

All other forms of time consistency for monetary risk measures, such as weak, acceptance consistent,
rejection consistent, are tied to this connection as well. In [58], the author proposed a general
approach to time consistency for cash-additive risk measures by introducing so called ‘test sets’
or ‘benchmark sets.’ Each form of time consistency was associated to a benchmark set of random
variables, and larger benchmark sets correspond to stronger forms of time consistency.

The first study of time consistency of scale invariance measures is due to Bielecki et al. [13],
where the authors elevated the theory of coherent acceptability indices to dynamic setup in discrete
time. It was pointed out that none of the forms of time consistency for risk measures is suitable for
scale invariant maps. Recursive property similar to (1.2) or benchmark sets approach essentially
can not be applied to scale invariant maps. Consequently, one of the main challenge was to find
an appropriate form of time consistency of acceptability indices, that would be both financially
reasonable and mathematically tractable. For the case of random variables (terminal cashflows),
the proposed form of time consistency for a dynamic coherent acceptability index α reads as follows:
for any Ft-measurable random variables mt, nt, and any t < T , the following implications hold

αt+1(X) ≥ mt ⇒ αt(X) ≥ mt,

αt+1(X) ≤ nt ⇒ αt(X) ≤ nt. (1.3)

The financial interpretation is also clear – if tomorrow X is acceptable at least at level mt, then
today X is also acceptable at least at level mt; similar interpretation holds true for the second
part (1.3). It is fair to say, we think, that dynamic acceptability indices and their time consistency
properties play a critical role in so called conic approach to valuation and hedging of financial
contracts [12, 10, 55].

We recall that both risk measures and performance measures, in the nutshell, put preferences
on the set of cashflows. While the corresponding forms of time consistency (1.1) and (1.3) for
these classes of maps, as argued above, are different, we note that generally speaking both forms
of time consistency are linking preferences between different times. The aim of this paper is to
present a unified and flexible framework for time consistency of risk and performance measures,
that integrates existing forms of time consistency as well as various connections between them. We
consider a (large) class of maps that are postulated to satisfy only two properties - monotonicity and
locality2 - and we study time consistency of such maps. These two properties, in our opinion, have
to be satisfied by any reasonable dynamic risk or performance measure. We introduce the notion
of an update rule that is meant to link preferences between different times.3 The time consistency
is defined in terms of an update rule. We provide various update rules that allow to recover
several known forms of time consistency, and also such that allow to study some new forms of time
consistency. When appropriate, for each form of time consistency we consider separately the case of
terminal cashflows, referred in this paper as the case of random variables, and the case of dividend

2See Section 2 for rigorous definitions along with a detailed discussion of each property.
3In needs to be stressed that our notion of the update rule is different from the notion of update rule used in [58].
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streams, referred to as the case of stochastic processes. For each type of time consistency we
provide different equivalent formulations along with a discussion regarding financial interpretation
and suitability of each rule. We also provide a comprehensive analysis of the connections between
considered forms of time consistency, followed by a set of examples that illustrate diverse forms
of time consistency. We should note that this paper is the first step that we made towards a
unified theory of time consistency of risk/performance measures, and some relevant questions such
as robust or dual representations are beyond the scope of this work and they will be addressed in
the future.

The paper is organized as follows. In Section 2 we introduce some necessary notations, and we
provide discussion of extension of the notion of conditional expectation and of conditional essential
infimum/supremum to the case of random variables that take values in [−∞,∞]. Also here we
introduce all other basic notions used throughout the paper, and we present the main object of our
study – the Dynamic LM-measure. In Section 3 we set forth the main concepts of the paper – the
notion of an updated rule and the definition of time consistency of a dynamic LM-measure. We prove
a general result about time consistency, that can be viewed as counterpart of dynamic programming
principle (1.2), and that is used conveniently in the sequel. Section 3 is devoted to various types of
time consistency. Each type of time consistency is discussed in a separate subsection, within which,
whenever relevant, we consider, respectively, the case of random variables or the case of random
processes. We start with the weakest form of time consistency – the weak time consistency, and we
conclude with the notion of super/submartingale time consistency. We present some fundamental
properties for each type of time consistency, and we establish some relationships between them. A
number of examples are presented in Section 5. Concluding remarks are summarized in Section 6,
where we also provide convenient flowcharts depicting relationships between various forms of time
consistency. To ease the exposition of the main concepts, all technical proofs are deferred to the
Appendix, unless stated otherwise directly below the theorem or proposition.

2 Preliminaries

Let (Ω,F ,F = {Ft}t∈T, P ) be a filtered probability space, with F0 = {Ω, ∅}, and T = {0, 1, . . . , T},
for fixed and finite time horizon T ∈ N.4

For G ⊆ F we denote by L0(Ω,G, P ), and L̄0(Ω,G, P ) the sets of all G-measurable random
variables with values in (−∞,∞), and [−∞,∞], respectively. In addition, we will use the notation
Lp(G) := Lp(Ω,G, P ) Lpt := Lp(Ft), and Lp := LpT , for p ∈ {0, 1,∞}. Analogous definitions will
apply to L̄0. We will also use notation Vp := {(Vt)t∈T : Vt ∈ Lpt }, for p ∈ {0, 1,∞}.

Throughout this paper, X will denote either the space of random variables Lp, or the space of
adapted processes Vp, for p ∈ {0, 1,∞}. If X = Lp, for p ∈ {0, 1,∞}, then the elements X ∈ X
are interpreted as discounted terminal cash-flows. On the other hand, if X = Vp, for p ∈ {0, 1,∞},
then the elements of X , are interpreted as discounted dividend processes. It needs to be remarked,
that all concepts developed for X = Vp can be easily adapted to the case of cumulative discounted
value processes. The case of random variables can be viewed as a particular case of stochastic
processes by considering cash-flows with only the terminal payoff, i.e. stochastic processes such
that V = (0, . . . , 0, VT ). Nevertheless, we treat this case separately for transparency. For both

4For most of the results hold true or can be adjusted respectively, to the case of infinite time horizon. For sake of
brevity, we will omit the discussion of this case here.



5

cases we will consider standard pointwise order, understood in the almost sure sense. In what
follows, we will also make use of the multiplication operator denoted as ·t and defined by:

m ·t V := (V0, . . . , Vt−1,mVt,mVt+1, . . .),

m ·t X := mX, (2.1)

for V ∈
{

(Vt)t∈T | Vt ∈ L0
t

}
, X ∈ L0 and m ∈ L∞t . In order to ease the notation, if no confusion

arises, we will drop ·t from the above product, and we will simply write mV and mX instead of
m ·t V and m ·t X, respectively.

Remark 2.1. We note that the space Vp, p ∈ {0, 1,∞}, endowed with multiplication ( ·t, ) does
not define a proper L0–module [34] (e.g. 0 ·t V = 0 for any V ∈ Vp). However, in what follows,
we will adopt some concepts from L0-module theory which naturally fit into our study. Moreover,
as in many cases we consider, if one additionally assume independence of the past, and replaces
V0, . . . , Vt−1 with 0s in (2.1), then X becomes an L0–module. We refer the reader to [9, 11] for a
thorough discussion on this matter.

We will also make use of stochastic process 1{t} ∈ Vp defined by

1{t} = (0, 0, . . . , 0︸ ︷︷ ︸
t

, 1, 0, 0, . . .), t ∈ T.

Throughout, we will use the convention that ∞−∞ = −∞ and 0 · ±∞ = 0. Note that the
distributive does not hold true in general: (−1)(∞−∞) =∞ 6= −∞+∞ = −∞.

For t ∈ T and X ∈ L̄0 we define the (generalized) Ft-conditional expectation of X by

E[X|Ft] := lim
n→∞

E[(X+ ∧ n)|Ft]− lim
n→∞

E[(X− ∧ n)|Ft],

where X+ = (X ∨ 0) and X− = (−X ∨ 0).
Next we will present some elementary properties of the generalized expectation.

Proposition 2.2. For any X,Y ∈ L̄0 and s, t ∈ T, s > t we get

1) E[λX|Ft] ≤ λE[X|Ft] for λ ∈ L0
t , and E[λX|Ft] = λE[X|Ft] for λ ∈ L0

t , λ ≥ 0;

2) E[X|Ft] ≤ E[E[X|Fs]|Ft], and E[X|Ft] = E[E[X|Fs]|Ft] for X ≥ 0;

3) E[X|Ft] + E[Y |Ft] ≤ E[X + Y |Ft], and E[X|Ft] + E[Y |Ft] = E[X + Y |Ft] if X,Y ≥ 0;

Remark 2.3. All inequalities in Proposition 2.2 can be strict. Assume that t = 0 and k, s ∈ T,
k > s > 0, and let ξ ∈ L0

k be such that ξ = ±1, ξ is independent of Fs, and P (ξ = 1) = P (ξ = −1) = 1/2.
We consider Z ∈ L0

s such that Z ≥ 0, and E[Z] = ∞. By taking λ = −1, X = ξZ and Y = −X,
we get strict inequalities in 1), 2) and 3).

For X ∈ L∞ and t ∈ T, we will denote by ess inftX a unique (up to a set of measure zero),
Ft-measurable random variable, such that for any A ∈ Ft, the following equality holds true

ess inf
ω∈A

X = ess inf
ω∈A

(ess inftX). (2.2)

We will call this random variable the Ft-conditional essential infimum of X. We refer the reader
to [5] for a detailed proof of the existence and uniqueness of the conditional essential infimum. We
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will call ess supt(X) := − ess inft(−X) the Ft-conditional essential supremum of X ∈ L∞. Through
standard limit procedure, we extend these to notions to the space L̄0. For any t ∈ T and X ∈ L̄0,
we define the Ft-conditional essential infimum by5

ess inftX := lim
n→∞

[
ess inft(X

+ ∧ n)
]
− lim
n→∞

[
ess supt(X

− ∧ n)
]
, (2.3)

and respectively we put ess supt(X) := − ess inft(−X).
For convenience, we present some fundamental properties of conditional essential infimum and

supremum, for L̄0 setup, that will be used throughout the paper.

Proposition 2.4. For any X,Y ∈ L̄0, s, t ∈ T, s ≥ t, and A ∈ Ft we have

1) ess infω∈AX = ess infω∈A(ess inftX);

2) If ess infω∈AX = ess infω∈A U for some U ∈ L̄0
t , then U = ess inftX;

3) X ≥ ess inftX;

4) If Z ∈ L̄0
t , is such that X ≥ Z, then ess inftX ≥ Z;

5) If X ≥ Y , then ess inftX ≥ ess inft Y ;

6) 1A ess inftX = 1A ess inft(1AX);

7) ess infsX ≥ ess inftX;

The analogous results are true for {ess supt}t∈T.

The proof for the case X,Y ∈ L∞ can be found in [5]. Since for any n ∈ N and X,Y ∈ L̄0

we get X+ ∧ n ∈ L∞, X− ∧ n ∈ L∞ and X+ ∧ X− = 0, the extension of the proof to the case
X,Y ∈ L̄0 is straightforward, and we omit it here.

Remark 2.5. Similarly to [5], the conditional essential infimum ess inft(X) can be alternatively
defined as the largest Ft-measurable random variable, which is smaller than X, i.e. properties 3)
and 4) from Proposition 2.4 are characteristic properties for conditional essential infimum.

Next, we define the generalized versions of ess inf and ess sup of a family (possible uncountable)
of random variables: For {Xi}i∈I , where Xi ∈ L̄0, we let

ess inf
i∈I

Xi := lim
n→∞

[
ess infi∈I(X

+
i ∧ n)

]
− lim
n→∞

[
ess supi∈I(X

−
i ∧ n)

]
.

Note that, in view of [46, Appendix A], ess infi∈I Xi ∧ n and ess supi∈I Xi ∧ n are well defined, so
that ess infi∈I Xi is well defined.

Furthermore, if for any i, j ∈ I, there exists k ∈ I, such that Xk ≤ Xi∧Xj , then there exists a se-
quence in ∈ I, n ∈ N, such that {Xin}n∈N is nonincreasing and ess infi∈I Xi = infn∈NXin = limn→∞Xin .
Analogous results hold true for ess supi∈I Xi.

We also recall here the notion of a determining family of sets (see for instance [24] for more
details). Towards this end we first let

Pt := {Z ∈ L1 | Z ≥ 0, E[Z|Ft] = 1}.
5Since both sequences ess inft(X

+ ∧ n) and ess supt(X
− ∧ n) are monotone, the corresponding limits exist.
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Alternatively, one can view the elements Z ∈ Pt, as Radon-Nikodym derivatives of probability
measures Q such that Q� P and Q|Ft = P |Ft . We will call a family of sets {Dt}t∈T, a determining
family if for any t ∈ T, Dt ⊆ Pt, Dt 6= ∅, and Dt is uniformly integrable, L1-closed and Ft-convex6.

