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Abstract. We study parameter estimation problem for diagonalizable
stochastic partial differential equations driven by a multiplicative frac-
tional noise with any Hurst parameter H ∈ (0, 1). Two classes of estima-
tors are investigated: traditional maximum likelihood type estimators,
and a new class called closed-form exact estimators. Finally the general
results are applied to stochastic heat equation driven by a fractional
Brownian motion.
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1. Introduction

Parameter estimation problem for stochastic partial differential equation
has been of great interest in the past decade, and besides being a chal-
lenging theoretical problem, it finds its roots and motivations from various
applied problems: fluid dynamics [12, 31], biology [9, 10], finance [1, 2, 8],
meteorology [5] etc. At general level the problem is to find or estimate the
model parameter ϑ (could be a vector) based on observations of the under-
lying process uϑ which is assumed to be a solution of a stochastic evolution
equation in finite or infinite dimensional space. We will follow traditional
continuous time approach and assume that the solution uϑ(t) is observed
continuously in time t ∈ [0, T ]. From statistical point of view, we suppose
that there exists a family of probability measures Pϑ that depends on pa-
rameter ϑ ∈ Θ ⊂ Rn, and each Pϑ is the distribution of a random element.
Assuming that a realization of one random element corresponds to a partic-
ular value ϑ0, the goal is to estimate this parameter from given observations.
One approach is to select parameter ϑ that most likely produces the obser-
vations. This method assumes that the problem is regular or absolutely
continuous, which means that there exists a reference probability measure
Q such that all measures Pϑ, ϑ ∈ Θ, are absolutely continuous with respect
to Q. Then Radon-Nikodym derivative dPϑ/dQ, also called the likelihood
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ratio, exists, and the Maximum Likelihood Estimator (MLE) ϑ̂ of the pa-
rameter of interest is computed by maximizing the likelihood ratio with

respect to ϑ. Usually ϑ̂ 6= ϑ and the problem is to study the convergence
of MLE to the true parameter as more information arrives (for example as
time passes or by decreasing the amplitude of noise). If the measures Pϑ are
singular for different parameters ϑ, then the model is called singular, and
usually the parameter can be found exactly, at least theoretically. While all
regular models are to some extend the same, each singular model requires
individual approach. For example, estimating the drift coefficient for finite-
dimensional stochastic differential equations is typically a regular problem,
and the parameter can be estimated by means of MLEs, while estimating the
diffusion (volatility) coefficient is a singular problem and one can find the
diffusion coefficient exactly through quadratic variation of the underlying
process. For some finite-dimensional systems, estimating the “drift coeffi-
cient” is also a singular problem, and as shown in Khasminskii et al. [18]
the estimators have nothing to do with MLEs. Generally speaking statistical
inference for finite-dimensional diffusions has been studied widely, and there
are established necessary and sufficient conditions for absolute continuity of
corresponding measures (see, for example [23], [21] and references therein).
Some of these results have been extended to infinite dimensional systems in
particular to parabolic Stochastic Partial Differential Equations (SPDE). It
turns out that in many cases the estimation of drift coefficient for SPDEs is
a singular problem, and as general theory suggests one can find the parame-
ter “exactly”. One of the first fundamental result in this area that explorers
this singularity is due to Huebner et al. [17]. The idea is to approximate
the original singular problem by a sequence of regular problems for which
MLEs exist. The approximation was done by considering Galerkin-type pro-
jections of the solution on a finite-dimensional space where the estimation
problem becomes regular, and it was proved that as dimension of the projec-
tion increases the corresponding MLE will converge to the true parameter.
In [15, 16, 26, 27], the problem was extended to a general parabolic SPDE
driven by additive noise and the convergence of the estimators was given
in terms of the order of the corresponding differential operators. For recent
developments and other types of inference problems in SPDEs see a sur-
vey paper by Lototsky [24] and references therein. Statistical inference for
SPDEs driven by multiplicative noise is a more challenging problem. First
and only attempt to study equations with multiplicative noise is given in
[6], by considering Wiener (not fractional) type noise without spatial corre-
lation structure. Besides MLE type estimators, a completely new class of
exact estimators were found due essentially to the very singular nature of
the problem.

