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ABSTRACT

The thesis consists of two major parts, and it contributes to two topics in
stochastic analysis — Wiener-Hopf factorization (WHf) for Markov chains and statis-

tical inference for Stochastic Partial Differential Equations (SPDEs).

The first part deals with Wiener-Hopf factorization for finite state time in-
homogeneous Markov chains. To the best of our knowledge, this study is the first
attempt to investigate the WHI for time-inhomogeneous Markov chains. In this work
we only deal with a special class of time-inhomogeneous Markovian generators, namely
piece-wise constant, which allows to derive the corresponding WHf by using an ap-
propriately tailored randomization technique. Besides the mathematical importance
of the WHf methodology, there is also an important computational aspect: it allows
for efficient computation of important functionals of Markov chains. In this work, we
also provide an efficient algorithm to compute the quantities in the Wiener-Hopf fac-
torization for time-inhomogeneous Markov chains. Finally, we provide a comparison
(based on numerical simulations) between our algorithm and the brute-force Monte

Carlo simulations.

The second part is dedicated to statistical inference for Stochastic Partial Dif-
ferential Equations (SPDEs). First, we study the problem of estimating the drift /vis-
cosity coeflicient for a large class of linear, parabolic SPDEs driven by an additive
space-time noise. We propose a new class of estimators, called trajectory fitting es-
timators (TFEs). The estimators are constructed by fitting the observed trajectory
with an artificial one, and can be viewed as an analog to the classical least squares
estimators from the time-series analysis. As in the existing literature on statistical in-
ference for SPDESs, we take a spectral approach, and assume that we observe the first
N Fourier modes of the solution, and we study the consistency and the asymptotic

normality of the TFE, as N — oco. Next we consider a parameter estimation problem



for one dimensional stochastic heat equation, when data is sampled discretely in time
or spatial component. We establish some general results on derivation of consistent
and asymptotically normal estimators based on computation of the p-variations of
stochastic processes and their smooth perturbations. We apply these results to the
considered SPDEs, by using some convenient representations of the solutions. For
some equations such representations were ready available, while for other classes of
SPDEs we derived the needed representations along with their statistical asymptotic
properties. We prove that the real valued parameter next to the Laplacian, and the
positive parameter in front of the noise can be consistently estimated by observing
the solution at a fixed time and on a discrete spatial grid, or at a fixed space point
and at discrete time instances of a finite interval, assuming that the mesh size goes

to zero.
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CHAPTER 1
INTRODUCTION

This thesis consists of two major parts, and it contributes to two topics in
stochastic analysis: (i) Wiener-Hopf factorization (WHf) for Markov chains and (ii)

statistical inference for Stochastic Partial Differential Equations (SPDEs).
1.1 Wiener-Hopf Factorization for Markov Chains

The theory of WHf for Markov chains was originated in [BRWS80]. Later,
Kennedy and Williams [KW90] studied the so-called “noisy” WHI{. This theory has
been applied to many practical problems such as ruin problem [APU03|, fluid flow
models [Rog94, RS94, Asm95], biology [Hiel4], and finance [JR06, JP08, MP11, JP12,
HSZ16]. However, all these theoretical and applied developments of WHf are only
done for time-homogeneous Markov chains. Clearly, the case of time-inhomogeneous
chains is important, both from theoretical and application point of view. The main
goal of this part of the thesis is to develop the WHIf theory for time-inhomogeneous

Markov chains.

First, we outline the original WHIf for time-homogeneous Markov chains. Con-
sider a time-homogeneous Markov chain X with finite-state space E and generator
Q. Let v : E — R\ {0} be a function such that the sets E* := {i € E | v(i) > 0} and

E- :={i € E| v(i) < 0} are nonempty. In addition, let ¢(t) := ft

o V(X) ds and define

the first passage times 7,7 := inf{s > 0 | #(s) >t} and 7, :=inf{s > 0| — ¢(s) > t},

for ¢ > 0. One of the problems is to compute the following expectations,

E (e—”ﬁ{x X = z) . ieE,jeE* (1.1)
7o

E (a”fﬂ{x X = z) . i€E*,jeEtt>0, (1.2)
Tt

E (e*“o’ Loy | X = z) . i€E*.jecE, (1.3)
7o



E (6*”511{)( =i Xo = Z) , teET,jeEt>0, (1.4)

where ¢ > 0 is a positive constant.

Next, for illustration purposes, let us consider as an example the classical fluid
flow problem (cf. [Mit88] and [Rog94| for detailed discussion). Suppose that we have
a large water tank with infinite capacity. On the top of the tank, there are Z pipes,
with I; pipes being open at time ¢ and each pipe pouring water into the tank at the
same rate r*. At the bottom of the tank, there are O taps, with O, being open at
time ¢, each tap allowing water to flow out of the tank at the same rate r—. We
assume that Z and O are finite. Then, the volume &; of water in the tank at time ¢
satisfies the dynamics

d&

T = rL =170y, H0<& <a.

Moreover, if £ = 0, i.e. if the tank is empty, then the outflow ceases. Let f be a real
valued function on Z x O. We assume that X; := f(I;,0;), t > 0, is a (finite state)
time-homogeneous Markov chain, and we denote by E the state space of X. Let us

consider the function

that will model the water outflow/inflow, in terms of the states of X, so that
U(Xt) - V(T’+, T'_, f(]t7 Ot))a t Z 0

represents the water outflow/inflow at time ¢. Let ET be the set of states of X such
that the water tank has greater water inflow than outflow, and let E~ be the set of

states of X such that the water tank has greater water outflow than inflow. Note



that the integral ¢, = f(f v(X,)du is not exactly the water content at time ¢, since
we should take into account those periods of time when the tank is empty. However,
understanding ,, 7;° and XTti allows us to express the quantities of interest for &
in terms of the Wiener-Hopf factorization, and to consequently numerically compute
these. We now assume that the tank contains ¢ > 0 amount of water at time ¢t = 0.
Thus, 7, represents the first time after ¢ = 0 that the tank goes empty and 7,
represents the first time after ¢ = 0 that the tank returns to ¢ amount of water.
Expectations (1.3) and (1.4) are the Laplace transforms of the joint distributions of

€ry 7Xrg) and (T[,XT[), respectively.

Barlow et al. [BRW80] showed that the time changed processes X+ and X -
are time homogeneous Markov chains with state spaces ET and E~, respectively.
Moreover, in [BRWS80] it was proved that Q can be factorized uniquely in terms of
generators Q" and Q~ of Xr,f and XT; respectively. This factorization was called
the Wiener-Hopf factorization. While the result is algebraic, its proof is probabilistic.
Furthermore, the expectations (1.1), (1.2), (1.3), and (1.4) can be expressed in terms
of this factorization. Thus, the problem reduces to find the WHf for the generator
Q. On one hand, there is no closed-form solution to the WHf, except for some trivial
cases, and one may need to apply numerical techniques to find the WHf. On the
other hand, one may argue that these expectations can be computed by using Monte
Carlo methods. However, by its very nature, WHf methods provide faster and more

accurate results (cf. [RS94], [Hiel4]) than Monte Carlo methods.

To the best of our knowledge, there are no results on WHf for time inhomo-
geneous Markov chains, i.e. whose generators are time dependent. One naive way
to address this problem is to factorize the time dependent generator according to
WHT{ in [BRW80] at each fixed time point. However, such factorization does not have

any probabilistic interpretation. In particular, the expectations (1.1)-(1.4) cannot be



expressed in terms of this factorization. Alternatively, one can homogenize the origi-
nal Markov chain (cf. [BI4]), and then apply the general Wiener-Hopf factorization
derived in [Wil08]. However, it is still not clear how to compute the general WHf as
in [Wil08] and then convert the results back to the original problem. Our aim is to
develop a numerically tractable WHf for time inhomogeneous Markov chains. As a
first attempt, in this work, we consider a time-inhomogeneous Markov chain with a
generator that is piece-wise constant as a matrix-valued function of time. In Chap-
ter 2, we propose a randomization method to construct a suitable time-homogeneous
Markov chain based on the original chain. We then apply the Wiener-Hopf factoriza-
tion from [BRW80] to the new chain, and it turns out that the Laplace transform sets
up the connection between the factorization and the expectation we were interfered
to compute. In addition, the special structure of the generator allows to establish
an efficient algorithm for computation of the Wiener-Hopf factorization. The results

presented in this chapter are based on the recent work [BCGH18].

Chapter 2 is organized as follows. In Section 2.2, we briefly review the Wiener-
Hopf factorization for time-homogeneous Markov chains — the algebraic factorization
and the probabilistic interpretation. In Section 2.3 we present the proposed WHf
methodology for time-inhomogeneous Markov chains with a piece-wise constant gener-
ator. The randomization method for constructing a time-homogeneous Markov chain
is addressed in Section 2.3.1. This time-homogeneous Markov chain has to compo-
nents, and we prove that the first component is itself a Markov chain. Moreover, we
construct a new measure under which the second component is a time-inhomogeneous
Markov chain with the same generator as the original chain. In Section 2.3.2, we
apply the Wiener-Hopf factorization in [BRW80] to the newly constructed time-
homogeneous Markov chain and set up the connections through the inverse Laplace
transform. Section 2.4 is devoted to the numerical study for the developed theory.

We first introduce an algorithm to compute the factorization (Section 2.4.1), and then



we study an application to fluid flow problems (Section 2.4.2).

The main contributions of this part of the thesis can be summarized as follows:

o We extend the theory of Wiener-Hopf factorization for time-homogeneous Markov
chains to time-inhomogeneous Markov chains with a piece-wise constant gener-

ator.

e We provide an algorithm to compute the quantities in the Wiener-Hopf fac-
torization for time-inhomogeneous Markov chains. For a particular example
we give a comparison between our algorithm and the brute-force Monte Carlo

simulations.

1.2 Statistical Inference for Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) arise from various applied
topics, such as nonlinear filtering, modeling of turbulent flows, population growth
models, fixed income market models, etc. The general theory of SPDEs has been
studied quite intensively during the past few decades, and we refer to the classical
monographs [Roz90, DPZ92], as well as some recent textbooks [Cho07, Hai09, LR17]
for a detailed discussion of the theory of SPDEs and their applications. Usually, the
general form of the equation is derived from the fundamental laws of the underlying
process. However, the model parameters, generally speaking, are not known a priori,
and have to be determined typically by statistical methods based on some histori-
cal observations of the underlying model. While statistical inference for Stochastic
Ordinary Differential Equations (SODEs) is well understood (cf. [Kut04]), the sta-
tistical inference for SPDEs is still in its developing stage. We refer to the survey
paper [Cial8] for the recent developments in this field. Since the pioneering works
[HKR93, HR95|, many statistical estimation problems for SPDEs have been studied

under the spectral approach, namely assuming that a finite number N of the Fourier



coefficients of the solutions are observed over some finite interval of time [0,7]. The
statistical inference problems in large time asymptotic regime 7' — oo essentially
becomes a statistical inference problem for SODEs, and hence are well understood.
It turns out that the asymptotic regime of large number of Fourier modes N — oo is
a viable regime to study, and in many cases one can derive consistent and asymptot-
ically normal estimators for the parameters of interest such as the drift or viscosity
coefficient (the coefficient appearing in the d¢ term) and/or the volatility (the co-
efficient in the noise term). Usually, in the existing literature these estimators are
derived as maximum likelihood estimators (MLEs). In this work we propose two novel
methods of estimating the drift and volatility coefficients for some linear parabolic

SPDEs.

First, within the spectral approach, we propose a new estimator for the drift
coefficient, called trajectory fitting estimator (TFE), which can be viewed as an analog
of the least squares estimator from the time series analysis. This type of estimator
was originally introduced by [Kut91] (see also [Kut04]) in the context of estimating
drift coefficient for ergodic diffusion processes in the large time asymptotic regime.
We study the asymptotic properties of TFE for SPDEs when N — oco. The obtained

results are based on [CGH18].

The second method goes beyond the spectral approach, by assuming that the
input data is the measurements of the values of the solution at discrete points in
time and/or space. Besides the fact that this sampling scheme is practically more
important, in contrast to observing the Fourier coefficients, this study is among the
few works on parameter estimation for discretely sampled SPDEs. The proposed
estimators and their asymptotic properties are derived through the computations
of the p—variation of some suitable stochastic processes. We study the asymptotic

properties in two sampling regimes: when the number of spatial observations increases



while time is fixed, and respectively when the time resolution is increasing and while
the solution is observed at a fixed spatial point. The results are based on the recent
work [CH17]. We use some techniques from Malliavin calculus to prove asymptotic
normality of some of these estimators. In should be mentioned that in a recent
work [BT17] the authors studied independently similar problems and derived similar
estimators for the volatility coefficient by using the mixing theory of Gaussian time-

series.

Chapter 3 is organized as follows. In Section 3.1, we introduce the general
equation and briefly discuss the existence and the uniqueness of the solution, and
we also state the parameter estimation problem, and review the relevant literature.
Section 3.2 is devoted to the study of trajectory fitting estimators for diagonalizable
parabolic equations. In particular, we prove the consistency of TFE in Section 3.2.2
and the asymptotic normality in Section 3.2.3. Section 3.2.4 is devoted to some
examples. The discrete sampling scheme is investigated in Section 3.3, starting with
SPDEs on whole space — Section 3.3.2, and continuing with SPDEs on bounded

domain in Section 3.3.3. In Section 3.4 we present some numerical simulations results.

The main contributions of this part amount to:

e Within the spectral approach, we proposed the trajectory fitting estimator for
SPDEs. This is an analog to the least squares estimator in the classical time-
series analysis. We prove the consistency and asymptotic normality of the

proposed estimators for a large class of linear parabolic SPDEs.

e Beyond the spectral approach, we assume the solution is directly observed at
discrete time and/or space points and propose the p—variational type estimators
for the drift and volatility parameters. We prove the consistency and asymptotic

normality of the proposed estimators.



CHAPTER 2
WIENER-HOPF FACTORIZATION FOR MARKOV CHAINS

2.1 Introduction

In this part of the thesis we will derive the Wiener-Hopf factorization (WHY)
for a finite-state time-inhomogeneous Markov chain, which is the first attempt to
investigate the WHf for time-inhomogeneous chains. In this pioneering study we only
deal with a special class of time-inhomogeneous Markovian generators, namely piece-
wise constant, which allows to use an appropriately tailored randomization technique

as seen below.

The Wiener-Hopf factorization for finite state time-homogeneous Markov chains
was originally proposed in seminal work [BRW80]; see Section 2.2 below, as well as
[LMRWS82, Wil91]. For the WHf in case of time-homogeneous Feller Markov processes
we refer to [Wil08]. For some related applied work we refer to [APU03], which deals
with the ruin problem, and to [Asm95, Rog94, RS94] that study fluid models. In
addition, [KW90] studies the so called “noisy” Wiener-Hopf factorizations; for appli-
cations see [Asm95, Rog94, RS94, JR06, JP08, MP11, JP12, Hiel4, HSZ16]. In all
these applied problems there is no practical reason to assume that the Markov chain
is time-homogeneous, rather than that the existing WHf methodology was available
only for time-homogeneous chains. This was one of the main motivations to study

the WHf for time-inhomogeneous Markov chains.

It needs to be stressed that even though the classical WHf technique [BRW80)]
can be applied to the time dependent generator matrix, say G;, of a time inhomoge-
neous Markov chain X at every time ¢, the obtained factorizations in this case do not
have any probabilistic meaning with regard to the process X. In particular, they are

of no use for computing functionals such as (2.1)-(2.4) below. So, a relevant WHTf for



a time-inhomogeneous Markov chain requires a different approach than the one that

would just directly apply the results of [BRWS80] to each Gy, t > 0.
2.2 Wiener-Hopf Factorization for Time-Homogeneous Markov Chains

We briefly review the Wiener-Hopf factorization for finite-state time homoge-

neous Markov chains that was originally derived in [BRWS80)].

Let (€2, #,P) be a complete probability space and E be a finite set. Without
loss of generality we assume that E = {1,...,|E|}, where |E| denotes the cardinality
of the set E. We will denote by Q(E) the set of all |E| x |E| matrices Q such that,

for i,5 € E,
Q(i,j) >0, i#j and > Q(i,k)<0.
keE

We consider a function v : E — R\ {0} such that
Et:={i€E|v(i) >0} and E :={iecE|v(i) <0},

are nonempty, and we denote by V the diagonal |E|x |E| matrix, i.e. V =diag{v(i)|i €
E}. We denote by I+ the identity |E|* x |E|* matrices. In what follows, let Q € Q(E)
and ¢ > 0 be a fixed real number. The next result provides the so-called Wiener-Hopf

factorization for the matrix V=1(Q — cl).

Theorem 2.2.1 ([BRWS80]). There exists a unique pair (ILFI1;), where II} is an

|E|~ x |E|" matriz and IT; is an |E|T x |E|™ matriz, such that, if
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then S is invertible and

Qf o0
STHVHQ—d)S = ,

0 -Q

where QF € QEY) and Q; € Q(E™). Moreover, 11T and II; are strictly sub-

stochastic, thus, fori ¢ E~,j € E*, 117 (i,7) 20, and >, p 117 (4, k) < 1.

On the one hand, Theorem 2.2.1 just gives an algebraic factorization of the
matrix V71(Q — cl). On the other hand, as we will explain below, using the proba-
bilistic proof of this theorem we also obtain a natural interpretation of this algebraic
factorization in terms of some important quantities related to the time-homogeneous
Markov chain X with the state space E and generator matrix Q. Let us define the

additive functional

and the first passage times
rhi=inf{r >0, >t} and 7, :=inf{r >0|p, < —t}.

It turns out that the time changed processes XTti are Markov chains with generator
matrices Q¥, respectively. In addition, II* describe the fluctuations between E* and
E~. We assume that P (X, =) > 0 for each i € E, and we let P* be the probability

measure on (2,.%#) defined by
P(A):=P(A|Xy=1i), Ac.Z,

with E? denoting the associated expectation. The next result summarizes the rela-
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tionships between the algebraic factorization and the time changed Markov chains.

Theorem 2.2.2 ([BRWS80]). Foric€ E~ and j € ET,

B (e Lix - ) = 12 G0 )
Forie Et,j € ET, andt >0,

F (€—CT;r ﬂ{XT;r:j}> _ etéi@j)‘
The corresponding minus results follow, on replacing ¢ by —o.

2.3 Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

In what follows we adopt the same notations as in the previous section. We will
assume now that X := (X;)i>o is a time-inhomogeneous Markov chain on (Q,.7,P)

with state space E and generator function G = {G;,t > 0}.

In this work, we assume that the generator G is piecewise constant, namely

we assume that

Gy, if so <t < sy,

Go, if 51 <1t < s9,
G, =

G,, if 5,01 <t < sy,

Gri1, if t>s,,

for somen € Nand 0 = sy < 51 < ... < s5,. Without loss of generality we assume that

Gy, ..., G, 1 are Markovian (not sub-Markovian). That is, the sums of row elements
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of G, are all zero, for any k = 1,...,n -+ 1. The results of this work carry over to the

sub-Markovian case by the standard augmentation of the state space.

The main goal of this work is to develop the Wiener-Hopf factorization tech-

nique (see Section 2.3.1) to compute the following expectations,

(i, j; 51, ... 5 :E(e’% Lix ]}\Xo—z> icE,jeEY, (2.1
Ut(l,i,5;81,...,5s :E(e ery’ IL{X+ il Xo = > ieET, jeET, (>0,22)
(i, f; 51, 80) == E (e 0 Lix_ -l Xo = z) i€ET,jeE",  (23)
U (0,4,5581,---,5n) :zE( T ]1{X __j}|X0 ) ieET,jeET, (>0.(24)

We will focus on the computations of I} (7, j; s1, ..., 8,) and I (¢4, j;81,...,8,). By
symmetry, analogous results can be obtained for the counterparts 117 (i, 7; $1, .. ., Sp)
and U, ({,i,7;81,...,8,). To simplify the notations, we will frequently write I} (7, 5)

and W} (¢, 4,7) in place of IT} (7, J; $1,...,8,) and WF (4,4, 7;s1,...,8,), respectively.

2.3.1 A Randomization Method for Time Homogenization. In this section
we construct a time-homogeneous Markov chain associated to X, by randomizing
the discontinuity times si,...,s, of the generator G. This key construction will
allow us to compute the expectations (2.1), (2.2), (2.3) and (2.4) using analogous
expectations corresponding to this time-homogeneous chain. The latter expectations

can be computed using Wiener-Hopf factorization theory of [BRWS80].

Define N,, := {0,...,n}, E := N, x E and let (fl,ﬁ:fﬁ’) be a complete
probability space. Next, let us consider a time-homogeneous Markov chain, say

Z = (N,Y) := (N, Y})ss0, defined on (€2, Z, P), taking values in E and with generator



matrix G ((nq, j1), (ng,jg))(m’jl)’(m’jg)eﬁ given as

{0}xE {1}xE {n—1}xE  {n}xE
{0}xE Gy — ¢l ¢l 0
{1}xE 0 Gy — ol 0
G=
(n—1}xE 0 0 Gn—aqnl @l
{n}xE 0 0 Gri1
where ¢, ..., q, are positive constants and | is the identity matrix. For each i € E,

we define the probability measure P on (ﬁ, % by

Pi(A) =P (A]Z=(0,i)),

Ae F.

The next result regards the Markov property of process V.