We will say that the map f : X → L̄0 is:

• Normalized if f(0) = 0;

• Monotone if for any X,Y ∈ X , X ≤ Y ⇒ f(X) ≤ f(Y );

Additionally, if X = Lp, then for a fixed t ∈ T, we will say that a map ft : X → L̄0
t is

• Local if 1Aft(X) = 1Aft(1AX);

• Cash additive if ft(X +m) = ft(X) +m;

• Quasi-concave if ft(λX + (1− λ)Y ) ≥ ft(X) ∧ ft(Y );

• Scale invariant if ft(βX) = ft(X);

for any A ∈ Ft, X ∈ X , m,λ, β ∈ Lpt , such that 0 ≤ λ ≤ 1, β > 0.

On the other hand if X = Vp, for a fixed t ∈ T, we say that a map ft : X → L̄0
t is

• Local if 1Aft(V ) = 1Aft(1A ·t V );

• Cash additive if ft(V +m1{s}) = ft(V ) +m;

• Quasi-concave if ft(λ ·t V + (1− λ) ·t V ′) ≥ ft(V ) ∧ ft(V ′);

• Scale invariant if ft(β ·t V ) = ft(V
′);

• Translation invariant if ft(V +m1{t}) = ft(V +m1{s});

• Independent of the past if ft(V ) = ft(V − 0 ·t V );

for any s ∈ T, A ∈ Ft, V, V ′ ∈ X , m,λ, β ∈ Lpt , such that 0 ≤ λ ≤ 1, β > 0, ‖β‖∞ <∞ and s ≥ t.
Note that if X = Lp, then, recalling that we can interpret random variables as stochastic

processes (cf. Section 2), translation invariance and independence of the past are automatically
satisfied; this is the very reason why we presented these notions only for the case of stochastic
processes.

We will say that a family {ft}t∈T of maps ft : X → L̄0
t is monotone, local, cash additive, etc.,

if it has the corresponding property for any t ∈ T. A family, indexed by x ∈ R+, of maps {fxt }t∈T,
will be called decreasing, if fxt (X) ≤ fyt (X) for all X ∈ X , t ∈ T and x, y ∈ R+, such that x ≥ y.

Next, we introduce the main object of this study.

Definition 2.6. A family {ft}t∈T of maps ft : X → L̄0
t is a Dynamic LM-measure if {ft}t∈T is

local and monotone.

6By Ft-convex we mean that for any Z1, Z2 ∈ Dt and λ ∈ L0
t such that 0 ≤ λ ≤ 1 we get λZ1 + (1− λ)Z2 ∈ Dt.
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We believe that locality and monotonicity are two properties that must be satisfied by any
reasonable dynamic measure of performance and/or measure of risk. Monotonicity property is
natural for any numerical representation of an order between elements of X . The locality property
essentially means that the values of the LM-measure restricted to a set A ∈ F remain invariant
with respect to the values of the arguments outside of the same set A ∈ F ; in particular, the events
that will not happen in the future do not change the value of the measure today.

Throughout the paper we will use {ft}t∈T to denote (a general) family of maps ft : X → L̄0
t ,

while {ϕt}t∈T will be reserved for dynamic LM-measures. Also, it will be clear from the context
which space X we have in mind.

Next, we recall several important subclasses of dynamic LM-measures. A family {ϕt}t∈T of
maps ϕt : X → L̄0

t is a

• Dynamic monetary risk measure if {−ϕt}t∈T is independent of the past, local, monotone,
normalized and cash additive;

• Dynamic convex risk measure if {ϕt}t∈T is a convex dynamic monetary risk measure;

• Dynamic performance index if {ϕt}t∈T is independent of the past, translation invariant, local,
monotone and scale invariant;

• Acceptability Index if {ϕt}t∈T is a quasi-concave dynamic performance index.

All these classes of measures have been extensively studied in the literature over the past
decade. Usually, it is postulated that a risk or performance measure is independent of the past –
the current measurement of risk/performance of a cashflow only accounts for future payoffs. For
a discussion about past dependent measures we refer to [9]. Convexity, concavity, quasi-convexity
and quasi-concavity are related to the fact that diversification reduces the risk and increases the
performance - diversification helps. Cash additivity is the key property that distinguishes risk
measures from all other measures. This property means that adding $m to a portfolio today
reduces the overall risk by the same amount m. From the regulatory perspective, the value of a
risk measure is typically interpreted as the minimal capital requirement for a bank. For more details
on coherent/covex/monearty risk measures we refer the reader to the survey papers [38, 1]. The
distinctive property of performance measures is scale invariance - a rescaled portfolio or cashflow is
accepted at the same level. Performance and acceptability indices were studied in [26, 13, 9, 18, 11],
and they are meant to provide assessment of how good a financial position is. In particular, [18]
gives examples of performance indices that are not acceptability indices. It needs to be noted that
the theory developed in this paper can also be applied to sub-scale invariant dynamic performance
indices studied in [55, 12].

3 Definition of time consistency

In this section we introduce the main concept of this paper - the time consistency of dynamic
risk and performance measures, or more generally, the time consistency of dynamic LM-measures
introduced in the previous section.

We recall that these dynamic LM-measures are defined on X , where X either denotes the space
Lp of random variables or the space Vp of stochastic processes, for p ∈ {0, 1,∞}, so, our study of
time consistency is done relative to such spaces. Nevertheless, the definition of time consistency can
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be easily adapted to more general spaces, such as Orlicz hearts (as studied in [20]) or topological
L0-modules (see for instance [9]). Usually, the need to consider spaces smaller than L0 or V0 is
motivated by the aim to obtain so called robust representation of such measures. For this, a certain
topological structure is required (cf. Remark 4.17). On the other hand, ‘time consistency’ refers
only to consistency of measurements in time, where no particular topological structure is needed,
and thus most of the results obtained here hold true for p = 0.

Assume that {ϕt}t∈T is a dynamic LM-measure on X . For an arbitrary fixed X ∈ X and
u ∈ T the value ϕu(X) represents a quantification (measurement) of preferences about X at time
u. Clearly, it is reasonable to require that any such quantification (measurement) methodology
should be coherent as time passes. This is precisely the motivation behind the concepts of time
consistency of dynamic LM-measures.

There are various forms of time consistency proposed in the literature, some of them suitable
for one class of measures, other for a different class of measures, without a unified approach to
fit them all. For example, for dynamic convex (or coherent) risk measures various version of
time consistency surveyed in [1] can be seem as versions of the celebrated dynamic programming
principle. On the other hand, as shown in [13], dynamic programming principle essentially is not
suited for scale invariant measures such as dynamic acceptability indices, and the authors introduce
a new type of time consistency tailored for these measures and provide a robust representation of
them. Nevertheless, in all these cases the time consistency property connects, in a coherent way,
the measurements at different times.

Next, we will introduce the notion of update rule that serves as the main tool in relating the
measurements of preferences at different times, and also, it is the main building block of our unified
theory of time consistency property.

Definition 3.1. We will call a family µ = {µt,s}s>t, s, t ∈ T, of maps µt,s : L̄0
s×X → L̄0

t an update
rule if for any s > t, the map µt,s satisfies the following conditions:

1) (Locality) 1Aµt,s(m,X) = 1Aµt,s(1Am,X);

2) (Monotonicity) if m ≥ m′, then µt,s(m,X) ≥ µt,s(m′, X);

for any X ∈ X , A ∈ Ft and m,m′ ∈ L̄0
s.

We are now ready to introduce the general definition of time consistency.

Definition 3.2.7 Let µ be an update rule. We will say that the dynamic LM-measure {ϕt}t∈T is
µ-acceptance time consistent if

ϕs(X) ≥ ms =⇒ ϕt(X) ≥ µt,s(ms, X), (3.1)

for all s, t ∈ T, s > t, X ∈ X and ms ∈ L̄0
s. Respectively, we will say that {ϕt}t∈T is µ-rejection

time consistent if
ϕs(X) ≤ ms =⇒ ϕt(X) ≤ µt,s(ms, X), (3.2)

7We introduce the concept of time consistency only for LM-measures, as this is the only class of measures used in
this paper. However, the definition itself is suitable for any map acting from X to L̄0. For example, traditionally in
the literature, the time consistency is defined for dynamic risk measures (negatives of LM-measures), and the above
definition of time consistency will be appropriate, although one has to flip ‘acceptance’ with ‘rejection’.
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for all s, t ∈ T, s > t, X ∈ X and ms ∈ L̄0
s. If properties (3.1) and (3.2) are satisfied only for

s, t ∈ T, such that s = t+ 1, then we will say that {ft}t∈T is one step µ-acceptance time consistent
and one step µ-rejection time consistent, respectively.

Since LM-measures are local and monotone, properties with clear financial interpretations, the
update rules are naturally assumed to be local and monotone too.

We see that the first argument m ∈ L̄0
s in µt,s serves as a benchmark to which the measurement

ϕs(X) is compared. The presence of the second argument, X ∈ X , in µt,s, allows the update rule
to depend on the objects (the Xs), which the preferences are applied to. However, as we will see
in next section, there are natural situations when the update rules are independent of X ∈ X , and
sometimes they do not even depend on the future times s ∈ T.

Next, we define several particular classes of update rules, suited for our needs.

Definition 3.3. Let µ be an update rule. We will say that µ is:

1) X-invariant, if µt,s(m,X) = µt,s(m, 0);

2) sX-invariant, if there exists a family {µt}t∈T of maps µt : L̄0 → L̄0
t , such that µt,s(m,X) = µt(m);

3) Projective, if it is sX-invariant and µt(mt) = mt;

for any s, t ∈ T, s > t, X ∈ X , m ∈ L̄0
s and mt ∈ L̄0

t .

Remark 3.4. If an update rule µ = {µt,s}s>t is sX-invariant, then it is enough to consider only the
corresponding family {µt}t∈T. Hence, with slight abuse of notation we will write µ = {µt}t∈T and
call it an update rule as well.

The financial interpretation of acceptance time consistency is straightforward: if X ∈ X is
accepted at some future time s ∈ T, at least at level m, then today, at time t ∈ T, it is accepted
at least at level µt,s(m,X). Similarly for rejection time consistency. Essentially, the update rule µ
translates the preference levels at time s to preference levels at time t. As it turns out, this simple
and intuitive definition of time consistency, with appropriately chosen µ, will cover various cases
of time consistency for risk and performance measures that can be found in the existing literature.
Moreover, it will allow us to establish some fundamental properties of the LM-measures and some
important connections between different versions of time consistency.

Next, we will give an equivalent formulation of time consistency. While the proof of the equiva-
lence is simple, the result itself will be conveniently used in the sequel. Moreover, it can be viewed
as a counterpart of dynamic programming principle, which is an equivalent formulation of dynamic
consistency for convex risk measures.

Proposition 3.5. Let µ be an update rule and let {ϕt}t be an LM-measure. Then,

1) {ϕt}t∈T is µ-acceptance time consistent if and only if

ϕt(X) ≥ µt,s(ϕs(X), X), (3.3)

for any X ∈ X and s, t ∈ T, such that s > t.

2) {ϕt}t∈T is µ-rejection time consistent if and only if

ϕt(X) ≤ µt,s(ϕs(X), X), (3.4)

for any X ∈ X and s, t ∈ T, such that s > t.
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The financial interpretation of (3.3) is similar to that of (3.1): if in the future, at time s, we
accept the cash-flow X at level ϕs(X), then today, at time t, we should accept the same cash-flow
at least at level µt,s(ϕt(X), X) – the update of the acceptance level of X from time s to time t.
Analogous interpretation applies to rejection time consistency.

Remark 3.6. It is clear, and also naturally desired, that a monotone transformation of an LM-
measure will not change the preference order of the underlying elements. We want to emphasize that
a monotone transformation will also preserve the time consistency. In other words, the preference
orders will be also preserved in time. Indeed, if {ϕt}t∈T is µ-acceptance time consistent, and
g : R̄ → R̄ is a strictly monotone function, then the family {g ◦ ϕt}t∈T is µ̃-acceptance time
consistent, where the update rule µ̃ is defined by µ̃t,s(m,X) = g(µt,s(g

−1(m), X)), for t, s ∈ T,
s > t, X ∈ X and m ∈ L̄0

s.

4 Selected types of time consistency

In this section we will analyze various types of time consistency, including some of those that have
been studied in the literature, using the framework developed earlier in this paper.

If X = Lp, for p ∈ {0, 1,∞}, then the elements X ∈ X are interpreted as discounted terminal
cash-flows. On the other hand, if X = Vp, for p ∈ {0, 1,∞}, then the elements of X , are interpreted
as discounted dividend processes. It needs to be remarked, that all concepts developed for X = Vp
can be easily adapted to the case of cumulative discounted value processes (cf. Example 5.8).

While we preserve the same name for time consistency for both random variables and stochastic
processes, the update rules may differ significantly. Usually, the case of stochastic processes is more
intricate. If ϕ is an LM-measure, and V ∈ Vp, then in order to compare ϕt(V ) and ϕs(V ), for
s > t, one also needs to take into account the cash-flows between times t and s.

Before moving to the concrete definitions of time consistency, we will give some general remarks
about relationship between time consistency for random variables and time consistency for random
processes.

In what follows, for the case of random variables, X = Lp, we we will only consider update
rules that are X-invariant. Hence, as it will be clear later, the case of random variables can be
viewed as a particular case of stochastic processes by considering cash-flows with only the terminal
payoff, i.e. stochastic processes such that V = 1{T}VT . Nevertheless, we treat this case separately
for transparency.