The aim of this note is to study parameter estimation problem for sto-
chastic evolution equations driven by a multiplicative fractional noise with
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following dynamics

(1) u(t) = u(0) +

∫ t

0
(A0 + θA1)u(s)ds +

∫ t

0
Mu(s)dWH(s),

where A0,A1 and M are some known linear operators, WH is a fractional
Brownian motion with a Hurst parameter H ∈ (0, 1), and θ is a real pa-
rameter belonging to a bounded set Θ ⊂ R. For now, assume that the
stochastic integral with respect to fractional Brownian Motion WH is well-
defined, while the exact meaning will be specified in Section 2.1. The main
goal is to estimate the parameter θ based on the observations of the under-
lying process u(t), t ∈ [0, T ]. Similar problem for SPDEs driven by additive
space-time fractional noise was investigated in [7, 28, 32]. Estimation of drift
coefficient for finite-dimensional fractional Ornstein-Uhlenbeck and similar
processes has been investigated by Tudor and Viens [33] for H ∈ (0, 1),
Kleptsyna and Le Breton [19] for H ∈ [1/2, 1), by developing Girsanov type
theorems and finding MLEs. Berzin and Leon [3] estimate simultaneously
both drift and diffusion coefficients. Least square estimators for drift coeffi-
cients were established by Hu and Nualart [13], and MLE type estimators for
discretely observed process by Hu et al. [14]. For a general theory, includ-
ing Girsanov Theorem and some results on statistical inference, for finite
dimensional diffusions driven by fractional noise see also the monograph by
Mishura [29].

In this paper we continue to explore the impact of the noise in infinite-
dimensional evolution equations and its implications on statistical inference.
Besides its theoretical roots, this problem is also motivated by increasing
demand in modeling various phenomena by SPDEs driven by fractional noise
[5, 11]. We assume that the solution of (1) is observed at every t ∈ [0, T ], and
hence each Fourier coefficient uk(t) = (uk(t), hk)H is observable for every t ∈
[0, T ], where H is a Hilbert space in which the solution leaves and hk, k ≥ 1,
is a CONS in H. All results are stated in terms of Fourier coefficients uk. In
the first part of Section 2 we set up the problem and establish the existence
and uniqueness of the solution of the corresponding SPDE. In Subsection 2.2
we introduce the main notations and find the MLE for fractional Geometrical
Brownian Motion (which is not covered explicitly in any other sources, at our
best knowledge). In Section 3 we study the estimators of drift coefficient θ
of equation (1) based on MLE of the corresponding Fourier coefficients. We
establish sufficient conditions on operators A1, A1 and M, that guarantee
efficiency and asymptotic normality of the estimators and some of their
versions. Section 4 is dedicated to investigation of a new type of estimators
called closed-form exact estimators, similar to those studied in [6]. We show
that θ can be found exactly by knowing just several (usually two) Fourier
coefficients. Moreover, by the same technics we found an exact estimator
of the Hurst parameter H too, in both regimes, θ known and unknown. Of
course there are many other methods of finding the Hurst parameter, but it
is out of scope of this publication to apply them to our equation. Some of
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the results follow from simple algebraic evaluations, but the very existence of
such estimators is amazing and gives a better understanding of the nature
of the problem’s singularity. Also, we want to mention that, despite of
memory property of the fractional Brownian Motion which is spilled over the
solution too, the exact estimators are based only on observations at time zero
and some future time T . In contrast, the MLEs require observation of the
whole trajectory u(t), t ∈ [0, T ]. We conclude the paper with two examples
which are of interest along: one dimensional stochastic heat equation with
parameter θ next to Laplace operator, and a multi-dimensional version of
stochastic heat equation with θ next to a lower order operator.

While we assume that data is sampled continuously in time, in practice
usually this is not the case. For the MLEs derived in Section 3 the problem
is reduced to approximate some integrals of a deterministic function with
respect to the solution u and eventually to the fractional Brownian motion.
However, the Exact Estimators from Section 4 depend only on the values of
the solution at initial time t = 0 and some future time t = T , and thus do
not depend on how the solution is observed in time.

