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ABSTRACT

The thesis consists of two major parts, and it contributes to two topics in

stochastic analysis – Wiener-Hopf factorization (WHf) for Markov chains and statis-

tical inference for Stochastic Partial Differential Equations (SPDEs).

The first part deals with Wiener-Hopf factorization for finite state time in-

homogeneous Markov chains. To the best of our knowledge, this study is the first

attempt to investigate the WHf for time-inhomogeneous Markov chains. In this work

we only deal with a special class of time-inhomogeneous Markovian generators, namely

piece-wise constant, which allows to derive the corresponding WHf by using an ap-

propriately tailored randomization technique. Besides the mathematical importance

of the WHf methodology, there is also an important computational aspect: it allows

for efficient computation of important functionals of Markov chains. In this work, we

also provide an efficient algorithm to compute the quantities in the Wiener-Hopf fac-

torization for time-inhomogeneous Markov chains. Finally, we provide a comparison

(based on numerical simulations) between our algorithm and the brute-force Monte

Carlo simulations.

The second part is dedicated to statistical inference for Stochastic Partial Dif-

ferential Equations (SPDEs). First, we study the problem of estimating the drift/vis-

cosity coefficient for a large class of linear, parabolic SPDEs driven by an additive

space-time noise. We propose a new class of estimators, called trajectory fitting es-

timators (TFEs). The estimators are constructed by fitting the observed trajectory

with an artificial one, and can be viewed as an analog to the classical least squares

estimators from the time-series analysis. As in the existing literature on statistical in-

ference for SPDEs, we take a spectral approach, and assume that we observe the first

N Fourier modes of the solution, and we study the consistency and the asymptotic

normality of the TFE, as N →∞. Next we consider a parameter estimation problem

x



for one dimensional stochastic heat equation, when data is sampled discretely in time

or spatial component. We establish some general results on derivation of consistent

and asymptotically normal estimators based on computation of the p-variations of

stochastic processes and their smooth perturbations. We apply these results to the

considered SPDEs, by using some convenient representations of the solutions. For

some equations such representations were ready available, while for other classes of

SPDEs we derived the needed representations along with their statistical asymptotic

properties. We prove that the real valued parameter next to the Laplacian, and the

positive parameter in front of the noise can be consistently estimated by observing

the solution at a fixed time and on a discrete spatial grid, or at a fixed space point

and at discrete time instances of a finite interval, assuming that the mesh size goes

to zero.

xi
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CHAPTER 1

INTRODUCTION

This thesis consists of two major parts, and it contributes to two topics in

stochastic analysis: (i) Wiener-Hopf factorization (WHf) for Markov chains and (ii)

statistical inference for Stochastic Partial Differential Equations (SPDEs).

1.1 Wiener-Hopf Factorization for Markov Chains

The theory of WHf for Markov chains was originated in [BRW80]. Later,

Kennedy and Williams [KW90] studied the so-called “noisy” WHf. This theory has

been applied to many practical problems such as ruin problem [APU03], fluid flow

models [Rog94, RS94, Asm95], biology [Hie14], and finance [JR06, JP08, MP11, JP12,

HSZ16]. However, all these theoretical and applied developments of WHf are only

done for time-homogeneous Markov chains. Clearly, the case of time-inhomogeneous

chains is important, both from theoretical and application point of view. The main

goal of this part of the thesis is to develop the WHf theory for time-inhomogeneous

Markov chains.

First, we outline the original WHf for time-homogeneous Markov chains. Con-

sider a time-homogeneous Markov chain X with finite-state space E and generator

Q. Let v : E→ R \ {0} be a function such that the sets E+ := {i ∈ E | v(i) > 0} and

E− := {i ∈ E | v(i) < 0} are nonempty. In addition, let φ(t) :=
∫ t

0
v(Xs) ds and define

the first passage times τ+
t := inf{s ≥ 0 | φ(s) > t} and τ−t := inf{s ≥ 0 | −φ(s) > t},

for t ≥ 0. One of the problems is to compute the following expectations,

E
(
e−cτ

+
0 1{X

τ+0
=j}|X0 = i

)
, i ∈ E−, j ∈ E+, (1.1)

E
(
e−cτ

+
t 1{X

τ+t
=j}|X0 = i

)
, i ∈ E+, j ∈ E+, t > 0, (1.2)

E
(
e−cτ

−
0 1{X

τ−0
=j}|X0 = i

)
, i ∈ E+, j ∈ E−, (1.3)
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E
(
e−cτ

−
t 1{X

τ−t
=j}|X0 = i

)
, i ∈ E−, j ∈ E−, t > 0, (1.4)

where c > 0 is a positive constant.

Next, for illustration purposes, let us consider as an example the classical fluid

flow problem (cf. [Mit88] and [Rog94] for detailed discussion). Suppose that we have

a large water tank with infinite capacity. On the top of the tank, there are I pipes,

with It pipes being open at time t and each pipe pouring water into the tank at the

same rate r+. At the bottom of the tank, there are O taps, with Ot being open at

time t, each tap allowing water to flow out of the tank at the same rate r−. We

assume that I and O are finite. Then, the volume ξt of water in the tank at time t

satisfies the dynamics

dξt
dt

= r+It − r−Ot, if 0 < ξt < a.

Moreover, if ξt = 0, i.e. if the tank is empty, then the outflow ceases. Let f be a real

valued function on I × O. We assume that Xt := f(It, Ot), t ≥ 0, is a (finite state)

time-homogeneous Markov chain, and we denote by E the state space of X. Let us

consider the function

v(x) := V (r+, r−, x), x ∈ E,

that will model the water outflow/inflow, in terms of the states of X, so that

v(Xt) = V (r+, r−, f(It, Ot)), t ≥ 0

represents the water outflow/inflow at time t. Let E+ be the set of states of X such

that the water tank has greater water inflow than outflow, and let E− be the set of

states of X such that the water tank has greater water outflow than inflow. Note
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that the integral ϕt =
∫ t

0
v(Xu) du is not exactly the water content at time t, since

we should take into account those periods of time when the tank is empty. However,

understanding ϕt, τ
±
t and Xτ±t

allows us to express the quantities of interest for ξt

in terms of the Wiener-Hopf factorization, and to consequently numerically compute

these. We now assume that the tank contains ` > 0 amount of water at time t = 0.

Thus, τ−` represents the first time after t = 0 that the tank goes empty and τ−0

represents the first time after t = 0 that the tank returns to ` amount of water.

Expectations (1.3) and (1.4) are the Laplace transforms of the joint distributions of

(τ−0 , Xτ−0
) and (τ−` , Xτ−`

), respectively.

Barlow et al. [BRW80] showed that the time changed processes Xτ+t
and Xτ−t

are time homogeneous Markov chains with state spaces E+ and E−, respectively.

Moreover, in [BRW80] it was proved that Q can be factorized uniquely in terms of

generators Q+ and Q− of Xτ+t
and Xτ−t

respectively. This factorization was called

the Wiener-Hopf factorization. While the result is algebraic, its proof is probabilistic.

Furthermore, the expectations (1.1), (1.2), (1.3), and (1.4) can be expressed in terms

of this factorization. Thus, the problem reduces to find the WHf for the generator

Q. On one hand, there is no closed-form solution to the WHf, except for some trivial

cases, and one may need to apply numerical techniques to find the WHf. On the

other hand, one may argue that these expectations can be computed by using Monte

Carlo methods. However, by its very nature, WHf methods provide faster and more

accurate results (cf. [RS94], [Hie14]) than Monte Carlo methods.

To the best of our knowledge, there are no results on WHf for time inhomo-

geneous Markov chains, i.e. whose generators are time dependent. One naive way

to address this problem is to factorize the time dependent generator according to

WHf in [BRW80] at each fixed time point. However, such factorization does not have

any probabilistic interpretation. In particular, the expectations (1.1)-(1.4) cannot be
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expressed in terms of this factorization. Alternatively, one can homogenize the origi-

nal Markov chain (cf. [B1̈4]), and then apply the general Wiener-Hopf factorization

derived in [Wil08]. However, it is still not clear how to compute the general WHf as

in [Wil08] and then convert the results back to the original problem. Our aim is to

develop a numerically tractable WHf for time inhomogeneous Markov chains. As a

first attempt, in this work, we consider a time-inhomogeneous Markov chain with a

generator that is piece-wise constant as a matrix-valued function of time. In Chap-

ter 2, we propose a randomization method to construct a suitable time-homogeneous

Markov chain based on the original chain. We then apply the Wiener-Hopf factoriza-

tion from [BRW80] to the new chain, and it turns out that the Laplace transform sets

up the connection between the factorization and the expectation we were interfered

to compute. In addition, the special structure of the generator allows to establish

an efficient algorithm for computation of the Wiener-Hopf factorization. The results

presented in this chapter are based on the recent work [BCGH18].

Chapter 2 is organized as follows. In Section 2.2, we briefly review the Wiener-

Hopf factorization for time-homogeneous Markov chains – the algebraic factorization

and the probabilistic interpretation. In Section 2.3 we present the proposed WHf

methodology for time-inhomogeneous Markov chains with a piece-wise constant gener-

ator. The randomization method for constructing a time-homogeneous Markov chain

is addressed in Section 2.3.1. This time-homogeneous Markov chain has to compo-

nents, and we prove that the first component is itself a Markov chain. Moreover, we

construct a new measure under which the second component is a time-inhomogeneous

Markov chain with the same generator as the original chain. In Section 2.3.2, we

apply the Wiener-Hopf factorization in [BRW80] to the newly constructed time-

homogeneous Markov chain and set up the connections through the inverse Laplace

transform. Section 2.4 is devoted to the numerical study for the developed theory.

We first introduce an algorithm to compute the factorization (Section 2.4.1), and then
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we study an application to fluid flow problems (Section 2.4.2).

The main contributions of this part of the thesis can be summarized as follows:

• We extend the theory of Wiener-Hopf factorization for time-homogeneous Markov

chains to time-inhomogeneous Markov chains with a piece-wise constant gener-

ator.

• We provide an algorithm to compute the quantities in the Wiener-Hopf fac-

torization for time-inhomogeneous Markov chains. For a particular example

we give a comparison between our algorithm and the brute-force Monte Carlo

simulations.

1.2 Statistical Inference for Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) arise from various applied

topics, such as nonlinear filtering, modeling of turbulent flows, population growth

models, fixed income market models, etc. The general theory of SPDEs has been

studied quite intensively during the past few decades, and we refer to the classical

monographs [Roz90, DPZ92], as well as some recent textbooks [Cho07, Hai09, LR17]

for a detailed discussion of the theory of SPDEs and their applications. Usually, the

general form of the equation is derived from the fundamental laws of the underlying

process. However, the model parameters, generally speaking, are not known a priori,

and have to be determined typically by statistical methods based on some histori-

cal observations of the underlying model. While statistical inference for Stochastic

Ordinary Differential Equations (SODEs) is well understood (cf. [Kut04]), the sta-

tistical inference for SPDEs is still in its developing stage. We refer to the survey

paper [Cia18] for the recent developments in this field. Since the pioneering works

[HKR93, HR95], many statistical estimation problems for SPDEs have been studied

under the spectral approach, namely assuming that a finite number N of the Fourier
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coefficients of the solutions are observed over some finite interval of time [0, T ]. The

statistical inference problems in large time asymptotic regime T → ∞ essentially

becomes a statistical inference problem for SODEs, and hence are well understood.

It turns out that the asymptotic regime of large number of Fourier modes N →∞ is

a viable regime to study, and in many cases one can derive consistent and asymptot-

ically normal estimators for the parameters of interest such as the drift or viscosity

coefficient (the coefficient appearing in the dt term) and/or the volatility (the co-

efficient in the noise term). Usually, in the existing literature these estimators are

derived as maximum likelihood estimators (MLEs). In this work we propose two novel

methods of estimating the drift and volatility coefficients for some linear parabolic

SPDEs.

First, within the spectral approach, we propose a new estimator for the drift

coefficient, called trajectory fitting estimator (TFE), which can be viewed as an analog

of the least squares estimator from the time series analysis. This type of estimator

was originally introduced by [Kut91] (see also [Kut04]) in the context of estimating

drift coefficient for ergodic diffusion processes in the large time asymptotic regime.

We study the asymptotic properties of TFE for SPDEs when N →∞. The obtained

results are based on [CGH18].