Proposition 2.3.1. For any i € E, the process N s a time-homogeneous Markov

chain under @, with generator matrix given by

0 1
0 —q1 q1
1 0 —¢
n—1 0 0
n 0 0

—Qn

4n
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Proof. We will proceed in three steps.

Step 1. We start by showing that

S (88 ((m0,0), (ma32)) = (G ) (1, ma), (2.6)

jo€E

for any 71 € E, k € N, and 0 < ny,ny < n, In particular, note that the left-hand-side

of (2.6) does not depend on jj.

We will prove (2.6) by induction in k. Clearly (2.6) holds true for £ = 1. Next,

assume that (2.6) holds for some k = ¢ € N. Now, for ¢ + 1,

Z (@+1> ((n1,41), (n2,72)) Z Z Z < ) ni, j1), (m, j)) G ((m, 7), (n2, j2))

3 > (&) () (me ) 3 6 ((m ), (2. 52)
= 303 (€) (). () Gl
= "_ (6%) (n1, )GN(m ng) = (GH ) (n1,m2),

where we used the inductive assumptions for £ = 1 and & = ¢ in the third and the

fourth equalities, respectively. Hence, (2.6) is established.

Step 2. We will show that
P! (Nyps = na | Ny = n1) = P(Nppy = no | Ny =y, Yy = ) = €% (nyg, na), (2.7)

for any t,s > 0, 7 € E, and 0 < n; < ny < n. In particular, note that the left-hand

side of (2.7), and thus P'(N,,, = ng|N, = ny), does not depend on ¢. We start by
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checking the second equality in (2.7). For any ¢,s >0, j € E, and 0 < ny; < ny <mn,

I?/Pi(Nt+8:n2|Nt:n17}/t:j):Zﬁi(Nt—&—s:nQ)}/t—}—s:k|Nt:n17}/;f:j)

kEE

—ZeSG ni,j), (n2, k))
keE

=3T3 S () )
kEE (=0 g

:Z Z Tll, nz,k))
=0 cE

o - _
= Z W va(nb?h) = GSGN(TH, na),
=0

where we used the result of Step 1 in the last two equalities. In particular, ﬁ)i(Nt+5 =

na|Ny = nq,Y; = j) does not depend on the choice of j € E.

As far as the first equality in (2.6), for any ¢, > 0 and 0 < n; < ny <n,

Pi (Niys = ng, Ny = ny)
Pi (Ny =nq)
ZZeE (Nt—i-s =ng, Ny =n1,Y; = J)
ZjeEIED (N, =mn1,Y, = 7)
Y ien P (Neps = na | Ny = 0y, Y; = j) P (N, =, Y, = )
- > sew P (N, = n1, Y = j)
Y e P (Ni=m,Yi=j) & e

_ __ _sGn
= = e*N (ny, ny) = €N (ny, ny).
> jer PNy =n1, Yy = j) .12 (1)

P’ (Npps = 02| Ny = 1) =

Step 3. We are ready to complete the proof of the proposition. Towards this end we

observe that, foranym e N, 0=ty <t; < ... <ty,andany 0 <n; <...<n, <n,

If@i (Ntl = nl,...,Ntm = nm)

@i(Ntm = Ny | Ntm—l = Nm—1,- - 'aNtl = 77,1) = =
P (Nt1 =Ni1,... 7Ntm,1 = nm,l)
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o Zjl,...,jmeE Iﬁﬁn (Ntl = n17}/;f1 = jl7 st 7 Ntm - nm7 }/;m = jm)
Zjh,_,,jm_leE P (Nt1 = ni, Y;fl = jl; S Ntm_1 = Nm-1, }/;m = jmfl)

- Zjl,-..,jmeE HZ;l P’L (Ntk = Nk, Kk = jk ’ Ntk,1 = Ng—1, }/l-fk,1 = jk‘fl)
Zjh..,jm—leE Hkm;Ll P (Ntk = ng, Yy, = Jk | Ny oy =1, Ve, = jk—l)

= Z EDZ (Ntm = Nm, Y;tm = ]m | Ntm_l = Nm-1, Y;m_l = jmfl)

Jm€E

— ]:’E)Z (Ntm = Ny, | Ntm—l - nm—17th—1 = jm—l)

= P (Ntm =N | Mgy = nm—l) = e(tm_tm_l)aN (1,7,

where we used the Markov property of Z = (N,Y) under P! in the third equality,

and the result of Step 2 in the last two equalities. The proof is complete. n

Let FY = (7)Y )20 be the filtration generated by Y, and let ZY = (U0 FY).
For each ¢ € E, we will construct a probability measure P on (ﬁ, ﬂN’;) such that, the
law of ¥ under P is the same as the law of X under P, Moreover, we will establish

a connection between P’ and P'. For this purpose, we first let
Sp:=inf{t>0|N; =k}, k=1,...,n

We will now derive the joint density of N, and (5i,...,S,) under Pi. For that, we

set
T1 = 51, Tk = Sk - Sk—h k= 2, o, n. (28)
It is shown in [Sys92, Section 1.1.4] that T}’s are independent and that

PUTy >ty T >t) = [ e, ... t, >0,
k=1
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which implies that the joint density of (T%,...,7,) is given by
fT17~--7Tn (t17 . 7tn) = H qk G_qktk, tl, A ,tn > 0. (29)
k=1
Combining (2.8) and (2.9), we deduce that
fs15, (81,00, 8n) = qu e WS-l 0= 50 < 51 < ...< Sy
k=1

Theorem 2.3.1. Foranyi € E, any 0 < s1 < ... < S,, and any cylinder set A € foyo

of the form
A={Yy, ..., Y, )€EB}, 0<uyy<us<...<up,, BICE" meN,

the limit

= Pi (A, s, < S < Aspk=1,...,
P (A;s1,...,8,) = lim ~< Sk E S Skt ASk n)
Aspo0k=lon Pl (g < S < sp 4+ Asp,k=1,...,n)

(2.10)

exists, and can be extended to a probability measure Fi(~;51,...,sn) on ((2,9’05;)

Moreover, for any A € ﬁ;} the function Fi(A; ...) is Borel measurable on {(s1,...,8,) €

R"|0< s <...<s,}, and

Pi(A) = /o . / @i(A; S1y--+s8n) H (qke_q’“(s’“_s’“—l)) dsp - --dsgdsy. (2.11)

k=1

In the proof of the theorem we will use the following lemma.

Lemma 2.3.1. Letus firi1 € E, 0 <s1 < ... <58, and let 0 =ky < ky < ... < kyy1
be positive integers. In addition, let 0 = ug < up < ... < U, < 81 < Upyp1 < ... <

Upy, < 8g < oo K8y < Uppqr < oon < Upyyy, G0 =0 and iy, ... 0, € E. Then, for
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any cylinder set A € FY of the form

o0

A ﬂ { Uk j+1 ik‘j"‘l’ s 7Yuk].+1 = ikj+1} <212)
7=0
we have
i kg1
P (A, sp < S < Asy, 0 =1,.
Asyg—0,0=1,....,n ]P>Z (SZ < SE < S¢ +AS{, / _1 - hltt
Z H e(Se—ukg)GZ—l(Z'kwjg)e(ukg+1_5£)GZ(je7 ikyt1). (2.13)

Jlsees in€E (=1
In particular, for any A € éfgg of the form (2.12), the above limit is Borel measurable
with respect to (s1,...,8,) i Ap = {(s1,...,8,) ER"|0 <81 <...<8,}.

Proof. For £ =1,...,n choose Asy, > 0 so that, s, + As; < uy,1;. Then,

P'(A, 50 < Sy < st Asp, (=1,...,n)
:P'L (Yuk[Fl :iké+17""Yuk£+l :ik2+17 6:07’717

NSZ :€_17N8£+Asz :f,£:17,__’n>

S D (Zuw = (Cingar)s - Zugy,, = (B, €= 0,

= (= 1,50), Zoyons, = (L,70), L=1,... n)

(=1

[g( _H R z‘ml),(e,im)))] (HeASfa((e—L jo), (¢, jg)))

/=1

In the above summation, the first product in the brackets provides the transition
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probabilities of the evolutions of Z between the times uy, and wu,,,, £ = 0,...,n,
the second product gives the transition probabilities of the evolutions of Z between
the times s, and s, + Asy, for each ¢ = 1,...,n, and the third product denotes
the transition probabilities of the evolutions of Z between the times u;, and s,, and

between the times s, + Asy and ug,11, for each £ =1,... n.

Next, for each / =1,...,n,

1 e , = _ ., @, 1if je=jj,
lim —— 2" (€ =1, 1), (€, 5)) = G ((€ = 1, 5), (£, 7)) =

Asi—0 Asy
0, otherwise.

Hence,

1 ~
li — P (4 S, < Asp, 0=1,...
ASKHOI,rgil ,,,,, n ASI . 'ASn ( , Se < Oy < sp+ Asy, ) ,n)

- H( 11 e““"‘“m“@((ﬂ,zm_l),(mm)))

=kg+1

> T (a8 (0= 1), (0= 1,50)) (2.14)

G1serjin€E =1

. e(uk[H_SZ)a ((ﬁ)je), (g, ikg-‘rl)) ) .

Note that, for any ji, jo € E, and any k£ € N,

G" ((4,71), (£, 52)) = (Ge — @) *(j1, j2), £=0,...,n—1,

G" ((ny 1), (n,j2)) = GE(j1, o),

so that, for t > 0, we have

e'C (1), (£, jo)) = e CemtenV (G go) = e 41t et gy, 5y), £=0,...,n—1,

¢S ((n, 1), (0, 2)) = €S (G, o).
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This, together with (2.14), implies that

1 ~.
. P* (A < A =1,...
Aspms00n1,.m As,---As, (A, 80 < Sp<sg+Asy, £=1,...,n)

n k@+1
— e >t qe(ur, ~uk, ) H H o (tm—1um—1)Ge (im—17 Zm)
£=0 \m=ky+1

1
e~ 2t=1 9e(se—uky) o= 32421 qe(nyr1—50)

Z H(qee(se—ukZ)GZ—l(ikz’je)e(uké+l—SZ)G€ (]Z, ik‘g-ﬁ-l))

j17"'7j7LEE f:]_

n k£+1
— e— Z?:l qg(Sg—ngl) . H < H e(um—umfl)GZ (im_17 Zm))

(=0 \m=ky+1

Z H (qe e(SliukZ)Geil (ikev Jﬁ) e(UkZHiSé)GZ (jfv ikeJrl))

J15ein€E £=1

n n kg1
(o) Ji ()
/=1

=0 m:kg+1

oY T (e (i ) e 0% (g 1))

J1ye-in€E =1

Finally, in view of the above and the fact that

1 ~.
b NN <sp+Ase, =1,
Asgms00n1,.m As;---As, (50 <S¢ < s+ Asy, AN
= Lo, (2.15)
=1
we obtain (2.13). The proof is complete. 0

We are now ready to prove Theorem 2.3.1.
Proof of Theorem 2.3.1. Let C be the collection of all cylinder sets in Z’g of the form

C={Yu, .- Yu,)€EB}, 0<uyy<us<...<up, BCE" meN
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Clearly, C is an algebra.

We first show that for any C' € C the limit in (2.10) exists and that an explicit
formula for it can be derived. In fact, Lemma 2.3.1 shows that the limit in (2.10)
exists, and belongs to [0, 1], for all the cylinder sets of the form (2.12). Thus, for a
cylinder set C' € C an explicit formula for the limit on the right-hand side of (2.10)
can be obtained as follows. First, we refine the partition 0 < u; < ug < ... < U, SO
that each subinterval of the partition 0 < s; < ... < s, contains at least one of the
u;’s. Clearly, since B,, is finite, A can be decomposed into a finite union of disjoint
cylinder sets of the form (2.12) on the refined partition. Moreover, (2.13) provides
an explicit formula for the limit in (2.10) for each of those cylinder sets of the form
(2.12) on the refined partition. Finally, taking the finite sum over all those limits, we
obtain the limit in (2.10) for C. In particular, for every cylinder set C, the limit in

(2.10) is Borel measurable with respect to (sq,...,s,) in A,.

In the second step we will demonstrate that the limit in (2.10) can be extended

—~

to a probability measure on o(C) = Y. We start from verifying the countable

additivity of F(- ;S1,...,8,) on C for any fixed 0 < s3 < ... < sp,.

Since E is a finite set, if (Cy)ren is a sequence of disjoint cylinder sets in
C such that their union also belongs to C, then only finite many of them are non-
empty. Therefore, it suffices to verify the finite additivity of Fi(- ;S1,...,8,) on C.
Let C1,...,Cy € C be disjoint cylinder sets, then there exists m € N and 0 < uy <

Uy < ... < Up, such that

Co={(Yy,..., Yy, )€ By} forsome B,CE™ (=1,... k.
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Each @i(C’g ;S1,...,8,) can be represented as

W(Cg;sl,...,sn): Z F(Ag;sl,...,sn), j=1,...,k,

ApeCy
where Cp, £ = 1,...,k, are disjoint classes of disjoint simple cylinder sets. Therefore,
we have
ZP<CZ;517"'7STL) :Z Z ]P)(AZ;SIW";SH)
/=1 I=1 AyeCy
4 [k
= Z PZ(A;Sl,...,Sn):PZ(UOZ;Sl,...,Sn>.
AEC1U--UCy, =1

Note that for any 0 < s; < ... < sy, @i(C;sl,...,sn) < 1 for all C' € C. By the

Carathéodory extension theorem, for any 0 < s; < ... < s, P -181,...,8,) can be
y ) y ) ) ) )

uniquely extended to a probability measure on (€, ZY).

Let A, :={(s1,...,8,) ER"|0< s1 <...<s,}and

o0

D, = {A e FY ‘V(A; +,-+-,-) is Borel measurable on An} :

We will show that D; = c;az’;}; Towards this end, we first observe that (2.10) and
(2.13) imply that, for any A € C, @i(A; -,-+-,-) is Borel measurable with respect to

(S1,...,8,) on A,, and thus D; D C.

Next, we will show that D; is a monotone class. For this, let (Ag)ren C D1 be

an increasing sequence of events, so that, for any 0 < s; < ... < s,, we have

P <UAk; 81,...,sn> = lim W(Am;sl,...,sn),
k=1 m—0o0

Thus, @i(UkAk. ;- ,+), being a limit of a sequence of Borel measurable functions on
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A, is Borel measurable on A,,, and hence Uy Ay € D;. Similarly, one can show that
if (Ag)ren C Dy is a decreasing sequence of events, then Ny Ay € D;. Therefore, Dy is

a monotone class, and by the monotone class theorem Dy = o(C) = %

It remains to show that (2.11) holds true. In view of (2.10) and (2.15), for any

cylinder set A € C,

—i , ITDi(A,sk<Sk§3k+Ask,k;zl,...,n)
Asg—0,k=1,..,n i (sp < Sk < sp+Asg, k=1,...,n)
hmAs,ﬁo k=1, .n(Asq --Asn)_lfl’i (A, sp < Sk <sp+As, k=1,...,n)
limas, -0, k=1....n(Asq - ~~Asn)—1f§’i (sp < Sk < sp+Asg, k=1,...,n)

—1
oo~ n
=P B4 S <s k=1, n) [ [[aee e )
asl tet aSn ( ! Sk — Sk’ ) 7n> (kl qk € >

Hence, for any A € C,

/ / / A S1yevy8n) H qr e~ br=s-1) dg ... ds,,
k=1

o ~ -
- | e P A Sk S k=1, - ds. = Fi(A
/0 /S1 /Sn1 dsy -+ - Ds,, (A, Sk < s, k yooyn)dsy - dsy, (A),

and thus C C D,, where D, := {A € ;‘5\:; (2.11) holds for A}. Next, for any in-

creasing sequence of events (Ag)reny C Da, we have that
£ (010) e
k=1
i [ P i
=1
= / / / (U Ak”sl"'"8n>HCM€_qZ(8Z_S£_1)d81---dsm
=1

where the last equality follows from the dominated convergence theorem as well as

the fact that W(Ak;sl,...,sn) <1 forall k e Nand 0 < s; < ... < s,. Hence,
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UrAx € Dy. Similarly, one can show that if (Ag)ken C Do is a decreasing sequence,
then N Ax € D,. Therefore, D, is a monotone class, and by the monotone class

theorem Dy = 0(C) = QN’O}; This completes the proof. O

Next, we will prove that the law of Y under P’ is the same as that of X under P
As usual, E( ;S1,- .., 8,) will denote the expectation associated with W( SS1y ey Sn),
fori e Eand 0 < s; < ... < s,. In the sequel, if there is no ambiguity, we will omit

—— —i
the parameters s1,...,s, in P and E .

Theorem 2.3.2. For any 1 € E and 0 < s1 < ... < §,, under @i, Y is a time-
inhomogeneous Markov chain with generator G = {Gy,t > 0}. In particular, X and

Y have the same law under respective probability measures P* and P
Proof. Let ug,uq,...,u,, be such that

O=up <up <...<up <81 <Ukyt1 < ... < Up

T8y <ot 8y < Uppy1 < oo < Upyyyy = Uy

n+1

By (2.13), for any i1,...,i, € E,

P (Y, =iy,....Ye =in)
B (Yu, =1,y Y\ = im1)
[T (T e 0% (i)
[ 7Z:_o1 <HI;£:+1<;14+16(%7%_1)GZ(ip—lvip))] (H];ZE:Llle(uruP_l)Gg(ip—lvip))

— e(“m*“mfl)Gn (imil, Zm) .

]

P Yy, =im | Yu, . =tmet1,..., Yy, =i1) =

On the other hand, by (2.13) again,

— P
P (Yum = im | Yum—l = Z'mfl) =
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Zil,---,im72EEP (Yul =11, ,Yum — Zm)
=i (Ym = ’il, RN ,Yum_l = imfl)

Zil,...,im,QEE ]P)
k _ . .
Zil,...jm,QeE HZ:O <Hp£=+k14+16(up Up—l)GZ (Zp—la Zp))

iz |10 (T ae® 05 Gy 1,y) )| (T e 05y 1,,))

— e(umfum—l)Gn(

Z.mfla Zm)

Analogous argument carries for any ug < u; < ... < u,,, which completes the proof.

O

In analogy to ¢, and 7;7 we now define an additive functional ¢ given as
Py = fot v(Y,)du, t > 0, and we consider the following first passage time p,; :=
inf{r >0y, >t}, t>0.

We end this part of this section with the following corollary to Theorem 2.3.2.

Corollary 2.3.1. For any (s1,...,8,) in A,, ¢ >0, and t > 0,

I (i, 5581,y 80) = E (e‘cﬂgﬂ{y+:j};sl, .. .,sn> , 1€E7,j€ET, (2.16)
Po

UH(t,4, 4150, 850) = E <e—cpt+]1{Y+:j};81,...,Sn> . i€ E",jecE". (2.17)
P

In particular, 1TF (i, 7; 81, ..., 8n) and Vi (t,4,7;81,...,5,) are Borel measurable with

respect to (S1,...,8,) i A,.

2.3.2 Wiener-Hopf Factorization for Time Homogenized Process. This sub-
section is devoted to computing the expectations on the right-hand side in (2.16) and
(2.17). This will be done by computing the corresponding expectations related to the
time-homogeneous Markov chain Z = (N,Y’). The latter computation will be done
using the classical Wiener-Hopf factorization results for finite state time-homogeneous

Markov chains, originally derived in [BRWS0].
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We begin with a restatement of the classical Wiener-Hopf factorization applied
to Z. Towards this end, we let ET := N, xE* and E~ := N, xE~, and 7 : E — R\ {0}
be a function on E such that 9(k,i) = v(i), for all (k,i) € E. Next, we define the

additive functional ¢ and the corresponding first passage times as
t
Dt ::/ o(Z)du, FEo=inf{r>0|+3, >t}, t>0.
0

Let V := diag{t(k,q) : (k,i) € E} (a diagonal matrix). We denote by I* the identity
matrix of dimension |E=|. Finally, Q(m) will stand for the set of m x m generator
matrices (i.e., matrices with non-negative off-diagonal entries and non-positive row
sums), and P(m, ¢) will be the set of m x ¢ matrices whose rows are sub-probability

vectors.

Theorem 2.3.3. [BRWS0, Theorem 1 & 2] Fiz c> 0. Then,

(i) there exists a unique quadruple of matrices (A}, A-, G}, G2 ), where

Af € PE|IEH), A7 € P(EYIET)), Gf € QE*|). and G, € Q(E7|),

such that
o ™ A ™ A Gr 0
v (G - cT) - L (2.18)
AF T AP T 0 —G;
(i) the matrices A¥, A7, G, and G., admit the following probabilistic representa-

tions,

K1), (0.9) = E (¢ Lz, gy | 2o = (1)), (ki) € B, (45) € B,
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A= ((k,d), (6,5)) = E (e*ﬁo‘ iz —(eay | Zo = (k,i)) . (ki) e B, (4,§) e B,

'S ((k,4), (¢,5)) = E <€_C;j1{z;+:(&j)} Zy = (kvi)> . (ki) € B, (£,)) € EY,

eté;((kai>7 (&j)) = IE <€_C;; ]-{Z;t_:(é,j)} ’ ZO = (/C,Z)) ) (k72) S E_a (&j) € E_a

for any t > 0.