2. Preliminary results

2.1. The equation and existence of the solution. Let H be a separable
Hilbert space with the inner product (·, ·)0 and the corresponding norm ‖·‖0.
Let Λ be a densely-defined linear operator on H with the following property:
there exists a positive number c such that ‖Λu‖0 ≥ c‖u‖0 for every u from
the domain of Λ. Then the operator powers Λγ , γ ∈ R, are well defined and
generate the spaces Hγ : for γ > 0, Hγ is the domain of Λγ ; H0 = H; for
γ < 0, Hγ is the completion of H with respect to the norm ‖ · ‖γ := ‖Λ · ‖0
(see for instance Krein at al. [20]). By construction, the collection of spaces
{Hγ , γ ∈ R} has the following properties:

• Λγ(Hr) = Hr−γ for every γ, r ∈ R;
• For γ1 < γ2 the space Hγ2 is densely and continuously embedded
into Hγ1 : Hγ2 ⊂ Hγ1 and there exists a positive number c12 such
that ‖u‖γ1 ≤ c12‖u‖γ2 for all u ∈ Hγ2 ;

• for every γ ∈ R and m > 0, the space Hγ−m is the dual of Hγ+m

relative to the inner product in Hγ , with duality 〈·, ·〉γ,m given by

〈u1, u2〉γ,m = (Λγ−mu1,Λ
γ+mu2)0, where u1 ∈ Hγ−m, u2 ∈ Hγ+m.

Let (Ω,F , {Ft},P) be a stochastic basis with usual assumptions.

Definition 1. A fractional Brownian motion with a Hurst parameter H ∈
(0, 1) is a Gaussian process WH with zero mean and covariance

EWH(t)WH(s) =
1

2
(t2H + s2H − |t− s|2H), t, s ≥ 0.
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Consider the following evolution equation

(2)

{
du(t) = (A0 + θA1)u(t)dt+Mu(t)dWH(t), 0 < t < T,

u(0) = u0 ,

where A0,A1,M are linear operators in H, u0 ∈ H, WH is a fractional
Brownian Motion with Hurst parameter H ∈ (0, 1), and θ is a scalar param-
eter belonging to an open set Θ ⊂ R.

Definition 2. Equation (2) is called diagonalizable if the operators A0, A1

andM have point spectrum and a common system of eigenfunctions {hj , j ≥
1}.

Denote by ρk, νk, and µk the eigenvalues of the operators A0, A1, and
M:

(3) A0hk = ρkhk, A1hk = νkhk, Mhk = µkhk, k ≥ 1,

and also denote by αk(θ) := ρk + θνk, k ≥ 1, the eigenvalues of operator
A0 + θA1. Without loss of generality we assume that the operator Λ has
the same eigenfunctions as operators A0, A1, M: Λhk = λkhk, k ≥ 1.

Theorem 3. Assume that equation (2) is diagonalizable and the initial con-

ditions u0 is deterministic and belongs to Hγ. Then the process u defined

by

(4) u(t) =
∑

k≥1

uk(t)hk,

where

uk(t) = uk(0) exp

(
αk(θ)t−

1

2
µ2
kt

2H + µkW
H(t)

)
,(5)

is an Hγ-valued stochastic process if and only if there exists a constant C =
C(t,H, θ) such that

(6) 2αk(θ)t+ µ2
kt

2H ≤ C, k ≥ 1.

Proof. Since WH(t) is a Gaussian random variable with zero mean and
variance t2H , we have

E|uk(t)|
2 = u2k(0) exp

(
2αk(θ)t+ µ2

kt
2H
)
.

Hence,

E‖u(t)‖2γ =
∑

k≥1

λ2γ
k E|uk(t)|

2 =
∑

k≥1

λ2γ
k u2k(0) exp

(
2αk(θ)t+ µ2

kt
2H
)
.

The last series converges if and only if (6) is satisfied uniformly in k, and
the theorem follows. �
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Note that in particular if H = 1/2 and the equation (2) is parabolic in the
triple (Hγ+m,Hγ ,Hγ−m), for some positive m and real γ, i.e. there exist
positive real numbers δ, C1 and a real number C2 such that, for all k ≥ 1
and all θ ∈ Θ,

λ−2m
k |ρk + θνk| ≤ C1;

2(ρk + θνk) + µ2
k + δλ2m

k ≤ C2,(7)

then (6) is satisfied for every t ≥ 0. If in addition to parabolicity conditions
(7) we assume that lim

k→∞
µ2
k/|αk| = 0, then (6) is satisfied uniformly in

t ∈ [0, T ] for every H ∈ [0, 1]. For more discussions on conditions similar to
(6) see for instance [25].

The functions uk formally represent the Fourier coefficients of the solution
of equation (2) with respect to the basis {hk}k≥1 and the uniqueness of u
follows. Since the equation is diagonalizable, naturally we conclude that
formally uk has the following dynamics

(8) duk(t) = (θνk + ρk)uk(t)dt+ µkuk(t)dW
H(t), k ≥ 1, t ≥ 0.