The second method goes beyond the spectral approach, by assuming that the

input data is the measurements of the values of the solution at discrete points in

time and/or space. Besides the fact that this sampling scheme is practically more

important, in contrast to observing the Fourier coefficients, this study is among the

few works on parameter estimation for discretely sampled SPDEs. The proposed

estimators and their asymptotic properties are derived through the computations

of the p−variation of some suitable stochastic processes. We study the asymptotic

properties in two sampling regimes: when the number of spatial observations increases
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while time is fixed, and respectively when the time resolution is increasing and while

the solution is observed at a fixed spatial point. The results are based on the recent

work [CH17]. We use some techniques from Malliavin calculus to prove asymptotic

normality of some of these estimators. In should be mentioned that in a recent

work [BT17] the authors studied independently similar problems and derived similar

estimators for the volatility coefficient by using the mixing theory of Gaussian time-

series.

Chapter 3 is organized as follows. In Section 3.1, we introduce the general

equation and briefly discuss the existence and the uniqueness of the solution, and

we also state the parameter estimation problem, and review the relevant literature.

Section 3.2 is devoted to the study of trajectory fitting estimators for diagonalizable

parabolic equations. In particular, we prove the consistency of TFE in Section 3.2.2

and the asymptotic normality in Section 3.2.3. Section 3.2.4 is devoted to some

examples. The discrete sampling scheme is investigated in Section 3.3, starting with

SPDEs on whole space – Section 3.3.2, and continuing with SPDEs on bounded

domain in Section 3.3.3. In Section 3.4 we present some numerical simulations results.

The main contributions of this part amount to:

• Within the spectral approach, we proposed the trajectory fitting estimator for

SPDEs. This is an analog to the least squares estimator in the classical time-

series analysis. We prove the consistency and asymptotic normality of the

proposed estimators for a large class of linear parabolic SPDEs.

• Beyond the spectral approach, we assume the solution is directly observed at

discrete time and/or space points and propose the p−variational type estimators

for the drift and volatility parameters. We prove the consistency and asymptotic

normality of the proposed estimators.
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CHAPTER 2

WIENER-HOPF FACTORIZATION FOR MARKOV CHAINS

2.1 Introduction

In this part of the thesis we will derive the Wiener-Hopf factorization (WHf)

for a finite-state time-inhomogeneous Markov chain, which is the first attempt to

investigate the WHf for time-inhomogeneous chains. In this pioneering study we only

deal with a special class of time-inhomogeneous Markovian generators, namely piece-

wise constant, which allows to use an appropriately tailored randomization technique

as seen below.

The Wiener-Hopf factorization for finite state time-homogeneous Markov chains

was originally proposed in seminal work [BRW80]; see Section 2.2 below, as well as

[LMRW82, Wil91]. For the WHf in case of time-homogeneous Feller Markov processes

we refer to [Wil08]. For some related applied work we refer to [APU03], which deals

with the ruin problem, and to [Asm95, Rog94, RS94] that study fluid models. In

addition, [KW90] studies the so called “noisy” Wiener-Hopf factorizations; for appli-

cations see [Asm95, Rog94, RS94, JR06, JP08, MP11, JP12, Hie14, HSZ16]. In all

these applied problems there is no practical reason to assume that the Markov chain

is time-homogeneous, rather than that the existing WHf methodology was available

only for time-homogeneous chains. This was one of the main motivations to study

the WHf for time-inhomogeneous Markov chains.

It needs to be stressed that even though the classical WHf technique [BRW80]

can be applied to the time dependent generator matrix, say Gt, of a time inhomoge-

neous Markov chain X at every time t, the obtained factorizations in this case do not

have any probabilistic meaning with regard to the process X. In particular, they are

of no use for computing functionals such as (2.1)-(2.4) below. So, a relevant WHf for
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a time-inhomogeneous Markov chain requires a different approach than the one that

would just directly apply the results of [BRW80] to each Gt, t ≥ 0.

2.2 Wiener-Hopf Factorization for Time-Homogeneous Markov Chains

We briefly review the Wiener-Hopf factorization for finite-state time homoge-

neous Markov chains that was originally derived in [BRW80].

Let (Ω,F ,P) be a complete probability space and E be a finite set. Without

loss of generality we assume that E = {1, . . . , |E|}, where |E| denotes the cardinality

of the set E. We will denote by Q(E) the set of all |E| × |E| matrices Q such that,

for i, j ∈ E,

Q(i, j) ≥ 0, i 6= j, and
∑
k∈E

Q(i, k) ≤ 0.

We consider a function v : E→ R \ {0} such that

E+ := {i ∈ E | v(i) > 0} and E− := {i ∈ E | v(i) < 0} ,

are nonempty, and we denote by V the diagonal |E|×|E| matrix, i.e. V =diag{v(i)|i ∈

E}. We denote by I± the identity |E|±×|E|± matrices. In what follows, let Q ∈ Q(E)

and c > 0 be a fixed real number. The next result provides the so-called Wiener-Hopf

factorization for the matrix V−1(Q− cI).

Theorem 2.2.1 ([BRW80]). There exists a unique pair (Π+
c ,Π

−
c ), where Π+

c is an

|E|− × |E|+ matrix and Π−c is an |E|+ × |E|− matrix, such that, if

S =

 I+ Π−c

Π+
c I−

 ,



10

then S is invertible and

S−1(V−1(Q− cI))S =

 Q̃+
c 0

0 −Q̃−c

 ,

where Q̃+
c ∈ Q(E+) and Q̃−c ∈ Q(E−). Moreover, Π+

c and Π−c are strictly sub-

stochastic, thus, for i ∈ E−, j ∈ E+, Π+
c (i, j) ≥ 0, and

∑
k∈E+ Π+

c (i, k) < 1.

On the one hand, Theorem 2.2.1 just gives an algebraic factorization of the

matrix V−1(Q − cI). On the other hand, as we will explain below, using the proba-

bilistic proof of this theorem we also obtain a natural interpretation of this algebraic

factorization in terms of some important quantities related to the time-homogeneous

Markov chain X with the state space E and generator matrix Q. Let us define the

additive functional

ϕt :=

∫ t

0

v(Xu) du, t ≥ 0,

and the first passage times

τ+
t := inf {r ≥ 0 |ϕr > t} and τ−t := inf {r ≥ 0 |ϕr < −t} .

It turns out that the time changed processes Xτ±t
are Markov chains with generator

matrices Q̃±c , respectively. In addition, Π±c describe the fluctuations between E+ and

E−. We assume that P (X0 = i) > 0 for each i ∈ E, and we let Pi be the probability

measure on (Ω,F ) defined by

Pi(A) := P (A |X0 = i) , A ∈ F ,

with Ei denoting the associated expectation. The next result summarizes the rela-
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tionships between the algebraic factorization and the time changed Markov chains.

Theorem 2.2.2 ([BRW80]). For i ∈ E− and j ∈ E+,

Ei
(
e−cτ

+
0 1{X

τ+0
=j}

)
= Π+

c (i, j).

For i ∈ E+, j ∈ E+, and t ≥ 0,

Ei
(
e−cτ

+
t 1{X

τ+t
=j}

)
= etQ̃

+
c (i, j).

The corresponding minus results follow, on replacing φ by −φ.

2.3 Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

In what follows we adopt the same notations as in the previous section. We will

assume now that X := (Xt)t≥0 is a time-inhomogeneous Markov chain on (Ω,F ,P)

with state space E and generator function G = {Gt, t ≥ 0}.

In this work, we assume that the generator G is piecewise constant, namely

we assume that

Gt =



G1, if s0 ≤ t < s1,

G2, if s1 ≤ t < s2,

...

Gn, if sn−1 ≤ t < sn,

Gn+1, if t ≥ sn,

for some n ∈ N and 0 = s0 < s1 < . . . < sn. Without loss of generality we assume that

G1, . . . ,Gn+1 are Markovian (not sub-Markovian). That is, the sums of row elements
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of Gk are all zero, for any k = 1, . . . , n+ 1. The results of this work carry over to the

sub-Markovian case by the standard augmentation of the state space.

The main goal of this work is to develop the Wiener-Hopf factorization tech-

nique (see Section 2.3.1) to compute the following expectations,

Π+
c (i, j; s1, . . . , sn) := E

(
e−cτ

+
0 1{X

τ+0
=j}|X0 = i

)
, i ∈ E−, j ∈ E+, (2.1)

Ψ+
c (`, i, j; s1, . . . , sn) := E

(
e−cτ

+
` 1{X

τ+
`

=j}|X0 = i

)
, i ∈ E+, j ∈ E+, ` > 0,(2.2)

Π−c (i, j; s1, . . . , sn) := E
(
e−cτ

−
0 1{X

τ−0
=j}|X0 = i

)
, i ∈ E+, j ∈ E−, (2.3)

Ψ−c (`, i, j; s1, . . . , sn) := E
(
e−cτ

−
` 1{X

τ−
`

=j}|X0 = i

)
, i ∈ E−, j ∈ E−, ` > 0.(2.4)

We will focus on the computations of Π+
c (i, j; s1, . . . , sn) and Ψ+

c (`, i, j; s1, . . . , sn). By

symmetry, analogous results can be obtained for the counterparts Π−c (i, j; s1, . . . , sn)

and Ψ−c (`, i, j; s1, . . . , sn). To simplify the notations, we will frequently write Π+
c (i, j)

and Ψ+
c (`, i, j) in place of Π+

c (i, j; s1, . . . , sn) and Ψ+
c (`, i, j; s1, . . . , sn), respectively.

2.3.1 A Randomization Method for Time Homogenization. In this section

we construct a time-homogeneous Markov chain associated to X, by randomizing

the discontinuity times s1, . . . , sn of the generator G. This key construction will

allow us to compute the expectations (2.1), (2.2), (2.3) and (2.4) using analogous

expectations corresponding to this time-homogeneous chain. The latter expectations

can be computed using Wiener-Hopf factorization theory of [BRW80].

Define Nn := {0, . . . , n}, Ẽ := Nn × E and let (Ω̃, F̃ , P̃) be a complete

probability space. Next, let us consider a time-homogeneous Markov chain, say

Z = (N, Y ) := (Nt, Yt)t≥0, defined on (Ω̃, F̃ , P̃), taking values in Ẽ and with generator
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matrix G̃ ((n1, j1), (n2, j2))(n1,j1),(n2,j2)∈Ẽ given as

G̃ =



{0}×E {1}×E ··· {n−1}×E {n}×E

{0}×E G1 − q1I q1I · · · 0 0

{1}×E 0 G2 − q2I · · · 0 0

...
...

...
. . .

...
...

{n−1}×E 0 0 · · · Gn − qnI qnI

{n}×E 0 0 · · · 0 Gn+1


,

where q1, . . . , qn are positive constants and I is the identity matrix. For each i ∈ E,

we define the probability measure P̃i on (Ω̃, F̃ ) by

P̃i(A) := P̃ (A |Z0 = (0, i)) , A ∈ F̃ . (2.5)

The next result regards the Markov property of process N .

Proposition 2.3.1. For any i ∈ E, the process N is a time-homogeneous Markov

chain under P̃i, with generator matrix given by

G̃N =



0 1 ··· n−1 n

0 −q1 q1 · · · 0 0

1 0 −q2 · · · 0 0

...
...

...
. . .

...
...

n−1 0 0 · · · −qn qn

n 0 0 · · · 0 0


.
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Proof. We will proceed in three steps.

Step 1. We start by showing that

∑
j2∈E

(
G̃k
)

((n1, j1), (n2, j2)) =
(
G̃kN

)
(n1, n2), (2.6)

for any j1 ∈ E, k ∈ N, and 0 ≤ n1, n2 ≤ n, In particular, note that the left-hand-side

of (2.6) does not depend on j1.

We will prove (2.6) by induction in k. Clearly (2.6) holds true for k = 1. Next,

assume that (2.6) holds for some k = ` ∈ N. Now, for `+ 1,

∑
j2∈E

(
G̃`+1

)
((n1, j1), (n2, j2)) =

∑
j2∈E

n∑
m=0

∑
j∈E

(
G̃`
)

((n1, j1), (m, j)) G̃ ((m, j), (n2, j2))

=
n∑

m=0

∑
j∈E

(
G̃`
)

((n1, j1), (m, j))
∑
j2∈E

G̃ ((m, j), (n2, j2))

=
n∑

m=0

∑
j∈E

(
G̃`
)

((n1, j1), (m, j)) G̃N(m,n2)

=
n∑

m=0

(
G̃`N

)
(n1,m)G̃N(m,n2) =

(
G̃`+1
N

)
(n1, n2),

where we used the inductive assumptions for k = 1 and k = ` in the third and the

fourth equalities, respectively. Hence, (2.6) is established.