In the present work, in the case of stochastic processes, we will focus on one step update rules,
such that

µt,t+1(m,V ) = µt,t+1(m, 0) + f(Vt), (4.1)

where f : R̄ → R̄ is a Borel measurable function, such that f(0) = 0. We do this primarily to
allow for a direct link between our results and the existing literature. We note, that any such one
step update rule µ can be easily adapted to the case of random variables. Indeed, upon setting
µ̃t,t+1(m) := µt,t+1(m, 0) we get a one step X-invariant update rule µ̃, which is suitable for random
variables. Moreover, µ̃ will define the corresponding type of one step time consistency for random
variables. Of course, this correspondence between update rule for processes and random variables
is valid only for ‘one step’ setup.

Finally, we note that for update rules, which admit the so called nested composition property (cf.
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[57, 56] and references therein),

µt,s(m,V ) = µt,t+1(µt+1,t+2(. . . µs−2,s−1(µs−1,s(m,V ), V ) . . . V ), V ), (4.2)

we have that µ-acceptance (resp. µ-rejection) time consistency is equivalent to one step µ-acceptance
(resp. µ-rejection) time consistency.

This is another reason why we consider only one step update rules for stochastic processes,
however one can consider more exotic forms of time consistency, within proposed framework, and
derive numerous properties and relationships between them, a task that we will leave for further
studies.

We will now proceed with our discussion of various types of time consistency. Usually, whenever
relevant, we consider in separate subsections the case of random variables and the case random
processes. We start with the weakest form of time consistency - the weak time consistency, and we
conclude with the notion super/submartingale time consistency.

4.1 Weak time consistency

The notion of weak time consistency was introduced in [58], and subsequently studied in [1, 4, 23,
32, 2, 23]. The idea is that if ‘tomorrow’, say at time s, we accept X ∈ X at level ms ∈ Fs, then
‘today’, say at time t, we would accept X at least at any level smaller or equal than ms, adjusted
by the information Ft available at time t (cf. (4.5)). Similarly, if tomorrow we reject X at level
smaller than ms ∈ Fs, then today, we should also reject X at any level bigger than ms, adapted to
the flow of information Ft. This suggests that the update rules should be taken as Ft-conditional
essential infimum and supremum, respectively. First, we will show that Ft-conditional essential
infimum and supremum are projective update rules.

Proposition 4.1. The family µinf := {µinf
t }t∈T of maps µinf

t : L̄0 → L̄0
t given by µinf

t (m) = ess inftm,
is a projective8 update rule. Moreover,

µinf
t (m) = ess inf

Z∈Pt
E[Zm|Ft]. (4.3)

Similar result is true for family µsup := {µsup
t }t∈T, defined by µsup

t (m) = ess suptm.

4.1.1 Random variables

Recall that the case of random variables corresponds to X = Lp, for a fixed p ∈ {0, 1,∞}. We
proceed with the definition of weak acceptance and weak rejection time consistency (for random
variables).

Definition 4.2. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. Then ϕ is said to be

• Weakly acceptance time consistent if it is µinf -acceptance time consistent,

• Weakly rejection time consistent, if it is µsup-rejection time consistent.

8See Remark 3.4 for the comment about notation.



13

Definition 4.2 of time consistency is equivalent to many forms of time consistency studied in
the current literature. Usually, the weak time consistency is considered for dynamic monetary
risk measures on L∞ (cf. [1] and references therein), to which we refer to as ‘classical weak time
consistency.’ It was proved in [1] that in the classical weak time consistency framework, weak
acceptance (respectively weak rejection) time consistency is equivalent to the statement that for
any X ∈ X and s > t, we get

ϕs(X) ≥ 0⇒ ϕt(X) ≥ 0 (resp. ≤). (4.4)

This was the very starting point for our definition of weak acceptance (respectively weak rejection)
time consistency, and the next proposition explains why so.

Proposition 4.3. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. The following conditions are
equivalent

1) ϕ is weakly acceptance time consistent, i.e. for any X ∈ X , t, s ∈ T, s > t, and ms ∈ L̄0
s,

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ ess inft(ms). (4.5)

2) For any X ∈ X , s, t ∈ T, s > t, ϕt(X) ≥ ess inft ϕs(X).

3) For any X ∈ X , s, t ∈ T, s > t, and mt ∈ L̄0
t ,

ϕs(X) ≥ mt ⇒ ϕt(X) ≥ mt.

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then the above conditions are equiv-
alent to

4) For any X ∈ X and s, t ∈ T, s > t,

ϕs(X) ≥ 0⇒ ϕt(X) ≥ 0.

Similar result holds true for weak rejection time consistency.

Property 3) in Proposition 4.3 was also suggested as the notion of (weak) acceptance and (weak)
rejection time consistency in the context of scale invariant measures, called acceptability indices
(cf. [7, 13]).

As next result shows, the weak time consistency is indeed one of the weakest forms of time
consistency, being implied by any time consistency generated by a projective rule.

Proposition 4.4. Let {ϕt}t∈T be a dynamic LM-measure and let µ be a projective update rule.
If {ϕt}t∈T is µ-acceptance (resp. µ-rejection) time consistent, then {ϕt}t∈T is weakly acceptance
(resp. weakly rejection) time consistent.

Remark 4.5. Recall that time consistency is preserved under monotone transformations, Remark 3.6.
Thus, for any strictly monotone function g : R̄→ R̄ , if {ϕt}t∈T is weakly acceptance (resp. weakly
rejection) time consistent, then {g ◦ ϕt}t∈T also is weakly acceptance (resp. weakly rejection) time
consistent.
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4.1.2 Stochastic processes

In this subsection we assume that X = Vp, for a fixed p ∈ {0, 1,∞}, i.e. we consider the case of
adapted stochastic processes.

Definition 4.6. Let ϕ = {ϕt}t∈T be a dynamic LM-measure (for stochastic processes). We say
that ϕ is

• Weakly acceptance time consistent if it is one step µ-acceptance time consistent, where the
update rule is given by

µt,t+1(m,V ) = ess inft(m) + Vt.

• Weakly rejection time consistent, if it is one step µ-acceptance time consistent, where

µt,t+1(m,V ) = ess supt(m) + Vt.

Similarly to Proposition 4.3, we have the following result.

Proposition 4.7. Let ϕ = {ϕt}t∈T be a dynamic LM-measure on Vp. The following conditions
are equivalent

1) ϕ is weakly acceptance time consistent, i.e. for any V ∈ X , t < T (t ∈ T) and mt+1 ∈ L̄0
t+1,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(X) ≥ ess inft(mt+1) + Vt.

2) For all V ∈ X , t ∈ T, t < T ,

ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt.

3) For all V ∈ X , t ∈ T, t < T and mt ∈ L̄0
t ,

ϕt+1(V ) ≥ mt ⇒ ϕt(V )− Vt ≥ mt.

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then the above conditions are equiv-
alent to

4) For all V ∈ X and t ∈ T, t < T ,

ϕt+1(V ) ≥ 0⇒ ϕt(V )− Vt ≥ 0.

Analogous results hold true for weak rejection time consistency.

As mentioned earlier, the update rule, and consequently weak time consistency for stochastic
processes, depends also on the value of the process (the dividend paid) at time t. If tomorrow, at
time t+1, we accept X ∈ X at level greater than mt+1 ∈ Ft+1, then today at time t, we will accept
X at least at level ess inftmt+1 (i.e. the worst level of mt+1 adapted to the information Ft) plus
the dividend Vt received today.

Finally, we present the counterpart of Proposition 4.4 for the case of stochastic processes.

Proposition 4.8. Let {ϕt}t∈T be a dynamic LM-measure on Vp and let φ be a projective update
rule. Let {ϕt}t∈T be one step µ-acceptance (resp. one step µ-rejection) time consistent, where µ is
given by

µt,t+1(m,V ) = φt(m+ Vt), m ∈ L̄0
t+1, V ∈ X .

Then, {ϕt}t∈T is weakly acceptance (resp. weakly rejection) time consistent.

The proof of Proposition 4.8 is analogous to the proof of Proposition 4.4, and we omit it.
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4.2 Semi-weak time consistency (for stochastic processes)

In this section we introduce the concept of semi-weak time consistency for stochastic processes. As it
turns out, for the case of random variables semi-weak time consistency coincides with the definition
of weak time consistency, hence omitted here. Thus, we take X = Vp, for a fixed p ∈ {0, 1,∞}. As
it was shown [13], none of the existing, at that time, forms of time consistency were suitable for
scale-invariant maps, such as acceptability indices. In fact, even the weak acceptance and the weak
rejection time consistency for stochastic processes (as defined in the present paper) are too strong
in case of scale-invariant maps. Because of that we need even a weaker notion of time consistency,
which we will refer to as semi-weak acceptance and semi-weak rejection time consistency. The
notion of semi-weak time consistency for stochastic processes, introduced next, is suited precisely
for such maps, and we refer the reader to [13] for a detailed discussion on time consistency for scale
invariant measures and their dual representations9.

Definition 4.9. Let ϕ = {ϕt}t∈T be a dynamic LM-measure (for processes). Then ϕ is said to be:

• Semi-weakly acceptance time consistent if it is one step µ-acceptance time consistent, where
the update rule is given by

µt,t+1(m,V ) = 1{Vt≥0}µ
inf
t (m) + 1{Vt<0}(−∞).

• Semi-weakly rejection time consistent if it is one step µ′-rejection time consistent, where the
update rule is given by

µ′t,t+1(m,V ) = 1{Vt≤0}µ
sup
t (m) + 1{Vt>0}(+∞).

It is straightforward to check that weak acceptance/rejection time consistency for stochastic
processes always implies semi-weak acceptance/rejection time consistency.

Next, we will show that the definition of semi-weak time consistency is indeed equivalent to
time consistency introduced in [13], that was later studied in [7, 12].

Proposition 4.10. Let ϕ = {ϕt}t∈T be a dynamic LM-measure on Vp . The following conditions
are equivalent

1) ϕ is semi-weakly acceptance time consistent, i.e. for all V ∈ X , t ∈ T, t < T , and mt ∈ L̄0
t ,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(V ) ≥ 1{Vt≥0} ess inft(mt+1) + 1{Vt<0}(−∞).

2) For all V ∈ X and t ∈ T, t < T , ϕt(V ) ≥ 1{Vt≥0} ess inft(ϕt+1(V )) + 1{Vt<0}(−∞).

3) For all V ∈ X , t ∈ T, t < T , and mt ∈ L̄0
t , such that Vt ≥ 0 and ϕt+1(V ) ≥ mt, then

ϕt(V ) ≥ mt.

Similar result is true for semi-weak rejection time consistency.

9In [13] the authors combined both semi-weak acceptance and rejection time consistency into one single definition
and call it time consistency.
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Property 3) in Proposition 4.10 illustrates best the financial meaning of semi-weak acceptance
time consistency: if tomorrow we accept the dividend stream V ∈ X at level mt, and if we get a
positive dividend Vt paid today at time t, then today we accept the cash-flow V at least at level
mt as well. Similar interpretation is valid for semi-weak rejection time consistency.

The next two results will give an important (dual) connection between cash additive measures
and scale invariant measures.

Proposition 4.11. Let {ϕxt }t∈T, x ∈ R+, be a decreasing family of dynamic LM-measures. Assume
that for each x ∈ R+, {ϕxt }t∈T is weakly acceptance (resp. weakly rejection) time consistent. Then,
the family {αt}t∈T of maps αt : X → L̄0

t defined by

αt(V ) = sup{x ∈ R+ : ϕxt (V ) ≥ 0}, (4.6)

is a semi-weakly acceptance (resp. semi-weakly rejection) time consistent dynamic LM-measure.

Proposition 4.12. Let {αt}t∈T be a dynamic LM-measure, which is independent of the past and
translation invariant. Assume that {αt}t∈T is semi-weakly acceptance (resp. semi-weakly rejection)
time consistent. Then, for any x ∈ R+, the family {ϕxt }t∈T defined by

ϕxt (V ) = inf{c ∈ R : αt(V − c1{t}) ≤ x}, (4.7)

is a weakly acceptance (resp. weakly rejection) time consistent dynamic LM-measure.

This type of dual representation, i.e. (4.6)–(4.7), first appeared in [26] where the authors studied
static (one period of time) scale invariant measures. Subsequently, in [13], the authors extended
these results to the case of stochastic processes with special emphasis on time consistency property.
In contrast to [13], we consider an arbitrary probability space, not just a finite one.

4.3 Middle time consistency

Before we give the definition of middle acceptance/rejection time consistency, we need to introduce
the concept of LM-extension of an LM-measure for random variables.

Definition 4.13. Let {ϕt}t∈T be a dynamic LM-measure (for random variables). We will call a
family ϕ̂ = {ϕ̂t}t∈T of maps ϕ̂t : L̄0 → L̄0

t an LM-extension of {ϕt}t∈T, if for any t ∈ T, ϕ̂t|X ≡ ϕt,
and ϕ̂t is local and monotone on L̄0.10

We will show below that such extensions exist, for which we will make use of the following
auxiliary sets:

Y+
A (X) := {Y ∈ X | 1AY ≥ 1AX}, Y−A (X) := {Y ∈ X | 1AY ≤ 1AX},

defined for any X ∈ L̄0 and A ∈ F .