Specifying the stochastic integration in (2) is equivalent to specifying in what
sense we understand the integration with respect to fractional Brownian
Motion for the Fourier coefficients (8). Consequently, since the equation has
constant coefficients, specifying the solution of (8) is the same as to stipulate
the sense of stochastic integration in (8). If the integration is understood in
Wick sense then uk, k ≥ 1, defined in (5) is the unique solution of equation
(8) for all H ∈ (0, 1) (see for instance [4], Theorem 6.3.1). All results stated
here are easily transferable to any other form of integration, by caring out the
relationship between different form of integration and consequently adjusting
the form of the solution of equation (8) (for comparison of various form of
integration with respect to fBM see [4], Chapter 6). Our choice was just to
have a unified theory and same formulas for all H ∈ (0, 1).

Definition 4. The process u constructed in Theorem 3 is called the solution
of equation (2).

It should be mentioned that the above result, with some obvious adjust-
ments, also holds true for diagonalizable equations driven by several inde-
pendent fractional Brownian Motions, even with different Hurst parameters.

2.2. Parameter estimation for geometric fractional Brownian mo-
tion. In this section we will present some auxiliary results about parameter
estimation for one dimensional diffusion processes driven by multiplicative
fractional noise. For similar results for equations with additive noise see for
instance Kleptsyna and Le Breton [19], Tudor and Viens [33], or Mishura
[29], Chapter 6. The results essentially follow from Girsanov type theorem
for diffusions driven by fractional Brownian motion.
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Let Γ denote the Euler Gamma-function. Following Mishura [29] we in-
troduce the following notations

CH =

(
Γ(3− 2H)

2HΓ(32 −H)3Γ(12 +H)

) 1

2

,

lH(t, s) = CHs
1

2
−H(t− s)

1

2
−H

I0<s<t,(9)

MH
t :=

∫ t

0
lH(t, s)dWH

s ,

where H ∈ (0, 1), and the integration with respect to fractional Brownian
Motion is understood in Wiener sense (for more details see [29], Chapter
1). The process MH

t is a martingale, also called the fundamental martingale
associated with fractional Brownian motion WH

t (see for instance [30] or
[29], Theorem 1.8.1). MH

t has quadratic characteristic 〈MH〉t = t2−2H , and
by Lévy theorem, there exists a Wiener process {Bt, t ≥ 0} on the same
probability space such that

MH
t = (2− 2H)

1

2

∫ t

0
s

1

2
−HdBs.

Moreover, σ(WH
s , 0 ≤ s ≤ t) = σ(Bs, 0 ≤ s ≤ t).

Let us consider the stochastic process of the form

Xt = X0 exp

(
θt−

1

2
σ2t2H + σWH(t)

)
, t ≥ 1 ,

which can be called the Geometric Fractional Brownian Motion, and as men-
tioned in the previous subsection it is the unique solution of the stochastic
equation

dXt = θXtdt+ σXtdW
H
t , X0 = x0, t ∈ [0, T ].

Let Yt := ln(Xt/X0) = θt− σ2t2H

2 + σWH
t , and consider the process Ỹt :=∫ t

0 lH(t, s)dYs. Note that observing one path of the process {Ys, 0 ≤ s ≤ t}

implies that the one path of process {Ỹs, 0 ≤ s ≤ t} is observable too. By
(9) we have

(10) Ỹt = σMH
t + θb1t

2−2H − σ2Hb2t, t > 0 ,

where b1 = CHB(3/2 − H, 3/2 − H), b2 = CHB(1/2 + H, 3/2 − H), and
B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Euler beta function.

For a fixed parameter θ ∈ Θ, let us denote by Pθ the distribution of

the process Ỹt and by P0 the distribution of the process Ỹ 0
t := σMH

t =

σb0
∫ t
0 s

1/2−2HdBs. The measure Pθ is absolutely continuous with respect to
P0 and the Radon-Nikodym derivative, or the likelihood ratio, has the fol-
lowing form (see for instance [23], Theorem 7.19 or apply classical Girsanov
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Theorem for martingales)

dPθ

dP0
(Ỹt) = exp

(
−

∫ t

0

θ(2− 2H)b1s
1−2H − σ2Hb2

σ2b20s
1−2H

dỸs

+
1

2

∫ t

0

[θ(2− 2H)b1s
1−2H − σ2Hb2]

2

σ2b20s
1−2H

ds
)
.