Step 2. We will show that

P̃i (Nt+s = n2 |Nt = n1) = P̃i(Nt+s = n2 |Nt = n1, Yt = j) = esG̃N (n1, n2), (2.7)

for any t, s ≥ 0, j ∈ E, and 0 ≤ n1 ≤ n2 ≤ n. In particular, note that the left-hand

side of (2.7), and thus P̃i(Nt+s = n2|Nt = n1), does not depend on t. We start by
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checking the second equality in (2.7). For any t, s ≥ 0, j ∈ E, and 0 ≤ n1 ≤ n2 ≤ n,

P̃i (Nt+s = n2 |Nt = n1, Yt = j) =
∑
k∈E

P̃i (Nt+s = n2, Yt+s = k |Nt = n1, Yt = j)

=
∑
k∈E

es G̃ ((n1, j), (n2, k))

=
∑
k∈E

∞∑
`=0

s`

`!
G̃` ((n1, j), (n2, k))

=
∞∑
`=0

s`

`!

∑
k∈E

G̃` ((n1, j), (n2, k))

=
∞∑
`=0

s`

`!
G̃`N(n1, n2) = esG̃N (n1, n2),

where we used the result of Step 1 in the last two equalities. In particular, P̃i(Nt+s =

n2|Nt = n1, Yt = j) does not depend on the choice of j ∈ E.

As far as the first equality in (2.6), for any t, s ≥ 0 and 0 ≤ n1 ≤ n2 ≤ n,

P̃i (Nt+s = n2 |Nt = n1) =
P̃i (Nt+s = n2, Nt = n1)

P̃i (Nt = n1)

=

∑
`∈E P̃i (Nt+s = n2, Nt = n1, Yt = j)∑

j∈E P̃i (Nt = n1, Yt = j)

=

∑
j∈E P̃i (Nt+s = n2 |Nt = n1, Yt = j) P̃i (Nt = n1, Yt = j)∑

j∈E P̃i (Nt = n1, Yt = j)

=

∑
j∈E P̃i (Nt = n1, Yt = j)∑
j∈E P̃i (Nt = n1, Yt = j)

esG̃N (n1, n2) = esG̃N (n1, n2).

Step 3. We are ready to complete the proof of the proposition. Towards this end we

observe that, for any m ∈ N, 0 = t0 ≤ t1 < . . . < tm, and any 0 ≤ n1 ≤ . . . ≤ nm ≤ n,

P̃i(Ntm = nm | Ntm−1 = nm−1, . . . , Nt1 = n1) =
P̃i (Nt1 = n1, . . . , Ntm = nm)

P̃i
(
Nt1 = n1, . . . , Ntm−1 = nm−1

)
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=

∑
j1,...,jm∈E P̃i (Nt1 = n1, Yt1 = j1; . . . ;Ntm = nm, Ytm = jm)∑

j1,...,jm−1∈E P̃i
(
Nt1 = n1, Yt1 = j1; . . . ;Ntm−1 = nm−1, Ytm = jm−1

)
=

∑
j1,...,jm∈E

∏m
k=1 P̃i

(
Ntk = nk, Ytk = jk |Ntk−1

= nk−1, Ytk−1
= jk−1

)∑
j1,...,jm−1∈E

∏m−1
k=1 P̃i

(
Ntk = nk, Ytk = jk |Ntk−1

= nk−1, Ytk−1
= jk−1

)
=
∑
jm∈E

P̃i
(
Ntm = nm, Ytm = jm |Ntm−1 = nm−1, Ytm−1 = jm−1

)
= P̃i

(
Ntm = nm |Ntm−1 = nm−1, Ytm−1 = jm−1

)
= P̃i

(
Ntm = nm |Ntm−1 = nm−1

)
= e(tm−tm−1)G̃N (nm−1, nm),

where we used the Markov property of Z = (N, Y ) under P̃i in the third equality,

and the result of Step 2 in the last two equalities. The proof is complete.

Let F̃Y = (F̃ Y
t )t≥0 be the filtration generated by Y , and let F̃ Y

∞ = σ(
⋃
t≥0 F̃ Y

t ).

For each i ∈ E, we will construct a probability measure Pi on (Ω̃, F̃ Y
∞) such that, the

law of Y under Pi is the same as the law of X under Pi. Moreover, we will establish

a connection between Pi and P̃i. For this purpose, we first let

Sk := inf {t ≥ 0 |Nt = k} , k = 1, . . . , n.

We will now derive the joint density of N , and (S1, . . . , Sn) under P̃i. For that, we

set

T1 := S1, Tk := Sk − Sk−1, k = 2, . . . , n. (2.8)

It is shown in [Sys92, Section 1.1.4] that Tk’s are independent and that

P̃i (T1 > t1, . . . , Tn > tn) =
n∏
k=1

e−qktk , t1, . . . , tn > 0,
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which implies that the joint density of (T1, . . . , Tn) is given by

fT1,...,Tn(t1, . . . , tn) =
n∏
k=1

qk e
−qktk , t1, . . . , tn > 0. (2.9)

Combining (2.8) and (2.9), we deduce that

fS1,...,Sn(s1, . . . , sn) =
n∏
k=1

qk e
−qk(sk−sk−1), 0 = s0 < s1 < . . . < sn.

Theorem 2.3.1. For any i ∈ E, any 0 < s1 < . . . < sn, and any cylinder set A ∈ F̃ Y
∞

of the form

A = {(Yu1 , . . . , Yum) ∈ B} , 0 ≤ u1 < u2 < . . . < um, B ⊆ Em, m ∈ N,

the limit

Pi (A; s1, . . . , sn) := lim
∆sk→0,k=1,...,n

P̃i (A, sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)

P̃i (sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)
,(2.10)

exists, and can be extended to a probability measure Pi(· ; s1, . . . , sn) on (Ω̃, F̃ Y
∞).

Moreover, for any A ∈ F̃ Y
∞, the function Pi(A; . . .) is Borel measurable on {(s1, . . . , sn) ∈

Rn | 0 < s1 < . . . < sn}, and

P̃i(A) =

∫ ∞
0

· · ·
∫ ∞
sn−1

Pi(A; s1, . . . , sn)
n∏
k=1

(
qke
−qk(sk−sk−1)

)
dsn · · · ds2 ds1.(2.11)

In the proof of the theorem we will use the following lemma.

Lemma 2.3.1. Let us fix i ∈ E, 0 < s1 < . . . < sn, and let 0 = k0 < k1 < . . . < kn+1

be positive integers. In addition, let 0 = u0 < u1 < . . . < uk1 ≤ s1 < uk1+1 < . . . <

uk2 ≤ s2 < . . . ≤ sn < ukn+1 < . . . < ukn+1, i0 = i and i1, . . . , ikn+1 ∈ E. Then, for
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any cylinder set A ∈ F̃ Y
∞ of the form

A =
n⋂
j=0

{
Yukj+1

= ikj+1, . . . , Yukj+1
= ikj+1

}
(2.12)

we have

lim
∆s`→0, `=1,...,n

P̃i (A, s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)

P̃i (s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)
=

n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G`(im−1, im)

)

·
∑

j1,...,jn∈E

n∏
`=1

e(s`−uk` )G`−1(ik` , j`)e
(uk`+1−s`)G`(j`, ik`+1). (2.13)

In particular, for any A ∈ F̃ Y
∞ of the form (2.12), the above limit is Borel measurable

with respect to (s1, . . . , sn) in ∆n := {(s1, . . . , sn) ∈ Rn | 0 < s1 < . . . < sn}.

Proof. For ` = 1, . . . , n choose ∆s` > 0 so that, s` + ∆s` ≤ uk`+1. Then,

P̃i (A, s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)

= P̃i
(
Yuk`+1

= ik`+1, . . . , Yuk`+1
= ik`+1

, ` = 0, . . . , n;

Ns` = `− 1, Ns`+∆s` = `, ` = 1, . . . , n
)

=
∑

j1,...,jn, j′1,...,j
′
n∈E

P̃i
(
Zuk`+1

= (`, ik`+1), . . . , Zuk`+1
= (`, ik`+1

), ` = 0, . . . , n;

Zs` = (`− 1, j`), Zs`+∆s` = (`, j′`), ` = 1, . . . , n
)

=
∑

j1,...,jn, j′1,...,j
′
n∈E[

n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G̃((`, im−1), (`, im))

)](
n∏
`=1

e∆s`G̃((`− 1, j`), (`, j
′
`))

)

·

(
n∏
`=1

e(s`−uk` )G̃ ((`− 1, ik`), (`− 1, j`)) e
(uk`+1−s`−∆s`)G̃ ((`, j′`), (`, ik`+1))

)
.

In the above summation, the first product in the brackets provides the transition



19

probabilities of the evolutions of Z between the times uk` and uk`+1
, ` = 0, . . . , n,

the second product gives the transition probabilities of the evolutions of Z between

the times s` and s` + ∆s`, for each ` = 1, . . . , n, and the third product denotes

the transition probabilities of the evolutions of Z between the times uk` and s`, and

between the times s` + ∆s` and uk`+1, for each ` = 1, . . . , n.

Next, for each ` = 1, . . . , n,

lim
∆s`→0

1

∆s`
e∆s`G̃ ((`− 1, j`), (`, j

′
`)) = G̃ ((`− 1, j`), (`, j

′
`)) =


q`, if j` = j′`,

0, otherwise.

Hence,

lim
∆s`→0, `=1,...,n

1

∆s1 · · ·∆sn
P̃i (A, s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)

=
n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G̃((`, im−1), (`, im))

)

·
∑

j1,...,jn∈E

n∏
`=1

(
q` e

(s`−uk` )G̃ ((`− 1, ik`), (`− 1, j`)) (2.14)

· e(uk`+1−s`)G̃ ((`, j`), (`, ik`+1))
)
.

Note that, for any j1, j2 ∈ E, and any k ∈ N,

G̃k ((`, j1), (`, j2)) = (G` − q`+1I)
k(j1, j2), ` = 0, . . . , n− 1,

G̃k ((n, j1), (n, j2)) = Gkn(j1, j2),

so that, for t ≥ 0, we have

et G̃ ((`, j1), (`, j2)) = et (G`−q`+1I)(j1, j2) = e−q`+1t etG`(j1, j2), ` = 0, . . . , n− 1,

et G̃ ((n, j1), (n, j2)) = etGn(j1, j2).
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This, together with (2.14), implies that

lim
∆s`→0, `=1,...,n

1

∆s1 · · ·∆sn
P̃i (A, s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)

= e−
∑n
`=1 q`(uk`−uk`−1

) ·
n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G`(im−1, im)

)

e−
∑n
`=1 q`(s`−uk` )e−

∑n−1
`=1 q`(uk`+1−s`)

∑
j1,...,jn∈E

n∏
`=1

(
q`e

(s`−uk` )G`−1(ik` , j`)e
(uk`+1−s`)G`(j`, ik`+1)

)
= e−

∑n
`=1 q`(s`−s`−1) ·

n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G`(im−1, im)

)

·
∑

j1,...,jn∈E

n∏
`=1

(
q` e

(s`−uk` )G`−1(ik` , j`) e
(uk`+1−s`)G`(j`, ik`+1)

)
=

(
n∏
`=1

q` e
−q`(s`−s`−1)

)
·

[
n∏
`=0

(
k`+1∏

m=k`+1

e(um−um−1)G`(im−1, im)

)]

·
∑

j1,...,jn∈E

n∏
`=1

(
e(s`−uk` )G`−1(ik` , j`) e

(uk`+1−s`)G`(j`, ik`+1)
)
.

Finally, in view of the above and the fact that

lim
∆s`→0, `=1,...,n

1

∆s1 · · ·∆sn
P̃i (s` < S` ≤ s` + ∆s`, ` = 1, . . . , n)

=
n∏
`=1

q` e
−q`(s`−s`−1), (2.15)

we obtain (2.13). The proof is complete.

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Let C be the collection of all cylinder sets in F̃ Y
∞ of the form

C = {(Yu1 , . . . , Yum) ∈ B} , 0 ≤ u1 < u2 < . . . < um, B ⊆ Em, m ∈ N.
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Clearly, C is an algebra.