Definition 4.14. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. The collection of functions
ϕ+ = {ϕ+

t }t∈T, where ϕ+
t : L̄0 → L̄0

t is defined as11

ϕ+
t (X) := ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(+∞)
]
, (4.8)

10That is, it satisfies monotonicity and locality on L̄0, as in 5) and 6) in Proposition 2.4.
11We will use the convention ess sup ∅ = −∞ and ess inf ∅ =∞.
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is called the upper LM-extension of ϕ.
Respectively, the collection of functions ϕ− = {ϕ−t }t∈T, where ϕ−t : L̄0 → L̄0

t , and

ϕ−t (X) := ess sup
A∈Ft

[
1A ess sup

Y ∈Y−A (X)

ϕt(Y ) + 1Ac(−∞)
]
, (4.9)

is called the lower LM-extension of ϕ.

The next result shows that ϕ± are two ‘extreme’ extensions, and any other extension is sand-
wiched between them.

Proposition 4.15. Let {ϕt}t∈T be a dynamic LM-measure. Then, ϕ− and ϕ+ are LM-extensions
of ϕ. Moreover, let ϕ̂ be an LM-extension of ϕ. Then, for any X ∈ L̄0 and t ∈ T we get

ϕ−t (X) ≤ ϕ̂t(X) ≤ ϕ+
t (X). (4.10)

Clearly, generally speaking the maps (4.8) and (4.9) are not equal, and thus the extensions of
an LM-measure are not unique.

Remark 4.16. Let t ∈ T and B ⊆ L̄0 be such that, for any A ∈ Ft, 1AB ⊆ B and 1AB+ 1AcB ⊆ B.
As a generalization of Proposition 4.15, one can show that for any Ft-local and monotone12 mapping
f : B → L̄0

t , the maps f± defined analogously as in (4.8) and (4.9) will be extensions of f to L̄0,
preserving locality and monotonicity. We omit the detailed proof here.

Remark 4.17. For large classes of LM-measures, as mentioned earlier, there exists a ‘robust rep-
resentation’ type theorem - essentially a representation, via convex duality, as a function of con-
ditional expectation. We refer the reader to [9] and references therein, where the authors present
a general result on robust representation for dynamic quasi-concave upper semi-continuous LM-
measures. Hence, an alternative construction of extensions can be obtained through the robust
representations of LM-measures, by considering conditional expectations defined on extended real
line, etc.

Also, if an LM-measure admits some ‘Lebesgue type of continuity’, the extension can be tradi-
tionally obtained by

f̄(X) := lim inf
m→∞

lim inf
n→−∞

f
(
n ∨X ∧m

)
, m, n ∈ Z. (4.11)

Finally, we show that any extension of an LM–measure is an sX-invariant update rule, and we
give necessary and sufficient conditions when this update rule is also projective.

Proposition 4.18. Any LM-extension ϕ̂ of a dynamic LM–measure ϕ is an sX-invariant update
rule. Moreover, ϕ̂ is projective if and only if ϕt(X) = X, for t ∈ T and X ∈ X ∩ L̄0

t .

4.3.1 Random variables

Let us start with the definition of middle acceptance and middle rejection time consistency.

Definition 4.19. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. Then ϕ is said to be

12That is, Ft-local and monotone on B.
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• Middle acceptance time consistent if it is ϕ−-acceptance time consistent.

• Middle rejection time consistent, if it is ϕ+-rejection time consistent.

As in the case of weak time consistency, the notion of middle time consistency is usually pre-
sented for functions {−ϕt}t∈T being dynamic monetary risk measures on L∞ (cf. [1] and references
therein). It is not difficult to prove (cf. [1]), that in L∞ framework the middle acceptance (resp.
middle rejection) time consistency is equivalent to the statement that

ϕt(X) ≥ ϕt(ϕs(X)) (resp. ≤), X ∈ X , s > t. (4.12)

However, in case of a general domain of definition X of ϕ, we may have that ϕs(X) 6∈ X and,
consequently, (4.12) cannot be used directly for time consistency. This is precisely the reason why
we have introduced the LM -extensions. On the other hand, due to the fact that in Definition 4.19
the update rules are extensions, our concept of middle time consistency is stronger than the classical
approach to middle time consistency, as shown in the next result.

Proposition 4.20. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. The following two conditions are
equivalent

1) ϕ is middle acceptance time consistent, i.e. for any X ∈ X , s, t ∈ T, s > t, and ms ∈ L̄0
s,

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ ϕ−t (ms).

2) For any X ∈ X , s, t ∈ T, s > t,
ϕt(X) ≥ ϕ−t (ϕs(X)).

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then 1) or 2) implies

3) For any X ∈ X , s, t ∈ T, s > t, and Y ∈ X ∩ L̄0
s, we get

ϕs(X) ≥ ϕs(Y )⇒ ϕt(X) ≥ ϕt(Y ).

Analogous results are true for middle rejection time consistency,

The proof of the equivalence of 1) and 2) in Proposition 4.20 follows immediately from Proposi-
tion 3.5, and the proof that 1) implies 3) is straightforward upon taking ms = ϕs(Y ).

Next, we will show that, in principle, middle acceptance time consistency is not suited for
acceptability indices [13, 26].

Proposition 4.21. Let {ϕt}t∈T be a dynamic LM-measure such that

1) ϕt(X) =∞, for any t ∈ T and X ∈ X , such that X ≥ 0 and P [X > 0] > 0;

2) there exists X0 ∈ X and t1, t2 ∈ T, t1 6= t2, such that 0 < ϕti(X0) <∞, for i = 1, 2.

Then, {ϕt}t∈T is not middle acceptance time consistent.
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Remark 4.22. Properties 1) and 2) in Proposition 4.21 are characteristic for acceptability indices:
the first property is related to ‘arbitrage consistency’ proposed in [26]; the second property is a
technical assumption that eliminates degenerate cases. Thus, the concept of middle acceptance
time consistency, and therefore (as seen in next section) the concept of strong time consistency, is
not proper for such maps.

Remark 4.23. In general, middle acceptance/rejection time consistency does not imply weak accep-
tance/rejection time consistency. Indeed, let us consider ϕ = {ϕt}t∈T, such that ϕt(X) = t (resp.
ϕt(X) = −t) for all X ∈ L0. Since ϕt(0) = t 6≥ ess inft ϕs(0) = s (resp. −t 6≤ −s), for s > t, we
conclude that ϕ is not weakly acceptance (resp. weakly rejection) time consistent. On the other
hand ϕt(X) = ϕt(ϕs(X)) for any X ∈ L0, and hence ϕ is both middle acceptance and middle
rejection time consistent.

4.3.2 Stochastic processes

In this section we will adapt the middle time consistency to the case of stochastic processes, and
we start with the definition of one step LM-extensions.

As before, for the case of stochastic processes we take X = Vp, for a fixed p ∈ {0, 1,∞}. In
what follows we will also make use of notation T′ = {0, 1, . . . , T − 1}.

For a dynamic LM-measure ϕ = {ϕt}t∈T, we denote by ϕ̃ = {ϕ̃t}t∈T′ a family of maps
ϕ̃t : Lpt+1 → L̄0

t given by
ϕ̃t(X) := ϕt(1{t+1}X). (4.13)

Since ϕ is monotone and local on Vp, then, clearly, ϕ̃t is local and monotone on Lpt+1. Next,
similar to the previous section, for any t ∈ T′, we consider the extension of ϕ̃t to L̄0

t+1, preserving
locality and monotonicity (see Remark 4.16). Note that formally ϕ̃ is not an LM -measure, since
the domain of the definition depends on t ∈ T′, however, with slight abuse of notation, we will
call such extension one step LM -extension of ϕ̃. For any ϕ̃t and t ∈ T′, we consider the maps
ϕ̃+
t : L̄0

t+1 → L̄0
t and ϕ̃−t : L̄0

t+1 → L̄0
t defined as in (4.8) and (4.9), with the sets Y+

A (X) and Y−A (X)
there replaced by

Y+
t,A(X) := {Y ∈ Lpt+1 | 1AY ≥ 1AX}, Y−t,A(X) := {Y ∈ Lpt+1 | 1AY ≤ 1AX},

for any X ∈ L̄0
t+1, We will call ϕ̃+ and ϕ̃− upper and lower one step LM -extensions of ϕ̃, respec-

tively. Now, we are ready to present the definition of middle acceptance and middle rejection time
consistency for processes.

Definition 4.24. Let ϕ = {ϕt}t∈T be a dynamic LM-measure (for stochastic processes). Then ϕ
is said to be

• Middle acceptance time consistent if it is one step µ-acceptance time consistent, where the
update rule is given by

µt,t+1(m,V ) = ϕ̃−t (m+ Vt).

• Middle rejection time consistent if it is one step µ-rejection time consistent, where the update
rule is given by

µt,t+1(m,V ) = ϕ̃+
t (m+ Vt).
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Proposition 4.25. Let ϕ = {ϕt}t∈T be a dynamic LM-measure on Vp. The following conditions
are equivalent

1) ϕ is middle acceptance time consistent, i.e. for any V ∈ X , t ∈ T′ and mt+1 ∈ L̄0
t+1,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(V ) ≥ ϕ̃−t (mt+1 + Vt).

2) For any V ∈ X and t ∈ T′, ϕt(V ) ≥ ϕ̃−t (ϕt+1(V ) + Vt).

If additionally {−ϕt}t∈T is a dynamic monetary risk measure, then 1) or 2) implies

3) For any V, V ′ ∈ X , and t ∈ T′, we get

ϕt+1(V ) ≥ ϕt+1(1{t+1}V
′
t+1)⇒ ϕt(V ) ≥ ϕ̃−t (V ′t+1 + Vt).

Analogous results are true for middle rejection time consistency.

The first part of Proposition 4.25 is a straightforward implication of Proposition 3.5. Since for
cash additive measures ϕt+1(1{t+1}V

′
t+1) = V ′t+1, then, by taking mt+1 = V ′t+1 in 1), the second

part follows immediately.

4.4 Strong time consistency

The strong version of time consistency was one of the first concepts of time consistency studied in
the literature. This has been primarily done for dynamic coherent risk measures and subsequently
for dynamic convex risk measures, and there exists an extensive literature on this subject (cf. [1,
4, 23, 32, 2, 23]. The key feature of strong time consistency is its relationship with the dynamic
programming type principle [4]. The definition that we will propose here will be slightly stronger
(see Proposition 4.27), but nevertheless, the main idea will remain the same.

4.4.1 Random variables

In this subsection we assume that X = Lp, for a fixed p ∈ {0, 1,∞}, i.e. we consider the case of
random variables. Let us start with the definition of strong time consistency.

Definition 4.26. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. Then ϕ is said to be strongly time
consistent if there exists ϕ̂, LM -extension of ϕ, such that the family ϕ is both ϕ̂-acceptance and
ϕ̂-rejection time consistent.

Using (4.12), we conclude if {−ϕt}t∈T is dynamic monetary risk measure on L∞ (see also [1]
and references therein), then its strong time consistency property is equivalent to the following
property

ϕt(X) = ϕt(ϕs(X)), for any X ∈ X , s > t, (4.14)

known as Bellman’s principle or dynamic programming principle. As mentioned in previous section,
once the LM-measure is defined on a larger space than L∞, to make sense of dynamic program-
ming principle, and thus to make sense of strong time consistency, one needs to work with proper
extensions of ϕ. The next key result shows an alternative formulation for strong time consistency,
that also has a clear financial interpretation.
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Proposition 4.27. Let ϕ = {ϕt}t∈T be a dynamic LM-measure, so that for any t ∈ T there exists
X ∈ X such that ϕt(X) = 0. The following conditions are equivalent:

1) There exists an update rule µ, such that µ is X-invariant and the family ϕ is both µ-acceptance
and µ-rejection time consistent.

2) For any X,Y ∈ X , s, t ∈ T, s > t,

ϕs(X) = ϕs(Y )⇒ ϕt(X) = ϕt(Y ).

In particular 1) and 2) are satisfied if one of the following (equivalent) conditions hold

3) ϕ is strongly time consistent.

4) There exists ϕ̂, LM -extension of ϕ, such that for any X ∈ X , s, t ∈ T, s > t we get
ϕt(X) = ϕ̂t(ϕs(X)).

Remark 4.28. Property 2) in Proposition 4.27 is called, in the existing literature, the strong time
consistency (for risk or monetary measures). Note that strong time consistency introduced in
Definition 4.26 is stronger than property 2) in Proposition 4.27. In particular, the update rule
considered in Definition 4.26 is sX-invariant (cf. Proposition 4.18), while property 2) guarantees
existence of update rule, which is just X-invariant.

4.4.2 Stochastic processes

In the next definition we will use family ϕ̃ defined in (4.13).