The MLE is obtained by maximizing the log-likelihood ratio with respect to
θ. Since

∂

∂θ
ln

dPθ

dP0
(Ỹt) = −

(2− 2H)b1
σ2b0

Ỹt + θ
(2 − 2H)b21t

2−2H

σ2b20
−

(2− 2H)b1Hb2t

b20
,

the MLE for parameter θ has the form

(11) θ̂t =
Ỹt

b1t2−2H
+

σ2Hb2
b1t1−2H

.

Proposition 1. The estimator θ̂t, t > 0, is an unbiased estimator for

parameter θ0; lim
t→∞

θ̂t = θ0 with probability one, i.e. θ̂t is a strong consistent

estimator of θ0; t
1−H(θ̂t−θ0) converges in distribution to a Gaussian random

variable with zero mean and variance σ2/b21.

Proof. Using the definition of the process Ỹt, we represent θ̂t as follows

(12) θ̂t = θ0 +
σMH

t

b1t2−2H
,

where θ0 is the true parameter.
The unbiasedness and asymptotic normality follows immediately from

(12) and the fact that MH
t is a Gaussian random variables with zero mean

and variance t2−2H . Since MH
t is a square integrable martingale with un-

bounded quadratic characteristic t2−2H → ∞, as t → ∞ a.s., by Law of
Large Numbers for Martingales [22], Theorem 2.6.10, MH

t /〈MH〉t → 0 a.s.,
and hence consistency follows. �

Note that, in particular, for H = 1/2 we have b1 = b2 = 1, and we recover
the classical estimator for the drift coefficient of geometric Brownian Motion

θ̂t =
Yt

t
+

σ2

2
=

ln(Xt/X0)

t
+

σ2

2
= θ0 +

σWt

t
, t > 0 ,

and its corresponding asymptotic behavior.

3. Maximum Likelihood Estimator for SPDEs

Consider the diagonalizable equation

(13) du(t) = (A0 +A1)u(t)dt+Mu(t)dWH(t),

with solution u(t) =
∑

k≥1 uk(t)hk given by (5). As mentioned in Introduc-
tion, if u is observable, then all its Fourier coefficients uk can be computed.
Thus, we assume that the processes u1(t), . . . , uN (t) can be observed for all
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t ∈ [0, T ] and the problem is to estimate the parameter θ based on these
observations. Also, we assume that the Hurst parameter H ∈ (0, 1) is known
for now.

By Definition 4 of the solution of equation (13) the Fourier coefficients
uk, k ∈ N, have the following dynamics

(14) duk(t) = αk(θ)uk(t)dt+ µkuk(t)dW
H(t), t ∈ [0, T ],

where αk(θ) = ρk + θνk, k ∈ N.
For every non-zero uk(0), k ∈ N, denote by vk(t) = ln(uk(t)/uk(0)), and

ṽk(t) =
∫ t
0 l(t, s)dvk(s), where l(·, ·) is defined in (9). By results of Section

2.2 it follows that there exists a Maximum Likelihood Estimator for αk(θ)
and it has the form

(15) α̂k(θ) =
ṽk(t)

b1t2−2H
+

Hb2µ
2
k

b1t1−2H
, k ≥ 1.

Since αk(θ) is a strictly monotone function in θ, by invariant principle of
MLE under invertible transformations, we can find an MLE for the param-
eter θ

(16) θ̂k,t =
ṽk(t)

νkb1t2−2H
+

Hb2µ
2
k

νkb1t1−2H
−

ρk
νk

, k ≥ 1, t ∈ [0, T ].

Using the definition of the process ṽk, the estimator θ̂k,T can be repre-
sented as follows

(17) θ̂k,T = θ0 +
µkM

H
T

b1νkT 2−2H
,

and by similar arguments to the proof of Proposition 1, we have the following
result.

Theorem 5. Assume that equation (13) is diagonalizable and u0 ∈ Hγ for

some γ ∈ R. Then,

(1) For every k ≥ 1 and T > 0, θ̂k,T is an unbiased estimator of θ0.

(2) For every fixed k ≥ 1, as T → ∞, the estimator θ̂k,T converges to θ0
with probability one and T 1−H(θ̂k,T −θ0) converges in distribution to

a Gaussian random variable with zero mean and variance µ2
k/b

2
1ν

2
k.