We first show that for any C ∈ C the limit in (2.10) exists and that an explicit

formula for it can be derived. In fact, Lemma 2.3.1 shows that the limit in (2.10)

exists, and belongs to [0, 1], for all the cylinder sets of the form (2.12). Thus, for a

cylinder set C ∈ C an explicit formula for the limit on the right-hand side of (2.10)

can be obtained as follows. First, we refine the partition 0 ≤ u1 < u2 < . . . < um so

that each subinterval of the partition 0 < s1 < . . . < sn contains at least one of the

ui’s. Clearly, since Bm is finite, A can be decomposed into a finite union of disjoint

cylinder sets of the form (2.12) on the refined partition. Moreover, (2.13) provides

an explicit formula for the limit in (2.10) for each of those cylinder sets of the form

(2.12) on the refined partition. Finally, taking the finite sum over all those limits, we

obtain the limit in (2.10) for C. In particular, for every cylinder set C, the limit in

(2.10) is Borel measurable with respect to (s1, . . . , sn) in ∆n.

In the second step we will demonstrate that the limit in (2.10) can be extended

to a probability measure on σ(C) = F̃ Y
∞. We start from verifying the countable

additivity of Pi(· ; s1, . . . , sn) on C for any fixed 0 < s1 < . . . < sn.

Since E is a finite set, if (Ck)k∈N is a sequence of disjoint cylinder sets in

C such that their union also belongs to C, then only finite many of them are non-

empty. Therefore, it suffices to verify the finite additivity of Pi(· ; s1, . . . , sn) on C.

Let C1, . . . , Ck ∈ C be disjoint cylinder sets, then there exists m ∈ N and 0 ≤ u1 <

u2 < . . . < um, such that

C` = {(Yu1 , . . . , Yum) ∈ B`} for some B` ⊆ Em, ` = 1, . . . , k.
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Each Pi(C` ; s1, . . . , sn) can be represented as

Pi(C` ; s1, . . . , sn) =
∑
A`∈C`

Pi(A` ; s1, . . . , sn), j = 1, . . . , k,

where C`, ` = 1, . . . , k, are disjoint classes of disjoint simple cylinder sets. Therefore,

we have

k∑
`=1

Pi(C` ; s1, . . . , sn) =
k∑
`=1

∑
A`∈C`

Pi(A` ; s1, . . . , sn)

=
∑

A∈C1∪···∪Ck

Pi(A ; s1, . . . , sn) = Pi
(

k⋃
`=1

C` ; s1, . . . , sn

)
.

Note that for any 0 < s1 < . . . < sn, Pi(C ; s1, . . . , sn) ≤ 1 for all C ∈ C. By the

Carathéodory extension theorem, for any 0 < s1 < . . . < sn, Pi(· ; s1, . . . , sn) can be

uniquely extended to a probability measure on (Ω̃, F̃ Y
∞).

Let ∆n := {(s1, . . . , sn) ∈ Rn | 0 < s1 < . . . < sn} and

D1 :=
{
A ∈ F̃ Y

∞

∣∣∣Pi(A ; ·, · · · , ·) is Borel measurable on ∆n

}
.

We will show that D1 = F̃ Y
∞. Towards this end, we first observe that (2.10) and

(2.13) imply that, for any A ∈ C, Pi(A ; ·, · · · , ·) is Borel measurable with respect to

(s1, . . . , sn) on ∆n, and thus D1 ⊃ C.

Next, we will show that D1 is a monotone class. For this, let (Ak)k∈N ⊂ D1 be

an increasing sequence of events, so that, for any 0 < s1 < . . . < sn, we have

Pi
(
∞⋃
k=1

Ak ; s1, . . . , sn

)
= lim

m→∞
Pi (Am ; s1, . . . , sn) .

Thus, Pi(∪kAk ; ·, · · · , ·), being a limit of a sequence of Borel measurable functions on
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∆n, is Borel measurable on ∆n, and hence ∪kAk ∈ D1. Similarly, one can show that

if (Ak)k∈N ⊂ D1 is a decreasing sequence of events, then ∩kAk ∈ D1. Therefore, D1 is

a monotone class, and by the monotone class theorem D1 = σ(C) = F̃ Y
∞.

It remains to show that (2.11) holds true. In view of (2.10) and (2.15), for any

cylinder set A ∈ C,

Pi(A ; s1, . . . , sn = lim
∆sk→0, k=1,...,n

P̃i (A, sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)

P̃i (sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)

=
lim∆sk→0, k=1,...,n(∆s1 · · ·∆sn)−1 P̃i (A, sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)

lim∆sk→0, k=1,...,n(∆s1 · · ·∆sn)−1 P̃i (sk < Sk ≤ sk + ∆sk, k = 1, . . . , n)

=
∂n

∂s1 · · · ∂sn
P̃i (A, Sk ≤ sk, k = 1, . . . , n) ·

(
n∏
k=1

qk e
−qk(sk−sk−1)

)−1

.

Hence, for any A ∈ C,

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

Pi(A; s1, . . . , sn)
n∏
k=1

qk e
−qk(sk−sk−1) ds1 · · · dsn

=

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

∂n

∂s1 · · · ∂sn
P̃i (A, Sk ≤ sk, k = 1, . . . , n) ds1 · · · dsn = P̃i(A),

and thus C ⊂ D2, where D2 :=
{
A ∈ F̃ Y

∞

∣∣∣ (2.11) holds for A
}

. Next, for any in-

creasing sequence of events (Ak)k∈N ⊂ D2, we have that

P̃i
(
∞⋃
k=1

Ak

)
= lim

k→∞
P̃i(Ak)

= lim
k→∞

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

Pi(Ak; s1, . . . , sn)
n∏
`=1

q` e
−q`(s`−s`−1) ds1 · · · dsn

=

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

Pi
(
∞⋃
k=1

Ak; s1, . . . , sn

)
n∏
`=1

q` e
−q`(s`−s`−1) ds1 · · · dsn,

where the last equality follows from the dominated convergence theorem as well as

the fact that Pi(Ak; s1, . . . , sn) ≤ 1, for all k ∈ N and 0 < s1 < . . . < sn. Hence,
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∪kAk ∈ D2. Similarly, one can show that if (Ak)k∈N ⊂ D2 is a decreasing sequence,

then ∩kAk ∈ D2. Therefore, D2 is a monotone class, and by the monotone class

theorem D2 = σ(C) = F̃ Y
∞. This completes the proof.

Next, we will prove that the law of Y under Pi is the same as that ofX under Pi.

As usual, Ei(· ; s1, . . . , sn) will denote the expectation associated with Pi(· ; s1, . . . , sn),

for i ∈ E and 0 < s1 < . . . < sn. In the sequel, if there is no ambiguity, we will omit

the parameters s1, . . . , sn in Pi and Ei.

Theorem 2.3.2. For any i ∈ E and 0 < s1 < . . . < sn, under Pi, Y is a time-

inhomogeneous Markov chain with generator G = {Gt, t ≥ 0}. In particular, X and

Y have the same law under respective probability measures Pi and Pi.

Proof. Let u0, u1, . . . , um be such that

0 = u0 ≤ u1 < . . . < uk1 ≤ s1 < uk1+1 < . . . < uk2

≤ s2 < . . . ≤ sn < ukn+1 < . . . < ukn+1 = um.

By (2.13), for any i1, . . . , im ∈ E,

Pi(Yum = im | Yum−1 = im−1, . . . , Yu1 = i1) =
Pi (Yu1 = i1, . . . , Yum = im)

Pi
(
Yu1 = i1, . . . , Yum−1 = im−1

)
=

∏n
`=0

(∏k`+1

p=k`+1e
(up−up−1)G`(ip−1, ip)

)
[∏n−1

`=0

(∏k`+1

p=k`+1e
(up−up−1)G`(ip−1, ip)

)](∏kn+1−1
p=kn+1e

(up−up−1)G`(ip−1, ip)
)

= e(um−um−1)Gn(im−1, im).

On the other hand, by (2.13) again,

Pi(Yum = im | Yum−1 = im−1) =
Pi
(
Yum = im Yum−1 = im−1

)
Pi
(
Yum−1 = im−1

)
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=

∑
i1,...,im−2∈E Pi (Yu1 = i1, . . . , Yum = im)∑

i1,...,im−2∈E Pi
(
Yu1 = i1, . . . , Yum−1 = im−1

)
=

∑
i1,...,im−2∈E

∏n
`=0

(∏k`+1

p=k`+1e
(up−up−1)G`(ip−1, ip)

)
∑

i1,...,im−2∈E

[∏n−1
`=0

(∏k`+1

p=k`+1e
(up−up−1)G`(ip−1, ip)

)](∏kn+1−1
p=kn+1e

(up−up−1)G`(ip−1, ip)
)

= e(um−um−1)Gn(im−1, im).

Analogous argument carries for any u0 < u1 < . . . < um, which completes the proof.

In analogy to ϕt and τ+
t we now define an additive functional ψ given as

ψt :=
∫ t

0
v(Yu) du, t ≥ 0, and we consider the following first passage time ρ+

t :=

inf {r ≥ 0 |ψr > t} , t ≥ 0.

We end this part of this section with the following corollary to Theorem 2.3.2.

Corollary 2.3.1. For any (s1, . . . , sn) in ∆n, c > 0, and t > 0,

Π+
c (i, j; s1, . . . , sn) = Ei

(
e−cρ

+
0 1{Y

ρ+0
=j}; s1, . . . , sn

)
, i ∈ E−, j ∈ E+, (2.16)

Ψ+
c (t, i, j; s1, . . . , sn) = Ei

(
e−cρ

+
t 1{Y

ρ+t
=j}; s1, . . . , sn

)
, i ∈ E+, j ∈ E+. (2.17)

In particular, Π+
c (i, j; s1, . . . , sn) and Ψ+

c (t, i, j; s1, . . . , sn) are Borel measurable with

respect to (s1, . . . , sn) in ∆n.

2.3.2 Wiener-Hopf Factorization for Time Homogenized Process. This sub-

section is devoted to computing the expectations on the right-hand side in (2.16) and

(2.17). This will be done by computing the corresponding expectations related to the

time-homogeneous Markov chain Z = (N, Y ). The latter computation will be done

using the classical Wiener-Hopf factorization results for finite state time-homogeneous

Markov chains, originally derived in [BRW80].
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We begin with a restatement of the classical Wiener-Hopf factorization applied

to Z. Towards this end, we let Ẽ+ := Nn×E+ and Ẽ− := Nn×E−, and ṽ : Ẽ→ R\{0}

be a function on Ẽ such that ṽ(k, i) = v(i), for all (k, i) ∈ Ẽ. Next, we define the

additive functional ϕ̃ and the corresponding first passage times as

ϕ̃t :=

∫ t

0

ṽ(Zu) du, τ̃±t := inf {r ≥ 0 | ± ϕ̃r > t} , t ≥ 0.

Let Ṽ := diag{ṽ(k, i) : (k, i) ∈ Ẽ} (a diagonal matrix). We denote by Ĩ± the identity

matrix of dimension |Ẽ±|. Finally, Q(m) will stand for the set of m ×m generator

matrices (i.e., matrices with non-negative off-diagonal entries and non-positive row

sums), and P(m, `) will be the set of m× ` matrices whose rows are sub-probability

vectors.

Theorem 2.3.3. [BRW80, Theorem 1 & 2] Fix c > 0. Then,

(i) there exists a unique quadruple of matrices (Λ̃+
c , Λ̃

−
c , G̃

+
c , G̃

−
c ), where

Λ̃+
c ∈ P(|Ẽ−|, |Ẽ+|), Λ̃−c ∈ P(|Ẽ+|, |Ẽ−|), G̃+

c ∈ Q(|Ẽ+|), and G̃−c ∈ Q(|Ẽ−|),

such that

Ṽ −1
(
G̃− c Ĩ

) Ĩ+ Λ̃−c

Λ̃+
c Ĩ−

 =

 Ĩ+ Λ̃−c

Λ̃+
c Ĩ−


 G̃+

c 0

0 −G̃−c

 ; (2.18)

(ii) the matrices Λ̃+
c , Λ̃−c , G̃+

c , and G̃−c , admit the following probabilistic representa-

tions,

Λ̃+
c ((k, i), (`, j)) = Ẽ

(
e−cτ̃

+
0 1{Z

τ̃+0
=(`,j)}

∣∣∣Z0 = (k, i)
)
, (k, i) ∈ Ẽ−, (`, j) ∈ Ẽ+,
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Λ̃−c ((k, i), (`, j)) = Ẽ
(
e−cτ̃

−
0 1{Z

τ̃−0
=(`,j)}

∣∣∣Z0 = (k, i)
)
, (k, i) ∈ Ẽ+, (`, j) ∈ Ẽ−,

et G̃
+
c ((k, i), (`, j)) = Ẽ

(
e−cτ̃

+
t 1{Z

τ̃+t
=(`,j)}

∣∣∣Z0 = (k, i)
)
, (k, i) ∈ Ẽ+, (`, j) ∈ Ẽ+,

et G̃
−
c ((k, i), (`, j)) = Ẽ

(
e−cτ̃

−
t 1{Z

τ̃−t
=(`,j)}

∣∣∣Z0 = (k, i)
)
, (k, i) ∈ Ẽ−, (`, j) ∈ Ẽ−,

for any t ≥ 0.