Definition 4.29. Let ϕ = {ϕt}t∈T be a dynamic LM-measure. Then ϕ is called strongly time
consistent if there exists ϕ̂, a one step LM-extension of ϕ̃, such that ϕ is both one step µ-acceptance
and one step µ-rejection time consistent with respect to

µt,t+1(m,V ) = ϕ̂t(m+ Vt).

Proposition 4.30. Let ϕ = {ϕt}t∈T be a dynamic LM-measure on Vp. Assume that ϕ is indepen-
dent of the past, and that for any t ∈ T, there exists V ∈ X such that ϕt(V ) = 0. The following
two conditions are equivalent:

1) There exists an update rule µ, such that: for all t ∈ T′, m ∈ L̄0
t , and V, V ′ ∈ X , satisfying

Vt = V ′t , we have µt,t+1(m,V ) = µt,t+1(m,V ′); the family ϕ is both one step µ-acceptance and
one step µ-rejection time consistent.

2) For any V, V ′ ∈ X , and t ∈ T′,

Vt = V ′t and ϕt+1(V ) = ϕt+1(V ′) ⇒ ϕt(V ) = ϕt(V
′).

In particular 1) and 2) are satisfied if one of the following (equivalent) conditions hold

3) ϕ is strongly time consistent.

4) There exists ϕ̂, one step LM -extension of ϕ̃, such that for any V ∈ X and t ∈ T′, we get
ϕt(V ) = ϕ̂t(ϕt+1(V ) + Vt).
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4.5 Submartingales, supermartingales and robust expectations

The definition of projective update rule is strictly connected to the definition of so called (con-
ditional) non-linear expectation (see for instance [27] for definition and properties of non-linear
expectation). In [54, 50], the authors made an important connections between non-linear expec-
tations and dynamic risk measures. It was also shown (see, for instance, [17, 16] for details) that
among dynamic convex risk measures, the dynamic coherent risk measures are the only ones which
satisfy Jensen’s inequality for dynamic maps, a property critically important in our framework, as
it leads to projective update rules for which time consistency is invariant under concave transforma-
tions (see Proposition 4.32). One particularly important case is obtained by using as an update rule
the standard expectation operator. Finally, we want to mention that this type of time consistency
in L∞ framework, was studied in [32, Section 5] and is related to the definition of supermartingale
and submartingale property.

4.5.1 Random variables

Definition 4.31. Let ϕ = {ϕt}t∈T be a dynamic LM-measure and let µ = {µt}t∈T be given by
µt(m) = E[m|Ft] (for m ∈ L̄0). Then ϕ is said to be

• Supermartingale time consistent if it is µ-acceptance time consistent, i.e. for any X ∈ X , and
ms ∈ Fs, we have

ϕs(X) ≥ ms ⇒ ϕt(X) ≥ E[ms|Ft].

• Submartingale time consistent if it is µ-rejection time consistent, i.e. for any X ∈ X , and
ms ∈ Fs, we have

ϕs(X) ≤ ms ⇒ ϕt(X) ≤ E[ms|Ft].

Next result is devoted to a more general class of updates rules, and hence concepts of time
consistency, for which we do not give a specific name. The case of super/sub-martingale time
consistency will correspond to the particular case of determining sets Dt = {1}.

Proposition 4.32. Let {Dt}t∈T be a determining family of sets, and let {ϕt}t∈T be a dynamic
LM-measure. Consider the family of maps φ = {φt}t∈T and φ′ = {φ′t}t∈T, φt, φ

′
t : L̄0 → L̄0

t , given
by the following robust expectations13

φt(m) = ess inf
Z∈Dt

E[Zm|Ft], φ′t(m) = ess sup
Z∈Dt

E[Zm|Ft]. (4.15)

Then, the following statements hold true:

1) the families φ and φ′ are projective update rules;

2) if {ϕt}t∈T is φ-acceptance time consistent, then {g ◦ϕt}t∈T is also φ-acceptance time consistent,
for any increasing, and concave function g : R̄→ R.

3) if {ϕt}t∈T is φ′-rejection time consistent, then {g ◦ ϕt}t∈T is also φ′-rejection time consistent,
for any increasing, and convex function g : R̄→ R.

13The term robust is inspired by robust representations of risk measures.
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Remark 4.33. Note that since any determining family of sets D is subset of P (see definition of
determining sets in Section 2), we have that φt(m) ≥ ess infZ∈Pt E[m|Ft]. Thus, an LM-measure
that is acceptance time consistent with respect to the update rule φt is also weakly acceptance time
consistent. In particular, any supermartingale consistent LM-measure is also weakly acceptance
time consistent. Similar statement holds true for rejection consistency.

4.5.2 Stochastic Processes

The sub/super-martingale time consistency is defined similarly, by considering one step update
rules of the form µt,t+1(m,V ) = E[m|Ft] + Vt. Similar to Proposition 4.32, we have that time
consistency property generated by updates rules of the form µt,t+1(m,V ) = φt(m+Vt) are invariant
under concave/convex transformations.

Proposition 4.34. Let ϕ = {ϕt}t∈T be a dynamic LM-measure (for processes). Let a one step
update rule µ = {µt}t∈T be given by µt,t+1(m,V ) = φt(m+Vt), for {φt}t∈T defined in (4.15). Then

1) if ϕ is µ-acceptance time consistent, then g◦ϕ = {g◦ϕt}t∈T also is µ-acceptance time consistent,
for any increasing, and concave function g : R̄→ R̄.

2) if ϕ is µ-rejection time consistent, then g ◦ ϕ = {g ◦ ϕt}t∈T also is µ-rejection time consistent,
for any increasing, and convex function g : R̄→ R̄.

The proof of Proposition 4.34 is analogous to the proof of Proposition 4.32.

5 Examples

This section is devoted to various examples, known in the literature, that illustrate the different
concepts of time consistency for risk and performance measures introduced above, as well as some
relationships between them.

Example 5.1 (Negative of Conditional Weighted Value at Risk). Let X = L0. For α ∈ (0, 1) we
consider the family of sets {Dα

t }t∈T defined by

Dα
t := {Z ∈ L1 : 0 ≤ Z ≤ α−1, E[Z|Ft] = 1}, (5.1)

and we let {ϕαt }t∈T be given by

ϕαt (X) = ess inf
Z∈Dαt

E[ZX|Ft], t ∈ T, X ∈ L0. (5.2)

The map ϕα, defined in (5.2), is a dynamic coherent risk measure, for any fixed parameter α ∈ (0, 1)
(see [24] for details). Moreover, it is supermartingale time-consistent, and thus, by Remark 4.33,
it is also weakly acceptance time consistent. Indeed, let t, s ∈ T be such that s > t. It is easy to
check that Dα

s ⊆ Dα
t . Hence,

ϕαt (X) = ess inf
Z∈Dαt

E[ZX|Ft] ≤ ess inf
Z∈Dαs

E[ZX|Ft] = ess inf
Z∈Dαs

E[E[ZX|Fs]|Ft]. (5.3)



24

Now, using the fact that Dα
s is L1-closed (see [24] for details), for any X ∈ L0, there exist Z∗X ∈ Dα

s

such that ϕαs (X) = E[Z∗XX|Fs]. This implies that

ess inf
Z∈Ds

E[E[ZX|Fs]|Ft] ≤ E[E[Z∗XX|Fs]|Ft] = E[ess inf
Z∈Ds

E[ZX|Fs]|Ft] = E[ϕαs (X)|Ft]. (5.4)

Combining (5.3) and (5.4), we conclude that ϕα is supermartingale time-consistent. On the other
hand, for any α ∈ (0, 1), the map ϕα is not middle acceptance time consistent and nor weakly
rejection time consistent (see [4] for counterexamples).

Example 5.2 (Dynamic TV@R Acceptability Index for Processes). Tail Value at Risk Accept-
ability Index was introduced in [26], as a scale invariance measure of performance for the case of
random variables. Along the lines of [13], here we extend this notion to the case of stochastic
processes. Let X = V0, and for a fixed α ∈ (0, 1] we consider the sets {Dαt }t∈T defined as in (5.1).
We consider the distortion function g(x) = 1

1+x , x ∈ R+, and we define ρx = {ρxt }t∈T, x ∈ R+, as
follows

ρxt (V ) = ess inf
Z∈Dg(x)t

E[Z

T∑
i=t

Vi|Ft], V ∈ V, t ∈ T . (5.5)

One could easily show that ρx is an increasing (with respect to x) family of dynamic coherent risk
measures for processes (see [26] and [13] for details). Hence, the map α = {αt}t∈T given by

αt(V ) = sup{x ∈ R+ : ρxt (V ) ≥ 0}, (5.6)

is an acceptability index for processes (see [26] and [13]).
Using similar arguments as in Example 5.1, we conclude that ρx is weakly acceptance time

consistent, for any fixed x ∈ R+. Hence, by Proposition 4.11 we obtain that α is semi-weakly
acceptance time consistent.

On the other hand α is not semi-weakly rejection time consistent. Indeed, following similar
reasoning as in the proof of duality from [13] and using Proposition 4.12, we get that if α is semi-
weakly rejection time consistent, then {ρxt }t∈T is weakly rejection time consistency, for any x ∈ R+.
This leads to a contradiction, since the maps {ρxt }t∈T are not weakly rejection time consistent, as
stated in Example 5.1.

Example 5.3 (Dynamic RAROC for processes). Risk Adjusted Return On Capital (RAROC) is
a popular scale invariant measure of performance; we refer the reader to [26] for study of static
RAROC, and to [13] for its extension to dynamic setup. We consider the space X = V1 and we fix
α ∈ (0, 1). Dynamic RAROC, at level α, is defined as follows

ϕt(V ) :=

{
E[

∑T
i=t Vi|Ft]
−ραt (V ) if E[

∑T
i=t Vi|Ft] > 0,

0 otherwise,
(5.7)

where ραt (V ) = ess inf
Z∈Dαt

E[Z
∑T

i=t Vi|Ft], and {Dαt }t∈T given by (5.1). We use the convention

ϕt(V ) = +∞, if ρt(V ) ≥ 0. In [13] it was shown that the map (5.7) is a dynamic acceptabil-
ity index for processes. Moreover, for any fixed t ∈ T,

ϕt(V ) = sup{x ∈ R+ : φxt (V ) ≥ 0},
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where φxt (V ) = ess inf
Z∈Bxt

E[Z(
∑T

i=t Vi)|Ft] with

Bxt = {Z ∈ L1 : Z =
1

1 + x
+

x

1 + x
Z1, for some Z1 ∈ Dαt }.

It is easy to check, that the family {ϕxt }t∈T is a dynamic coherent risk measure for processes, and
by similar arguments as in Example 5.1, we get that ϕxt is weakly acceptance time consistent but
not weakly rejection time consistent, for any fixed x ∈ R+. Since 1 ∈ Dαt , we also get that {φxt }t∈T
is increasing with x ∈ R+, and by using similar arguments as in Example 5.2, we conclude that ϕ
is semi-weakly acceptance time consistent and not semi-weakly rejection time consistent.

Example 5.4 (Dynamic Gain Loss Ratio). Dynamic Gain Loss Ratio (dGLR) is another popular
measure of performance, which essentially improves on some drawbacks of Sharpe Ratio (such as
penalizing for positive returns), and it is equal to the ratio of expected return over expected losses.
Formally, for X = V1, dGLR is defined as

ϕt(V ) :=

{
E[

∑T
i=t Vi|Ft]

E[(
∑T
i=t Vi)

−|Ft]
, if E[

∑T
i=t Vi|Ft] > 0,

0, otherwise.
(5.8)

For various properties and dual representations of dGLR see for instance [13, 9]. In [13], the authors
showed that dGLR is both semi-weakly acceptance and semi-weakly rejection time consistent,
although assuming that Ω is finite. For sake of completeness we will show here that dGLR is semi-
weakly acceptance time consistency; semi-weakly rejection time consistency is left to an interested
reader as an exercise.

Assume that t ∈ T′, and V ∈ X . In view of Proposition 3.5, it is enough to show that

ϕt(V ) ≥ 1{Vt≥0} ess inft(ϕt+1(V )) + 1{Vt<0}(−∞). (5.9)

On the set {Vt < 0} the inequality (5.9) is trivial. Since ϕt is non-negative and local, without loss
of generality, we may assume that ess inft(ϕt+1(V )) > 0. Moreover, ϕt+1(V ) ≥ ess inft(ϕt+1(V )),
which implies

E[
T∑

i=t+1

Vi|Ft+1] ≥ ess inft(ϕt+1(V )) · E[(

T∑
i=t+1

Vi)
−|Ft+1]. (5.10)

Using (5.10) we obtain

1{Vt≥0}E[

T∑
i=t

Vi|Ft] ≥ 1{Vt≥0}E[E[

T∑
i=t+1

Vi|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(ϕt+1(V )) · E[1{Vt≥0}E[(

T∑
i=t+1

Vi)
−|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(ϕt+1(V )) · E[(

T∑
i=t

Vi)
−|Ft]. (5.11)
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Note that ess inft(ϕt+1(V )) > 0 implies that ϕt+1(V ) > 0, and thus E[
∑T

i=t+1 Vi|Ft+1] > 0. Hence,
on set {Vt ≥ 0}, we have

1{Vt≥1}E[
T∑
i=t

Vi|Ft] ≥ 1{Vt≥1}E[E[
T∑

i=t+1

Vi|Ft+1]|Ft] > 0.