In what follows we will use the “+” part of the above formulas and only for

k = 0. Accordingly, we define (recall (2.5))

T+ (i, §,6) == A ((0,4), (4, ) = E (e—cﬁl{zﬁz(m}) , i€E,jeEt (4N9)

E(t,.0) = € ((0,0), () = B (™ Lz gy ). ij €ET LEN £ 20,

(2.20)

Note that, for any ¢ > 0, v(Z;) = v(Y;), which implies that @; = v, and so p;” = 7,",

p; =T; . Hence, by taking summations over all £ € N in (2.19) and (2.20), we obtain

that
B (el ) =S Ti76G,5,0, i€B,jeBr, (2.21)
0 =0
E <e—cpt+]1{ypt+:j}> =" Ui (i 0), i jEET >0, (2.22)
=0

Observe that, in view of (2.11), if U : @ — R is an cf?:};—measurable bounded
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random variable, then for any i € E,

/ / / U 31,...,sn)H (qk e_qk(sk_sk—l)) ds,, - - - dsy ds;.
k=1

Therefore, in light of Corollary 2.3.1, (2.21) and (2.22), we have that

07 G, diqr, - ) = Z I} (i, 5. 0)

/ / / (1,7; 81, 5n) H (qke’q’“(s’“’s’“*l)) ds,, - - - dsy ds;.

k=1

(I\jj(t7iaj'QIa"'7qn . Z\I/thZ], )

// / Ut (t,i,7;51,. H pe s g, dsy dsy.

k=1

By change of variables, we obtain

H (qu17"'7qn / / Z]t17"'7 H qr€ qktk 1 dtnv

\Ij(zqua"'7QH / / Z]tl,...,t1+...+tn)

E:u

(qke’q’“tk) dt; ---dt,.

>
Il
—_

The above two equalities together with the argument in Appendix A, implies that

ot G g a), @ s )
are well-defined for ¢, € C* := {2z € C | R(z) > 0},k = 1,...,n, as being the Laplace
transforms of IT} (7, j; t1, ..., t1+...+t,) and W} (4, j; t1,...,t1+...+1t,), respectively.

2.3.3 Main Result. All the above leads to the following result, which is our main

theorem, and where we make use of the inverse multivariate Laplace transform. We
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refer to the Appendix for the definition and the properties of the inverse multivariate

Laplace transform relevant to our set-up.

Theorem 2.3.4. We have that

I0F (4, 7581, -+, 8n)

= (ql—l g T g 7Qn)) (51,82 — S1,- -+, 80 — Sn_1),
foranyi e E-, j € ET, and

\I[j(tai7j;317"-7sn)

= ‘Cil (qfl o QQliI;j(taZaL%QM <o 7qn>> (51732 —S1y---5,Sp — 3n71>7

for anyt >0, 4,5 € ET, where L™ is the inverse multivariate Laplace transform.

Remark 2.3.1. [t needs to be stressed that we can compute the values of

ﬁj(z’,j; Qry---yqn) and (I\fj(t, i, J5q1, -, qn) only for positive values of q;’s. Thus,
Theorem 2.3.4 may not be directly applied to compute 11T (i, j; 81, ...,5,) and

Ut (t,i,7;81,...,8,). However, we can approximate these functions, as explained in

Appendiz A by using only the values of ﬁj(i,j; Q-5 qn) and \Tfj(t,z',j; Qis- -5 qn)

for positive values of q;’s.

2.4 A Computational Method for WHf

In this section we will illustrate our theoretical results with a simple, but
telling example. We first describe a numerical method to approximate ITI7 and ¥/,

and then we proceed with its application to a concrete example.

2.4.1 Approximation of II} and ¥}. We only consider II7. The procedure to

approximate ¥} is analogous.
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According to Theorem 2.3.4 and Appendix A, to approximate I, we need to
compute ﬁj(i,j; ¢, .-, qn) forany qi,...,q, > 0, and then to use the Gaver-Stehfest
algorithm. Note that ﬁj (4,7;q1, - - -,qn) can be computed by solving (2.18) directly
using the diagonalization method of [RS94]. However, because of the special structure
of é, we can simplify the calculation by working on matrices of smaller dimensions.

Towards this end we observe that matrices in (2.18) can be written the block form as

follows,
(0,E*) (LE™) o (n,ET) (0,E7) (LE™) e (nE7)
(0,E™) A1 — qll+ qll+ ce 0 Bl 0 cee 0
(1,E*) 0 Ay — g™ - 0 0 B, cee 0
(n—1,ET) 0 0 gnl™ 0 0 0
B 0 0 - Aws O 0 - Bun
G =
(0,E7) G 0 . 0 Dy — ¢l ql~ e 0
(LE7) 0 G, s 0 0 Dy — QQli s 0
(n—1,E7) 0 0 e 0 0 0 I
(nE7) 0 0 o Con 0 0 o Dppa
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(07E+) (17E+) (nvEJr) (Oin) (17E7) (nin)
(0,E+) \Vas 0 ‘e 0 0 0 ce 0
(1,E*) 0 v+t 0 0 o - 0
(n—1,ET) 0 0 0 0 0 0
(n,E+) 0 0 V+ 0 0 0
, (2.23)

(0,E7) 0 0 0 \A 0 0
(1,E7) 0 0 0 0 \% 0
(n—1,E7) 0 0 ‘e 0 0 0 e 0
(n,E7) 0 0 0 0 0 A\

(0,ET) (LEt) .. (n—1,ET) (n,ET)

(O.E7) K:foo 7\:,01 T KZO,n—l K:Dn

(LE™) 0 Kj,n T K:l,n—l K;rln

At =
(n—LE™) 0 0 e KZn—l,n—l ‘K(—;n—l,n
(n,E-) 0 0o - 0 K;fnn




(0.ET)

(1,ET)

(n—1,E1)

(n,ET)

(0.ET)

(1LET)

(0,E7) (L,LE)

Ac,OO Ac,Ol

0 Aoy,
0 0
0 0

(0,Et) (LE™)

+ G+
GC,OO Gc,Ol

0 Gy
0 0
0 0

(n—1,Et)

+
Gc,O,n—l

G+
Gc,l,n—l

cn—1ln—1

(n,E7)

A

c,0n

32
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and

(OE7) (LET) - (n—LE™) (n.E7)
(0,E7) N;()o ~;01 T a;O,n—l a;ﬂn
(LE™) 0 N;n N;l,n—l ~;1n
G = S : L (2.24)
(n—1E7) 0 0+ Goutat Gonim
(nE") 0o 0 - 0 G,

c,nn

Plugging (2.23)-(2.24) into (2.18) and then comparing all the block entries on both

sides, we end up with the following procedure to compute the factorization recursively.

In accordance to Theorem 2.3.3, for any generator matrix H and any constant

¢ > 0, we denote by
(AL (H), AL (H), G (H), G, (H))

the unique quadruple constituting the classical Wiener-Hopf factorization (cf. [BRWS80])

corresponding to H with killing rate c¢. In order to proceed, we let ¢, = qp+c¢, k > 1.

We are now ready to describe the algorithm to compute the value of

gt gy TG g ).
Step 1. Compute the first diagonal: for k =1,...,n + 1, compute
A:r,k—l,k—l = AZ;(Gk),

using the diagonalization method in [RS94].



Step 2.

Step 3.

Step 4.

Step 5.
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Compute the second diagonal: for k =1, ..., n, solve the following linear

system

+ A+ _ Gt
al™ + BkAc,kfl,k =V Gc,kfl,lw

—1A+ A+ A+ G+ -A+ G+
DOk — el "IN+ @A =V AL e Gl VAL kGl

A+ G+
for ACJ%L,{ and Gc’kfl’k.

Compute the other diagonals: for r = 2,...,n, k =0,...,n — r, solve

the linear system

A+ _ TGt
Bk+1Ac,k,k+r =V7G

c,k,k+r>

T
—1A+ A+ _ - } :~+ G+
[Dk+1 - Cl~c+1| ]Ac,k,k+r + Qk+1Ac,k+1,k+r =V Ac,k,k+jGC,k+j,k+r7
j=0

A+ G+
for A7y ;. and G

c,k,k+r-

Compute

PHay,qn) =t g TG dian, ) = @t qn Y Ao
=0

for q1,...,q, > 0.

Compute the approximate inverse Laplace transform of P* (¢, ..., q,):

use the method discussed in Appendix A.

Remark 2.4.1. If |[ET| = |E7| = 1, then the matrices in Steps 1-3 become num-

bers. Step 1 reduces to solving n + 1 quadratic equations for a root in [0,1]. In

Step 2 and 3, for each loop, the system reduces to a system of two linear equations

of two unknowns. Moreover, in this case, Pt has a closed-form representation for

qi, - -

., qn > 0, and hence, for any qi,...,q, € C*, as mentioned in the previous sec-
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tion. This allows us to use general numerical inverse Laplace transform methods, not
necessary the Gaver-Stehfest formula from Appendix A. In particular, one can use
Talbot approxzimation formula (A.1) presented in Appendiz A, which is more efficient

than the Gaver-Stehfest under fairly general assumptions (cf. [AW06]).

2.4.2 Application to Fluid Flow Problems. In this section, we will apply our
results to the time-inhomogeneous Markov chain fluid flow problem introduced in

Section 1.1. We will compute the quantity
(i, §) = E (a%‘ Iy ;j}) . icE*, jeE".
70

Towards this end, we further assume that the tank has either an aggregate water

inflow at rate v™ or an aggregate water outflow at rate v=. In other words,
Eft={e,}, E ={e }, vley)=v", and wv(e )=0v".
Moreover, we assume that the time-inhomogeneous Markov chain X has the generator

Gy, S0 <t < s,
Gt - G27 51 S < 52,

Gg, tZ S9,

where 0 < 51 < s9.
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We take the following inputs: ¢ = 0.5,v(es) = 2,v(e_) = =3,81 = 2,82 = 8,

The following table compares our result and execution time with Monte-Carlo simu-
lation (10000 paths). The program is implemented in MATLAB®, and is available

from the author upon request.

Table 2.1. Numerical Comparison between WHf and Monte-Carlo

Method Wiener-Hopf Monte-Carlo
I (ey,e ) 0.6501 0.6462
Execution time 0.15s 3.12 s

As expected, we obtain similar values for II7 (e, e_) by both methods, while

clearly the WHf method is much faster than Monte-Carlo.

Remark 2.4.2. One can also compute 1T} (e_,ey), if it is the quantity of interest in
the model. Note that if we change the labels of the states from {ey,e_} to{e_,e,} and

modify the inputs accordingly, we can compute 1T} (e_, e, ) using the same algorithm

that computes 117 (e4,e_).
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CHAPTER 3

STATISTICAL INFERENCE FOR STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS

3.1 Introduction

The main goal of this part of the thesis is to derive some consistent and asymp-
totically normal estimators for model parameters appearing in some linear parabolic
Stochastic Partial Differential Equations (SPDEs). We will start by introducing the
relevant notations, and the main objects of study. Throughout this chapter, we fix
a stochastic basis (€2,.%,{% }+>0,P) that satisfies the usual assumptions. Let H be
a separable Hilbert space, with the corresponding inner product (-, - )y and norm

|| - ||z. We consider the following stochastic evolution equation

du(t) + (A, + Ag) u(t) dt = (Mu(t) + o) dW9(1), (3.1)

with initial condition u(0) = ug € H, and where Ajp, A; and M are operators in H or
other suitable Hilbert spaces, W% := {W?(t)};>¢ is a Q-cylindrical Brownian motion
in H,0,0 € R, :=(0,00).

The rigorous study of the existence and uniqueness of the solution to (3.1) is
out of the scope of this work, and refer to [R0oz90, DPZ92, Cho07, Hai09, LR17] for a
detailed discussion on the analytical properties of the solution. We will review some

of these properties later in this chapter.

3.1.1 Classes and Examples of SPDEs. SPDEs can be classified into different
categories according to noise term. If () is the identity operator, then the noise
is called space-time white noise. Otherwise, the noise is referred as space-time
colored noise. If M = 0, then (3.1) is called an equation with additive noise.

Otherwise, it is called an equation with multiplicative noise. In this work, we
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mainly study SPDEs driven by an additive noise, i.e. M = 0.

Furthermore, the SPDEs with additive noise can be classified according to
the operators Ay and A;. If the operators Ay and A; have only point spectra,
and a common system of eigenfunctions {hy}ren that form a complete, orthonormal
system in H, then (3.1) is called a diagonalizable equation. Otherwise it is a non-

diagonalizable equation.

Finally, similar to the deterministic PDEs, if H = L?(R%), then (3.1) is called
an equation on the whole space. On the other hand, if H = L*(G) and G C L*(R?)
is a bounded domain, then (3.1) is called an equation on bounded domain. The
parabolicity of SPDEs driven by additive noise is defined by analogy to parabolicity
of PDEs in terms of the properties of the operators Ay and A;. For equations with
multiplicative noise the parabolicity involves also the operator M. We refer to [LR17]

for a detailed discussion of classifications of SPDEs.

Next, we give several examples of SPDEs that will be discussed in the appli-

cations of the proposed theoretical developments of this section.

Example 3.1.1 (Stochastic heat equation on bounded domain). If H = L*([0, 7]),
A1 =—-A, Ay =0, M =0 and Q is identity, then we have a stochastic heat equation

on [0, 7],

du(t, z) = Oug,(t,x)dt + o dW (t,z), =z € (0,7), t>0,
u(0,2) =0, =z € (0,m),

u(t,0) =u(t,m) =0, ¢>0.

Example 3.1.2 (Stochastic heat equation on the whole space). If H = L*(R), A; =

—A, Ay =0, M =0 and Q is identity, then we have a stochastic heat equation on
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the whole real line R,

du(t,z) = Quy,(t,x)dt + o dW (t,z), xz€R, t>0,

uw(0,z) =0, ze€R.

Example 3.1.3. The following equation is a fractional stochastic heat equation driven

by an additive noise, possibly colored in space,

du(t, ) + 0(=A) ult,x)dt = 0¥ N h(x) du(t), t€[0,T], z€G,
k=1

with initial condition u(0,x) = uo(x) € H, where >0, >0, v >0 and 0 € R\ {0}

are constants, and where A\, := /—1g, k € N.

Example 3.1.4. We consider the following evolution equation

du(t,z) + (Au(t,z) + Qu(t, x)) dt = i hi(z) dwg(t), t€[0,T], ze€Gq,

u(0,z) = up(x) € H,

Note that in this case the parameter 6 is in front of the lower order differential oper-

ator.

Example 3.1.5 (Multiplicative Noise). If H = L*(R), A, = —A, Ay = 0, and M
and Q) are identity operators, then we have a stochastic heat equation on the whole

real line R with multiplicative noise,

du(t, ) = Ouy,(t, ) dt + u(t,z) dW(t,z), x€R, t>0,

u(0,z) = up(x), =z €R.
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3.1.2 Statistical Inference for SPDEs. Starting with the seminal papers [HKR93,
HR95], most of the existing literature on statistical inference for SPDEs is framed
within the so-called spectral approach that explores the parameter estimation prob-
lems using the Maximum Likelihood Estimators (MLE). In this approach it is as-
sumed that we observe the first N Fourier modes of the solution are continuously
on the time-interval [0,7]. The main goal is to construct suitable estimators for the
unknown parameters 6 and/or o, and investigate the asymptotic properties of the

estimators, as N — oc.

For example, let us consider the equation (3.3) with v = 0,0 = 1 and uo = 0.
By direct evaluations one can show that (cf. [Lot09]) that the MLE Oy of 6 based on

the observations u(t),k =1,...,N,t € [0,T], is given by

o — ke fy (nlt) du(t) + () at) 52)

N T
> k-1 vi 0 uy (t) dt

Moreover, §N is a strongly consistent estimator of the true parameter 6, i.e.

lim Oy =60 with probability one for all 6 € ©.

N—oo

It is also asymptotically normal, i.e.

The estimation of ¢ under continuous time observation can be found exactly by em-
ploying quadratic variation arguments, similar to finding the volatility in SODEs. For
more details on MLEs and their modifications we refer to the surveys [Lot09, Cial§],
textbook [LR17] and the monograph [Bis08] on linear SPDEs. For adaptation of
MLEs to a nonlinear setup see [CGH11]. In [CX14, CX15], the authors studied
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the hypothesis testing for stochastic fractional heat equation. Equations driven by
fractional Gaussian noise are studied in [Cial0, CLP09]. Finally, see [MB95, PR97,
Mar03, PR03, MPRO2] for parameter estimation for SPDEs under discrete time sam-
pling schemes and assuming spectral approach. For linear, diagonalizable SPDEs,
the MLE can be computed explicitly, and of course, from a statistical point of view
there is no need to study other type of estimators. In general, this statement does not
hold true for non-diagonalizable equations such as nonlinear SPDEs or SPDEs driven
by a multiplicative noise. While the parameter estimation problem for SODEs went
way beyond the MLEs (cf. the monograph [Kut04]), there exist a limited number
of works dedicated to the non-MLE statistical inference for SPDEs. For example,
in [CLO9] the authors explore the singularity of corresponding probability measures
and derive a closed-form estimators for the drift coefficient for some linear parabolic

SPDEs driven by a multiplicative noise (of special structure).

In this work, we propose two methods. First, in Section 3.2, we study a
non-MLE estimator for diagonalizable parabolic equations under spectral approach.
In second part, going beyond spectral approach, we propose p-variation type esti-
mators which are constructed from discretely observed data, which are discussed in

Section 3.3.
3.2 Trajectory Fitting Estimators (TFEs)

In this section, we study the estimator that is related to what is known in the
literature the trajectory fitting estimators (TFEs). Using as observations the first
N Fourier modes, we construct the TFE by analogy to the TFE for continuously
observed finite dimensional ergodic diffusion processes first introduced by Y. A. Ku-
toyants [Kut91]; see also [Kut04, Section 1.3 & Section 2.3] and references therein.
The TFE can be also viewed as an analog of the least squares estimators widely used

in time-series analysis. We study the asymptotic properties of the TFE as N — oo, in
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contrast to the diffusion processes where the asymptotics are done for the large-time
regime. Surely one can investigate the large-time asymptotics for SPDEs too, but
we find this case to be too similar to the estimators for diffusion processes, and we
omitted it here. In this study, we consider a fairly simple, although general, class
of SPDEs: linear, parabolic, diagonalizable equations, driven by an additive space-
time noise. The diagonalizable nature of these equations, allows us to derive explicit
expressions for the considered estimators and for the asymptotics of their first two
moments, and hence to investigate the rate of convergence of these estimators. While
simple, these equations can be viewed as a good approximation of some more com-
plicated and practically important models. On the other hand, the obtained results
will serve as benchmarks for future studies of more complicated and realistic models
which will be addressed in the sequel. Under some general structural assumptions we

prove consistency and asymptotic normality of the proposed estimators.
We will study the following diagonalizable parabolic equations with additive
noise,
du(t) + (0A; + Ag) u(t) dt = o dW (t), (3.3)

that satisfy the following conditions,

(i) The operators Ay and A; have only point spectra, and a common system of
eigenfunctions {hy}reny that form a complete, orthonormal system in H. We
denote the corresponding eigenvalues of Ay and A; by pr and v, k € N, respec-

tively.

(ii) The sequence {ux(0) }ren, where py(6) := Ovg + pg, is such that

lim p,(0) = +o0,

k—o0
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where the convergence is uniform in 6 € ©.

(iii) There exist universal constants J € N and ¢q > 0 such that, for any £ > J and

any 0 € ©,

(iv) The sequence {v }ren is such that limy o vp = +00.1

(v) The noise term W is a cylindrical Brownian motion in H, and has the following

form
W(t)=> A hwg(t), t>0,
k=1
for some v > 0, where )\, := V;/(Qm), k € N, for some m > 0,2 and where
wy = {wg(t) >0, k € N, is a collection of independent standard Brownian
motions.

Conditions (i)—(v) imply that the equation (3.3) is linear, diagonalizable,
parabolic, and that the solution exists and is unique; this can be established by
standard methods from theory of SPDEs, and we refer, for instance, to [Lot09,
HLR97, HR95] for similar setup, or to [Roz90, Cho07, LR17] for a general theory.
Of course, one class of operators Ay and A; that satisfy the above conditions are
pseudo-differential operators on bounded domains with appropriate boundary condi-

tions, with Ay being subordinated to A;.

"Without loss of generality, we will assume that v, > 0, for all k£ € N.

20f course, one can consider at once just Ay = 1. Our choice to consider m is to
put the results on par with the notations from the existing literature. As mentioned
later, if Ay and A; are some pseudo-differential operators, then it is convenient to
denote by 2m the order of the leading order operator.
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The unique solution to (3.3), with initial condition «(0) = wug, is given by

u(t) =Y up(t)he, >0,
k=1

where, for each k € N, uy = {ug(t)}+>0 satisfies the following ordinary stochastic

differential equation (SDE)

with initial condition ux(0) = (ug, hx)g. The stochastic processes uy, k € N, are
the Fourier modes of the solution u with respect to the basis {hx}ren of H, i.e.,
uk(t) = (u(t), hi)m, t > 0, k € N. Note that the SDEs of the form (3.4), for k € N,
provide an infinite system of decoupled/independent Ornstein—Uhlenbeck processes.
As already mentioned, the decoupling nature of Fourier modes, or the diagonalizable
property of the original equation, will play a critical role in our study, and it is
essentially guaranteed by the assumptions (i) and (v). By It6’s formula, clearly we

have
t
wg(t) = e 1Oty (0) + J)\,;Ve_“’“(e)t/ e O dup(s), t>0, keN. (3.5)
0

We plot the simulated solution for the following equation with additive space-time

white noise,

du(t,z) — Au(t,z)dt = dW (t,z), t>0, x€][0,m7],

uw(0,z) =0, ze€l0,x], u(t0)=u(tr) =0, t>0.
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Next, we review the construction of TFEs for SODEs.