In what follows we will use the “+” part of the above formulas and only for

k = 0. Accordingly, we define (recall (2.5))

Π̃+
c (i, j, `) := Λ̃+

c ((0, i), (`, j)) = Ẽi
(
e−cτ̃

+
0 1{Z

τ̃+0
=(`,j)}

)
, i ∈ E−, j ∈ E+, ` ∈ N,(2.19)

Ψ̃+
c (t, i, j, `) := et G̃

+
c ((0, i), (`, j)) = Ẽi

(
e−cτ̃

+
t 1{Z

τ̃+t
=(`,j)}

)
, i, j ∈ E+, ` ∈ N, t ≥ 0.

(2.20)

Note that, for any t ≥ 0, ṽ(Zt) = v(Yt), which implies that ϕ̃t = ψt, and so ρ+
t = τ̃+

t ,

ρ−t = τ̃−t . Hence, by taking summations over all ` ∈ N in (2.19) and (2.20), we obtain

that

Ẽi
(
e−cρ

+
0 1{Y

ρ+0
=j}

)
=

n∑
`=0

Π̃+
c (i, j, `), i ∈ E−, j ∈ E+, (2.21)

Ẽi
(
e−cρ

+
t 1{Y

ρ+t
=j}

)
=

n∑
`=0

Ψ̃+
c (t, i, j, `), i, j ∈ E+, t ≥ 0. (2.22)

Observe that, in view of (2.11), if U : Ω̃ → R is an F̃ Y
∞-measurable bounded
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random variable, then for any i ∈ E,

Ẽi(U) =

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

Ei(U ; s1, . . . , sn)
n∏
k=1

(
qk e

−qk(sk−sk−1)
)

dsn · · · ds2 ds1.

Therefore, in light of Corollary 2.3.1, (2.21) and (2.22), we have that

Π̂+
c (i, j; q1, . . . , qn) :=

n∑
`=0

Π̃+
c (i, j, `)

=

∫ ∞
0

∫ ∞
s1

. . .

∫ ∞
sn−1

Π+
c (i, j; s1, . . . , sn)

n∏
k=1

(
qke
−qk(sk−sk−1)

)
dsn · · · ds2 ds1.

Ψ̂+
c (t, i, j; q1, . . . , qn) :=

n∑
`=0

Ψ̃+
c (t, i, j, `)

=

∫ ∞
0

∫ ∞
s1

. . .

∫ ∞
sn−1

Ψ+
c (t, i, j; s1, . . . , sn)

n∏
k=1

(
qke
−qk(sk−sk−1)

)
dsn · · · ds2 ds1.

By change of variables, we obtain

Π̂+
c (i, j; q1, . . . , qn) =

∫ ∞
0

. . .

∫ ∞
0

Π+
c (i, j; t1, . . . , t1 + . . .+ tn)

n∏
k=1

(
qke
−qktk

)
dt1 · · · dtn,

Ψ̂+
c (i, j; q1, . . . , qn) =

∫ ∞
0

. . .

∫ ∞
0

Ψ+
c (i, j; t1, . . . , t1 + . . .+ tn)

n∏
k=1

(
qke
−qktk

)
dt1 · · · dtn.

The above two equalities together with the argument in Appendix A, implies that

q−1
1 · · · q−1

n Π̂+
c (i, j; q1, . . . , qn), q−1

1 · · · q−1
n Ψ̂+

c (i, j; q1, . . . , qn)

are well-defined for qk ∈ C+ := {z ∈ C | <(z) > 0}, k = 1, . . . , n, as being the Laplace

transforms of Π+
c (i, j; t1, . . . , t1+. . .+tn) and Ψ+

c (i, j; t1, . . . , t1+. . .+tn), respectively.

2.3.3 Main Result. All the above leads to the following result, which is our main

theorem, and where we make use of the inverse multivariate Laplace transform. We
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refer to the Appendix for the definition and the properties of the inverse multivariate

Laplace transform relevant to our set-up.

Theorem 2.3.4. We have that

Π+
c (i, j; s1, . . . , sn)

= L−1
(
q−1

1 · · · q−1
n Π̂+

c (i, j; q1, . . . , qn)
)

(s1, s2 − s1, . . . , sn − sn−1),

for any i ∈ E−, j ∈ E+, and

Ψ+
c (t, i, j; s1, . . . , sn)

= L−1
(
q−1

1 · · · q−1
n Ψ̂+

c (t, i, j; q1, . . . , qn)
)

(s1, s2 − s1, . . . , sn − sn−1),

for any t > 0, i, j ∈ E+, where L−1 is the inverse multivariate Laplace transform.

Remark 2.3.1. It needs to be stressed that we can compute the values of

Π̂+
c (i, j; q1, . . . , qn) and Ψ̂+

c (t, i, j; q1, . . . , qn) only for positive values of qi’s. Thus,

Theorem 2.3.4 may not be directly applied to compute Π+
c (i, j; s1, . . . , sn) and

Ψ+
c (t, i, j; s1, . . . , sn). However, we can approximate these functions, as explained in

Appendix A by using only the values of Π̂+
c (i, j; q1, . . . , qn) and Ψ̂+

c (t, i, j; q1, . . . , qn)

for positive values of qi’s.

2.4 A Computational Method for WHf

In this section we will illustrate our theoretical results with a simple, but

telling example. We first describe a numerical method to approximate Π+
c and Ψ+

c ,

and then we proceed with its application to a concrete example.

2.4.1 Approximation of Π+
c and Ψ+

c . We only consider Π+
c . The procedure to

approximate Ψ+
c is analogous.
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According to Theorem 2.3.4 and Appendix A, to approximate Π+
c , we need to

compute Π̂+
c (i, j; q1, . . . , qn) for any q1, . . . , qn > 0, and then to use the Gaver-Stehfest

algorithm. Note that Π̂+
c (i, j; q1, . . . , qn) can be computed by solving (2.18) directly

using the diagonalization method of [RS94]. However, because of the special structure

of G̃, we can simplify the calculation by working on matrices of smaller dimensions.

Towards this end we observe that matrices in (2.18) can be written the block form as

follows,

G̃ =



(0,E+) (1,E+) ··· (n,E+) (0,E−) (1,E−) ··· (n,E−)

(0,E+) A1 − q1I
+ q1I

+ · · · 0 B1 0 · · · 0

(1,E+) 0 A2 − q2I
+ · · · 0 0 B2 · · · 0

...
...

...
. . .

...
...

...
. . .

...

(n−1,E+) 0 0 · · · qnI
+ 0 0 · · · 0

(n,E+) 0 0 · · · An+1 0 0 · · · Bn+1

(0,E−) C1 0 · · · 0 D1 − q1I
− q1I

− · · · 0

(1,E−) 0 C2 · · · 0 0 D2 − q2I
− · · · 0

...
...

...
. . .

...
...

...
. . .

...

(n−1,E−) 0 0 · · · 0 0 0 · · · qnI
−

(n,E−) 0 0 · · · Cn+1 0 0 · · · Dn+1



,
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Ṽ =



(0,E+) (1,E+) ··· (n,E+) (0,E−) (1,E−) ··· (n,E−)

(0,E+) V+ 0 · · · 0 0 0 · · · 0

(1,E+) 0 V+ · · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

(n−1,E+) 0 0 · · · 0 0 0 · · · 0

(n,E+) 0 0 · · · V+ 0 0 · · · 0

(0,E−) 0 0 · · · 0 V− 0 · · · 0

(1,E−) 0 0 · · · 0 0 V− · · · 0

...
...

...
. . .

...
...

...
. . .

...

(n−1,E−) 0 0 · · · 0 0 0 · · · 0

(n,E−) 0 0 · · · 0 0 0 · · · V−



, (2.23)

Λ̃+
c =



(0,E+) (1,E+) ··· (n−1,E+) (n,E+)

(0,E−) Λ̃+
c,00 Λ̃+

c,01 · · · Λ̃+
c,0,n−1 Λ̃+

c,0n

(1,E−) 0 Λ̃+
c,11 · · · Λ̃+

c,1,n−1 Λ̃+
c,1n

...
...

...
. . .

...
...

(n−1,E−) 0 0 · · · Λ̃+
c,n−1,n−1 Λ̃+

c,n−1,n

(n,E−) 0 0 · · · 0 Λ̃+
c,nn
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Λ̃−c =



(0,E−) (1,E−) ··· (n−1,E−) (n,E−)

(0,E+) Λ̃−c,00 Λ̃−c,01 · · · Λ̃−c,0,n−1 Λ̃−c,0n

(1,E+) 0 Λ̃−c,11 · · · Λ̃−c,1,n−1 Λ̃−c,1n

...
...

...
. . .

...
...

(n−1,E+) 0 0 · · · Λ̃−c,n−1,n−1 Λ̃−c,n−1,n

(n,E+) 0 0 · · · 0 Λ̃−c,nn


,

G̃+
c =



(0,E+) (1,E+) ··· (n−1,E+) (n,E+)

(0,E+) G̃+
c,00 G̃+

c,01 · · · G̃+
c,0,n−1 G̃+

c,0n

(1,E+) 0 G̃+
c,11 · · · G̃+

c,1,n−1 G̃+
c,1n

...
...

...
. . .

...
...

(n−1,E+) 0 0 · · · G̃+
c,n−1,n−1 G̃+

c,n−1,n

(n,E+) 0 0 · · · 0 G̃+
c,nn


,
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and

G̃−c =



(0,E−) (1,E−) ··· (n−1,E−) (n,E−)

(0,E−) G̃−c,00 G̃−c,01 · · · G̃−c,0,n−1 G̃−c,0n

(1,E−) 0 G̃−c,11 · · · G̃−c,1,n−1 G̃−c,1n

...
...

...
. . .

...
...

(n−1,E−) 0 0 · · · G̃−c,n−1,n−1 G̃−c,n−1,n

(n,E−) 0 0 · · · 0 G̃−c,nn


. (2.24)

Plugging (2.23)–(2.24) into (2.18) and then comparing all the block entries on both

sides, we end up with the following procedure to compute the factorization recursively.

In accordance to Theorem 2.3.3, for any generator matrix H and any constant

c > 0, we denote by

(Λ+
c (H),Λ−c (H),G+

c (H),G−c (H))

the unique quadruple constituting the classical Wiener-Hopf factorization (cf. [BRW80])

corresponding to H with killing rate c. In order to proceed, we let ck = qk+c, k ≥ 1.

We are now ready to describe the algorithm to compute the value of

q−1
1 · · · q−1

n Π̂+
c (i, j; q1, . . . , qn).

Step 1. Compute the first diagonal: for k = 1, . . . , n+ 1, compute

Λ̃+
c,k−1,k−1 = Λ+

ck
(Gk),

using the diagonalization method in [RS94].



34

Step 2. Compute the second diagonal: for k = 1, . . . , n, solve the following linear

system

qkI
+ + BkΛ̃

+
c,k−1,k = V+G̃+

c,k−1,k,

[Dk − ckI−]Λ̃+
c,k−1,k + qkΛ̃

+
c,kk = V−Λ̃+

c,k−1,k−1G̃
+
c,k−1,k + V−Λ̃+

c,k−1,kG̃
+
c,kk,

for Λ̃+
c,k−1,k and G̃+

c,k−1,k.

Step 3. Compute the other diagonals: for r = 2, . . . , n, k = 0, . . . , n − r, solve

the linear system

Bk+1Λ̃+
c,k,k+r = V+G̃+

c,k,k+r,

[Dk+1 − ck+1I
−]Λ̃+

c,k,k+r + qk+1Λ̃+
c,k+1,k+r = V−

r∑
j=0

Λ̃+
c,k,k+jG̃

+
c,k+j,k+r,

for Λ̃+
c,k,k+r and G̃+

c,k,k+r.