Combining this and (5.11), we conclude the proof.

Example 5.5 (Negative of Dynamic Entropic Risk Measure). Entropic Risk Measure is a classical
convex risk measure. The dynamic version of it (more precisely, up to a negative sign) is defined
as follows

ϕγt (X) =

{ 1
γ lnE[exp(γX)|Ft] if γ 6= 0,

E[X|Ft] if γ = 0.
(5.12)

where X ∈ X = L1, t ∈ T. It can be proved that for γ ≤ 0, the map −ϕγt is a dynamic convex
risk measure, and that for any γ ∈ R, the map ϕγ is strongly time consistent (cf. [48]). Since it is
also cash-additive, strong time consistency implies both weak rejection and weak acceptance time
consistency. Moreover (see [48, 11] for details) {ϕγt }t∈T is supermartingale time consistent if and
only if γ ≥ 0, and submartingale time consistent if and only if γ ≤ 0 .

Example 5.6 (Negative of Dynamic Entropic Risk Measure with non-constant risk aversion). One
can generalise the Dynamic Entropic Risk Measure (5.12) by taking time dependent risk aversion
parameters. Towards this end, it is enough to consider the dynamic risk measure on X = L∞,
given by

ϕγtt (X) =

{ 1
γt

lnE[exp(γtX)|Ft] if γt 6= 0,

E[X|Ft] if γt = 0.
(5.13)

where {γt}t∈T is such that γt ∈ L∞t , t ∈ T. Noting that the map introduced in (5.12) is increasing
in γ [48], it could be easily shown (see [1] for the idea of the proof) that {ϕγtt }t∈T is strongly
time consistent if and only if {γt}t∈T is a constant process, and that it is middle acceptance time
consistent if and only if {γt}t∈T is a non-increasing process, and that it is middle rejection time
consistent if and only if {γt}t∈T is non-decreasing.

Example 5.7 (Dynamic Certainty Equivalent). Dynamic Certainty Equivalents is a large class of
dynamic risk measures, with Dynamic Entropic Risk Measure being a particular case of them. For
this example, consistently with [48], we consider an infinite time horizon, and we take T = N and
X = L∞. We let U : R̄ → R̄ be a strictly increasing and continuous function on R̄, i.e. strictly
increasing and continuous on R, with U(±∞) = limn→±∞ U(n). Let ϕ = {ϕt}t∈T be defined by

ϕt(X) = U−1(E[U(X)|Ft]), X ∈ X , t ∈ T. (5.14)

It is easy to check that ϕ is a strongly time consistent dynamic LM-measure. It belongs to the class
of so called dynamic certainty equivalents [48]. In [48], the authors showed that any dynamic LM-
measure, which is finite, normalized, strictly monotone, continuous, law invariant, admits Fatou
property and is strongly time consistent, can be represented as (5.14) for some U . We also refer to
[7] for a more general approach to dynamic certainty equivalents (e.g. by using stochastic utility
functions U), and to [9] for the definition of certainty equivalents for processes.
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Example 5.8 (Dynamic Risk Sensitive Criterion). In recent paper [11] the authors introduce
the notion of Dynamic Limit Growth Index (DLGI) that is designed to measure the long-term
performance of a financial portfolio in discrete time. The dynamic analog of Risk Sensitive Criterion
(cf. [60] and references therein) is a particular case of DLGI. We consider an infinite time horizon
setup, T = N, and the following space suitable for our needs Vpln := {(Wt)t∈T : Wt > 0, lnWt ∈ Lpt }.
To be consistent with [11], we view the elements of X as (cumulative) value processes of portfolios
of some financial securities, which have integrable growth expressed as cumulative log-return (note
that everywhere else in the present paper, the stochastic processes represent dividend streams). On
this space, let ϕγ = {ϕγt }t∈T be defined by

ϕγt (W ) =

{
lim infT→∞

1
T

1
γ lnE[W γ

T |Ft], if γ 6= 0,

lim infT→∞
1
TE[lnWT |Ft], if γ = 0.

(5.15)

where γ is a fixed real number. It was proved in [11] that ϕγ defined by (5.15) is a dynamic
measure of performance; moreover, ϕγ is µ-acceptance time consistent, w.r.t. µ = {µt}t∈T given by
µt(m) = E[m|Ft], if and only if γ > 0, and µ-rejection time consistent (w.r.t. the same µ) if and
only if γ < 0.

The following table is meant to help the reader to navigate through the examples presented
above relative to various types of time consistency studied in this paper. We will use the following
abbreviations for time consistency: WA - weak acceptance; WR - weak rejection; sWA - semi weak
acceptance; sWR - semi weak rejection; MA - middle acceptance; MR - middle rejection; STR -
strong Sub - submartinagle; Sup - supermartinagle.

If a cell is marked with X mark, that means that the corresponding property of time consistency
is satisfied; otherwise the property is not satisfied in general.

We note that Example 5.8 is not represented in the table due to the “dichotomous” nature of
the example. The DGLI evaluates a process V , but it does it through a limiting procedure, which
really amounts to evaluating the process through its “values at T = ∞.” We refer the reader to
[11] for a detailed discussion on various properties of this measure.

X WA WR sWA sWR MA MR STR Sub Sup

Example 5.1 Lp X X X
Example 5.2 Vp X
Example 5.3 Vp X
Example 5.4 Vp X X

Example 5.5
γ ≥ 0

Lp
X X X X X X X X

γ ≤ 0 X X X X X X X X

Example 5.6
γt ↓ Lp

X X X X∗

γt ↑ X X X X∗∗

Example 5.7 Lp X X X X X X X
∗if γt ≥ 0, ∗∗if γt ≤ 0

6 Concluding remarks

The main goal of this paper was to develop a unified framework for time consistency of LM-
measures that, in particular, comprises various types of time consistency for dynamic risk measures
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Figure 1: Summary of results for acceptance time consistency for random variables

ϕs(X) ≥ 0 ⇒ ϕt(X) ≥ 0
if −ϕ is additionally a risk measure

ϕs(X) ≥ mt ⇒ ϕt(X) ≥ mt

Dynamic LM-Measure ϕ is

Weakly Accept Consist
if ϕ is µinf - accept consist

Dynamic LM-Measure ϕ is

Supermartingale Consist
if ϕ is µt = E[m|Ft] middle accept consist

ϕ is µ - accept and µ - reject consist

and µ is X-invariant

ϕs(X) = ϕs(Y )⇒ ϕt(X) = ϕt(Y )
for X,Y ∈ X

ϕ is µ - accept consist

and µ is projective

ϕs(X) ≥ Y ⇒ ϕt(X) ≥ ϕt(Y )
for Y ∈ X ∩ L̄0

s, and ϕ monetary

Dynamic LM-Measure ϕ is

Middle Accept Consist
if ϕ is ϕ− - accept consist

Dynamic LM-Measure ϕ is

Strongly Consist
if it is µ - accept and µ - reject consist

and µ is LM -extension of ϕ

ϕt(X) = ∞, for

X ≥ 0, P [X > 0] > 0,

and 0 < ϕt(X0) < ∞,

for some X0

if ϕ− is projective
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and dynamic performance measures known in the existing literature. The obtained results are
summarised in the Chartflows 1 and 2. For convenience, we label (by circled or rectangled numbers)
each arrow (implication or equivalence) in the flowcharts, and we relate the labels to the relevant
result from the paper, along with comments on converse implications whenever appropriate.

1 Proposition 4.3, 4)

1 Proposition 4.3, 3)

3 Remark 4.33 and Proposition 4.4. The converse implication is not true in general, see Exam-
ple 5.5.

4 Proposition 4.27, 1), 2)

5 Proposition 4.4. Generally speaking the converse implication is not true. See for instance
Example 5.5: negative of Dynamic Entropic Risk Measure with γ < 0 is weakly acceptance
time consistent, but it is not supermaringale time consistent, i.e. it is not acceptance time
consistent with respect to the projective update rule µt = Et[m|Ft].

6 Proposition 4.27, 3), 4). The converse implication is not true in general. As a counterexample,
consider ϕt(X) = tE[X].
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Figure 2: Summary of results for acceptance time consistency for stochastic processes

ϕt+1(V ) ≥ 0 ⇒ ϕt(V ) − Vt ≥ 0
if −ϕ is additionally a risk measure

ϕt+1(V ) ≥ mt ⇒ ϕt(V ) − Vt ≥ mt

Dynamic LM-Measure ϕ is

Weakly Accept Consist
if ϕ is one step µ - accept cons

and µt,t+1(m,V ) = µinft (m) + Vt

Dynamic LM-Measure ϕ is

Semi-weakly Accept Consist
if ϕ is one step µ - accept cons and

µt,t+1(m,V ) = 1{Vt≥0}µ
inf
t (m) + 1{Vt<0}(−∞)

ϕ is one step µ - accept and µ - reject consist

and µt,t+1(m,V ) = µt,t+1(m, 1{t}Vt)

ϕt+1(V ) = ϕt+1(V ′)⇒ ϕt(V ) = ϕt(V
′)

for V, V ′ ∈ X , such that Vt = V ′t

ϕ is one step µ - accept consist and

µt,t+1(m,V ) = φt(m + Vt) (φ is projective)

ϕt+1(V ) ≥ V ′t+1 ⇒ ϕt(V ) ≥ ϕt(1{t+1}(V
′
t+1+Vt))

for V, V ′ ∈ X

Dynamic LM-Measure ϕ is

Middle Accept Consist
if ϕ is one step µ - accept consist

and µt,t+1(m,V ) = ϕ̃−t (m + Vt)

Dynamic LM-Measure ϕ is

Strongly Consist
if ϕ is one step µ-accept and µ-reject consist,

µt,t+1(m,V ) = ϕ̂t,t+1(m + Vt)

and ϕ̂ is one step LM-ext of ϕ̃

if ϕ̃− is projective

1

2

3

4

8

9

6

5

7

7 Proposition 4.4, and see also 5 . In general, middle acceptance time consistency does not
imply weak acceptance time consistency, see Remark 4.23.

8 Proposition 4.20, 3)

9 Proposition 4.21

10 Proposition 4.15. The converse implication is not true in general, see Example 5.6.

1 Proposition 4.7, 4)

2 Proposition 4.7, 3)

3 Proposition 4.10, 3)

4 Proposition 4.30, 1), 2)

5 Proposition 4.8



30

6 Proposition 4.30, 3), 4)

7 Proposition 4.8, and see also 5 .

8 Proposition 4.25, 3)

9 Proposition 4.15.

Remark 6.1. The converse implications in Flowchart 2 do not hold true in general, and one can use
the same counterexamples as in the case of random variables.

A Appendix

Proof of Proposition 2.2.

Proof. First note that for any X,Y ∈ L̄0, λ ∈ L0
t such that X,Y, λ ≥ 0, and for any s, t ∈ T, s > t,

by Monotone Convergence Theorem, and using the convention 0 · ±∞ = 0 we get

E[λX|Ft] = λE[X|Ft]; (A.1)

E[X|Ft] = E[E[X|Fs]|Ft]; (A.2)

E[X|Ft] + E[Y |Ft] = E[X + Y |Ft]. (A.3)

Moreover, for X ∈ L̄0, we also have

E[−X|Ft] ≤ −E[X|Ft]. (A.4)

For the last inequality we used the convention ∞−∞ = −∞.
Next, using (A.1)-(A.4), we will prove the announced results. Assume that X,Y ∈ L̄0.

1) If λ ∈ L0
t , and λ ≥ 0, then, by (A.1) we get

E[λX|Ft] = E[(λX)+|Ft]− E[(λX)−|Ft] = E[λX+|Ft]− E[λX−|Ft] =

= λE[X+|Ft]− λE[X−|Ft] = λE[X|Ft].

From here, and using (A.4), for a general λ ∈ L0
t , we deduce

E[λX|Ft] = E[1{λ≥0}λX + 1{λ<0}λX|Ft] = 1{λ≥0}λE[X|Ft] + 1{λ<0}(−λ)E[−X|Ft] ≤
≤ 1{λ≥0}λE[X|Ft] + 1{λ<0}λE[X|Ft] = λE[X|Ft].

2) The proof of 2) follows from (A.2) and (A.4); for X ∈ L0 see also the proof in [25, Lemma 3.4].

3) On the set {E[X|Ft] = −∞} ∪ {E[Y |Ft] = −∞} the inequality is trivial due to the convention
∞−∞ = −∞. On the other hand the set {E[X|Ft] > −∞}∩{E[Y |Ft] > −∞} could be represented
as the union of the sets {E[X|Ft] > n}∩{E[Y |Ft] > n} for n ∈ Z on which the inequality becomes
the equality, due to (A.3).
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Proof of Proposition 3.5.

Proof. Let µ be an update rule.

1) The implication (⇒) follows immediately, by taking in the definition of acceptance time consis-
tency ms = ϕs(X).