3.2.1 Trajectory Fitting Estimators for SODEs. The trajectory fitting esti-
mators for continuous-time diffusion processes can be viewed as an analog of the least
squares estimators widely used in time-series analysis. Following [Kut04, Section 1.3
& Section 2.3], we will briefly describe the TFEs for finite-dimensional diffusions.

Assume that the observed process S(0) := {S(t;0)}+>o follows the dynamics

dS(t;0) =b(0,S(t;0))dt + o(S(t;0)) dB(t), (3.6)

where B := {B(t)}+>0 is a one-dimensional standard Brownian motion, and 6 is the
parameter of interest. We assume that the drift b and the volatility ¢ are known, and
that the solution to (3.6) (with certain initial condition S(0,60) = Sy) exists and is

unique, for any # € ©. Let F' : R — R be a twice continuously differentiable function.
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By Ito’s formula,

Fs(0) = Fs) + [ (PS50 0.5(5:0) + 5 #(S(50)0(S(s:0) ) s

+/0 F'(S(s;0))0(S(s;60)) dB(s).

For any 6 € © and t € [0, 7], let
F(t:0) := F(Sy) + /0 (F’(S(s; 0))b(6,5(s;0)) + %F”(S(s; 0))o*(S(s; 9))) ds.

The trajectory fitting estimator® 07 of 0 is then defined as the solution to the mini-

mization problem

Gy = arginf / ' (F(s(t:0)) — F(s 9))2 dt. (3.7)

0cO

The choice of function F' depends on the underlying models, and has to be taken such
that the estimator satisfies the desired asymptotic properties (consistency, asymptotic

normality, etc).

3.2.2 Construction of TFE for (3.3). We take F'(z) = z? in (3.7). For each

Fourier mode ug, k € N, by Ito’s formula, we have

ui(t) = ui(0) + /t (0227 = 2uk(0)ui(s)) ds + 20,7 /t ug(s) dwg(s), t>0.
0 0 (3.8)
By (3.7), one can easily construct a TFE for 6 based on the trajectory on [0,77],
for some fixed horizon T" > 0, of each Fourier mode uy. The long-time asymptotic

behavior of such estimators as 7' — oo has been well investigated (cf. [Kut04]), and

3The terminology comes from the fact that the estimator is obtained by fitting
the observed trajectory with the artificial one.
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thus we will omit it here.

By analogy to the construction of maximum likelihood estimators for SPDEs
(cf. [Lot09]), we will construct a TFE for the unknown parameter 6 based on the
trajectories of the first N Fourier modes of the solution. Moreover, for a fixed hori-
zon T > 0, we will study the large-space asymptotic behavior of the TFE as the
number of the Fourier modes increases, which is a distinguished feature for an infinite

dimensional evolution system. Specifically, fix any 7" > 0, and for any 6 € O, let
t
Vi(t;0) == u2(0) +/ (®N\.2 = 2uk(O)ui(s)) ds, k€N, telo,T] (3.9)
0

The TFE for the unknown parameter 6 is defined as

N

B T
On =0n(v,T,0,m) := arg ian/ (Vie(t;6) — “z(t))Q dt.
vce0  +— Jo

We are interested in the asymptotic properties of ] N, as N — oo, with T being fixed.

One advantage of the TFE is that it can be given by an explicit formula that

does not contain a stochastic integral. Indeed, by (3.8) and (3.9),
N T
Z/ (Vit:0) — u2(1))* dt
k=170
N T
-y / (12(0) + 02\t — 2080(t) — w2 (1) — 20m6(1)) .
k=10

The maximizer of the last expression, with respect to 6, can be computed simply by

finding the root of the first-order derivative. Specifically, let

d e [T ) ,
2= / (i (0) + Xt — 20060 (t) — wi () — 20 (1)) dt
k=1"0
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2

:7%23/ (12(0) + o2\t = 206a(t) — ()

N

Z/ 4‘9ka]€ (O) + 0'2/\]:27t - 2pk§k(t) - ui(t)) dt

d@z/ (2008 (t)

| A
2

=z

Z/ (1) (up(0) + N Tt — 20184 (8) — i (1)) dit

+ (1)) dt
;/0 Vk:k

=0.

2

This yields the following explicit expression for the TFE

7 Sl S v (t) (w3 (0) + 02N, 2”t—2pk£k(>—ui<t>) dt
Zk 1f0 (V& (t) dt

In what follows, we will make use of the following notations. For any ¢ € [0, T], let

€u(t) = / W2(s)ds, Xu(t) = / su(s) ds, (3.10)
0
/@ s 24l0) = [ €(s)ds
Thus the TFE can be represented as

5 S G — dOWT) — AN X(T) + 202(T))
2 fovzl vi Z(T)

(3.11)

3.2.3 Auxiliary Results of Asymptotics. In what follows, we will denote by 6
the true parameter. For notational simplicity, the 7" variable in &, (7T"), Xx(T), Yi(T)

and Zi(T) will be omitted from now on. Subtracting 6 on the both sides of (3.11)
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leads to

g T (8RO - PN X+ 2 Z)
N — VU —— N 5 _
22 k=1 Vi %k
Soec vk (362 — w2 (0)Ys — 02N X + 2002k + 204,07
2 Z;cv 1 I/%Zk
Zl]cvzl vi (568 — up(0)Yi — o2\ X + 21(0) Zr.)
2 Zk:l Vi Z
> Vi A

= k=l TR (3.12)
222\[:1 VﬁZk

As usual, for two sequences of positive numbers {a, }neny and {b;, }nen, we will
write a,, ~ by if lim, o a,/b, = 1, and will write a,, < b, if there exist universal

constants Ky > K; > 0, such that Kb, < a,, < Ksb, for n € N large enough.

We start with a technical result regarding the leading order terms of the means

and variances of Ay and Zy, as k — oc.

Proposition 3.2.1. Let the assumptions (i) - (v) be satisfied. Then, as k — oo,

ut(O)T o2\ u3 (00T o'\ T3

E(Z.) ~ ) 3.13
Z~ Syt w1220 (313)
2 2y w8 (0)T2 254 47 400\T3
Var(Z) ~ © A 0( ) ot A i (0)
21%( ) 3Mk(9)
a6 6v 2 4 8y —8v5
A (0T o )\k5 T | (3.14)
3Mk( ) 154(6)
27 2(0) 04>\—47T2
E(A k , 3.15
()~ Tt 220) (315)
2y w8 (0)T2 254 47 4(0)T3
Var(Ay) ~ 7N (0) += A 4(0)
2(0) 31 (0)
a6 6y u2 4 8y —8v5
A (0T o )\k3 T . (3.16)
3/%(9) 1543(6)

Proof. Due to the nature of desired asymptotic results, the underlying computations

are somehow extensive and tedious. Most of the evaluations were performed using
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symbolic computations in Mathematica®. For the simplicity of notation in compu-

tations, we denote
a:=pu(6), b:=0oX", ,c:=u(0).
For each k € N,
t
up(t) = e e+ be_“t/ e dwg(s), t>0.

0

and with the notations introduced in (3.10) and (3.12), we get
1
Ay, = 55,3 — Y, — B Xy + 2a 7.

Note that for any ¢ € [0, 7], ux(t) is a normal random variable with mean e~*¢ and

. 2
variance & (1—e

—2
> at)

. First, we compute the even moments of u(t). By [td’s formula,

dui(t) = (b* — 2aui(t)) dt + 2buy(t) dwy(t),

duy (t) = (6b%ui(t) — dau,(t)) dt + 4bup (t) dwy(t),

dul (t) = (15b%ui (t) — 6aul(t)) dt 4 6buj (t) dwy(t),

duf (t) = (28b*uf (t) — S8auf(t)) dt + Sbul () dwy(t).

Therefore, the expectations satisfy

Eui(t) = /0 (b* — 2aEui(s)) ds,
Eul (t) = /0 (62Eu2(s) — 4aEa(s)) ds,
Eul (t) = /0 (15b°Eu; (s) — 6aEul(s)) ds,

Eui(t) = /Ot(28b2Eu2(s) — 8aEus(s)) ds,
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and to find these expectations, it is equivalent to solve the following ODEs,

dEﬁ(t) — 2 QaEui(t), ]Eui(()) _ 2

(HEZ—;M = 60°Euj (t) — 4aFuy(t), Euy(0) = ¢,
(HEZ—E(Q = 150°Eug(t) — 6aBul(t), Eul(0) = c°,
dEZE(t) = 280°FEul (t) — S8aBul(t), Euf(0) =

We use Mathematica to solve these ODEs and get

b2 b2 e —2at

Eui(t) = % o + cPe 20t
3b4 3b4€—4at 3b2 2 —4at 3b4e—2at 3b2 2 —2at
Eu(t) = 2 4 —dat
w(?) 4q2 + 4q2 a teoe 2a? + a ’
15b6 15b66—6at 45[)4 2 —Gat 15[)2 4 —Gat
Eub () — _ 6 ,—6at
u(t) PE 33 + 1a? 5 +c'e
45b6€—4at 45[)4 2 —4at 15b2c46—4at 45b66—2at 4564026_40’t
8a3 2a2 2a 83 402
5 1056° 105685 10560c%e % 105bicte st 14b?cSe St
Euy(t) = + +
16a* 16a* 2a3 2a? a
S sat 105686_6at 31566 2 —6at 105b4 4 —6zzt 14b2 6 —6at
+ c’e — +
4a* 2a3 a? a
N 315b8e4t  315p0c2e 4t N 105b%cte—4t 105682 N 10568 c2e—2at
Sat 2a3 2a? 4at 2a3 '

In addition, we know

b2 02 b2€—2at 026—2at b2t
E&(t) = —— + — - iy
& (1) 4a + 2a * 4a? 2a + 2a

We first verify (3.13). From the definitions in (3.10) we have

sz) = ( [ goar) = [ Eg)a
i /0 ' /0 E (6u(s)u2(s)) dst (3.17)
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By Ito’s formula,
A€ (D (t) = (up(t) + b?E(t)) At — 2a&k (t)ui(t) dt + 2bu(t)Ex(t) dwp(t).
Taking the integration and expectations on both sides above, we obtain that
t
E (& ()up(t)) = / (Eup(s) + b°E&k(s)) ds — 2aEE (& (s)ui(s)) ds.
0

Thus E (&(t)ui(t)) satisfies the ODE

B (62 (1)) = (Bub(r) + PEE(1)) ds — 2aE (6(0)u(1)

with zero initial condition. Therefore, we get

b4 6202 3b4€74at 3b262674at
E (& (0)ul(t)) = —— .
(gk( i )) 8a3 + 4a? 8a3 + 2a?
C4ef4at b4672at 7b2 02672at 04672at

Y + 4a3 42 2a
b*t  Hbie 20t N 5b%c?e2att
4a? 4a? 2a ’

Therefore, by (3.17),

- 35b* B 9b2c? B 3ct B 3pte—1aT N 3b2c2e 1T
" 64a®  16a* 1643 64a° 16a*
C4e—4aT b4€—2aT 3b2026_2aT 646_2at 9b4T

EZ;

166 200 8al ' 4 1648

b2cAT n AT Bhre 2T n S5b2cte=2eTT  pAT?

4a3 4a? a4 4a3 8a3

b2 2T2 b4T3
- 4= (3.18)
4q? 12a2

which leads to (3.13), since by the assumption (ii), we only keep the terms with

denominators that are second order of a, and since T' > 0 is a fixed constant.
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Next, we study the asymptotic order of Var(Z), k — oo, given by (3.14). In
light of (3.18), we are left to compute E(Z?). By Ito’s formula, and since the It6

integral terms have zero expectation, we have

B(zp) =2 "E(z0E W) dt

= Q/OT/OtE(gg(s))ds dt + 4/0T/0tE(Zk(s)gk(s)uz(s))ds dt.  (3.19)

To compute the first expectation in (3.19), by It6’s formula again, we have

Agi(t) = A& (Hui (1) dt,

(&R (B)ui(t)) = (3E(H)ui(t) + &L(t) — 2a8E(B)uy (1)) dt + 282 (#)u(t) dwi(?),
dgi(t) = 36 (Hux(t) dt,

A(€E(B)ui(t)) = 2 (& (D)ur(®) + 3E (B (1) — 208 (#)up (1)) dt + 4G (ui (1) duwn(?).

We need to compute E(& (s)u(s)) and E(£2(s)ui(s)). Again by It6’s formula, we get

d&e(t)up(t) = (up(t) + 156k (t)up(t) — 6aly()up(t)) At + 6 (H)up(t) dwy(t),
A& (t)ui(t) = (28 () (t) + &i(t) — 2a&i (D) (1)) At + 265 (H)ug(t) dwy(t),
A€k (Huy(t) = (u(t) + 68, ()i (t) — 4ale(t)ur(t)) At + A& (t)ui(t) dwy(t).

Then we find the following ODEs,

T E (G(0ui(t)) = Bup() + 15E (&(8)ui (1)) — 6ak (x(H)ui(t))
d—iE (E2(ui(t) = 2B (&(1)ub(t)) + EE (1) — 2aE (& (t)ui (1)),

EE (& (t)uy(t)) = Eup(t) + 6E (& (t)ui(t)) — 4E (& (t)up(t)) -



Therefore, we get

E (gk(t)ui(t» _ 1%[)64 N 3b4§2 15b6€;6at B 45b462§—6at 1562045—6@
a 8a 16a 8a 4a
Se—bat  91pbo—dat  Gopi2e—dat 9 p2cAe—dat  Sp—dat
 2¢  16a* 8a? B 4a? 2a
3b8e2at  27bhic2e 20t 3p2cte 24t 315t 27HSe~talt
16a* 8a? 2a? 8a? 8a?
27hicce 9ttt 9b2cte it 15b5e729t  15b*cPe 29t
B 2a? + 2a  4dP + 2a2 ’
7568 15b%¢2  105b%e%%  105b5c%e 8t 105b*cte 8
B(&0n®) = 555 Tar ~ 2008 1t 4dd
7b266678at 68678at 15b8676at 915b6c2676at 4O5b4c4676at
a? . 2a 2 16a* 8a3
43()206676” 08676at 45b8674at 5856602674@ 30b4c4674at
B 4a? 2  16a° 16a* B a?
150%cBe=42t  1568e72%  10585c%e=2¢t  45b*cte2%t  15b8¢
4a? Y 16a* 8a3 16a*
195b8e=69t¢  585p5c2e6%tt  195h*cte=btt  13h%cBe—bat¢
B 16a* 8a3 B 4a? 2a
405b%e~49tt  405b5c%e49tt  135bicte 4ol
16a* 4a3 a2
225b8e~20tt  225p0c2e—2att
~ 16a* 8a? ’
and
E (gg(t)ui@)) _ 332665 N 3b4i2 b2C: B 15b6e;6at 45b4c26476at B 15b2c4§f6at
a 8a 8a 32a 16a 8a
06676at 15b6674at 36402674@ 23b2c4€74at 06674at
402 32d° 2a* 8a3 2a?
27b6672at 27b4c2672at 9b2c4672at 06672at 3b6t b402t
32a5 16a* 8a3 4a? 8a* 4a3

27b8e4att
= +

27 et 9p2cte—daty  QRpi2e 20t

4a3

8at 2a3 2a?
5b204672att b6t2 25b6602att2 N 25b402672att2
2a? 8a3 8a3 4a? )

54
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And then we get & (t), E(&2(¢)ui(t)) and E(E3(t)ui(t)), and finally E&L(t) as follows.

14705 9b%c? 9p2et S 15p%e6t  45ptePe—bat

EE3(t) = — < _
e (t) 64a® | 3245 T 1647 | 8a® | Gdao 32a?
15b2c4e—6at 066—6at 63b6€—4at 4564026—4at 2162046_4a’t
160 8a®  64a® 3206 16!
3666—4at 69666_2at 81b462€_2at 3b2046_2at 3066—2at
+ + + — —
8a? 64ab 32ab 16a4 Sa3
N oS¢t N bt N 32 N 81b8e4att B S1bic2eatt
32ab Sat 8a? 32ab Sat
N 272 cteatt N 750820t t B 15b%cte20tt N 9p6¢2 N 3bt 22
8a3 16a® 4a3 16a* 8a?
75b6e—2att2 B 75b2026_2att2 bﬁtS
16a4 8a3 8a3’

B 6968  158%¢2  3btc* 105b%e8¢  105b5c%e 8t 105bicte8at

BEOu®) =gt Toa5 T Toat T 6dd T 8@ T sl
7b206678at 08678(11‘, 195b662676at 165b4c4676at 27b266676at
B 2a3 4a? 16a B Rat 4a?
08676at 123b8674at 111b662€74at 141b4c4674at 4b266674at
T2 T 3 T 16 teat &
68674at 9b8€72at 111b602672at 3b4c4672at 3b266672at
4a? + 8ab 16ab B 2a* + 4a?
1568t 3b5c%t  195b8e=%%tt  58510c2e6ett  195b4cte bt
65 ' 8ar | 16a® 8a’ * 4a3
130%2cPe 6t 135h%e4't  513b8c%ett  171b%cte 10t
T T 16w 8a’ a 4a3
Ob?cBe—datt  Thb8e2att  TEpSC2e20tt 15htcte20tt 332
2@ 16w 8t 2@ 1o
243p%e~ 4442 243pSc2e40tt2  81bActe 42 THhSe 202
16a* B 4a3 + 4a? B 8at
75b6626—2att2
+ 4—&37

E(E(11(t)) = — 968 N 69552 N 15b%c* N b2l B 1056884t N 105b8¢c2e—8at
128a7 64a5 32a® 16a4 128a7 1645
105b4c4e—8at 7b206€—8at 686_8at 75b86—6at 315b662€_6at
T e T 4 8@ a6l
195b%cte=69t  6102cBe 0t 3cBe=0at  2ThBe~dat  621b5c2e4t
320 16at 8@ 6dar | 320




and

EE(t) =

o6

11104t et 39p2cBe—4at B 3cBedat 11782t B 18306220t

32a® + 16a4 8a3 + 32a7 64a®
B 111b*cte2at B Th? 20t N cBe2at N 6968t N 15682t N bttt
32a°® 16a4 8a3 64a® 16a® 16a*
B 585b8e—6att N 175508 c2e—6att B 585b% cte—batt N 3902 Bebatt
64a® 32a® 16a4 8a3
729b8 e 4att N 513b%cte—%att Q72 Beatt N 285b8e—2att
64a® 16a4 43 64a
5850c2e—20tt  THbAcAe 20t N 15b%Be2att N 1568¢2 N 305c2t2
32a® 16a4 8a3 32a°® 16a4
729b8 40t 2 N 72080 c2e—4att2  243ptctetat2 ThpSe—2aty2
32a® 8at 8a3 16a5
22508 %20t 2 N b e 2at 2 N i3 125p8e2at43
16a4 8a3 16a4 16a4
N 12568 c2e—2at¢3
8a3 ’

35190  9b0¢2 N 69b*ct N 528 N c® N 1056384t
256a8 32a” 32a 8ab 16a* 256a8
105b662678at 105b4c4678at 7b266678at CSGfSat 165b8676at

32a” + 32ab 8ad + 16a* + 64a®
75b602676at 2b266676at C8676at 783b8674at 27b6c2674at
P B 1 T T
123b4cte™at  3p2Betat  3Bemdat 29TpBe20t 117H0cPe 2
605 4@ 8ad | 6dd® | &4
Obicte20t  p2cbe20t Be20t 98t 69002t 15b%ct
4aS B a®  4a*t 3247 16a5 8ad
b3St 195b8e~09tt  585b6c2e 0t 195b%cte0%t  13h2cBe0att
dah T a7 16ad 8a®  4d?
720b%e et T20h0c2edatt 135b%ctedt 2TbAcBe 2t
32«7 16a5 8a® LT
765b%e24t  285b5c%e2  THbicte 20t 15b%cBe2ett  69b3¢t2
3207 1608 8@ da | 3240
1505212 3b%ctt? 729b8ed0tt2 72900 cPe b2 243 ctedalt?
85 8at | e 8@ 84
525b8e201¢2  T5b6c2e720t¢2 Thptete20t2 5p8E3 pSA2t3
16a 4a° B 4a? TR T g

n 125b8e2at3 12505c2e~ 2083 p8¢d

8ab 4at + 16a4"
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A similar argument leads to the computation of the second expectation in (3.19). To

sum up, with the help of Mathematica, we obtain that

Var(Zy) =

—169176%  109385¢2  303b%*c* 35025 3p%e 8T 36 2e—8aT

512a10 + 32a9 + 32a8 + 48a" + 128q10 16a?
21b4c4678aT b206€f8aT 79b8676aT 3b662676aT 19b4c4€76aT
128¢¢ 3247 128 @ 1oa®
b2cbe=69T  2953p8c—4eT  447h0c2e=4T  Ghbicte—49T  15p2Be4eT
Ba T sl2a® 3200 12865 | 3247
3400b8e=2¢T  17p8c2e=20T  165b%*cte=20T  19b2cBe—20T  10936°T
128410 ad T 16t 16a” | 3249
65965c2T  1556*AT  9B2ST  45b8e=64TT 135082~ 0eTT
T T3 167 8 T 64 3248

Sbtcte= 0T p2c8e=6aT T  11658%e 49T T 9530824l T

247 7 N DTy 32a®
12704 e 4T 32T 2321082417 1753082241

32a7 R P 64a? B 3248
110 cte 20T 659B8T2  5USCAT? 31642 b2cST
a’ T T6ia® da7 | 16a8 T 2a0

53b8€_4aTT2 12166626—4aTT2 2lb4C4€_4aTT2 bQC66_4aTT2

16a® 8a’ + 4ab 445
71b8€72aTT2 255b602€72aTT2 b4c4672aTT2 b206672aTT2

8a® B Ra’ B 4a8 + 2a°
5H8T3 2305C2T3 b4 AT3 BB 4T3 5pbRe4aTT3

T 20 T 1205 346 sar 205

5[)4046_40’TT3 113b86_2aTT3 7[)6026_20'TT3 7b4c4e—2aTT3

6a® B 24a7 B 12a5 2a°
23b8T4 bGCQT4 5b8€_2aTT4 5b6026_2aTT4 b8T5

4845 5 28 a’ 15a5"

which implies (3.14). The proof to (3.15) and (3.16) are done similarly through the

symbolic computation in Mathematica®. We omit the details here. The code for the

detailed computation can be obtained from the author upon request. O

Remark 3.2.1. The above proposition implies that

1
11:(6)

E(Z,) = (u2(0) + o>TA;2"), (3.20)
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A2
1 (0)

A
E(A) < 2
A= 20

Pt
11(0)

Var(Z,) = (u2(0) + oA, (3.21)

(uz(0) + a®TA ), (3.22)

Var(Ay) = (u2(0) + 0>TA?)” . (3.23)

These formulas will be used to obtain the exact asymptotic bias and the exact rate of

convergence in the proof of asymptotic normality.