Step 4. Compute

P+(q1, . . . , qn) := q−1
1 · · · q−1

n Π̂+
c (i, j; q1, . . . , qn) = q−1

1 · · · q−1
n

n∑
`=0

Λ̃c,0`.

for q1, . . . , qn > 0.

Step 5. Compute the approximate inverse Laplace transform of P+(q1, . . . , qn):

use the method discussed in Appendix A.

Remark 2.4.1. If |E+| = |E−| = 1, then the matrices in Steps 1-3 become num-

bers. Step 1 reduces to solving n + 1 quadratic equations for a root in [0, 1]. In

Step 2 and 3, for each loop, the system reduces to a system of two linear equations

of two unknowns. Moreover, in this case, P+ has a closed-form representation for

q1, . . . , qn > 0, and hence, for any q1, . . . , qn ∈ C+, as mentioned in the previous sec-
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tion. This allows us to use general numerical inverse Laplace transform methods, not

necessary the Gaver-Stehfest formula from Appendix A. In particular, one can use

Talbot approximation formula (A.1) presented in Appendix A, which is more efficient

than the Gaver-Stehfest under fairly general assumptions (cf. [AW06]).

2.4.2 Application to Fluid Flow Problems. In this section, we will apply our

results to the time-inhomogeneous Markov chain fluid flow problem introduced in

Section 1.1. We will compute the quantity

Π−c (i, j) = Ei
(
e−cτ

−
0 1{X

τ−0
=j}

)
, i ∈ E+, j ∈ E−.

Towards this end, we further assume that the tank has either an aggregate water

inflow at rate v+ or an aggregate water outflow at rate v−. In other words,

E+ = {e+}, E− = {e−}, v(e+) = v+, and v(e−) = v−.

Moreover, we assume that the time-inhomogeneous Markov chain X has the generator

Gt =



G1, s0 ≤ t < s1,

G2, s1 ≤ t < s2,

G3, t ≥ s2,

where 0 < s1 < s2.
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We take the following inputs: c = 0.5, v(e+) = 2, v(e−) = −3, s1 = 2, s2 = 8,

G1 =


e+ e−

e+ −2 2

e− 1 −1

, G2 =


e+ e−

e+ −3 3

e− 2 −2

, G3 =


e+ e−

e+ −5 5

e− 3 −3

.

The following table compares our result and execution time with Monte-Carlo simu-

lation (10000 paths). The program is implemented in MATLAB®, and is available

from the author upon request.

Table 2.1. Numerical Comparison between WHf and Monte-Carlo

Method Wiener-Hopf Monte-Carlo

Π−c (e+, e−) 0.6501 0.6462

Execution time 0.15 s 3.12 s

As expected, we obtain similar values for Π−c (e+, e−) by both methods, while

clearly the WHf method is much faster than Monte-Carlo.

Remark 2.4.2. One can also compute Π+
c (e−, e+), if it is the quantity of interest in

the model. Note that if we change the labels of the states from {e+, e−} to {e−, e+} and

modify the inputs accordingly, we can compute Π+
c (e−, e+) using the same algorithm

that computes Π−c (e+, e−).
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CHAPTER 3

STATISTICAL INFERENCE FOR STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS

3.1 Introduction

The main goal of this part of the thesis is to derive some consistent and asymp-

totically normal estimators for model parameters appearing in some linear parabolic

Stochastic Partial Differential Equations (SPDEs). We will start by introducing the

relevant notations, and the main objects of study. Throughout this chapter, we fix

a stochastic basis (Ω,F , {Ft}t≥0,P) that satisfies the usual assumptions. Let H be

a separable Hilbert space, with the corresponding inner product ( · , · )H and norm

|| · ||H . We consider the following stochastic evolution equation

du(t) + (θA1 +A0)u(t) dt = (Mu(t) + σ) dWQ(t), (3.1)

with initial condition u(0) = u0 ∈ H, and where A0,A1 andM are operators in H or

other suitable Hilbert spaces, WQ := {WQ(t)}t≥0 is a Q-cylindrical Brownian motion

in H, θ, σ ∈ R+ := (0,∞).

The rigorous study of the existence and uniqueness of the solution to (3.1) is

out of the scope of this work, and refer to [Roz90, DPZ92, Cho07, Hai09, LR17] for a

detailed discussion on the analytical properties of the solution. We will review some

of these properties later in this chapter.

3.1.1 Classes and Examples of SPDEs. SPDEs can be classified into different

categories according to noise term. If Q is the identity operator, then the noise

is called space-time white noise. Otherwise, the noise is referred as space-time

colored noise. If M = 0, then (3.1) is called an equation with additive noise.

Otherwise, it is called an equation with multiplicative noise. In this work, we
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mainly study SPDEs driven by an additive noise, i.e. M = 0.

Furthermore, the SPDEs with additive noise can be classified according to

the operators A0 and A1. If the operators A0 and A1 have only point spectra,

and a common system of eigenfunctions {hk}k∈N that form a complete, orthonormal

system in H, then (3.1) is called a diagonalizable equation. Otherwise it is a non-

diagonalizable equation.

Finally, similar to the deterministic PDEs, if H = L2(Rd), then (3.1) is called

an equation on the whole space. On the other hand, if H = L2(G) and G ⊂ L2(Rd)

is a bounded domain, then (3.1) is called an equation on bounded domain. The

parabolicity of SPDEs driven by additive noise is defined by analogy to parabolicity

of PDEs in terms of the properties of the operators A0 and A1. For equations with

multiplicative noise the parabolicity involves also the operatorM. We refer to [LR17]

for a detailed discussion of classifications of SPDEs.

Next, we give several examples of SPDEs that will be discussed in the appli-

cations of the proposed theoretical developments of this section.

Example 3.1.1 (Stochastic heat equation on bounded domain). If H = L2([0, π]),

A1 = −∆, A0 = 0, M = 0 and Q is identity, then we have a stochastic heat equation

on [0, π],

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ (0, π), t > 0,

u(0, x) = 0, x ∈ (0, π),

u(t, 0) = u(t, π) = 0, t > 0.

Example 3.1.2 (Stochastic heat equation on the whole space). If H = L2(R), A1 =

−∆, A0 = 0, M = 0 and Q is identity, then we have a stochastic heat equation on
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the whole real line R,

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ R, t > 0,

u(0, x) = 0, x ∈ R.

Example 3.1.3. The following equation is a fractional stochastic heat equation driven

by an additive noise, possibly colored in space,

du(t, x) + θ(−∆)βu(t, x) dt = σ
∞∑
k=1

λ−γk hk(x) dwk(t), t ∈ [0, T ], x ∈ G,

with initial condition u(0, x) = u0(x) ∈ H, where θ > 0, β > 0, γ ≥ 0 and σ ∈ R\{0}

are constants, and where λk :=
√
−τk, k ∈ N.

Example 3.1.4. We consider the following evolution equation

du(t, x) + (∆u(t, x) + θu(t, x)) dt =
∞∑
k=1

hk(x) dwk(t), t ∈ [0, T ], x ∈ G,

u(0, x) = u0(x) ∈ H,

Note that in this case the parameter θ is in front of the lower order differential oper-

ator.

Example 3.1.5 (Multiplicative Noise). If H = L2(R), A1 = −∆, A0 = 0, and M

and Q are identity operators, then we have a stochastic heat equation on the whole

real line R with multiplicative noise,

du(t, x) = θuxx(t, x) dt+ u(t, x) dW (t, x), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.
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3.1.2 Statistical Inference for SPDEs. Starting with the seminal papers [HKR93,

HR95], most of the existing literature on statistical inference for SPDEs is framed

within the so-called spectral approach that explores the parameter estimation prob-

lems using the Maximum Likelihood Estimators (MLE). In this approach it is as-

sumed that we observe the first N Fourier modes of the solution are continuously

on the time-interval [0, T ]. The main goal is to construct suitable estimators for the

unknown parameters θ and/or σ, and investigate the asymptotic properties of the

estimators, as N →∞.

For example, let us consider the equation (3.3) with γ = 0, σ = 1 and u0 = 0.

By direct evaluations one can show that (cf. [Lot09]) that the MLE θ̂N of θ based on

the observations uk(t), k = 1, . . . , N, t ∈ [0, T ], is given by

θ̂N = −
∑N

k=1 νk
∫ T

0
(uk(t) duk(t) + ρku

2
k(t) dt)∑N

k=1 ν
2
k

∫ T
0
u2
k(t) dt

, (3.2)

Moreover, θ̂N is a strongly consistent estimator of the true parameter θ, i.e.

lim
N→∞

θ̂N = θ with probability one for all θ ∈ Θ.

It is also asymptotically normal, i.e.

lim
N→∞

√√√√ N∑
k=1

ν2
k

µk(θ)
(θ̂N − θ)

D
= N (0, 2/T ).

The estimation of σ under continuous time observation can be found exactly by em-

ploying quadratic variation arguments, similar to finding the volatility in SODEs. For

more details on MLEs and their modifications we refer to the surveys [Lot09, Cia18],

textbook [LR17] and the monograph [Bis08] on linear SPDEs. For adaptation of

MLEs to a nonlinear setup see [CGH11]. In [CX14, CX15], the authors studied
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the hypothesis testing for stochastic fractional heat equation. Equations driven by

fractional Gaussian noise are studied in [Cia10, CLP09]. Finally, see [MB95, PR97,

Mar03, PR03, MPR02] for parameter estimation for SPDEs under discrete time sam-

pling schemes and assuming spectral approach. For linear, diagonalizable SPDEs,

the MLE can be computed explicitly, and of course, from a statistical point of view

there is no need to study other type of estimators. In general, this statement does not

hold true for non-diagonalizable equations such as nonlinear SPDEs or SPDEs driven

by a multiplicative noise. While the parameter estimation problem for SODEs went

way beyond the MLEs (cf. the monograph [Kut04]), there exist a limited number

of works dedicated to the non-MLE statistical inference for SPDEs. For example,

in [CL09] the authors explore the singularity of corresponding probability measures

and derive a closed-form estimators for the drift coefficient for some linear parabolic

SPDEs driven by a multiplicative noise (of special structure).

In this work, we propose two methods. First, in Section 3.2, we study a

non-MLE estimator for diagonalizable parabolic equations under spectral approach.

In second part, going beyond spectral approach, we propose p-variation type esti-

mators which are constructed from discretely observed data, which are discussed in

Section 3.3.

3.2 Trajectory Fitting Estimators (TFEs)

In this section, we study the estimator that is related to what is known in the

literature the trajectory fitting estimators (TFEs). Using as observations the first

N Fourier modes, we construct the TFE by analogy to the TFE for continuously

observed finite dimensional ergodic diffusion processes first introduced by Y. A. Ku-

toyants [Kut91]; see also [Kut04, Section 1.3 & Section 2.3] and references therein.

The TFE can be also viewed as an analog of the least squares estimators widely used

in time-series analysis. We study the asymptotic properties of the TFE as N →∞, in
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contrast to the diffusion processes where the asymptotics are done for the large-time

regime. Surely one can investigate the large-time asymptotics for SPDEs too, but

we find this case to be too similar to the estimators for diffusion processes, and we

omitted it here. In this study, we consider a fairly simple, although general, class

of SPDEs: linear, parabolic, diagonalizable equations, driven by an additive space-

time noise. The diagonalizable nature of these equations, allows us to derive explicit

expressions for the considered estimators and for the asymptotics of their first two

moments, and hence to investigate the rate of convergence of these estimators. While

simple, these equations can be viewed as a good approximation of some more com-

plicated and practically important models. On the other hand, the obtained results

will serve as benchmarks for future studies of more complicated and realistic models

which will be addressed in the sequel. Under some general structural assumptions we

prove consistency and asymptotic normality of the proposed estimators.

We will study the following diagonalizable parabolic equations with additive

noise,

du(t) + (θA1 +A0)u(t) dt = σ dW (t), (3.3)

that satisfy the following conditions,

(i) The operators A0 and A1 have only point spectra, and a common system of

eigenfunctions {hk}k∈N that form a complete, orthonormal system in H. We

denote the corresponding eigenvalues of A0 and A1 by ρk and νk, k ∈ N, respec-

tively.

(ii) The sequence {µk(θ)}k∈N, where µk(θ) := θνk + ρk, is such that

lim
k→∞

µk(θ) = +∞,
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where the convergence is uniform in θ ∈ Θ.