(3) If, in addition,

(18) lim
k→∞

∣∣∣∣
µk

νk

∣∣∣∣ = 0,

then for every fixed T > 0, lim
k→∞

θ̂k,T = θ0 with probability one, and

|νk/µk|(θ̂k,T − θ0) converges in distribution to a Gaussian random

variable with zero mean and variance T 2H−2/b21.

Remark 6. The parabolicity conditions (7) and MLE consistency condition
(18) in general are not connected. In terms of operator’s order, parabolicity
states that the order of operator M from the diffusion term is smaller than
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half of the order of the operators A0 and A1 from deterministic part. Con-
dition (18), that guarantees the consistency of MLE as number of Fourier
coefficients increases, assumes that the order of operator M from the diffu-
sion part does not exceed the order of the operator A1 from deterministic
part that contains the parameter of interest θ.

By Theorem 5 it follows that the consistency and asymptotic normality

of the estimators θ̂k,T can be achieved in two ways: by increasing time T or
by increasing the number of Fourier coefficients k. In both cases the quality
of the estimator is improved by decreasing its variance.

It is interesting to note that Var
(
θ̂k,T − θ0

)
= µ2

kT
2H−2/b21ν

2
k also de-

pends on Hurst parameter H. For H > 1/2 the constant 1/b1 is close to
one, and increases as function of H for H ∈ (0, 1/2). The function t2H−2

increases in H for any t > 1. The constants µk and νk, k ≥ 1, do not depend
on H. Overall, T 2H−2/b21 increases in H for any t > 1 and thus quality of
the estimators is higher for smaller H.

A natural question is wether we can improve the quality of the estimators
by considering several Fourier coefficients uk(t). The answer is that by statis-
tical methods used above this is not possible. First, note that the measures
associated to any two or more processes uk are singular, and thus MLE does
not exist for such vector-valued functions. In other words, by considering
two or more Fourier coefficients uk, we get a singular model, a fact that will
be explored in the next section. Also, since each process uk is driven by the
same noise, each individual Fourier coefficient uk contains the same amount
of information: the sigma-algebra generated by uk(t), t ∈ [0, T ] coincides
with the sigma-algebra generated by WH(t), t ∈ [0, T ]. However, the speed

of convergence of the sequence θ̂k,T can be improved by using accelerating
convergence technics from numerical analysis. Two methods have been dis-
cussed into details in [6]: the weighted average method and Aitken’s ∆2

method. For the sake of completeness, we will state here the corresponding

results applied to the sequence {θ̂k,T }k≥1.
Weighted averaging. Suppose that βk, k ≥ 1, is a sequence of non-
negative numbers such that

∑
k≥1 βk = +∞, and consider the weighted

averaging estimator

(19) θ̂(N,T ) =

N∑

k=1

βkθ̂k,T

/ N∑

k=1

βk N ≥ 1, T > 0 .

Then (a) θ̂(N,T ) is an unbiased estimator of θ0 for every N ≥ 1 and T > 0;

(b) lim
T→∞

θ̂(N,T ) = θ0 a.e. for every N ≥ 1 (consistency in T ); (c) if in

addition the consistency condition (18) is fulfilled, then lim
N→∞

θ̂(N,T ) = θ0

with probability one for every T > 0 (consistency in N).
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Aitken’s ∆2 method. Define the following sequence of estimators

(20) θ̃k = θ̂k,T −
(θ̂k+1,T − θ̂k,T )

2

θ̂k+2,T + 2θ̂k+1,T − θ̂k,T
.

One can show that the new sequence θ̃k converges to the true parameter θ0
with probability one. Moreover, if µk/νk ∼ αk−δ for some α, δ > 0, then

E(θ̃k − θ0)
2

E(θ̂k,T − θ0)2
∼

1

(1 + δ1)2
,

for some δ1 > 0. If µk/νk = (−1)k/k, then

E(θ̃k − θ0)
2

E(θ̂k,T − θ0)2
∼

c

k2
, c > 0.

In both cases, the new sequence θ̃k converges faster than θ̂k,T to θ0.
The proofs of the above results follow from Theorem 5 and some direct

computations, which will be omitted here.