3.2.4 The Consistency of TFE. In this subsection we prove the large-space con-
sistency of the TFE gN, as N — o0o. The proof relies on the classical version of the
Strong Law of Large Numbers (cf. [Shi96, Theorem IV.3.2]), which we state in the
Appendix for sake of completeness. With this at hand, we now present the first main

result of this section.

Theorem 3.2.1 (Consistency of TFE). Let the assumptions (i) - (v) be satisfied.

Moreover, assume that
> RE(Z) = . (3.24)

Then,

Proof. By (3.12),

5 . 25:1 Vi Ak chvzl VI% E(Zy)
Oy —0 = — N . - ) (3.25)
2> e Vi E(Zk) > 1 Vi 2
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We first study the second factor in (3.25). Clearly,

o vy Var(Zy) < Var(Zl)2 N io: _ ZVﬁ; Var(Zszf :

N=1 (Zivzl Vl% E(Zk)) (E(Z1)) N=2 Yovey ViE(Zy) > o viEZ,

_ Var(Z,) > viVar(Zy) 1 1

- (E(Zl))ﬁNZ:2 E(Zy) ( NU2E(Z) SN 2E( Zk)> : (3.26)

By (3.20), (3.21) and the assumption (iii), as N — oo,

Pt —2~\3
vy Var(Zy) _ol.2. 50 (uny(0) +*TAY")

E(Zy) Mo (u3(0) + O'QT)\_2’Y)2

%@ \UN N

=0 ( A (uiy (0) + aQTxQV))

pn (0)
Since ug € H, we have
lim u3(0) = 0. (3.27)
N—o00

Together with the assumptions (ii), (iv) and (v),

EQA/ 2 27y 1 2 JZT
im (un(0) + 0*TAY") = lim ———— [ ux(0) + = 0.
N—ro0 MN(Q) N—ro0 N(Q)V;C/m V]’)\/]/m

Hence, there exists a universal constant C'; > 0 such that

2
vy Var(Zy)
AL for all N

E(Zy) <(C; fora e N,

which, together with (3.26), implies that

- v Var(Zy) < Var Z1 - < 1 )
Nz:l <ZkN:1 Vi E(Zk)>2 -~ (E Nz: Dk 11 VI% E(Zy) Zivzl VIEE(ZIC)

_ Var(Z) Cy
(E(%))?  E(Z)

< 00. (3.28)




60

Combining (3.24) with (3.28), we conclude by Remark B.0.1 that

N
2z
lim 2= 1;’“ P _1, P-as. (3.29)
Nooe SO0 R E(Z))

Next, we will analyze the asymptotic behavior of the first factor in (3.25). By

(3.20), (3.23), (3.27) and the assumptions (ii), (iv) and (v), as N — oo, we get that

AT —9.\ 3

Var(Ay) a0 (un (0) + o*TAN")
= o2

E(Zn) % (u%,(0) + o2TAYY)

1 9 o’T
-0 <—MN<0) T (uN(O) + VX,/W)> — 0.

An argument similar to that of (3.26) and (3.28) shows that, there exists a universal

constant Cy > 0, such that

- v Var(Ay) < Var(A;)
N=1 (Zgzl v E(Zk)>2 T (E(Z)

n Var(Ay) ( 1 1 >
i E(ZN) > it VR E(Zk) Zgﬂ vi E(Zy)
Var(A;) Cy

2 (E(Z) | AE(Z)

< o0. (3.30)

In view of Theorem B.0.1, (3.24) and (3.30) imply that

lim S v (A, — E(A))
N—oo Zi;v:l Vl% E(Zy)

=0, P-—a.s.

If the series Zgzl v E(Ag) converges, then by (3.24), we clearly have that

o 1k E(4r) _ g (3.31)

N%OE“ E(Zk) ’

On the other hand, if the series in the numerator of (3.31) diverges, then by Stolz—
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Cesaro Theorem

S v B(A4y) . unE(Ay)

lim = lim ,
N—oo ZQ’ZI VEE(Z,)  Nooo VR E(Zy)

and by (3.20), (3.22) and the assumption (iv), as N — oo, we deduce that

Ay

E(Ay) 2@ (h(0) +0°TA") L
=0 o2 | — 0 2 2y 2
vy E(Zy) s (13(0) + 02 TA) vy (B (0T + 02T)
_0(vi) =0,

Combining the above, we conclude that

N
A
lim %kﬂ;’“ Y —0, P—a.s. (3.32)
N=voo 3 oy Vi B(Zk)

Finally, by (3.25), (3.29) and (3.32) we conclude the proof. O

Remark 3.2.2. A note on condition (3.24) is in order. The divergence of the series
(3.24) is needed for the Law of Large Numbers to hold true. In view of (3.20), the
condition (3.24) can be equivalently stated in terms of the known primary objects — the
initial data u(0), the asymptotics of the eigenvalues of Ay and Ay, and the covariance
structure of the noise (see Proposition 3.2.2 below). In particular, the consistency of

the TFE does not depend on the reqularity of the initial data.

3.2.5 The Asymptotic Normality of TFE. In this subsection, we will investigate
the asymptotic normality of the TFE fn. The proof is based on classical Central
Limit Theorem (CLT) for independent random variables with the Lyapunov condition
(which is a sufficient condition for the Lindeberg condition to hold). For convenience,

we list this result in the Appendix, and the complete proof can be found, for instance,

in [Shi96, Section II1.4].
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In what follows we will make use of the following technical lemma.

Lemma 3.2.1. Let & (t), k € N, t € [0,T], be defined as in (3.10). Then, for any

n € N, there ezist a constant D,, = D, (t) > 0, depending only on n and t, such that,

for every k € N,

E(&(1) < D, (%(0);&;% 7) . telo,T].

Proof. By (3.5) and Cauchy—Schwartz inequality, for any 0 < s <t < T,

2

u(s) = e 2n()s (uk(()) + 0)\;7/ et O dwk(r))
0

1/ /[ 2
< e 2O (43 (0) + o\, t) (1 + (/ et (@) dwk(r)) ) .
0

Hence, for any ¢t € [0,7], and n € N,

n t 1 S 2 n
Ee(t) < (up(0) + o2\, 1) { / e~ 2k (0)s Lt~ ( / etk O dwk(r)) ]ds}
0 0
n[1—e 2@t q gt ‘ 2 1"
= (u2(0) + 2N ) | ————— + —/ e~ 2k (0)s (/ e O day (r ) ds
( +0) g ) 241,(0) tJo 0 +(7)

< (uz(0) + 02)\,;2775)”

1 _ 672uk(9)t n 2n t ) s 2 n
: —_— ] +— o2k (0)s (/ e O dapy, (7 ) ds .
{( )t l/ ; Hr)

By [Lot09, Theorem 2.1], there exists a constant D,, = D,,(t) > 0, such that
D,

t s 2 n
E / e 21k (0)s (/ e O dap (1 ) ds < .
( 0 0 «(r) 1 (0)

Therefore, for any ¢ € [0,7] and n € N,

E (& (1) < (up(0) + oA 21)" (uzlw) " 2tD u21(9)> — (um o Vt) )
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where D, = D,,(t) := 1+ 2"t "D, O

Now we present a version of the large-space asymptotic normality of the TFE

On.

Theorem 3.2.2 (Asymptotic Normality of TFE). In addition to the conditions of

Theorem 3.2.1, assume further that

o0

Z V2 Var (Ay) = oo. (3.33)
k=1

Then, as N — oo,

(]

b

where

Sl wEA) S Ve
T ) N -—
QZszl vi B(Z) 2szv:1 VEE(Zy)

Y

D I
and where — denotes the convergence in distribution.

Proof. The proof is split in two steps.

Step 1. We will first show that the sequence {vy Ay }ren satisfies the Lyapunov con-
dition (B.1) with § = 2. Clearly,

E ((Ac — E(4))")
— | (A}) — 4E (A3) E(Ay) + 6 E (A2) (E(Ay))? — 3 (E(Ay))*

=E (A}) — 4E (A7) E(Ax) + 6 Var(Ay) (E(A))” + 3 (B(Ap)".  (3.34)

We will estimate each term in the above expression separately. To begin with, for
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every k € N, let (i := (Ci(t))tefo,r), where
¢
Ce(t) == / ug(s) dwg(s), te€[0,T].
0
By (3.8) and (3.10), for any k € N and ¢ € [0, T],
up(t) = up(0) + oA 2t — 2 ()& (t) + 207, Gi(2),
which, when multiplied by £x(¢), and then integrated on [0, T, leads to
T
Ay = 2007 / GOE(t) dt, keN.
0

Hence, by the Cauchy—Schwartz inequality and the definition of &, for any k € N,

E (A}) < 160\ E (( /0 ) Ci(t)dt - /0 ' () dt>2>
o (e[ )] o))
< 1602, <T2]E ((/OT 0 dt)2> T'E (52))1/2

T 1/2
< 1604772\ 1 (E ( /0 () dt) E (g,f)) .

Moreover, by the Burkholder-Davis-Gundy inequality, there exists a constant C; =

C1(T) > 0, depending only on T, such that

E ( sup C,f(t)) <CiE ([Ck,Ck]4 (7)) = CLE (&) -

te[0,T)
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Together with Lemma 3.2.1, we obtain that, for any k£ € N,

(u2(0) + 0*TA;>)"
115(6) ’

E(A}) <16Co* TN, E(EHE(E) < Cy

where Cy := 16 C1\/D4DgT? > 0 is a constant depending only on 7.

Next, we will study the last three terms of (3.34). In view of (3.22) and (3.23),

there exists a universal constant C'3 > 0, such that for any £ € N,

(u2(0) + 02T A >)"
11.(0)

(u2(0) + 02T A;>)”
12(0) ’

E(Ak) S 03 Var(Ak) S CQ

Hence, it suffices to estimate E(A3). By the definition of Ay in (3.12),
2 2\ —2v 1 2
Moreover, since & (t) is increasing in ¢, we deduce that

T T T
Y, = /0 §e(t)dt < T, Xj= /O t&(t) dt <T%,  Zy = /0 gi(t)dt < T,

and thus,

—T (up(0) + TN, 27) & < Ap < (% + 2uk(0)T> 2.

Together with Lemma 3.2.1, we obtain that

(u2(0) + o>TA; )’
112(0)

(u2(0) + 02T A >)"
11.(0)

—DsT <E(A}) < Dg(2T + 1) . (3.35)

Combining (3.34)—(3.35), we conclude that there exists a constant Cy = Cy(T") >
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0, depending only on T'; such that for any k£ € N,

E ((VkAk — E(I/kAk))4) < C4 (U%(O) + 0'2T>\,;2’Y)8 .

On the other hand, by (3.23) again, we can find a universal constant C5 > 0, such

that

Vi
11(0)

Var (v, Ax) > Cs (uz (0) + 02T)\,;27)4, for all k € N.

In view of the assumptions (ii)-(v), and since limy_,, u2(0) = 0, we deduce that there

exists a constant Cg = Cg(co, 0, T) > 0, depending on ¢y, o and T', such that
E (A, — E(upAg))!) < CsVar (vpAg), for all k € N.

Finally, by (3.33), we obtain that

N 4
o TEEA B0
e (25:1 Var (VkAk)> N=voo 3700 Var (v Ay)

Step 2: Note that

On—O+ay _ Yo u(A—E(A)) T nBA) | av g0
bN 2 bN chvzl V%Zk 2 bN Zfevzl VﬁZk bN . ‘

For the first term in (3.36), by (3.29), Step 1 and Theorem B.0.2, as N — oo, we get

S A= B(A) S BB Sl v (A BAY) oy

20N Yoy Vi 2k >t Vi \/Z]kvzl vZ Var(Ay)
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Moreover, for the last two terms in (3.36), we derive that

ay Yo uEA) 220 R E(Z) ( S E(A) YN E(Aw)
- N N
b 20Dy Efcvzl VEZk \/Zk:l vi Var(Ay) 2> i1 Vz? E(Zy) 2 ke I/,ka

Zk L Vi B(Zy) ) chvzl v, E(Ay) ) chvzl Vi (Zk — E(Zk))
Zk:l Zk \/Zﬁzl 1/]3 Var(Ak) Zi\f:1 sz ]E(Zk)

(3.37)

In light of (3.29), we only need to show that the product of the last two factors above

converges to zero in probability, as N — oco. Note that, by the independence of Zj,

keN,

E Sy v E(Ar) ‘ SV V2 (Zk — E(Zy)
I g var(ay) SR E()

_ (Z/]fv:l Vk ]E(Ak)> i > iy Vi Var(Zy) .
chvzl vi E(Zy) Zgzl Vi Var(Ay)

By (3.21), (3.23) and the assumption (iii), there exists a universal constant C7 > 0,

such that

2

1/4)\ _9
chvﬂ vy, Var(Zy,) <0 Zk 1 #kg (uz(0) 4+ o®TA,7)?

N — v 2y .
2 -1 Vi Var(Ay) Zk L EA—@( 2(0) + 02T\, >)3

S C17007

Similarly, by (3.20), (3.22) and the assumption (iii),

Ijk)\ 2
S B _ S Lt (w2 (0) + 0P TA)

< (3.38)
Zszl Vl% E(Zk) Zk:1 m(uk(()) + UzT}‘l;%)Q

where Cg > 0 is some universal constant. Using (3.20) and (3.24), we conclude that
the series in the denominator on the right-hand side of (3.38) diverges. Hence, the

right-hand side of (3.38) converges to 0, as N — oo, if the series in the numerator
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on the right-hand side of (3.38) converges. Now assume that the numerator on the

right-hand side of (3.38) diverges. By Stolz—Cesaro Theorem,

VA, ) U AT2Y 9
lim PO Z(a (uz(0) + > TA7) ~ lim % (ud (0) + a®TAy")
vi - 2 o V3 — 2
N Y g (R(0) + P TATT)T N s (R (0) + 02 TAY)
< lim =

Therefore, we have shown that

Zgzl v E(Ag) ' legvﬂ vi (Zr, — E(Zy)) — 0 in L*(Q),

N N — 0. (3.39)
SO var(a) T iE()

Combining (3.29), (3.36), (3.37) and (3.39) completes the proof. O

The next result provides some equivalent conditions, given explicitly in terms
of the model coefficients, for (3.24) and (3.33) to hold. In particular, we note that the
consistency and the asymptotic normality of the TFE do not depend on the regularity

of the initial data.

Proposition 3.2.2. Under the assumptions (i) - (v),

o 0 V2>\—4’Y
Y RE(Z) =0 & > Fko—oo (3.40)
= o l0)
o X 2\ T®
Z Var(4gy) =00 & Z EoE_ = 0. (3.41)
k=1 k=1 i (0)

Proof. We will only present the proof for (3.41), as (3.40) can be obtained similarly.

Clearly, (3.23) implies the “<” direction in (3.41). Now assume that

[e.9]

Z Vi Var(A;) =
k=1
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which, by (3.23), is equivalent to

00 9y —2y O 9y —2y et 4’7 4
ViAk 2 2y —27) 3 VA (0) 2 Vk 0)
00 = 3 (up(0) + *TA™) :g —{—3 TE
— 11;,(0) — W (9
k=1 k=1 k=1
00 —6 00 -8
+ 30_4TQZ ViNg ui( 6T3Z Vk:)‘ !
1 #k(e 1 Mk

Hence, it suffices to show that the first three series on the right-hand side above are
all convergent. We will only check the first series, and the other two can be verified
using a similar argument. Indeed, by the assumptions (ii) - (v) and since u(0) € H

(so that limg_,o ug(0) = 0), there exists a universal constant C' > 0 such that

oo )\ 2y 6
< acC u
; Mk(e ’ Z (0
This concludes the proof. n

We conclude this section by providing the asymptotically equivalent formulas
for the sequences {ay } yeny and {by }ven in Theorem 3.2.2; given in terms of the model
coefficients. In light of Proposition 3.2.2, the relations (3.24) and (3.33) imply that
each of the last terms in (3.13)—(3.16) give the exact leading order term for E(Zy),
Var(Zy), E(Ay) and Var(Ay), respectively. The following result follows immediately

from Stolz—Cesaro Theorem.
Corollary 3.2.1. Under the conditions of Theorem 3.2.2, as N — oo, we have

N Vk>\1:47 Z 2)\ -
3Zk=1W k=13 (0)
—_— bNNVE) .

1
VI

TN v T
Zk:l% Zk:1%

3.2.6 Examples. In this part, we will present two examples that illustrate the

theoretical results obtained before. Throughout this section, let G C R? be a smooth
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and bounded domain, H := L*(G), and let A be the Laplace operator on G with zero
boundary condition. It is known (cf. [Shu01]) that A has a complete orthonormal
system of eigenfunctions {hx}reny in H. Moreover, the corresponding eigenvalues
{7k }ren can be arranged such that 0 < —7; < —75 < ---, and there exists a universal

constant ¢; > 0 so that

—2/d

lim || - k = .
k—o0

Example 3.2.1. Consider the following fractional stochastic heat equation driven by

an additive noise, possibly colored in space,

du(t, ) + 0(=A) ult,x)dt = 0y N h(z) dup(t), t€[0,T], z€G,
k=1

with initial condition u(0,x) = ug(x) € H, where @ >0, >0, v >0 and 0 € R\ {0}

are constants, and where A\, := \/—T, k € N. In this case, p, = 0 for all k € N, and
vp ~ e k24, i (0) ~ 160 K284\ ~ \/akl/d, k — oo.

Together with Proposition 3.2.2, the conditions (3.24) and (3.33) are equivalent to

1 < 1 1 > 1
rgs 2 i =% g D s = o
SR — 1 =1

respectively. Therefore, the consistency and the asymptotic normality hold for the

TFE Oy given by (3.11), whenever
20 4+ 8y < d.

Example 3.2.2. Let us consider the following SPDE, with the parameter of interest
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0 in front of lower order differential operator,
du(t, z) + (Au(t, z) + Ou(t, z)) th )dwy(t), tel0,T], zeG,

with initial condition u(0,x) = ug(z) € H. In this case, v =0, vy =1 for all k € N,

and
o~ 1 k2 wr(0) ~ 0+ ¢ K k= oo

Together with Proposition 3.2.2, the conditions (3.24) and (3.33) are equivalent to

= 1
Z =00 and Z — =00,

— 0+ k:2/d (6 + ¢ k2/)?
respectively. Therefore, in order for the consistency and the asymptotic normality of

5N to hold true, we need to have d > 6.