(iii) There exist universal constants J ∈ N and c0 > 0 such that, for any k ≥ J and

any θ ∈ Θ,

νk
µk(θ)

≤ c0.

(iv) The sequence {νk}k∈N is such that limk→∞ νk = +∞.1

(v) The noise term W is a cylindrical Brownian motion in H, and has the following

form

W (t) =
∞∑
k=1

λ−γk hkwk(t), t ≥ 0,

for some γ ≥ 0, where λk := ν
1/(2m)
k , k ∈ N, for some m ≥ 0,2 and where

wk := {wk(t)}t≥0, k ∈ N, is a collection of independent standard Brownian

motions.

Conditions (i)–(v) imply that the equation (3.3) is linear, diagonalizable,

parabolic, and that the solution exists and is unique; this can be established by

standard methods from theory of SPDEs, and we refer, for instance, to [Lot09,

HLR97, HR95] for similar setup, or to [Roz90, Cho07, LR17] for a general theory.

Of course, one class of operators A0 and A1 that satisfy the above conditions are

pseudo-differential operators on bounded domains with appropriate boundary condi-

tions, with A0 being subordinated to A1.

1Without loss of generality, we will assume that νk ≥ 0, for all k ∈ N.

2Of course, one can consider at once just λk = νk. Our choice to consider m is to
put the results on par with the notations from the existing literature. As mentioned
later, if A0 and A1 are some pseudo-differential operators, then it is convenient to
denote by 2m the order of the leading order operator.
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The unique solution to (3.3), with initial condition u(0) = u0, is given by

u(t) =
∞∑
k=1

uk(t)hk, t ≥ 0,

where, for each k ∈ N, uk := {uk(t)}t≥0 satisfies the following ordinary stochastic

differential equation (SDE)

duk(t) + µk(θ)uk(t) dt = σλ−γk dwk(t), (3.4)

with initial condition uk(0) = (u0, hk)H . The stochastic processes uk, k ∈ N, are

the Fourier modes of the solution u with respect to the basis {hk}k∈N of H, i.e.,

uk(t) = (u(t), hk)H , t ≥ 0, k ∈ N. Note that the SDEs of the form (3.4), for k ∈ N,

provide an infinite system of decoupled/independent Ornstein–Uhlenbeck processes.

As already mentioned, the decoupling nature of Fourier modes, or the diagonalizable

property of the original equation, will play a critical role in our study, and it is

essentially guaranteed by the assumptions (i) and (v). By Itô’s formula, clearly we

have

uk(t) = e−µk(θ)tuk(0) + σλ−γk e−µk(θ)t

∫ t

0

eµk(θ)s dwk(s), t ≥ 0, k ∈ N. (3.5)

We plot the simulated solution for the following equation with additive space-time

white noise,

du(t, x)−∆u(t, x) dt = dW (t, x), t ≥ 0, x ∈ [0, π],

u(0, x) = 0, x ∈ [0, π], u(t, 0) = u(t, π) = 0, t ≥ 0.
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Next, we review the construction of TFEs for SODEs.

3.2.1 Trajectory Fitting Estimators for SODEs. The trajectory fitting esti-

mators for continuous-time diffusion processes can be viewed as an analog of the least

squares estimators widely used in time-series analysis. Following [Kut04, Section 1.3

& Section 2.3], we will briefly describe the TFEs for finite-dimensional diffusions.

Assume that the observed process S(θ) := {S(t; θ)}t≥0 follows the dynamics

dS(t; θ) = b(θ, S(t; θ))dt+ σ(S(t; θ)) dB(t), (3.6)

where B := {B(t)}t≥0 is a one-dimensional standard Brownian motion, and θ is the

parameter of interest. We assume that the drift b and the volatility σ are known, and

that the solution to (3.6) (with certain initial condition S(0, θ) = S0) exists and is

unique, for any θ ∈ Θ. Let F : R→ R be a twice continuously differentiable function.
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By Itô’s formula,

F (S(t; θ)) = F (S0) +

∫ t

0

(
F ′(S(s; θ))b (θ, S(s; θ)) +

1

2
F ′′(S(s; θ))σ2(S(s; θ))

)
ds

+

∫ t

0

F ′(S(s; θ))σ(S(s; θ)) dB(s).

For any θ ∈ Θ and t ∈ [0, T ], let

F̃ (t; θ) := F (S0) +

∫ t

0

(
F ′(S(s; θ))b (θ, S(s; θ)) +

1

2
F ′′(S(s; θ))σ2(S(s; θ))

)
ds.

The trajectory fitting estimator 3 θ̃T of θ is then defined as the solution to the mini-

mization problem

θ̃T := arg inf
θ∈Θ

∫ T

0

(
F (S(t; θ))− F̃ (t; θ)

)2

dt. (3.7)

The choice of function F depends on the underlying models, and has to be taken such

that the estimator satisfies the desired asymptotic properties (consistency, asymptotic

normality, etc).

3.2.2 Construction of TFE for (3.3). We take F (x) = x2 in (3.7). For each

Fourier mode uk, k ∈ N, by Itô’s formula, we have

u2
k(t) = u2

k(0) +

∫ t

0

(
σ2λ−2γ

k − 2µk(θ)u
2
k(s)

)
ds+ 2σλ−γk

∫ t

0

uk(s) dwk(s), t ≥ 0.

(3.8)

By (3.7), one can easily construct a TFE for θ based on the trajectory on [0, T ],

for some fixed horizon T > 0, of each Fourier mode uk. The long-time asymptotic

behavior of such estimators as T → ∞ has been well investigated (cf. [Kut04]), and

3The terminology comes from the fact that the estimator is obtained by fitting
the observed trajectory with the artificial one.
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thus we will omit it here.

By analogy to the construction of maximum likelihood estimators for SPDEs

(cf. [Lot09]), we will construct a TFE for the unknown parameter θ based on the

trajectories of the first N Fourier modes of the solution. Moreover, for a fixed hori-

zon T > 0, we will study the large-space asymptotic behavior of the TFE as the

number of the Fourier modes increases, which is a distinguished feature for an infinite

dimensional evolution system. Specifically, fix any T > 0, and for any θ ∈ Θ, let

Vk(t; θ) := u2
k(0) +

∫ t

0

(
σ2λ−2γ

k − 2µk(θ)u
2
k(s)

)
ds, k ∈ N, t ∈ [0, T ]. (3.9)

The TFE for the unknown parameter θ is defined as

θ̃N = θ̃N(γ, T, σ,m) := arg inf
θ∈Θ

N∑
k=1

∫ T

0

(
Vk(t; θ)− u2

k(t)
)2
dt.

We are interested in the asymptotic properties of θ̃N , as N →∞, with T being fixed.

One advantage of the TFE is that it can be given by an explicit formula that

does not contain a stochastic integral. Indeed, by (3.8) and (3.9),

N∑
k=1

∫ T

0

(
Vk(t; θ)− u2

k(t)
)2
dt

=
N∑
k=1

∫ T

0

(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)− 2θνkξk(t)

)2
dt.

The maximizer of the last expression, with respect to θ, can be computed simply by

finding the root of the first-order derivative. Specifically, let

d

dθ

N∑
k=1

∫ T

0

(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)− 2θνkξk(t)

)2
dt



48

=
d

dθ

N∑
k=1

∫ T

0

(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)
)2
dt

− d

dθ

N∑
k=1

∫ T

0

4θνkξk(t)
(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)
)
dt

+
d

dθ

N∑
k=1

∫ T

0

(2θνkξk(t))
2 dt

= −
N∑
k=1

∫ T

0

4νkξk(t)
(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)
)
dt

+
N∑
k=1

∫ T

0

8θ (νkξk(t))
2 dt

= 0.

This yields the following explicit expression for the TFE

θ̃N =

∑N
k=1

∫ T
0
νkξk(t)

(
u2
k(0) + σ2λ−2γ

k t− 2ρkξk(t)− u2
k(t)
)
dt∑N

k=1

∫ T
0

2 (νkξk(t))
2 dt

.

In what follows, we will make use of the following notations. For any t ∈ [0, T ], let

ξk(t) :=

∫ t

0

u2
k(s) ds, Xk(t) :=

∫ t

0

sξk(s) ds, (3.10)

Yk(t) :=

∫ t

0

ξk(s) ds, Zk(t) :=

∫ t

0

ξ2
k(s) ds.

Thus the TFE can be represented as

θ̃N = −
∑N

k=1 νk
(

1
2
ξ2
k(T )− u2

k(0)Yk(T )− σ2λ−2γ
k Xk(T ) + 2ρkZk(T )

)
2
∑N

k=1 ν
2
kZk(T )

. (3.11)

3.2.3 Auxiliary Results of Asymptotics. In what follows, we will denote by θ

the true parameter. For notational simplicity, the T variable in ξk(T ), Xk(T ), Yk(T )

and Zk(T ) will be omitted from now on. Subtracting θ on the both sides of (3.11)
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leads to

θ̃N − θ = −
∑N

k=1 νk
(

1
2
ξ2
k − u2

k(0)Yk − σ2λ−2γ
k Xk + 2ρkZk

)
2
∑N

k=1 ν
2
kZk

− θ

= −
∑N

k=1 νk
(

1
2
ξ2
k − u2

k(0)Yk − σ2λ−2γ
k Xk + 2ρkZk + 2νkθZk

)
2
∑N

k=1 ν
2
kZk

= −
∑N

k=1 νk
(

1
2
ξ2
k − u2

k(0)Yk − σ2λ−2γ
k Xk + 2µk(θ)Zk

)
2
∑N

k=1 ν
2
kZk

=: −
∑N

k=1 νkAk

2
∑N

k=1 ν
2
kZk

. (3.12)

As usual, for two sequences of positive numbers {an}n∈N and {bn}n∈N, we will

write an ∼ bn if limn→∞ an/bn = 1, and will write an � bn if there exist universal

constants K2 > K1 > 0, such that K1bn ≤ an ≤ K2bn for n ∈ N large enough.

We start with a technical result regarding the leading order terms of the means

and variances of Ak and Zk, as k →∞.

Proposition 3.2.1. Let the assumptions (i) - (v) be satisfied. Then, as k →∞,

E(Zk) ∼
u4
k(0)T

4µ2
k(θ)

+
σ2λ−2γ

k u2
k(0)T 2

4µ2
k(θ)

+
σ4λ−4γ

k T 3

12µ2
k(θ)

, (3.13)

Var(Zk) ∼
σ2λ−2γ

k u6
k(0)T 2

2µ5
k(θ)

+
2σ4λ−4γ

k u4
k(0)T 3

3µ5
k(θ)

+
σ6λ−6γ

k u2
k(0)T 4

3µ5
k(θ)

+
σ8λ−8γ

k T 5

15µ5
k(θ)

, (3.14)

E(Ak) ∼
σ2λ−2γ

k u2
k(0)T

µ2
k(θ)

+
σ4λ−4γ

k T 2

2µ2
k(θ)

, (3.15)

Var(Ak) ∼
σ2λ−2γ

k u6
k(0)T 2

2µ3
k(θ)

+
2σ4λ−4γ

k u4
k(0)T 3

3µ3
k(θ)

+
σ6λ−6γ

k u2
k(0)T 4

3µ3
k(θ)

+
σ8λ−8γ

k T 5

15µ3
k(θ)

. (3.16)

Proof. Due to the nature of desired asymptotic results, the underlying computations

are somehow extensive and tedious. Most of the evaluations were performed using
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symbolic computations in Mathematica®. For the simplicity of notation in compu-

tations, we denote

a := µk(θ), b := σλ−γk , , c := uk(0).

For each k ∈ N,

uk(t) = e−atc+ be−at
∫ t

0

eas dwk(s), t ≥ 0.

and with the notations introduced in (3.10) and (3.12), we get

Ak =
1

2
ξ2
k − c2Yk − b2Xk + 2aZk.

Note that for any t ∈ [0, T ], uk(t) is a normal random variable with mean e−atc and

variance b2

2a
(1−e−2at). First, we compute the even moments of uk(t). By Itô’s formula,

du2
k(t) = (b2 − 2au2

k(t)) dt+ 2buk(t) dwk(t),

du4
k(t) = (6b2u2

k(t)− 4au4
k(t)) dt+ 4bu3

k(t) dwk(t),

du6
k(t) = (15b2u4

k(t)− 6au6
k(t)) dt+ 6bu5

k(t) dwk(t),

du8
k(t) = (28b2u6

k(t)− 8au8
k(t)) dt+ 8bu7

k(t) dwk(t).