4. Exact Estimators

In regular models the unknown parameter can be found only approxima-
tively, and the consistency is gained either in large sample or small noise
regime. For singular models the parameter can be found exactly. For ex-
ample, if all Fourier coefficients of the solution u of equation (2) are known,
according to the results from previous sections, one can find the value of θ0
exactly, on any interval of time [0, T ]. The possibility to evaluate θ0 exactly
is based on singularity of the measures generated by uθ for different values of
θ. However, while theoretically it is possible to estimate the true parameter
exactly, in practice we (or computer) can perform only a finite number of
operations. Recall that the measures associated to an individual Fourier co-
efficient uθk are regular, while a vector consisting of any two or more Fourier
coefficients will produce measures that are singular. In this section we will
explore this singularity, and show that in fact the true parameter can be es-
timated exactly from a finite number of Fourier coefficients. Moreover, the
described method allow to find both parameters θ and H, either individually
or simultaneously.

Following [6] we say that an estimator is closed-form exact if it produces
the exact value of the parameter of interest after finite number of additions,
substraction, multiplications, and divisions on the elementary functions of
the observations.

Closed-form exact estimators exists for the model (2) if we assume that
observations are uk(t), k ≥ 1, t ∈ [0, T ]. For every non-zero Fourier coeffi-
cient uk of the form (14), set vk(t) = ln(uk(t)/uk(0)), t ∈ [0, T ]. Then

(21) vk(t) = (ρk + θνk)t−
1

2
µ2
kt

2H + µkW
H(t) .
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Case 1. θ unknown, H known. Assume that νkµm 6= νmµk for some
k,m ∈ N. Then, taking (21) for these k and m, by direct arithmetic evalu-
ations, one gets the exact estimator of the parameter θ

(22) θ =
µmvk − µkvm + (ρmµk − ρkµm)t+ 1

2 (µ
2
kµm − µ2

mµk)t
2H

t(νkµm − νmµk)
,

for any t > 0 and k,m ∈ N for which νkµm 6= νmµk.
Note that if µk = µm then the above exact estimator does not depend

on H, and θ can be evaluated even if H is unknown. This is the case, for
example, if M is the identity operator (see Example 1 below).

Case 2. H unknown, θ known. Assume now that the parameter of
interest is the Hurst parameter H and assume that θ is known. By the
same arguments as above, one can solve for H the system of two equations
generated by (21) for some k and m, and get the following exact estimator
for H

(23) H =
1

2 ln t
ln

[
(ρk + θνk)tµm − (ρm + θνm)tµk − vkµm + vmµk

2µkµm(µk − µm)

]
,

for any t > 0, k 6= m, and under assumption that the expression under
logarithm is positive and finite.

Case 3. Both θ and H unknown. Denote by αk,m := (νkµm−νmµk)t, βk,m :=
1/2(µ2

mµk−µ2
kµm) and δk,m := vkµm−vmµk−ρkµmt−ρmµkt. Assume that

for some m,k, i, j ∈ N, αk,mβi,j 6= αk,mβi,j. Then the following exact esti-
mator for θ holds true

(24) θ =
δk,mβi,j − δi,jβk,m
αk,mβi,j − αi,jβk,m

.

If in addition δk,mαi,j 6= δi,jαk,m, then there exists an exact estimator for
Hurst parameter H given by

(25) H =
1

2
logt

δk,mαi,j − δi,jαk,m

βk,mαi,j − βi,jαk,m
.

Note that for this case, generally speaking, it is sufficient to know only three
Fourier coefficients, i.e. some of the indices k,m, i, j can coincide.

Remark 7.

(a) Applying the above idea, closed-form exact estimators can be ob-
tained for equations driven by several fractional Brownian motions,
even with different Hurst parameters. If we assume that the noise is
driven by n fBMs, and that one of the parameters θ or H is known,
then by considering n + 1 Fourier coefficients we can eliminate all
noises and get a closed-form estimator as a solution, under some
non-degeneracy assumptions. Respectively, if both parameters are
unknown, then one can estimate them by considering n+ 2 Fourier
coefficients.
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(b) Note that the construction of the exact estimators assumed only
the existence of the solution and did not impose any additional as-
sumptions on the order of the operators A0, A1, M, in contrast to
MLE estimators where the consistency holds only under additional
assumptions on order of corresponding operators.

(c) The MLE θ̂k,T depend on the whole trajectory of the Fourier coef-
ficient uk(t), t ∈ [0, T ]. All exact estimators depend only on initial
and terminal value of uk’s.

5. Examples

We conclude the paper with two practical examples where we explore
some of the estimators proposed above.