3.3 p-Variation Type Estimators

Apart from spectral approach, the literature on parameter estimation for
SPDEs is limited, and only few papers are devoted to discretely sampled SPDEs
[PRO7, Mar03, PvsT07]. Of course, one way to deal with discretely sampled data, is
to discretize or approximate the MLEs using the available discrete data, and show
that the statistical properties are preserved. On the other hand, if we assume that the
solution itself is observed at some space-time grid points, one needs to approximate
additionally the Fourier modes. To best of our knowledge, a rigorous asymptotic
analysis of this idea still has to be done. Finally, it needs to be mentioned, that by
its very nature, the Fourier decomposition has to be performed with respect to the
basis formed by the eigenfunctions of the operator A;. Usually, A; is a differential

operator, and thus essentially one has to deal with bounded domains.
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In this section, we study the parameter estimation problem for simple parabolic
SPDEs (3.51) and (3.55), when data is sampled discretely. Namely, we consider the
stochastic heat equation, one dimensional, driven by an additive or multiplicative
space-time noise, either on bounded domain or whole space, and when the solution u
is observed at some discrete space-time points. As such, we do not rely on spectral
approach, but rather use some suitable representations of the solution to derive the
corresponding estimators. The key idea of the proposed method relies on an intu-
itively simple observation: the p-variation of a stochastic process is invariant with
respect to smooth perturbations. Hence, if the p-variation of a process X can be
computed by an explicit formula, and the parameter of interest enters non-trivially
into this formula, one can derive consistent estimators of this parameter (similar to
estimating the volatility through quadratic variation). However, since the p-variation
of the perturbed process X + Y remains the same, given that Y is smooth enough,
then the same estimator remains consistent assuming that X +Y is observed. Analo-
gous arguments remain valid for asymptotic normality property. According to Theo-
rem 3.3.1 and Theorem 3.3.2, using the p-variation idea described above, both 6 and
o can be estimated in either time or space sampling regime. Hence, to construct a
consistent, and asymptotically normal estimator for # or ¢ it is enough to observe
the solution at one time instant and discretely on a spacial grid of a finite interval,
with mesh diameters going to zero. By the same token, it is sufficient to observe
the solution just at one spacial point, and over a time-grid interval. We focus our
study on these two sampling schemes. It should be mentioned that similar estimators,
and same sampling schemes were studied in [PvsT07], where the authors considered
the heat equation on R driven by a multiplicative noise. The methods of proof in
[PvsT07] are different from ours. As already mentioned, there are no ready avail-
able results on the representations of the solution in time at a fixed spacial point for

bounded domains is more delicate. We prove that the solution can be represented as a
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sum of a smooth process and a zero-mean Gaussian process with known finite fourth
variation. Moreover, using some elements of Malliavin calculus, as well as a version
of the central limit theorem from [NOLO0S8|, we establish a central limit type theorem
for the fourth variation of the solution. Consequently, we derive weakly consistent
estimators for 6 and o, and prove their asymptotic normality. The results on the
representation of the solution are of independent interest, and could be used beyond
statistical inference problems. It would be fair to note that a similar methodology of
using Malliavin calculus techniques to establish central limit theorem can be found in

[Cor12], albeit applied to similar processes but with a simpler covariance structure.

As usual, everywhere below, all equalities and inequalities between random
variables, unless otherwise noted, will be understood in the P-a.s. sense. The nota-
tions = will be used for convergence in distribution, while L or P—lim will stand

for convergence in probability.

We assume that § € © C (0,+00) and 0 € S C (0,+00) are the (unknown)

parameters of interest. In this work we focus on two sampling schemes®:

(A) Fized time and discrete space. For a fixed instant of time ¢t > 0, and given
interval [a, b] C G, the solution u is observed at points (¢,z;), j = 1,...,m, with

rj=a+(b—a)j/m, j=0,1,....,m.

(B) Flized space and discrete time. For a fixed z from the interior of G, and given
time interval [c,d] C (0,400), the solution u is observed at points {(t;,x), i =

1,...,n}, where t;, ;== c+ (d —¢)i/n, i =0,1,...,n.

The main goal of this section is to derive consistent estimators for the parameters 6

4For simplicity of writing, we assume that the sampling points form a uniform
grid. Generally speaking all the results hold true assuming only that the mesh size
of the grid goes to zero.
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and o under these sampling schemes, and to study the asymptotic properties of these
estimators. Our method is based on p-variation of the stochastic processes. We first
review its definition and prove a result that smooth perturbation does not affect the

p-variation of the original process.

3.3.1 p-Variation of a Stochastic Process. In what follows, we will use the
notation Y"(a,b) = {a; | a; = a+ (b —a)j/m, j = 0,1,...,m} for the uniform
partition of size m of a given interval [a,b] C R. For a given stochastic process X on

some interval [a, b], and p > 1, we will denote by V? (X [a,b]) the sum

m

VI [a,B]) = Y 1X (1) = X (80,

j=1

where t; € Y™ (a,b). Correspondingly,

VP(X;[a,b]) ;== lim VP (X;]a,b]), P—as.,

m—o0

V(X [a, b)) :=P— lim VP (X;]a,b]),

m—00

will denote the p-variation of X on [a, b], in P-a.s. sense and respectively in probability.
If no confusions arise, we will simply write V?(X), and V2 (X) instead of VP(X; [a, b])

and V? (X;[a,b]); same applies to V5 (X).

As already mentioned, the estimators proposed in this work are derived using
the p-variation of some suitable processes. The next result shows that the ‘quadratic
variation type arguments’ of estimating the diffusion coefficient are invariant with

respect to smooth perturbations.

Proposition 3.3.1. Let X (t),Y(t), t € |a,b], be stochastic processes with continuous

paths, and assume that the process Y has C1[a,b] sample paths, and there exists p > 1,
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such that 0 < VP(X) < co. Then,

VP(X +Y;[a,b]) = VP(X;][a,b)). (3.42)

Similarly, if 0 < VE(X) < oo, then

VR(X +Y;[a, b)) = VE(X; [a,b]). (3.43)

If in addition, there exist a, 09 > 0 such that, o« +1/p < 1,

n® (VA(X; [a, b]) = VP(X3[a, b)) == N(0, ), (3.44)
then
n® (V2(X +Y:[a,b]) — VP(X; [a, b])) ﬁ N(0,02). (3.45)

Moreover, if Y has C?[a,b] sample paths, and (3.44) holds for p = 2 and a = 1/2,
then (3.45) holds true too, with p =2, =1/2.

Proof. First we prove (3.42). It should be noted that a similar result is proved
in [CNWO06, Corollary 2]. For completeness, we outline our proof too. All ‘p-
variations’ below are on the fixed interval [a,b], and as agreed above, we will omit

writing their dependence on [a, b]. By Minkowski’s inequality, we have that
[(VEX)Y? = (VE(Y)YP ] < (VX +Y)YP < (VE(X)MP 4 (Vo (1) M7 (3.46)

Since Y has C'[a,b] sample paths, we have lim, .o, V?(Y) = 0. Hence, passing to

the limit in (3.46), the identity (3.42) follows. As far as (3.43), note that in view of
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(3.46), for any € > 0,

{10vECX 7)) = (VB(X) Y] = e}

= (VX V)P > (VRO + e} U{ (VR Y)Y < (VBO0)Y — ]

e {(vax) 7+ (v <>>”P><vp<x>>”p+6}
v = (v )| < (vB0) P - o
< {Jvamean™ + (va ) = (VEOO)| = €

O { VR = (v — (v )

= {Jovn e = (v

-9

> 6/2} {(vg(y))l/p > 6/2} (3.47)

Due to the continuity of 27, based on our initial assumptions, we have that P —
limy, e (VE(X)YP = (VE(X)'P, and P — lim,, 0 (VE(Y))? = 0. Thus, by (3.47),

we get at once that

P — lim (VA(X +Y)" = (VB(X))"",

n—0o0

which consequently implies (3.43).

In view of Slutsky’s Theorem, to prove (3.45), it is enough to show that

lim n*(VE(X +Y) - VP (X)) =0.

n—oo

By (3.46) and by mean-value theorem, we have

VA +Y) < (VRO + (v () )

= VEX) 4 (VRO o (V)Y (v () (3.48)
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for some 7y, € [0, 1]. Since Y has C'[a, b] sample paths, denoting M = sup,<,«; | Y'(t) | ,

and again by mean-value theorem, we get
VE(Y) =D 1Y) = Y ()" = D[t — t-0)Y' ()P < n(M/n)P. (3.49)
j=1

=1

Therefore, by (3.48), and since o + 1/p < 1, we conclude that

n (VE(X 4 ) = VE(X)) < p (VRGO 4 (Vi) 7)™ et tar — 0

n—o0

Similarly, we have that

p-1 1/p—1
net/P=ipr 5 0,

n—oo

n® (VE(X +Y) = VA(X)) = =p ((VA(X)'7 = (VA(Y)'”)

and therefore, (3.45) is proved.

Now suppose that Y has C?[a, b] sample paths, and assume that (3.44) holds
true for p = 2, = 1/2. To show that (3.45) also holds true, it is enough to prove

that

lim n'/? (V2(X +Y) — VA(X)) =0. (3.50)

n—o0

Note that,

VR(X +Y) = Va(X) =2 (X(t) = X(t1)) (Y(t;) = Y1) + VA (Y).

J=1

Using (3.49), we have n'/2V2(Y)) < n*?(M/n)? — 0.
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By mean value theorem,

172 Z X(t;1) (Y(t;) = Y(t;_1))

n

=n""?(b—a) Z (X(t;) = X(t-1)) (Y'(¢) = Y'(tj-1))

n ' Pb—a)) (X (1)) Y'(tj-1)

=1

= Kl + KQ.

Applying Cauchy-Schwartz inequality, we get

Kl <0 (0 Z | (X(5) = X(t,-0)) mas [ Y1) |
(b—a)? max | Y7(t) | VVI(X) — 0.

We rewrite Ko as

Ky =n(b - a) (X(b)Y’(b) ~ X(@)Y'(a) = DX (1) (V1) - Y’(tj_n)) '

j=1
Since, lim, o0 Y37y X () (Y'(t;) = Y'(tj-1)) = fabX )dY'(t f X()Y"(t)dt, we

have at once that

lim Ky = lim n~"2(b— a) (X(b)Y’(b) — X(a)Y'(a) — /bX(t)Y"(t)dt> =0.

n—oo n—oo

Combining the above, (3.50) is proved.

This concludes the proof. O

This result allows us to construct directly consistent and asymptotically nor-

mal estimators for some parameter entering the true law of the perturbed process
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X +Y, given that the p-variation V?(X; [a, b]) of the unperturbed process X depends
non-trivially on the parameter of interest, and this dependence can be computed

explicitly.

For example, let B be a two-sided Brownian motion, and Y be a process with

a C%*(R) version, and consider the stochastic process

Z(x)=/BB(z) +Y(z), z€R,

where [ is a positive, unknown parameter. Assume that Z is observed at grid points

T (a,b), for some interval [a,b] C R. In view of (3.42),

V3(Z; [a,b]) = V3(V/BB; [, b]) = B(b - a).

Consequently, the estimator

> (26w - 20, ),

J=1

Bm:

is a consistent estimator of 5, namely lim,, . Em = [, P-a.s.. Moreover, it is well-

known (cf. [Nou08, AES16]) that

Vm(V2(B,[a,b]) — (b— a)) —— N(0,2(b — a)?),

m—0o0

and thus, by Proposition 3.3.1, the estimator B\m is asymptotically normal, with the

convergence

V(B — B) —2— N(0,25?).

m—r0o0

Similarly, let B¥ be a fractional Brownian Motion (fBM) with Hurst index
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H = %‘, and Y be a process with continuously differentiable paths in (0, 400). Assume

that n is the parameter of interest, and suppose that the process
ZH(t) =Y BH(t) + Y (t), t>0.

is sampled at grid points ¢; € T"(¢,d),i = 0,1,...,n, with [¢,d] C (0,00). Then,

o= g 1 (7~ 2"’

is a consistent estimator of 7, since an fBM with Hurst index H has a finite, non-
zero p = 1/H-variation. The asymptotic normality of Vi(B;|c, d]) is established in
Theorem B.0.3, and Corollary B.0.1, and hence, by (3.45), i, is also asymptotically

normal, and satisfying

N 1
V(T — 1) —— N0, 562772)-

n—oo

where 52 is an explicit constant given in Corollary B.0.1.

As already mentioned, our method is based on p-variation that is illustrated
above. To apply this method, we need some proper representation of the solution. In
the next section, we will discuss the equations of interest and decompositions of their

solutions.
3.3.2 Stochastic Heat Equations. First, we consider the stochastic heat equation

in R,

du(t,z) = Oug,(t,x)dt + o dW (t,z), z€R, t>0, (3.51)

u(0,2) =0, x€R,
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where W denotes a space-time white noise on R?, §, 0 are some positive constants.

Denote

which is the Gaussian density function that corresponds to the heat operator

0 0?
H « a - 9@.
It is shown in [Khol4, Section 3] that
u(t,z) = o / Py — 2) dW (s, 1), (3.52)
(0,6) xR

is the unique mild solution to (3.51). The following decomposition results of the
solution (3.52) are the keys to later discussion of parameter estimation. The detailed

description of the solution and the proofs can be found in [Khol4, Section 3].

Theorem 3.3.1 ([Khol4]). Let u(t,z) be defined in (3.52). Then we have,

(a) For every fized t > 0, there exist a two-sided Brownian motion B(x) and a Gaus-

sian process X (x) with a C*°(R) wversion, such that

o
u(t,r) = —=DB(x) + X(z), zeR. 3.53
(¢, z) N (z) + X (x) (3.53)
(b) For every fived x € R, there exists a fractional Brownian motion B (t) with
Hurst index H = 1/4 and a Gaussian process Y (t) that is continuous on Ry and
infinitely differentiable on (0,00), such that

u(t,r) = BE#)+Y(t), t>O0. (3.54)

o
() 1/4
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Next, we consider the stochastic heat equation on the bounded domain G C R.

For simplicity, let G = [0, 7].

du(t, ) = Oug,(t,z)dt + o dW (t,x), x € (0,7), t>0,
u(0,z) =0, x € (0,m), (3.55)

u(t,0) =u(t,7) =0, t>0,

In this case, the Laplace operator A = 0,, has only discrete spectrum, with eigenval-
ues A\ = —k?, k € N, and corresponding eigenfunctions hy(z) = \/2/msin(kz), k €
N. Moreover, the functions {hy, k € N} form a complete orthonormal system in

L?*(G), and the noise term can be conveniently written as

W(t,z) =Y wi(t)h(z),

k>1

where wy, k € N, are independent standard Brownian motions. Then by the discussion

in Section 3.2, the solution of this equation admits a Fourier series decomposition,

u(t,z) =Y wp(t)hi(z), t>0, z€(0,m)

k>1

where each Fourier mode wy(t) is an Ornstein-Uhlenbeck process of the form

dug(t) = —0k*uy,(t) dt + o dwy(t), >0,

Equivalently, we have that

t
u(t) = 0/ e~ (=9) dup (). (3.56)
0
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2
_e—20K% )52

Clearly, wu(t) ~ N(0, OT), and uy, k € N, are independent. We prove the

following counterpart of the representation (3.53).

Theorem 3.3.2. For every fized t > 0, there is a Brownian motion B(x) on [0, 7],

and a Gaussian process R(x), x € [0, 7] with a C*°(0,m) version, such that

u(t,z) = \/_2_9B<x> + R(x), x€][0,m].

Proof. Let’s fix t > 0 and compare (3.59) and the solution

u(t,z) = up(t)hy(x). (3.57)

k>1

with

20k2
&k = \/(1 — e 20k%) 52 ur(t)

are i.i.d. standard normal random variables. Rewrite (3.57) as

ox o 1 ox o A — 1
+ —&phi(x) — +

u(t,z) =

fkhk(ﬂf),

where

/\k =V 1-— 6_20k2t.

By Lemma 3.3.1,

T 1
ﬁfo + ; Egkhk(x)
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is a standard Brownian motion, denoted by W,. Let

(). (3.58)

ox o Y
R(z) = — +
(z) 0 &o NGT ; 2

It follows from Lemma 3.3.2 below, R(z) is infinitely differentiable with respect to x

for € (0, 7). This completes the proof. ]

Lemma 3.3.1. Let W; be a Brownian motion on [0, 7]. Then Wy admits the following

exrpansion

t 2 1. .
Wy = ﬁ&)—l— \/;Z Eﬁksmkt, t € 0,7,

k>1

= %fg + kZZl %&chk(t)a te [07 7T]7

where &, k > 0 are id standard normal random variables on L*(2, F,P) and

2
hi(t) = \/jsinkt, kE>1.
T

Proof. Denote

t 21, .
th = ﬁ&) + \/;Z Egk Sin k’t,
k=1

then W/" is a Gaussian process for each n > 1. Moreover, for n < m, and any

t €[0,m],

m 2
E(W—Wm")?=E <\/g Z %gk sin kt) (3.59)

k=n+1

2 1 2
== ) E (—5k sin kt)

T k

k=n-+1

2 < 1
= — Z ﬁSiHth—)O,

Y
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as n,m — oo. Therefore, (W), is a Cauchy sequence in L*(Q, F,P), hence

t 2 1 .
Wy = ﬁfo—l- \/;Z E&smkt

belongs to L?(Q, F,P). In addition, we have the following expression

Wy = §0+\/72§k/ 1j9.4(s) cos ksds

k>1

= ng(]_[oﬂ(l’), ¢k(x))

k>0

where {¢(7) = —=, dp(x) = \/gcoskx,k > 1} is also a CONS of L?([0,7]). For

E(W,Wy) = Z(l[o,t] (), or(x)) (10,5 (), Pr())

k>0

= (1p.9(7), L,9())

=tAs.
And we have

. . n
Ee Wt — lim Ee®W: " = eféuzt.
k—o0

That is, W; is a standard Brownian motion.

O

Lemma 3.3.2. R(z) defined in (3.58) is infinitely differentiable with respect to x for
€ (0,m).
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Proof. We only need to show that

> kO = Déhi(x)

k>1

converges for z € (0,7) in L*(Q, F,P), that is, to show

m

D (kO = Dhi(x))® — 0, (3.60)

k=n+1

as m,n — oo, for z € (0, 7). Note that

(M — 1) = (V1 — e 200 —1)?
e~ 40Kt
(V1= e 2R 4 1)

4012
640k:t

— )

then (3.60) is obvious, since |hy(z)| < /2/7.

There is no ready available representation similar to (3.54). We will present a

close result later.

3.3.3 SPDEs on the Whole Space. Assume that ¢ > 0 is a fixed time instant,
and consider the partition Y™ (a,b) of the fixed interval [a,b] C R. Suppose that

the solution u of (3.51) is observed at the grid points {(¢,z;) | z; € T™(a,b),j =

1,...,m}. Consider the following estimators for 6 and o? respectively
~ (b—a)o?
Ot = = : (3.61)
T2 (ult,wy) — ult, w51))>
. 29 <
o2 L= u(t,z;) —ult,z;_1))°. (3.62)
ot —a

J=1
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Clearly, (3.61) assumes that o is known, while (3.62) assumes that 6 is known. The

following results show that these estimators are consistent and asymptotically normal.
Theorem 3.3.3. Assuming that o is known, the estimator (3.61) of 0 is:

~

(1) consistent, that is lim,, oo Ot =0, P —a.s.,

(ii) asymptotically normal,

V(O — ) —2— N(0,267). (3.63)

m—o0

Proof. Using the representation (3.53), and in view of Proposition 3.3.1, consistency

of é\m,t follows at once. In addition, we also have that

(b—a)?c!

vm (Z(u(t,xj) — u(t,xj—1>)2 - G _QZ)U ) T N0, T)

Jj=1

Consequently, a direct application of Delta-Method yields (3.63), and this concludes

the proof. O

Similarly, employing again Proposition 3.3.1, one has the following result.

Theorem 3.3.4. Assuming that 0 is known, the estimator (3.62) is a consistent and
asymptotically normal estimator of o2, with

Vm(@2 , — o) —2— N(0,20%). (3.64)

mt
’ m—00

In this section we assume that the solution u of (3.55) is observed at the grid
points {(t;,z) : i =1,...,n}, where z € R is a fixed spatial point, and 0 < ¢ < d <
oo. We consider the following estimators for § and o? respectively,

~ 3(d — c)o!

e = ST i) — s, 1) (3.65)
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n

O =\ 39 > (ulty, x) = ultioy, ) (3.66)

i=1
Similar the previous section, the following results about asymptotic properties
of these estimators hold.

Theorem 3.3.5. Given that o is known, we have that

lim 6,, =60, P—a.s.
n—soo

A(Bns — 0) —2— N(0, %9262).

n—oo

Assuming that 0 is known, we have that

lim 62, =0°, P—as.
n—00 ’
1
V@2, — 0%) 2 N(0, —o'5?).
’ n—o0 36

2

where 6° is the constant given in (B.3).

The proof is analogous to the proofs of Theorems 3.3.3 and 3.3.4 and is omitted

here.

3.3.4 SPDEs on a Bounded Domain. In view of Theorem 3.3.2, and similar
to the Theorem 3.3.3, the estimator with spatial sampling at a fixed time instant is

studied in the following result. The proof is analogous and is omitted here.