(⇐) Assume that ϕt(X) ≥ µt,s(ϕs(X), X), for any s, t ∈ T, s > t, and X ∈ X . Let ms ∈ L̄0
s be

such that ϕs(X) ≥ ms. Using monotonicity of µ, we get ϕt(X) ≥ µt,s(ϕs(X), X) ≥ µt,s(ms, X).

2) The proof is similar to 1).

Proof of Proposition 4.1.

Proof. Monotonicity and locality of µinf is a straightforward implication of Proposition 2.4. Thus,
µinf is sX-invariant update rule. The projectivity comes straight from the definition (see Re-
mark 2.5). Now, let a family µ = {µt}t∈T of maps µt : L̄0 → L̄0

t be given by

µt(m) = ess inf
Z∈Pt

E[Zm|Ft] (A.5)

Before proving (4.3), we will need to prove some facts about µ.
First, let us show that µ is sX-invariant update rule. Let t ∈ T. Monotonicity is straightfor-

ward. Indeed, letm,m′ ∈ L̄0 be such thatm ≥ m′. For any Z ∈ Pt, using the fact that Z ≥ 0, we get
Zm ≥ Zm′. Thus, E[Zm|Ft] ≥ E[Zm′|Ft] and consequently ess infZ∈Pt E[Zm|Ft] ≥ ess infZ∈Pt E[Zm′|Ft].
Locality follows from the fact, for any A ∈ Ft and m ∈ L̄0, using Proposition 2.2, convention
0 · ±∞ = 0, and the fact that for any Z1, Z2 ∈ Pt we have 1AZ1 + 1AcZ2 ∈ Pt, we get

1Aµt(m) = 1A ess inf
Z∈Pt

E[Zm|Ft]

= 1A ess inf
Z∈Pt

(E[(1AZ)m|Ft] + E[(1AcZ)m|Ft])

= 1A ess inf
Z∈Pt

E[(1AZ)m|Ft] + 1A ess inf
Z∈Pt

E[(1AcZ)m|Ft]

= 1A ess inf
Z∈Pt

E[Z(1Am)|Ft] + 1A ess inf
Z∈Pt

1AcE[Zm|Ft]

= 1Aµt(1Am).

Thus, µ is sX-invariant update rule.
Secondly, let us prove that we get

m ≥ µt(m), (A.6)

for any m ∈ L̄0. Let m ∈ L0. For α ∈ (0, 1) let14

Zα := 1{m≤q+t (α)}E[1{m≤q+t (α)}|Ft]
−1. (A.7)

where q+
t (α) is Ft-conditional (upper) α quantile of m, defined as

q+
t (α) := ess sup{Y ∈ L0

t | E[1{m≤Y }|Ft] ≤ α}.
14In the risk measure framework, it might be seen as the risk minimazing scenario for conditional CV@Rα.
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For α ∈ (0, 1), noticing that Zα <∞, due to convention 0 · ∞ = 0 and the fact that

{E[1{m≤q+t (α)}|Ft] = 0} ⊆ {1{m≤q+t (α)} = 0} ∪B,

for some B, such that P [B] = 0, we conclude that Zα ∈ Pt. Moreover, by the definition of q+
t (α),

there exists a sequence Yn ∈ L0
t , such that Yn ↗ q+

t (α), and

E[1{m<Yn} | Ft] ≤ α.

Consequently, by monotone convergence theorem, we have

E[1{m<q+t (α)} | Ft] ≤ α.

Hence, we deduce

P [m < q+
t (α)] = E[1{m<q+t (α)}] ≤ E[E[1{m<q+t (α)}|Ft]] ≤ E[α] = α,

which implies that
P [m ≥ q+

t (α)] ≥ (1− α). (A.8)

On the other hand

1{m≥q+t (α)}m ≥ 1{m≥q+t (α)}q
+
t (α) = 1{m≥q+t (α)}q

+
t (α)E[Zα|Ft]

≥ 1{m≥q+t (α)}E[Zαq
+
t (α)|Ft] ≥ 1{m≥q+t (α)}E[Zαm|Ft],

which combined with (A.8), implies that

P
[
m ≥ E[Zαm|Ft]

]
≥ 1− α. (A.9)

Hence, using (A.9), and the fact that

E[Zαm|Ft] ≥ µt(m), α ∈ (0, 1),

we get that
P [m ≥ µt(m)] ≥ 1− α.

Letting α→ 0, we conclude that (A.6) holds true for m ∈ L0.
Now, assume that m ∈ L̄0, and let A := {E[1{m=−∞}|Ft] = 0}. Similar to the arguments

above, we get
1Am ≥ µt(1Am).

Since µt(0) = 0, and due to locality of µt, we deduce

1Am ≥ µt(1Am) = 1Aµt(1Am) = 1Aµt(m). (A.10)

Moreover, taking Z = 1 in (A.5), we get

1Acm ≥ 1Ac(−∞) = 1AcE[m|Ft] ≥ 1Acµt(m). (A.11)

Combining (A.10) and (A.11), we concludes the proof of (A.6) for all m ∈ L̄0.
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Finally, we will show that µt defined as in (A.5) satisfies property 1) from Proposition 2.4, which
will consequently imply equality (4.3). Let m ∈ L̄0 and A ∈ Ft. From the fact that m ≥ µt(m) we
get

ess inf
ω∈A

m ≥ ess inf
ω∈A

µt(m).

On the other hand we know that 1A ess infω∈Am ≤ 1Am and 1A ess infω∈Am ∈ L̄0
t , so

ess inf
ω∈A

m = ess inf
ω∈A

(1A ess inf
ω∈A

m) = ess inf
ω∈A

(1Aµt(1A ess inf
ω∈A

m)) ≤

≤ ess inf
ω∈A

(1Aµt(1Am)) = ess inf
ω∈A

(1Aµt(m)) = ess inf
ω∈A

µt(m)

which proves the equality. The proof for ess supt is similar and we omit it here. This concludes the
proof.

Proof of Proposition 4.3.

Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency
is similar. Let {ϕt}t∈T be a dynamic LM-measure.

1)⇔ 2). This is a direct application of Proposition 3.5.

1)⇒ 3). Assume that ϕ is weakly acceptance consistent, and let mt ∈ L̄0
t be such that ϕs(X) ≥ mt.

Then, using Proposition 3.5, we get ϕt(X) ≥ ess inft(ϕs(X)) ≥ ess inft(mt) = mt, and hence 3) is
proved.

3) ⇒ 1). By the definition of conditional essential infimum, ess inft(ϕs(X)) ∈ L̄0
t , for any X ∈ X ,

and t, s ∈ T . Moreover, by Proposition 2.4.(3), we have that ϕs(X) ≥ ess inft(ϕs(X)). Using
assumption 3) with mt = ess inft(ϕs(X)), we immediately obtain ϕt(X) ≥ ess inft(ϕs(X)). Due to
Proposition 3.5 this concludes the proof.

3) ⇔ 4). Clearly 3) ⇒ 4). If additionally ϕ is a monetary risk measure, then in particular −ϕ
is cash-additive. Hence, for any mt ∈ L̄0

t such that ϕs(X) ≥ mt, we have that ϕs(X −mt) ≥ 0,
and since 4) holds true, we get that ϕt(X −mt) ≥ 0. Invoking one more time cash-additivity, we
complete the proof.

Proof of Proposition 4.4.

Proof. Then, using Proposition 2.4, for any t, s ∈ T, s > t, and any X ∈ X , we get

ϕt(X) ≥ µt(ϕs(X)) ≥ µt(ess infs(ϕs(X))) ≥ µt(ess inft(ϕs(X))) = ess inft(ϕs(X)).

The proof for rejection time consistency is similar.

Proof of Proposition 4.7.

Proof. We will only show the proof for weakly acceptance consistency. The proof for rejection
consistency is similar. Let {ϕt}t∈T be a dynamic LM-measure.

1)⇔ 2). This is a direct implication of Proposition 3.5.

1)⇒ 3). Let mt ∈ L̄0
t be such that ϕt+1(V ) ≥ mt. Using the monotonicity of ess inft, we have

ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt ≥ ess inft(mt) + Vt = mt + Vt,



34

which concludes the proof.

3)⇒ 1). By Proposition 2.4, we get ϕt+1(V ) ≥ ess inft(ϕt+1(V )) for any V ∈ X , and ess inft(ϕt+1(X)) ∈ L̄0
t .

Using assumption 3) with mt = ess inft(ϕt+1(X)) we immediately obtain

ϕt(V ) ≥ ess inft(ϕt+1(V )) + Vt

and using 2) the weakly acceptance time consistency of ϕ follows.

3)⇒ 4) is obvious (take mt = 0).

4)⇒ 3) Let us now assume that {ϕt}t∈T is a negative of dynamic risk measure. For given mt ∈ L̄0
t

it is enough to apply 3) to the process V ± 1t+1mt, and 4) follows.

Proof of Proposition 4.10.

Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency
is similar. Let {ϕt}t∈T be a dynamic LM-measure.

1)⇔ 2). This is a direct implication of Proposition 3.5.

2) ⇒ 3). Assume that ϕ is semi-weakly acceptance consistent. Let V ∈ X and mt ∈ L̄0
t be such

that ϕt+1(V ) ≥ mt and Vt ≥ 0. Then, by monotonicity of µinf
t , we have

ϕt(V ) ≥ 1{Vt≥0}µ
inf
t (ϕt+1(V )) ≥ µinf

t (mt) = ess inft(mt) = mt,

and hence 3) is proved.

3)⇒ 2). Let V ∈ X . We need to show that

ϕt(V ) ≥ 1{Vt≥0}µ
inf
t (ϕt+1(V )) + 1{Vt<0}(−∞). (A.12)

On the set {Vt < 0} inequality (A.12) is trivial. We know that

(1{Vt≥0} ·t V )t ≥ 0 and ϕt+1(1{Vt≥0} ·t V ) ≥ ess inft ϕt+1(1{Vt≥0} ·t V ).

Thus, for mt = ess inft ϕt+1(1{Vt≥0} ·t V ), using locality of ϕ and µinf as well as 3), we get

1{Vt≥0}ϕt(V ) = 1{Vt≥0}ϕt(1{Vt≥0} ·t V ) ≥ 1{Vt≥0}mt = 1{Vt≥0}µ
inf
t (ϕt+1(V )).

and hence (A.12) is proved on the set {Vt ≥ 0}. This conclude the proof of 2).

Proof of Proposition 4.11

Proof. The proof of locality and monotonicity of (4.6) is straightforward (see [13] for details). Let
us assume that {ϕxt }t∈T is weakly acceptance time consistent. Using Proposition 4.7 we get

1{Vt≥0}αt(V ) = 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}ϕ

x
t (V ) ≥ 0}

)
≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}[ess inft ϕ

x
t+1(V ) + Vt] ≥ 0}

)
≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0} ess inft ϕ

x
t+1(V ) ≥ 0}

)
= 1{Vt≥0} ess inft

(
sup{x ∈ R+ : 1{Vt≥0}ϕ

x
t+1(V ) ≥ 0}

)
= 1{Vt≥0} ess inft αt+1(V ).
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This leads to inequality

αt(V ) ≥ 1{Vt≥0} ess inft αt+1(V ) + 1{Vt<0}(−∞),

which, by Proposition 4.10, is equivalent to semi-weak rejection time consistency. The proof of
weak acceptance time consistency is similar.

Proof of Proposition 4.12

Proof of Proposition 4.12. The proof of locality and monotonicity of (4.7) is straightforward (see
[13] for details). Let us prove weak acceptance time consistency. Let us assume that {αt}t∈T is
semi-weakly acceptance time consistent. Using Proposition 3.5 we get

ϕxt (V ) = inf{c ∈ R : αt(V − c1{t}) ≤ x}
= inf{c ∈ R : αt(V − c1{t+1}) ≤ x}
= inf{c ∈ R : αt(V − c1{t+1} − Vt1{t}) ≤ x}+ Vt

≥ inf{c ∈ R : 1{0≥0} ess inft αt+1(V − c1{t+1} − Vt1{t}) + 1{0<0}(−∞) ≤ x}+ Vt

= inf{c ∈ R : ess inft αt+1(V − c1{t+1}) ≤ x}+ Vt

= ess inft
(

inf{c ∈ R : αt+1(V − c1{t+1}) ≤ x}
)

+ Vt

= ess inft ϕ
x
t+1(V ) + Vt,

which, is equivalent to weak acceptance time consistency of ϕ. The proof of rejection time consis-
tency is similar.

Proof of Proposition 4.15.

Proof. We will show the proof for ϕ+ only; the proof for ϕ+ is similar. Consider a fixed t ∈ T.

(Adaptivity) It is easy to note that for any X ∈ L̄0, and A ∈ Ft, we get[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]
∈ L̄0

t . (A.13)

Indeed, for any X ∈ L̄0, ess inf of the set of Ft-measurable random variables {ϕt(Y )}Y ∈Y+
A (X) is

Ft-measurable (see [46], Appendix A), which implies (A.13) for any A ∈ Ft. Thus, ϕ+
t (X) ∈ L̄0

t .