Example 1. Stochastic heat equation. Let θ be a positive number, and
consider the following equation

(26) du(t, x) = θuxx(t, x)dt+ u(t, x)dWH(t), t > 0, x ∈ (0, π),

with zero boundary conditions and some nonzero initial value u(0) ∈ L2(0, π).
In this case the operator A1 is the Laplace operator on (0, π) with zero

boundary conditions that has the eigenfunctions hk(x) =
√

2/π sin(kx), k >
0, and eigenvalues νk = −k2, ρk = 0, µk = 1, k > 0. Assume that u(t, x) is
known for x ∈ [0, π] and t ∈ [0, T ], hence uk(t) :=

∫ π
0 hk(x)u(t, x)dx, k ∈ N,

is observable. Denote by vk(t) := log(uk(t)/uk(0)) for every k ∈ N, and
uk(0) 6= 0. By Theorem 5, the MLE for θ has the form

θ̂k = −

∫ T
0 l(T, s)dvk(s)

k2b1T 2−2H
−

Hb2
k2b1T 1−2H

, k ∈ N.

The exact estimators (22) for θ are given by

θ =
1

T (m2 − k2)
ln

uk(T )um(0)

um(T )uk(0)
,

for any k 6= m and T > 0. Note that the exact estimators do not depend
on H. However, since M is the identity operator, and µk = 1, k ≥ 1, there
are no exact-type estimators for H.
Example 2. Assume that G is a bounded domain in Rd, and let ∆ be
the Laplace operator on G with zero boundary conditions. Then ∆ has
only point spectrum with countable many eigenvalues, call them σk, k ∈ N.
Moreover, the set of corresponding eigenvalues forms an orthonormal basis
in L2(G); the eigenvalues can be arranged so that 0 < −σ1 ≤ −σ2 ≤ . . .;

the eigenvalues have the asymptotic σk ∼ k2/d. In the space H0(G) let us
consider the following stochastic evolution equation

du(t) = [∆u(t) + θu(t)]dt+ (1−∆)ru(t)dWH(t) ,

with some nonzero initial values in H0(G), and some r ∈ R. According to
our notations we have the operators A0 = ∆, A1 = I, M = (1−∆)r, with
corresponding eigenvalues νk = 1, ρk = σk, µk = (1 + σk)

r. The equation
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is diagonalizable, and by Theorem 3, it has a unique solution in the triple
(H1,H0,H−1) for any r ≤ 1/2.

The maximum likelihood estimator in this case has the form

θ̂N,t =
ṽk(t)

b1σkt2−2H
+

Hb2(1− σk)
2r

σkb1t1−2H
−

1

σk
, t > 0, k ∈ N,

which is an unbiased estimator of the parameter θ.

(2a) Large time asymptotics. lim
t→∞

θ̂k,t = θ0 a.s. for all k ≥ 1; lim
t→∞

t1−H(θ̂k,t−

θ0)
d
= ξ, where ξ ∼ N (0, (1 − σk)

2/b21).
(2b) Consistency in number of spatial Fourier coefficients. Assume that

r < 0. Then lim
k→∞

θ̂k,t = θ0 a.s., for every t > 0, and the sequence (1 −

σk)
−1(θ̂k,t − θ0) converges in distribution to a Gaussian random variable

with mean zero and variance t2H−2/b21. If r ∈ [0, 1/2] the solution still exists

in the space H0(G), while the estimator θ̂k,t is not consistent in k.
(2b) Exact estimators. Let vk(t) = ln(uk(t)/uk(0)). Assume that Hurst
parameter H is known. Then we have the following exact estimator for θ

θ =
(1− σm)rvk − (1− σk)

rvm
t((1− σm)r − (1− σk)r)

+
σm(1− σk)

r − σk(1− σm)r

(1− σm)r − (1− σk)r

+
t2H−1

2

(1− σk)
2r(1− σm)r − (1− σm)2r(1− σk)

r

(1− σm)r − (1− σk)r
,

for any k 6= m and t > 0.
If θ is known, then the Hurst parameter H can be found by

H =
1

2
logt

[(σk + θ)(1− σm)r − (σm + θ)(1− σk)
r]t− vk(1− σk)

r + vm(1− σm)r

2(1− σk)2r(1− σm)r − (1− σm)2r(1− σk)r
,

for any k 6= m, t > 0.
Finally one can write the exact estimators (24) and (25) for the case when

both parameters θ and H are unknown. Note that the exact estimators
exist for all r as long as the solution exists (maybe in a larger space) and
the Fourier coefficients uk(t) are computable.
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