Theorem 3.3.6. Let u be the solution to (3.55), and assume that u is sampled at
discrete points {(t,x;) | z; € Y™ (a,b)}, for some fized t > 0 and a,b € (0,7). Then,
assuming o is known, @n,t given by (3.61) is a consistent and asymptotically normal
estimator for 0, satisfying (3.63). Respectively, if 0 is known, then 67, , in (3.62) is a

consistent and asymptotically normal estimator of o2, satisfying (3.64).
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The case of sampling the solution in time at a fixed spatial point for bounded
domains is more delicate, primarily since there is no ready available representation
similar to (3.54). In [Wal81] the author proved that for a similar SPDE at z = 0 the
4-variation (in time) of the solution converges to a constant. We start by proving
that the 4—variation converges to a constant at any fixed space point . In addition,

we also establish the asymptotic normality property of the 4-variation.
Proposition 3.3.2. Let x € (0,7) be a fized space point. Then, the solution u(t, )

of the equation (3.55) admits the following decomposition

ult, 1) = () + S0, 10, (3.67)

where v and S are zero-mean Gaussian processes such that:

(a) S(t) is continuous on [0,400), and infinitely differentiable on (0, c0);

(b) v(t) has finite 4—variation (with convergence in probability)

P — lim V2 (v;[c,d]) = 3(d — ¢). (3.68)

n—oo

(c) the J-variation admits the asymptotic normality property

Jn <M - 3> P N(0,52 +52), (3.69)

nod n—o0

where

2 sin?(kx) 2
2 _ (1 _ _—(d—0)0k?/n
o E 5 e ),
vVl o=k

1 L F() n-l i F())
52 = 724144 lim Z(l_l)‘ JI2 52— 24 4 48 lim 2(1—%)! g
j=1

4
n—00 n o Nn—00 o ’ ’
Jj=1 "
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and
2
F(j) = 1 Smk(zkiﬂ) <2€—j(d—c)9kz2/n _ o UHD)(d—)0k? n _ 6—(j—1)(d—c)0k:2/n> ‘
Vo =1
Moreover,

NG (wevg (wl,z)ile d) 3) P N(0,52 +52). (3.70)

noiot n—o0

2 =2 =2 -
where o;;,,05 and o are given above.

Before we prove Proposition 3.3.2, we first prove the following key limit.

Lemma 3.3.3. For any x € (0,7) and 0 > 0, the following holds true

sin®(kz) > vl
li 1—e /) = 2= 71
fim VT (1) = 5 71

Proof. Note that

sin?(kz) = % _sin((2k + 1)x) —sin((2k — D)z)

)

4sinx

and therefore,

\/ﬁzsmj{(?kx) (1 _ 6—6k2/n>
k>1

\/ﬁz % (1 B 6—6k2/n> B \/ﬁz sin((2k + 1)x) — sin((2k — 1)x) (1 B €_9k2/n>

4k? sin x
E>1 k>1

=L, — L

n n
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To prove (3.71), we will show that L} — v/70/2, and L? — 0.
It is straightforward to check that for any ¢ > 0, the function (1 — e ) /z,
x > 0, is decreasing. It is also easy to show that

2

001_ —z
/ 2 dz = /7.
0 2

Using these, we obtain

k k 1

<1 — e_ekz/”) dz < \/ﬁz — <1 — 6_922/”) dz

222

:\/7%/000%(1_6—922/">dz:@/000y2i/6 (1—e_y2>dy\/n_/9

S L ey (372

RN

S 20

On the other hand,

1 FH 1 —0k?/n FH 1 —02%/n
E>1 7k >1 7k

\/a

_ 71 (1 _ e—yQ) dy — @ (3.73)

Combing (3.72) and (3.73), we conclude that L. — v/76/2.
Denote by

1 — efekz/n

fk = k2 ) kZ:[?

and as above, one can show that {fi, k¥ € N} is a decreasing sequence. By simple
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rearrangement of terms, we get

L? = \/ﬁz sin((2k — 1)) (fe—1 — fx) — Vnsinzfi.

k>2

Thus,
R | sin((2k = 1)2) | (fis = i) + Vasinafi
>2
<Vn kz (fimt = fi) + Vnfr < 2v/nfi = 2¢/n (1 —e™/m)
>2
< 2\/_% = 2% — 0.
The proof is complete. O

Now let us prove Proposition 3.3.2.

Proof of Proposition 3.3.2. Assume that z € (0, ) is fixed. We start by constructing
the Gaussian processes S,v. Let {ng, k € N} be a sequence of i.i.d. standard normal

random variables, independent of {ug, k € N}, and let

Sult) = Wy, keEN, >0,

S(t) == i SO hu(z), > 0.

Consequently, we put

’Uk(t) = (071-)1/4 (Uk<t> — Sk(t», ke N, t >0,

v(t) ==Y w)h(z), t>0, z€(0,m).

k>1

Clearly, S and v are zero-mean Gaussian processes that satisfying (3.67).



93

(a) It is straightforward to check that S is continuous on [0,4o00)] and infinitely
differentiable on (0, c0). Moreover,

2 2
E|Su(t + ) — Sp(t)]? = ﬁe‘wk% (1 - e_9k26> . keN, t>0. (3.74)

(b) By direct computations, using (3.56), one can show that

0.2

(1-— 6_9k2€) (2 —(1- 6_9k2€)e_20k2t> . (3.75)

fort >0, e >0, kK € N. Combining (3.74), (3.75) and the independence between Sy

and wug, we deduce that

E |op(t +€) — vp(t))* = %(1 —e %9 keN, t>0,

Consequently, we have that

2 sin?(kx
EBlolt +0 — o0 = S E e+ 0 - (0 i) = —= 3 2 oo
k>1 W k>1
We will prove (3.68) by showing that
. 4/ . .
T B (V03 e, d]) = 3(d — o), (3.76)
lim Var (V;(v; e, d])) = 0. (3.77)
n—oo

Denote by

2 sin?(kx d—0K2 I,
on :=Elv(tj>—v(tj-1>l2:mz 12 J(1— ea-ammy e N,

k>1
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In view of Lemma 3.3.3,

lim v/no? =+vd —c. (3.78)

n—oo

Since v is a zero-mean Gaussian process, we have

E Ju(t;) — v(t;1)[* = 3 (E|o(t;) — v(t;—1)])” = 307

n’

therefore

n—oo n—oo

lim E (V2 (v;[c, d])) = JLII;OZIE lv(t;) — v(t;_1)[* = lim 3no? = 3(d - ¢),
j=1
and hence (3.76) is proved. Next, note that

Var (Vi (v; [e,d))) = E (Vi(v; [e,d]) = E (Vi (v [e, )’
_ Z]E (Jo(t;, ) — v(t; 1, 2)[* = 30%)"
+2 Z E ([o(ti, z) — v(tio1,2)[* = 30%) (Ju(ty, ) — v(t;_1,2)[* — 302)

=: Jl + JQ.
According to (3.78), we deduce that
Jy = ZIE (Jv(ts, z) — v(tj-, x)|8) —9nod = 96nes — 0. (3.79)
n—oo
j=1

As far as Jy, for j > 1, we put

F(j) =E(v(ti, x) — v(ti-1,2)) (0(tisj, @) — v(tigj-1, 7))

a2
_ 1 Z sin”(kx) 9p—i(d=c)0k?/n _ ,—(j+1)(d=)0k?/n _ ,—~(j—=1)(d—c)0k?/n
vl k2

E>1
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=G;—Gj,

where

sin? —e)0k2 /n (i —_O)0k2 /n ,
G = Z ( i(d=)0k?/n _ ,—(j+1)(d )ek/>7 j >0,

k>1

and also put F(0) := o2. Since F(j) < 0, we have that G; < G;_;. Using the

n

property of joint normal distributions, we continue

Jo=2) E(lt,z) —v(ticy, )" = 30) (Jo(ty, z) — v(t;—1,2)|" - 303)

=2 (24F(j — i)+ T2F?(j — i)op) .

1<j

From here, since |F(j —1)| < 02, we deduce that

Jy <23 (24|F(j —i)|oS + 72| F(j — i)|o8) = 1923 |F(j — i)|o8

1<J 1<J

Note that Z;:ll (n—17)(Gj-1 — Gj) =nGy — Z;:& G, and since

1 sin? ; 2 ; 2
Q. — (e—j(d—c)Gk /n _ p=(i+1)(d—c)ok /n)
J Z /0 ; k

=0
1 sin?(kx) d—)Ok2 1
_ 1 — —(d—c)0k ) _ 12
Nz ; k2 < c 271
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and Gy = 102, we conclude that

Jy < 19208 (n\/l_e Z SinZ(Qkx) (1 _ e—(d—c)@kQ/n) _ \/;_‘9 Z sz(zkx) (1 _ e—(d—c)0k2>>

TV >t

1 n (o]
= 19209 (gai - 505) (e ) (3.80)

according to (3.78). Combining (3.79) and (3.80), (3.77) is proved. Consequently, by
(3.76) and (3.77), we also have that V2 (v;[c,d]) converges to 3(d — c¢), both in L? and

in probability.

(c) We will apply Theorem B.0.4, by showing that (B.4) and along with condition

(N1) are satisfied. We begin by establishing the following estimates

S IR < 202, (3.81)

for any m > 1, £, € N. Since m > 1,

SIFGI" = S IFGI FG)] < Y o2 IEG)

i=1

=Y oG = Gy) = an (G - Gr)
j=1

< O_Z(m—l)GO _ 10_2771

_— n 2 n )

where we used the fact that G; > 0 and Gy = %afl. Therefore,

r r l
SR = ()™ + > IFGI™ + D 1FG)™
j==1 j=1 J=1

1 1
aim + 50?” + 5‘7121m = 2027”.
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With slight abuse of notations, just in this proof, we denote by Avj := v(t;, x) —

v(tj—1,z). Let H be the closed subspace of L*(2,.7,P) generated by the random

variables AJ?, 1 <j7<n; j,neN. Then,
Av? 4 Av? 4 Av? 2 Av? 2
-3 = -6 +3]+6 -1

Au? Av? Av\ @ Avh\ #?
= H, L) +6H, L) =1 ] + 615 ] :
O'n O-n O-n Un

Therefore,
V2(v; e, d
i (e )
nop
1 < /A ®t 6 <~ [ Avh &2
I, | — J L | — J 3.82
BEE) T[] o
j=1 7=1
Let

n n ®2 n n\ ®4
e (B e () e

and consider the sequence of two-dimensional random vectors F), := (]2( ,9), Iy( ,(L4))> ,
n € N, to which we will apply Theorem B.0.4. Using the properties of Wiener integral,

we obtain that

lim E (L(fPYL(fY)) =0,

n—o0

and hence (B.4) is satisfied.

Next, we move to verification of condition (N1), which in this case becomes

Tim (| £ @ £ | F200n-r) = 0. (3.84)
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form=24,and 1 <r<m-—1.

Using the linearity of the inner products and the properties of the tensor

products of Hilbert spaces, we obtain

) n A ®2 n Ap™ ®2
B (L) =20 10 = (2 (T0) 2 () e

=1 n Jj=
B 72 n < AU? ®2 A’U;l ®2> B 72 -~ <AU? A'U;'l>2
n £ on "\ o, ne:  n 5o\ on "o, TH
2y {E<AU Ay )]2 722!1’ |J—@\
n 4 o
i,j=1 i,j=1
_na4 <Z|F |2+QZ|F]—2 )
1<J
n—1
= ol (”Un + 2;(" = DNEG) )
144 n—1 ] n—1 F(]) 2
_ S\ (2
_72+?Z(1—5)|F(])| _72+144Z(1— -
nog=1 j=1
In view of (3.81), we have that
n—1 . N 12 o) A |2
iy | F0) F(y)
Z(l - ﬁ) 2| S Z 2 | <%
Jj=1 n j=1 n
and thus
2 <~/ J\|FG)
_ 1 (2) — ; _ <
= lim E (I(f")) _72“447}5202(1 =) o | <
]:
Similarly,

NN R
E<I4(fr(z4)))2 <f(4)f >H®4:2n_4<;(azj) ’]
n Avr\ & [ A — /Aup Au}
SR G TSGR,

ij=1




24 & v Av? * 24 |E (5 =D j—z\
SrEEER R

i,j=1 1,j=1
n—1 4 4
() F(j)
5 3 < 00,
and consequently,
o : (4) F(j) !
of = lim E (L(f} ) = 24+48n15202 =) | <

Let as = 6,a4 = 1. Then,

Xm
) Broson s

m m Am -
1757 0 £ nocan = | fz( N o Y (%
a2, <~ [ AvP wm AV
= H? Z ( p ) Xy < 0]> ||§{®2<me>
n n

z’jfl

aZ, Av Av? @(m—r) Aym @m=7)
~ )y (5 J>H(a) o ()" Moo

i,7=1 n
az, \F Av? ®(m=r) Avy B(m=r) )
— || Z O_n ® O_n ||H®2(m77‘)
1,7=1
afn n i SN . SN T . SN [T—T . SN T—T
= S R — DR — EDIEG DR 1)
nogg4=1
4 n
a,, . g .
< e S IR =i = DF(E = iDF(S = i) oy
g =1
4 n
ay, o , , P
= ne Y 1F(i = iDF(F —iDF( —ihF( i)
n gl j=1
:Ol+202,
where

0= 3 Z S | FOF(7 ~ 1)FQ7 ~ PO i)

/ 11_
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= n S S | B - i F(S - dDE(E - DT - )

ngg=1 i<j

First note that, by direct computations and using (3.81), we have

4
0n= S S S | B~ FU7 ~1)F( i) |

=1 i=1

Uy N~ N ooy PO —i)? + F (5 — )
< SUSTR(G-)
no, ~ “ 2
i',j'=1 i=1
at u 20 —1—20 2a% “ . .
< gm ST R - | T < S ST R )|
n g -/_1 n i’,j’=1
< g (SIrO1+2 % |7
—_— —1)
~ n202 = J
2a’ 4a4 — 2a0  dad G F())
< Z0m m _ F(i)| = 22m 4 2%m 1- <
S MERIECUIEE D IR
— 0
n—oo
Similarly,

4 n n—1n—i

0, = 7;7;8 Z ZZ F(li+k—di)F(5 —i¢D)F(| —i)F(lj—i—k|) ‘

ngrg'=1i=1 k=1

n n—1n—i

= o 2 20 [ PR = DEG — ) F(f —i = k)|

=1 i=1 k=1

<t S S5 S y- eprqe - iy | EEEE P k)

=1 i=1 k=1

20t & 4at
., ./
<Zn 3 S| r0r-oheee - | < s S |-
nor =1 i=1 i',5'=1
— 0
n—oo

Thus, (3.84) holds true. Therefore, (N2) from Theorem B.0.4 holds true, namely, we
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have that

5 a5 0
E, — N |0, . (3.85)

n—oo
0 o2
Consequently, (3.69) follows from (3.82),(3.83) and (3.85). Finally, (3.69) implies
(3.70), by using that

W@Vi (u(’ 33); [Ca d]) . Vi(v; [Ca d])

454 4
no,o no,

Vvn ( ) — 0, in L* and in probability(3.86)
The proof of (3.86) follows by similar arguments as in proof of Proposition 3.3.1 and

we omit it here.

The proof is complete.

Next, we present the main results of this subsection on consistency and asymp-

totic normality of the estimators (3.65) and (3.66).

Theorem 3.3.7. Let u be the solution to (3.55), and assume that u is sampled at
discrete points {(t;, x) | t; € Y"(¢,d)}, for some fized x € (0,7), and 0 < ¢ < d < 0.
Then, assuming o s known, @\nx given by (3.65) is a weakly consistent estimator for
0, that is

P— lim 6,, = 6. (3.87)

n—oo
Respectively, if 0 is known, then /a\fw in (3.66) is a weakly consistent estimator of o°.

Moreover, é\nx and 02 satisfy the following central limit type convergence

n,x

s (% (- 0)9)

D _ _
— ) NG, 0 (55 + 53)), (3.88)
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n,T
d—c

NG (62 _ Vo, 02) 2 N0, 2ot (52 1 62)). (3.89)

Proof. Consistency is a direct consequence of Proposition 3.3.2.(a)-(b) and (3.43)

from Proposition 3.3.1.

Combining (3.65) and (3.70), we have

3(d— )0
vn (ﬁ - 3) ﬁ N(0,52 + 52). (3.90)

Due to (3.87), and by Slutsky’s theorem, multiply by é\m;/?) on the left side of (3.90),

(3.88) follows at once.

Combining (3.66) and (3.70), we have

» N(0,55 + 73). (3.91)

According to (3.78), we have

lim not =d —c,
n—o0

and thus by Slutsky’s theorem, multiply no? /(d — ¢) on the left side of (3.91) will not

affect the convergence in distribution, that is,

i

~4
30, 3not ) D

g e B » N(0,55 + 53).

n—o0

Note that

30,, 3not (3721@ Vno? ) (337%,:0 N 3ﬁo‘%>
o? vd—c o2 Jd=c)’

ot d—c
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and
3Z§’m+:f/\gﬁ%‘i—>6 as n — 0o,
we have
Vi (3’2? -, ) D N0, (53 + 52).
o Vd—c¢) n—oo 36
Multiply o2 gives (3.89). This completes the proof. O

3.4 Numerical Simulation of Estimators

We conclude this chapter with numerical simulations of the solutions and es-

timators for the stochastic heat equation (3.55),

du(t,z) = 0Au(t,z)dt + o dW(t,z), t>0, x € (0,7),

uw(0,2) =0, xe€(0,r), u(t0)=u(t,7)=0, t=>0.

where

W(t,z) =) \/2/msin(kz)wy(t),

k>0

and wg,k > 0 are independent standard Brownian motions. The simulations and
plots in this section are implemented in MATLAB®, the programs are available from

the author upon request.

3.4.1 Simulation of Fourier Modes and Solution. We know that the solution
18

u(t,z) =Y up()he(z), t>0, x€(0,m) (3.92)

k>1
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where each Fourier mode wuy(t) is an Ornstein—Uhlenbeck process of the form

dug(t) = —0k*us(t) dt + o dwy(t), t >0, uk(0)=0. (3.93)

We can simulate each Fourier mode uy(t) for k = 1,2,..., N and then approximate

(3.92) by

uN(tx) =) up(t)he(x). (3.94)

M-

To simulate wuy, we first prove the following lemma.

Lemma 3.4.1. Suppose that f(t) is some nonzero deterministic integrable function.

Let

If the process Y is the solution to the SDE
4y (t) = f(1)dB(1), Y (0) = 0

where B 1s a standard Brownian motion, then

for some standard Brownian motion W.

Proof. Define 7, := inf{t > 0 : g(t) > s}. It is easy to see that 7y is a stopping
time w.r.t the natural filtration of B. And moreover, 7, is strictly increasing w.r.t s.

Applying It6’s formula to €Yt here i = /—1,

, , I
A = jwe™ O f(8) dB(t) — Sv*e™ O (1) dt (3.95)
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Integrating (3.95) from 75, to 7s,, $1 < So,

) ) Ts2 ) 1 Tsy
e7,11Y('r52) . 6wY(7'51) _ / iUCZUY(t)f(t) dB(t) . 51)2/ ewY(t)f2<t) dt

1 1

Consider the change of variable ¢t = 7,, then

Tso ) 52 .
/ €wY(t)f2(t) dt = / ewY(Ts) ds
Tsq s1
Therefore

. . Ts2 ) 1 2
e’L’UY(TS2) _ ewY(Tsl) + / ivewY(t)f(t) dB(t) . 5’02/ 67/UY(TS) ds

1 S1

Define Z(s,s1) = E(ei”(y(“)_y(nl))\QSJ, where G, = F,., with F,,t > 0 is the

natural filtration generated by B. Then

1 52
Z(89,81) =1— 51)2/ Z(s,s1)ds, Z(s1,s1) = 1.

S1

Solving the above integral equation,
Z(SQ, 31) _ 6—%1)2(52—51)’

which essentially means Y (75,) — Y (75,) ~ N (0, s2 —s1). And Y (7s,) — Y (75,) is inde-
pendent of G, . In addition, E(Y (7,,) =Y (7, ))* = 3(s2—s1)?. Thus, by Kolmogorov’s
Criterion, Y (7y) is continuous. In conclusion, Y (7;) is a standard Brownian motion,

denoted by W. Then changing the variable, we get
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By (3.93),

de™ u(t) = oe®™ duwy(t).

Let f(t) := 0et, g(t) := fot[f(s)]%ls, then by Lemma 3.4.1,
G%Qtuk(t) — eekZSuk(S) = wr(g(t)) — we(g(s)),

for some standard Brownian motion wyg. Moreover, we know

2
620k t 1

p— 2-—
g(t)—O' 29]{2

If we have a partition 0 = to < t; < -+ < t, = T of [0,7] with ¢; = jAt,j =

0,1,--+ ,n and At = T'/n, then we have a numerical scheme for approximating uy,
1 — e—20k2At
~ I VN '
uy(t;) = e uk(tj-1) + o\ =&,
where £, = 1,2,--- ,n are iid standard normal random variables. Once we simulate

the Fourier modes, we can approximate the solution using (3.94).

3.4.2 Simulation of MLE and TFE. Once we simulate the first N Fourier modes,
we are ready to compute MLE and TFE from these modes using (3.2) and (3.11), re-

spectively. Here we give a plot of the convergence for these estimators as N increases.

3.4.3 Simulation of p-Variation Type Estimator. Once we simulate the solu-
tion u(t, x), we are ready to compute the estimators (3.61), (3.62), (3.65), and (3.66).
Here we give the plots of the convergence for these estimator as number of observa-

tions increase.
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CHAPTER 4
FUTURE WORK

In Chapter 2, we have studied the Wiener-Hopf factorization for finite-state
time-inhomogeneous Markov chains with a piece-wise constant generator matrix. We

plan to address the following problems as part of future research.

1. We will start by developing the theory of Wiener-Hopf factorization for finite
state Markov chains with general time dependent generators that are non nec-

essarily piece-wise constant matrices.

2. Next we will study the theory of Wiener-Hopf factorization for time-inhomogeneous

Markov processes with general state space.

3. We will investigate the so-called “noisy” Wiener-Hopf factorization where the
additive functional is perturbed by an independent standard Brownian motion

and the Markov chain is time-inhomogeneous.