(Monotonicity) If X ≥ X ′ then for any A ∈ Ft we get Y+
A (X) ⊆ Y+

A (X ′), and consequently, for any
A ∈ Ft,

1A ess inf
Y ∈Y+

A (X)
ϕt(Y ) ≥ 1A ess inf

Y ∈Y+
A (X′)

ϕt(Y ),

which implies ϕ+
t (X) ≥ ϕ+

t (X ′).

(Locality) Let B ∈ Ft and X ∈ L̄0. It is enough to consider A ∈ Ft, such that Y+
A (X) 6= ∅, as

otherwise we get ϕ+
t (X) ≡ ∞. For any such A ∈ Ft, we get

1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ) = 1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ). (A.14)
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Indeed, let us assume that Y+
A (X) 6= ∅. As Y+

A (X) ⊆ Y+
A∩B(X), we have

1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ) ≥ 1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ).

On the other hand, for any Y ∈ Y+
A∩B(X), and any fixed Z ∈ Y+

A (X) (note that Y+
A (X) 6= ∅), we

get
1BY + 1BcZ ∈ Y+

A (X).

Thus, using locality of ϕt, we deduce

1A∩B ess inf
Y ∈Y+

A∩B(X)
ϕt(Y ) = 1A∩B ess inf

Y ∈Y+
A∩B(X)

1Bϕt(1BY + 1BcZ) ≥ 1A∩B ess inf
Y ∈Y+

A (X)
ϕt(Y ),

which proves (A.14). It is easy to see that Y+
A∩B(X) = Y+

A∩B(1BX), and thus

1A ess inf
Y ∈Y+

A∩B(X)
ϕt(Y ) = 1A ess inf

Y ∈Y+
A∩B(1BX)

ϕt(Y ). (A.15)

Combining (A.14), (A.15), and the fact that Y+
A (X) 6= ∅ implies Y+

A (1BX) 6= ∅, we continue

1Bϕ
+
t (X) = 1B ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A∩B(X)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A∩B ess inf

Y ∈Y+
A∩B(1BX)

ϕt(Y ) + 1Ac∩B(∞)
]

= 1B ess inf
A∈Ft

[
1A ess inf

Y ∈Y+
A (1BX)

ϕt(Y ) + 1Ac(∞)
]

= 1Bϕ
+
t (1BX).

(Extension) If X ∈ X , then for any A ∈ Ft, we get X ∈ Y+
A (X). Thus,

ϕ+
t (X) = ess inf

A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= ess inf
A∈Ft

[
1Aϕt(X) + 1Ac(∞)

]
= ϕt(X).

As the above results are true for any t ∈ T, thus we have proved that ϕ+ is an extension of ϕ. Let
us now show (4.10) for ϕ+.

Let ϕ̂ be an extension of ϕ, and let X ∈ L̄0 and t ∈ T. Due to monotonicity and locality of ϕ̂t,
for any A ∈ Ft and Y ∈ Y+

A (X), we get 1Aϕ̂t(X) ≤ 1Aϕ̂t(Y ). Thus, recalling that ess inf ∅ = ∞,
we have

ϕ̂t(X) ≤ 1A ess inf
Y ∈Y+

A (X)
ϕ̂t(Y ) + 1Ac(∞) = 1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞). (A.16)

Since (A.16) holds true for any A ∈ Ft, we conclude that

ϕ̂t(X) ≤ ess inf
A∈Ft

[
1A ess inf

Y ∈Y+
A (X)

ϕt(Y ) + 1Ac(∞)
]

= ϕ+
t (X).

The proof of the second inequality is analogous.
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Proof of Proposition 4.18.

Proof. The first part follows immediately from the definition of LM-extension. Clearly, projectivity
of ϕ̂ implies that ϕt(X) = X, for X ∈ Xt. To prove the opposite implication, it is enough to prove
that ϕ+ and ϕ− are projective. Assume that ϕ is such that ϕt(X) = X, for t ∈ T and X ∈ Xt. Let
X ∈ L̄0

t . For any n ∈ N, we get

1{n≥X≥−n}ϕ
+
t (X) = 1{n≥X≥−n}ϕ

+
t (1{n≥X≥−n}X) = 1{n≥X≥−n}ϕt(1{n≥X≥−n}X) = 1{n≥X≥−n}X.

Thus, on set
⋃
n∈N{−n ≤ X ≤ n} = {−∞ < X <∞}, we have

ϕ+
t (X) = X, for X ∈ L̄0

t . (A.17)

Next, for anyA ∈ Ft, such thatA ⊆ {X =∞}, we get Y+
A (X) = ∅, which implies 1{X=∞}ϕ

+(X) =∞.

Finally, for any n ∈ R, using locality of ϕ+
t and the fact that n ∈ Xt, we get

1{X=−∞}ϕ
+
t (X) ≤ 1{X=−∞}ϕ

+
t (1{X=−∞}n) = 1{X=−∞}ϕt(n) = 1{X=−∞}n,

which implies 1{X=−∞}ϕ
+(X) = −∞. Hence (A.17) holds true on entire space. The proof for ϕ−

is analogous.

Proof of Proposition 4.21.

Proof. Let us assume that ϕ satisfies 1), 2) and it is ϕ−-acceptance time consistent. Using Propo-
sition 3.5 and the monotonicity of ϕ−, we get

∞ > ϕt1(X0) ≥ ϕ−t1(ϕt2(X0)) ≥ ϕ−t1(ϕt2(X0) ∧ 1) = ϕt1(ϕt2(X0) ∧ 1) =∞,

which leads to contradiction.

Proof of Proposition 4.27.

Proof. Let {ϕt}t∈T be a dynamic LM-measure.

1) ⇒ 2). Assume that µ is an X-invariant update rule, such that ϕ is both µ-acceptance and
µ-rejection consistent. Then, by Theorem 3.5, ϕt(X) = µt,s(ϕs(X), 0), for any t ∈ T and X ∈ X .
Let s, t ∈ T and X,Y ∈ X be such that s > t and ϕs(X) ≥ ϕs(Y ). From the above, and by
monotonicity of µ, we have

ϕt(X) = µt,s(ϕs(X), 0) ≥ µt,s(ϕs(Y ), 0) = ϕt(Y ).

2)⇒ 1). Let t, s ∈ T be such that s > t, and consider the following set

Xϕs = {X ∈ L̄0 | X = ϕs(Y ) for some Y ∈ X}.

From 2), for any X,Y ∈ X , such that ϕs(X) = ϕs(Y ), we get ϕt(X) = ϕt(Y ). Thus, there exists a
map φt,s : Xϕs → L̄0

t such that

φt,s(ϕs(X)) = ϕt(X), X ∈ X .



38

Next, since there exists Z ∈ X , such that ϕs(Z) = 0, using locality of ϕ, we get that for any
X ∈ Xϕs , A ∈ Ft, there exist Y ∈ X , so that

1AX = 1Aϕt(Y ) = 1A1Aϕt(1AY ) + 1Acϕt(1AcZ) = ϕ(1AY + 1AcZ).

Thus, 1AX ∈ Xϕs , for any A ∈ Ft, X ∈ Xϕs . Hence, from 2) and locality of ϕ, for any X,Y ∈ Xϕs ,
A ∈ Ft, we get

(A) X ≥ Y ⇒ φt,s(X) ≥ φt,s(Y );

(B) 1Aφt,s(X) = 1Aφt,s(1AX).

In other words, φt,s is local and monotone on Xϕs ⊆ L̄0
s. In view of Remark 4.16), there exists

an extension of φt,s, say φ̂t,s : L̄0
s → L̄0

t , which is local and monotone on L̄0
s. Finally, we take

µt,s : L̄0
s ×X → L̄0

t defined by

µt,s(m,X) := φ̂t,s(m), X ∈ X ,m ∈ L̄0
s.

Clearly the family µt,s is an X-invariant update rule, and thus, by Proposition 3.5, ϕ is both
µ-acceptance and µ-rejection time consistent.

The proof of the second part of Proposition 4.27 is immediate. Clearly, 3) ⇒ 1) and 3) ⇔ 4),
due to Proposition 3.5.

Proof of Proposition 4.30.

Proof. Let {ϕt}t∈T be a dynamic LM-measure, which is independent of the past.

1) ⇒ 2). Assume that µ is an update rule, fulfilling condition from 1), such that ϕ is both µ-
acceptance and µ-rejection consistent. Then, by Proposition 3.5, ϕt(X) = µt,t+1(ϕt+1(X), Y ), for
any t ∈ T′, X ∈ X and Y ∈ X , such that Xt = Yt. Let t ∈ T′ and X,Y ∈ X be such that Xt = Yt
and ϕt+1(X) ≥ ϕt+1(Y ). From the above, and by monotonicity of µ, we have

ϕt(X) = µt,t+1(ϕt+1(X), X) = µt,t+1(ϕt+1(X), Y ) ≥ µt,t+1(ϕt+1(Y ), Y ) = ϕt(Y ).

2)⇒ 1). Let t ∈ T′ and consider the following set

Xϕt+1 = {X ∈ L̄0 | X = ϕt+1(Y ) for some Y ∈ X}.

From 2), for any X,Y ∈ X , such that ϕt+1(X) = ϕt+1(Y ) and Xt = Yt, we get ϕt(X) = ϕt(Y ).
Thus, using independence of the past of ϕ, there exists a map φt,t+1 : Xϕt+1 × L

p
t → L̄0

t such that

φt,t+1(ϕt+1(X), Yt) = ϕt(X − 1{t}(Xt − Yt)), X ∈ X .

Next, since there exists Z ∈ X , such that ϕt+1(Z) = 0, using locality of ϕ, we get that for any
X ∈ Xϕt+1 , A ∈ Ft, there exist Y ∈ X , so that

1AX = 1Aϕt+1(Y ) = 1Aϕt+1(1A ·t+1 Y ) + 1Acϕt+1(1Ac ·t+1 Z) = ϕt+1(1A ·t+1 Y + 1Ac ·t+1 Z).

Thus, 1AX ∈ Xϕt+1 , for any A ∈ Ft, X ∈ Xϕt+1 . Hence, from 2) and locality of ϕ, for any
X,X ′ ∈ Xϕt+1 , Yt ∈ Lpt and A ∈ Ft, we get
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(A) X ≥ X ′ ⇒ φt,t+1(X,Yt) ≥ φt,t+1(X ′, Yt);

(B) 1Aφt,t+1(X,Yt) = 1Aφt,t+1(1AX,Yt).

In other words, for any fixed Yt ∈ Lpt , φt,t+1(·, Yt) is local and monotone on Xϕt+1 ⊆ L̄0
t+1. In

view of Remark 4.16, for any fixed Yt ∈ Lpt there exists an extension (to L̄0
t+1) of φt,t+1(·, Yt), say

φ̂t,t+1(·, Yt), which is local and monotone on L̄0
t+1. Finally, we take µt,t+1 : L̄0

t+1 ×X → L̄0
t defined

by
µt,t+1(m,X) := φ̂t,t+1(m,Xt), X ∈ X ,m ∈ L̄0

t+1.

Clearly the family µt,t+1 is a (one step) update rule. Moreover, we get

µt,t+1(m,X) = µt,t+1(m,X ′),

for m ∈ L̄0
t+1 and X,X ′ ∈ X , such that Xt = X ′t. Finally, by Proposition 3.5, ϕ is both µ-acceptance

and µ-rejection time consistent, as

ϕt(X) = ϕt(X − 1{t}(Xt −Xt)) = φt,t+1(ϕt+1(X), Xt) = µt,t+1(ϕt+1(X), X).

The proof of the second part of Proposition 4.30 is immediate. Clearly, 3)⇒ 1) and 3)⇔ 4), due
to Proposition 3.5.

Proof of Proposition 4.32.

Proof. Let us consider {φt}t∈T and {φ′t}t∈T as given in (4.15).

1) The proof of monotonicity and locality is similar to the one for conditional essential infimum
and supremum, Proposition 2.4. Finally, for any t ∈ T, Z ∈ Dt and m ∈ L̄0

t , since E[Z|Ft] = 1, we
immediately get

E[Zm|Ft] = 1{m≥0}mE[Z|Ft] + 1{m<0}(−m)E[−Z|Ft] = m,

and thus, φt(m) = φ′t(m) = m, for any m ∈ L̄0
t . Hence, {φt}t∈T is projective.

2) Let {ϕt}t∈T be a dynamic LM-measure which is φ-rejection time consistent, and g : R̄ → R̄ be
an increasing, concave function. Then, for any X ∈ X , we get

g(ϕt(X)) ≥ g(φt(ϕs(X)) = g(ess inf
Z∈Dt

E[Zϕs(X)|Ft]) = ess inf
Z∈Dt

g(E[Zϕs(X)|Ft]. (A.18)

Recall that any Z ∈ Dt is a Radon-Nikodym derivative of some measure Q with respect to P , and
thus we have E[ZX|Ft] = EQ[X|Ft]. Hence, by Jensen’s inequality, we deduce

ess inf
Z∈Dt

g(E[Zϕt(X)|Ft]) ≥ ess inf
Z∈Dt

E[Zg(ϕt(X))|Ft] = φt(g(ϕs(X))). (A.19)

Combining (A.18) and (A.19), φ-acceptance time consistency of {g ◦ ϕt}t∈T follows.

3) The proof is analogues to 2).
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