4. We will study the connection between the Wiener-Hopf factorization for Markov
processes developed herein and the existing Winer-Hopf factorization theory for
Lévy processes. Consequently, we plant to develop the Wiener-Hopf factoriza-

tion for time-inhomogeneous Lévy processes.

In Chapter 3, we have studied the statistical inference for SPDEs mostly driven
by an additive noise. One of the major future task is to study the parameter estima-

tion problem for SPDEs with multiplicative noise.

1. We will study the estimators for SPDEs with multiplicative noise within spectral

approach.
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2. Beyond spectral approach, we also plan to study the discrete sampling for
stochastic heat equation with multiplicative noise. The consistency of the es-
timators is already studied, while the asymptotic normality remains an open

question.

3. Since the solution to a stochastic heat equation with additive space-time white
noise is a Gaussian random field, we know the characteristics of this random
field, namely the mean and the covariance structure. Thus, the discretely sam-
pled data has a multivariate normal distribution, and we plan to study the statis-
tical inference problem using the methods from classical statistics for Gaussian

fields.

4. Finally, we will investigate problems in statistical inference for SPDEs driven

by non-Gaussian noises, such as Lévy noise.
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APPENDIX A
NUMERICAL INVERSE LAPLACE TRANSFORM
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For the convenience of the reader, we will briefly recall the basics of Laplace
transform and its inverse. Then, we will proceed with an important result regarding

the approximation of the multivariate inverse Laplace transform.

Let f:[0,00)" — [0,00) be a Borel measurable function such that

// f(tl,...,tn)He’q”kdtl---dtn
0 0 k=1

exists for any q1,...,q, > 0. Then, the multivariate Laplace transform onf f, defined

by

~

Pt a) = L@ an) = /Om---/ooof(tl,...,tn)ﬂeqktkdtlmdtn,
k=1

is well-defined for any ¢, € C*, k= 1,...,n, where® C™ := {z € C | R(z) > 0} with
R(z) denoting the real part of z € C. The inverse multivariate Laplace transform
of function g : (CT)" — C, is the function g, such that £(g) = g. We will also
write § = L7'(g). The existence and uniqueness of the inverse Laplace transform is
a well understood subject (cf. [Wid41]). Although there are explicit formulas of the
inverse Laplace transform for many functions, generally speaking, in many practical
situations the inverse Laplace transform of a function is computed by numerical ap-
proximation techniques. We refer the reader to [AWO06], and the references therein,
for a unified framework for numerically inverting the Laplace transform. For sake of
completeness, we present here one such method — the Talbot inversion formula — for

one and two dimensional case; the multidimensional case is done by analogy.

Assume that ]?is the Laplace transform of a function f : (0,400) — C. The

*We will denote by R(z) the real part of z € C, and i = v/—1 will be used to
denote the imaginary unit.



113

Talbot inversion formula to approximate f is given by

-1

_ % Z R (%f & ) (A.1)

=0

where
2M 22k k
b= b= 57T(cot(M7T)+i), 0<k<M,
1o B km o km _ km o\ s,
T = 5¢7, ’yk—(1+1M(1+cot(M)) 1cot(M) e, 0<k< M. (A2)

Analogously, given a Laplace transform g of a complex-valued function g of two non-
negative real variables, the Talbot inversion formula to compute g(t1, t3) numerically
is given by

- 1) ) ) 5
~ k1 Ok _ o~ k1 UYko
t1,ts) E E k2 2k ke
g ( 15 2 25t1t2 { V k1 |:’Yk2.g ( tl ty ) V2 ( t ) t ):| }7

kia=0
where g, v, 0 < k < M, are given in (A.2).

Next let us consider a function f : [0,00) — [0,00) and its Laplace transform
f(q), for ¢ € C*. It turns out that the inverse Laplace transform of f can be
approximated numerically by using only values of the function fon the positive real

line. One such approximation is the Gaver-Stehfest formula

ft) =23 S () () g

k=0

For other methods and the comparison of their speeds of convergence we refer to
[AWO06]. Consecutive application of (A.3) leads to the multivariate Gaver-Stehfest

formula.
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APPENDIX B
AUXILIARY RESULTS FROM STATISTICAL INFERENCE FOR SPDES
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In this section, we present several results that are used in Chapter 3. The first
important result is the Strong Law of Large Numbers in which the random variables

are not necessarily identically distributed.

Theorem B.0.1 ([Shi96]). (Strong Law of Large Number) Let {n,},en be a
sequence of independent random variables, and let {b,}nen be a sequence of non-

decreasing positive numbers such that lim, ., b, = oco. If

- Var (1,)
> <

n=1 n

then

Remark B.0.1. As an immediate corollary, if {n,}tnen is a sequence of independent

non-negative random variables with

= = Var (1)
E(n, =o0 and 7 < 09,
2 ) 2 L Ew

then

lim ZZ 1 Tk
"ﬁOOZk 1 ( )

=1, P—-a.s.

Next we discuss three central limit theorems in which the random variables

are not necessarily identically distributed and/or independent.

Theorem B.0.2 ([Shi96]). (Lyapunov Central Limit Theorem) Let {n, },en be a

sequence of independent random variables with finite second moments. If there exists
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some 6 > 0, such that

. 1 . 2+6
lim E —E =0, B.1
o o Vo 2 (e Er ) .

then

> ket (s —E(ny))
N
ZZ:1 Var(ny,) —

(0,1), n — oc.

The next result is a central limit theorem for the summation of Hermite poly-
nomials of stationary Gaussian increments. In this result, the summands are not

necessarily independent.

Theorem B.0.3. Let {X;,t > 0} be a Gaussian process with the following properties

(1) Xo=0, and EX; =0, ¢>0.
(it) Xi1s — X; ~N(0,0%(s)), where o(s) is a deterministic function of s.
(111) There ezists a constant v > 0 such that (Xa:,t > 0) 2w (X¢,t > 0), for any
a > 0.
() For anyt > 0,At > 0, the sequence Xyynar — Xeym—1)at, n € N is stationary.

. X, — X, . . .
In particular, Y, = ”UT)T”, n € N, is a zero mean and stationary Gaussian

sequence with unit variance.

(v) Let r be the covariance function of Y, r(n) = EY,,Y,in, and assume that for

some positive integer k, > _, r%(n) < cc.

Then,

7 > H <Urg) (Xj/m — X(g-1/n) ;k) — N (0,1), (B.2)
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where

ZCIQZUM ggonzz (li — ).

=1 j5=1

Proof. By [BM83, Theorem 1], applied to the sequence Y, we immediately get

n—oo

\/_ZH Yii k) —— N(0,1),

where

o 1 n n

= qle7,  of = lim = Y (i — ).

I=k S

Since
. law 1
(Xj/n—X(j_l)/n,j:1,27...,n) n'Y(X X] 1, j ]_ 2 ...,n),

we conclude that (B.2) holds. O

The following result is an immediate consequence of Theorem B.0.3.

Corollary B.0.1. Let B be a fractional Brownian motion with Hurst parameter

H =1/4. Then,

v (VE(B™; [a,b]) = 3(b — a)) —— (b — a)5N (0, 1),

n—oo

where

5% = 72535 + 2457, = lim — Z Z (i = 41). (B.3)

n—oo 1,
i=1 j=1

The last central limit theorem we discuss here is a result from [NOL0S8], used

in the proof of Proposition 3.3.2. For most of this part, we will use the standard
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notations from [Nua06] and [NOLO8]. We will denote by H(x;k) a polynomial with

Hermite rank k, that is, H can be expanded in the form

o0

H(x;k) =) ¢;Hj(x),
j=k
where H; is the jth Hermite polynomial (with leading coefficient 1), and ¢;, # 0. Let
H be a separable Hilbert space. For every n > 1, the notation H®" will stand for the
nth tensor product of H, and H®" will denote the nth symmetric tensor product of
H, endowed with the modified norm v/n!||-|| yen. Suppose that X = {X (h),h € H} is
an isonormal Gaussian process on H, on some fixed probability space, say (2, .%,P),

and assume that .# is generated by X.

For every n > 1, let ‘H,, be the nth Wiener chaos of X, that is, the closed
linear subspace of L?(Q,.%,P) generated by the random variables {H, (X (h)),h €
H, ||h||g = 1}, where H,, is the nth Hermite polynomial. We denote by H, the space
of constant random variables. The mapping I,,(h®") = H, (X (h)), for n > 1, provides
a linear isometry between H®" and H,,. For n = 0, we have that H, = R, and take I,
to be the identity map. It is well known that any square integrable random variable

F € L*(Q, #,P) admits the following expansion

F=> L(f),

where fy = EF, and the f,, € H®™ are uniquely determined by F.

Let {ex, k > 1} be a complete orthonormal system in H. Given f € H®" and

ge H®" for ¢ =0,...,nAm, the contraction of f and ¢ of order ¢ is the element of
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H®0+m=20 defined by

f®ig= Z (f,ei, @ Qey)per (g, €, @+ @ e€;,) ger

L1yeeey e

Theorem B.0.4 ([NOLO08|). For d > 2, fiz d natural numbers 1 < ny < --- < ng.

Let {Fy}ken be a sequence of random vectors of the form

Fy, = (Fkl:’Flg) = (Inl(fkl:)7"'7]nd<fg>>ﬂ

where fi € H®™ and I, is the Wiener integral of order n;, such that, for every

1<4,7<d,

lim E [F}F]] = 6. (B.4)

k—o00

The following two® statements are equivalent.

(N1) Forall1 <i<d,1 <0<n;—1, [|f{” @ £ P00 o — 0. as k — .

(N2) The sequence {Fi}ren, as k — 00, converges in distribution to a d-dimensional

standard Gaussian vector Ny (0, I4).

Finally, we recall the BDG inequality that is used in the proof of Theorem 3.2.2.

Theorem B.0.5 ([Cho07]). Let M;,t € [0,T] be any continuous real-valued martin-
gale with My = 0 and E|Mp|? < oco. Then for any p > 0, there exist two positive

constants ¢, and C, such that

c,E <[M]’}/2> <E ( sup |Mt|p) <CO,E ([M]’;/Q) .

te[0,7

6The original result [NOL0O8, Theorem 7] contains six equivalent conditions; we
list only those two that we use in this presentation.



[AES16]

[APUO3]

[Asm95]

[AW06]

[B14]

[BCGH18]

[Bis08]

[BMS3]

[BRWSO]

[BT17]

[CGHI11]

[CGH18|

(CH17]

[Cho07]

[Cial0]

120

BIBLIOGRAPHY

S. Aazizi and K. Es-Sebaiy. Berry-Esseen bounds and almost sure CLT
for the quadratic variation of the bifractional Brownian motion. Random
Oper. Stoch. Equ., 24(1):1-13, 2016.

F. Avram, M. R. Pistorius, and M. Usabel. The two barriers ruin problem
via a Wiener Hopf decomposition approach. An. Univ. Craiova Ser. Mat.
Inform., 30(1):38-44, 2003.

S. Asmussen. Stationary distributions for fluid flow models with or with-
out Brownian noise. Comm. Statist. Stochastic Models, 11(1):21-49, 1995.

J. Abate and W. Whitt. A unified framework for numerically inverting
laplace transforms. INFORMS Journal on Computing, 18(4):408-421,
2006.

B. Bottcher. Feller evolution systems: generators and approximation.
Stoch. Dyn., 14(3):1350025, 15, 2014.

T. R. Bielecki, I. Cialenco, R. Gong, and Y. Huang. Wiener-hopf factor-
ization for time-inhomogeneous markov chains and its application. arXiv

preprint arXiv:1801.05553, 2018.

J. P. N. Bishwal. Parameter estimation in stochastic differential equa-
tions, volume 1923 of Lecture Notes in Mathematics. Springer, Berlin,
2008.

P. Breuer and P. Major. Central limit theorems for nonlinear functionals

of Gaussian fields. J. Multivariate Anal., 13(3):425-441, 1983.

M. T. Barlow, L. C. G. Rogers, and D. Williams. Wiener-hopf factor-
ization for matrices. Sminaire de probabilits de Strasbourg, 14:324-331,
1980.

M. Bibinger and M. Trabs. Volatility estimation for stochastic pdes using
high-frequency observations. arXiv preprint arXiw:1710.03519, 2017.

I. Cialenco and N. Glatt-Holtz. Parameter estimation for the stochas-
tically perturbed Navier-Stokes equations. Stochastic Process. Appl.,
121(4):701-724, 2011.

I. Cialenco, R. Gong, and Y. Huang. Trajectory fitting estimators for
spdes driven by additive noise. Statistical Inference for Stochastic Pro-

cesses, 21(1):1-19, Apr 2018.

I. Cialenco and Y. Huang. A note on parameter estimation for discretely
sampled (spde)s. arXiv preprint arXiv:1710.01649, 2017.

P. Chow. Stochastic partial differential equations. Chapman & Hall/CRC
Applied Mathematics and Nonlinear Science Series. Chapman & Hal-
1/CRC, Boca Raton, FL, 2007.

I. Cialenco. Parameter estimation for SPDEs with multiplicative frac-
tional noise. Stoch. Dyn., 10(4):561-576, 2010.



[Cialg]

[CL0Y]

[CLPO0Y]

[CNWO06]

[Cor12]

(CX14]

(CX15]

[DPZ92]

[Hai09]
[Hiel4]

[HKRO3]

[HLR97]

[HR95]

[HSZ16]

[JPOS8]

121

I. Cialenco. Statistical inference for SPDEs: an overview. Statistical
Inference for Stochastic Processes, Feb 2018.

I. Cialenco and S. V. Lototsky. Parameter estimation in diagonalizable
bilinear stochastic parabolic equations. Stat. Inference Stoch. Process.,
12(3):203-219, 2009.

I. Cialenco, S. V. Lototsky, and J. Pospisil. Asymptotic properties of the
maximum likelihood estimator for stochastic parabolic equations with
additive fractional Brownian motion. Stoch. Dyn., 9(2):169-185, 2009.

J. M. Corcuera, D. Nualart, and J. H. C. Woerner. Power variation of
some integral fractional processes. Bernoulli, 12(4):713-735, 2006.

J. M. Corcuera. New central limit theorems for functionals of Gaus-
sian processes and their applications. Methodol. Comput. Appl. Probab.,
14(3):477-500, 2012.

I. Cialenco and L. Xu. A note on error estimation for hypothesis test-
ing problems for some linear SPDEs. Stoch. Partial Differ. Equ. Anal.
Comput., 2(3):408-431, 2014.

I. Cialenco and L. Xu. Hypothesis testing for stochastic PDEs driven by
additive noise. Stochastic Process. Appl., 125(3):819-866, March 2015.

G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions,
volume 44 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, 1992.

M. Hairer. Introduction to Stochastic PDFEs. Unpublished lecture notes,
2009.

P. Hieber. First-passage times of regime switching models. Statist. Probab.
Lett., 92:148-157, 2014.

M. Huebner, R. Khasminskii, and B. L. Rozovskii. Two examples of
parameter estimation for stochastic partial differential equations. In
Stochastic processes, pages 149-160. Springer, New York, 1993.

M. Huebner, S. V. Lototsky, and B. L. Rozovskii. Asymptotic properties
of an approximate maximum likelihood estimator for stochastic PDEs. In
Statistics and control of stochastic processes (Moscow, 1995/1996), pages
139-155. World Sci. Publishing, 1997.

M. Huebner and B. L. Rozovskii. On asymptotic properties of maximum
likelihood estimators for parabolic stochastic PDE’s. Probab. Theory Re-
lated Fields, 103(2):143-163, 1995.

D. Hainaut, Y. Shen, and Y. Zeng. How do capital structure and eco-
nomic regime affect fair prices of bank’s equity and liabilities? Annals of
Operations Research, Apr 2016.

Z. Jiang and M. R. Pistorius. On perpetual American put valuation and
first-passage in a regime-switching model with jumps. Finance Stoch.,
12(3):331-355, 2008.



[JP12]
[JRO6]

[Khol4]

[Kut91]

[Kut04]

[KWO0]

[LMRWS2]

[Lot09)]

[LR17]

[Mar03]

[MBY5]

[Mit88]

IMP11]

[MPRO2]

[INOLOS]

[NouOg]

122

Z. Jiang and M. R. Pistorius. Optimal dividend distribution under
Markov regime switching. Finance Stoch., 16(3):449-476, 2012.

A. Jobert and L. C. G. Rogers. Option pricing with Markov-modulated
dynamics. SIAM J. Control Optim., 44(6):2063-2078, 2006.

D. Khoshnevisan. Analysis of stochastic partial differential equations,
volume 119 of CBMS Regional Conference Series in Mathematics. the
American Mathematical Society, Providence, RI, 2014.

Y. A. Kutoyants. Minimum-distance parameter estimation for diffusion-
type observations. C. R. Acad. Sci. Paris Sér. I Math., 312(8):637-642,
1991.

Y. A. Kutoyants. Statistical inference for ergodic diffusion processes.
Springer Series in Statistics. Springer-Verlag London Ltd., London, 2004.

J. Kennedy and D. Williams. Probabilistic factorization of a quadratic
matrix polynomial. Math. Proc. Cambridge Philos. Soc., 107(3):591-600,
1990.

R. R. London, H. P. McKean, L. C. G. Rogers, and D. Williams. A
martingale approach to some Wiener-Hopf problems. I, II. In Seminar
on Probability, X VI, volume 920 of Lecture Notes in Math., pages 41-67,
68-90. Springer, Berlin-New York, 1982.

S. V. Lototsky. Statistical inference for stochastic parabolic equations: a
spectral approach. Publ. Mat., 53(1):3-45, 2009.

S. V. Lototsky and B. L. Rozovsky. Stochastic partial differential equa-
tions. Universitext. Springer, Cham, 2017.

B. Markussen. Likelihood inference for a discretely observed stochastic
partial differential equation. Bernoulli, 9(5):745-762, 2003.

M. N. Mishra and J. P. N. Bishwal. Approximate maximum likelihood
estimation for diffusion processes from discrete observations. Stochastics
and Stochastic Reports, 52(1-2):1-13, 1995.

D. Mitra. Stochastic theory of a fluid model of producers and consumers
coupled by a buffer. Adv. in Appl. Probab., 20(3):646-676, 1988.

A. Mijatovi¢ and M. R. Pistorius. Exotic derivatives under stochastic
volatility models with jumps. In Advanced mathematical methods for
finance, pages 455—-508. Springer, Heidelberg, 2011.

M. N. Mishra and B. L. S. Prakasa Rao. Approximation of maximum
likelihood estimator for diffusion processes from discrete observations.
Stochastic Anal. Appl., 20(6):1309-1329, 2002.

D. Nualart and S. Ortiz-Latorre. Central limit theorems for multiple
stochastic integrals and malliavin calculus. Stochastic Processes and their

Applications, 118(4):614 — 628, 2008.

I. Nourdin. Asymptotic behavior of weighted quadratic and cubic vari-
ations of fractional Brownian motion. Ann. Probab., 36(6):2159-2175,
2008.



[Nua06]

[PRO7]

[PRO3]

[PvsTO7]

[Rog94]

[Roz90]

[RS94]
[Shi96]
[Shu01]
[Sys92]
[Wal81]
[Wid41]
[Wil91]

[Wil0g]

123

David Nualart. The Malliavin calculus and related topics. Probability
and its Applications (New York). Springer-Verlag, Berlin, second edition,
2006.

L. I. Piterbarg and B. L. Rozovskii. On asymptotic problems of parameter
estimation in stochastic PDE’s: discrete time sampling. Math. Methods
Statist., 6(2):200-223, 1997.

B. L. S. Prakasa Rao. Estimation for some stochastic partial differential
equations based on discrete observations. II. Calcutta Statist. Assoc.
Bull., 54(215-216):129-141, 2003.

J. Pospi §il and R. Tribe. Parameter estimates and exact variations for
stochastic heat equations driven by space-time white noise. Stoch. Anal.
Appl., 25(3):593-611, 2007.

L. C. G. Rogers. Fluid models in queueing theory and Wiener-Hopf
factorization of Markov chains. Ann. Appl. Probab., 4(2):390-413, 1994.

B. L. Rozovskii. Stochastic evolution systems, volume 35 of Mathematics
and its Applications (Soviet Series). Kluwer Academic Publishers Group,
Dordrecht, 1990. Linear theory and applications to nonlinear filtering.

L. C. G. Rogers and Z. Shi. Computing the invariant law of a fluid model.
J. Appl. Probab., 31(4):885-896, 1994.

A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1996.

M. A. Shubin. Pseudodifferential operators and spectral theory. Springer-
Verlag, Berlin, second edition, 2001.

R. Syski. Passage times for Markov chains, volume 1 of Studies in Prob-
ability, Optimization and Statistics. 10S Press, Amsterdam, 1992.

J. B. Walsh. A stochastic model of neural response. Adv. in Appl. Probab.,
13(2):231-281, 1981.

D.V. Widder. The Laplace Transform. Princeton mathematical series.
Princeton University Press, 1941.

D. Williams. Some aspects of Wiener-Hopf factorization. Philos. Trans.
Roy. Soc. London Ser. A, 335(1639):593-608, 1991.

D. Williams. A new look at ‘Markovian’ Wiener-Hopf theory. In
Séminaire de probabilités XLI, volume 1934 of Lecture Notes in Math.,
pages 349-369. Springer, Berlin, 2008.