Therefore, the expectations satisfy

Eu2
k(t) =

∫ t

0

(b2 − 2aEu2
k(s)) ds,

Eu4
k(t) =

∫ t

0

(6b2Eu2
k(s)− 4aEu4

k(s)) ds,

Eu6
k(t) =

∫ t

0

(15b2Eu4
k(s)− 6aEu6

k(s)) ds,

Eu8
k(t) =

∫ t

0

(28b2Eu6
k(s)− 8aEu8

k(s)) ds,
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and to find these expectations, it is equivalent to solve the following ODEs,

dEu2
k(t)

dt
= b2 − 2aEu2

k(t), Eu2
k(0) = c2,

dEu4
k(t)

dt
= 6b2Eu2

k(t)− 4aEu4
k(t), Eu4

k(0) = c4,

dEu6
k(t)

dt
= 15b2Eu4

k(t)− 6aEu6
k(t), Eu6

k(0) = c6,

dEu8
k(t)

dt
= 28b2Eu6

k(t)− 8aEu8
k(t), Eu8

k(0) = c8.

We use Mathematica to solve these ODEs and get

Eu2
k(t) =

b2

2a
− b2e−2at

2a
+ c2e−2at,

Eu4
k(t) =

3b4

4a2
+

3b4e−4at

4a2
− 3b2c2e−4at

a
+ c4e−4at − 3b4e−2at

2a2
+

3b2c2e−2at

a
,

Eu6
k(t) =

15b6

8a3
− 15b6e−6at

8a3
+

45b4c2e−6at

4a2
− 15b2c4e−6at

2a
+ c6e−6at

+
45b6e−4at

8a3
− 45b4c2e−4at

2a2
+

15b2c4e−4at

2a
− 45b6e−2at

8a3
+

45b4c2e−4at

4a2
,

Eu8
k(t) =

105b8

16a4
+

105b8e−8at

16a4
− 105b6c2e−8at

2a3
+

105b4c4e−8at

2a2
− 14b2c6e−8at

a

+ c8e−8at − 105b8e−6at

4a4
+

315b6c2e−6at

2a3
− 105b4c4e−6at

a2
+

14b2c6e−6at

a

+
315b8e−4at

8a4
− 315b6c2e−4at

2a3
+

105b4c4e−4at

2a2
− 105b8e−2at

4a4
+

105b6c2e−2at

2a3
.

In addition, we know

Eξk(t) = − b
2

4a
+
c2

2a
+
b2e−2at

4a2
− c2e−2at

2a
+
b2t

2a
.

We first verify (3.13). From the definitions in (3.10) we have

E(Zk) = E
(∫ T

0

ξ2
k(t) dt

)
=

∫ T

0

E
(
ξ2
k(t)
)

dt,

= 2

∫ T

0

∫ t

0

E
(
ξk(s)u

2
k(s)

)
ds dt. (3.17)
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By Itô’s formula,

dξk(t)u
2
k(t) =

(
u4
k(t) + b2ξk(t)

)
dt− 2aξk(t)u

2
k(t) dt+ 2buk(t)ξk(t) dwk(t).

Taking the integration and expectations on both sides above, we obtain that

E
(
ξk(t)u

2
k(t)
)

=

∫ t

0

(
Eu4

k(s) + b2Eξk(s)
)

ds− 2aE
(
ξk(s)u

2
k(s)

)
ds.

Thus E (ξk(t)u
2
k(t)) satisfies the ODE

d

dt
E
(
ξk(t)u

2
k(t)
)

=
(
Eu4

k(t) + b2Eξk(t)
)

ds− 2aE
(
ξk(t)u

2
k(t)
)
,

with zero initial condition. Therefore, we get

E
(
ξk(t)u

2
k(t)
)

=
b4

8a3
+
b2c2

4a2
− 3b4e−4at

8a3
+

3b2c2e−4at

2a2

− c4e−4at

2a
+
b4e−2at

4a3
− 7b2c2e−2at

4a2
+
c4e−2at

2a

+
b4t

4a2
− 5b4e−2att

4a2
+

5b2c2e−2att

2a
.

Therefore, by (3.17),

EZk =
35b4

64a5
− 9b2c2

16a4
− 3c4

16a3
− 3b4e−4aT

64a5
+

3b2c2e−4aT

16a4

− c4e−4aT

16a3
− b4e−2aT

2a5
+

3b2c2e−2aT

8a4
+
c4e−2at

4a3
− 9b4T

16a4

+
b2c2T

4a3
+
c4T

4a2
− 5b4e−2aTT

8a4
+

5b2c2e−2aTT

4a3
+
b4T 2

8a3

+
b2c2T 2

4a2
+
b4T 3

12a2
. (3.18)

which leads to (3.13), since by the assumption (ii), we only keep the terms with

denominators that are second order of a, and since T > 0 is a fixed constant.
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Next, we study the asymptotic order of Var(Zk), k →∞, given by (3.14). In

light of (3.18), we are left to compute E(Z2
k). By Itô’s formula, and since the Itô

integral terms have zero expectation, we have

E(Z2
k) = 2

∫ T

0

E
(
Zk(t)ξ

2
k(t)
)

dt

= 2

∫ T

0

∫ t

0

E
(
ξ4
k(s)

)
ds dt+ 4

∫ T

0

∫ t

0

E
(
Zk(s)ξk(s)u

2
k(s)

)
ds dt. (3.19)

To compute the first expectation in (3.19), by Itô’s formula again, we have

dξ4
k(t) = 4ξ3

k(t)u
2
k(t) dt,

d
(
ξ3
k(t)u

2
k(t)
)

=
(
3ξ2
k(t)u

4
k(t) + ξ3

k(t)− 2aξ3
k(t)u

2
k(t)
)

dt+ 2ξ3
k(t)uk(t) dwk(t),

dξ3
k(t) = 3ξ2

k(t)u
2
k(t) dt,

d
(
ξ2
k(t)u

4
k(t)
)

= 2
(
ξk(t)u

6
k(t) + 3ξ2

k(t)u
2
k(t)− 2aξ2

k(t)u
4
k(t)
)

dt+ 4ξ2
k(t)u

3
k(t) dwk(t).

We need to compute E(ξk(s)u
6
k(s)) and E(ξ2

k(s)u
2
k(s)). Again by Itô’s formula, we get

dξk(t)u
6
k(t) =

(
u8
k(t) + 15ξk(t)u

4
k(t)− 6aξk(t)u

6
k(t)
)

dt+ 6ξk(t)u
5
k(t) dwk(t),

dξ2
k(t)u

2
k(t) =

(
2ξk(t)u

4
k(t) + ξ2

k(t)− 2aξ2
k(t)u

2
k(t)
)

dt+ 2ξ2
k(t)uk(t) dwk(t),

dξk(t)u
4
k(t) =

(
u6
k(t) + 6ξk(t)u

2
k(t)− 4aξk(t)u

4
k(t)
)

dt+ 4ξk(t)u
3
k(t) dwk(t).

Then we find the following ODEs,

d

dt
E
(
ξk(t)u

6
k(t)
)

= Eu8
k(t) + 15E

(
ξk(t)u

4
k(t)
)
− 6aE

(
ξk(t)u

6
k(t)
)
,

d

dt
E
(
ξ2
k(t)u

2
k(t)
)

= 2E
(
ξk(t)u

4
k(t)
)

+ Eξ2
k(t)− 2aE

(
ξ2
k(t)u

2
k(t)
)
,

d

dt
E
(
ξk(t)u

4
k(t)
)

= Eu6
k(t) + 6E

(
ξk(t)u

2
k(t)
)
− 4E

(
ξk(t)u

4
k(t)
)
.
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Therefore, we get

E
(
ξk(t)u

4
k(t)
)

=
9b6

16a4
+

3b4c2

8a3
+

15b6e−6at

16a4
− 45b4c2e−6at

8a3
+

15b2c4e−6at

4a2

− c6e−6at

2a
− 21b6e−4at

16a4
+

69b4c2e−4at

8a3
− 21b2c4e−4at

4a2
+
c6e−4at

2a

− 3b6e−2at

16a4
− 27b4c2e−2at

8a3
+

3b2c4e−2at

2a2
+

3b6t

8a3
+

27b6e−4att

8a3

− 27b4c2e−4att

2a2
+

9b2c4e−4att

2a
− 15b6e−2att

4a3
+

15b4c2e−2att

2a2
,

E
(
ξk(t)u

6
k(t)
)

=
75b8

32a5
+

15b6c2

16a4
− 105b8e−8at

32a5
+

105b6c2e−8at

4a4
− 105b4c4e−8at

4a3

+
7b2c6e−8at

a2
− c8e−8at

2a
+

15b8e−6at

2a5
− 915b6c2e−6at

16a4
+

405b4c4e−6at

8a3

− 43b2c6e−6at

4a2
+
c8e−6at

2a
− 45b8e−4at

16a5
+

585b6c2e−4at

16a4
− 30b4c4e−4at

a3

+
15b2c6e−4at

4a2
− 15b8e−2at

4a5
− 105b6c2e−2at

16a4
+

45b4c4e−2at

8a3
+

15b8t

16a4

− 195b8e−6att

16a4
+

585b6c2e−6att

8a3
− 195b4c4e−6att

4a2
+

13b2c6e−6att

2a

+
405b8e−4att

16a4
− 405b6c2e−4att

4a3
+

135b4c4e−4att

4a2

− 225b8e−2att

16a4
+

225b6c2e−2att

8a3
,

and

E
(
ξ2
k(t)u

2
k(t)
)

=
3b6

32a5
+

3b4c2

8a4
+
b2c4

8a3
− 15b6e−6at

32a5
+

45b4c2e−6at

16a4
− 15b2c4e−6at

8a3

+
c6e−6at

4a2
− 15b6e−4at

32a5
− 3b4c2e−4at

2a4
+

23b2c4e−4at

8a3
− c6e−4at

2a2

+
27b6e−2at

32a5
− 27b4c2e−2at

16a4
− 9b2c4e−2at

8a3
+
c6e−2at

4a2
+

3b6t

8a4
+
b4c2t

4a3

− 27b6e−4att

8a4
+

27b4c2e−4att

2a3
− 9b2c4e−4att

2a2
− 25b4c2e−2att

4a3

+
5b2c4e−2att

2a2
+
b6t2

8a3
− 25b6e02att2

8a3
+

25b4c2e−2att2

4a2
.
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And then we get Eξ3
k(t), E(ξ2

k(t)u
4
k(t)) and E(ξ3

k(t)u
2
k(t)), and finally Eξ4

k(t) as follows.

Eξ3
k(t) = −147b6

64a6
+

9b4c2

32a5
+

9b2c4

16a4
+

c6

8a3
+

15b6e−6at

64a6
− 45b4c2e−6at

32a5

+
15b2c4e−6at

16a4
− c6e−6at

8a3
+

63b6e−4at

64a6
− 45b4c2e−4at

32a5
− 21b2c4e−4at

16a4

+
3c6e−4at

8a3
+

69b6e−2at

64a6
+

81b4c2e−2at

32a5
− 3b2c4e−2at

16a4
− 3c6e−2at

8a3

+
9b6t

32a5
+

9b4c2t

8a4
+

3b2c4t

8a3
+

81b6e−4att

32a5
− 81b4c2e−4att

8a4

+
27b2c4e−4att

8a3
+

75b6e−2att

16a5
− 15b2c4e−2att

4a3
+

9b6t2

16a4
+

3b4c2t2

8a3

+
75b6e−2att2

16a4
− 75b2c2e−2att2

8a3
+
b6t3

8a3
,

E(ξ2
k(t)u

4
k(t)) =

69b8

64a6
+

15b6c2

16a5
+

3b4c4

16a4
+

105b8e−8at

64a6
− 105b6c2e−8at

8a5
+

105b4c4e−8at

8a4

− 7b2c6e−8at

2a3
+
c8e−8at

4a2
+

195b6c2e−6at

16a5
− 165b4c4e−6at

8a4
+

27b2c6e−6at

4a3

− c8e−6at

2a2
− 123b8e−4at

32a6
+

111b6c2e−4at

16a5
+

141b4c4e−4at

16a4
− 4b2c6e−4at

a3

+
c8e−4at

4a2
+

9b8e−2at

8a6
− 111b6c2e−2at

16a5
− 3b4c4e−2at

2a4
+

3b2c6e−2at

4a3

+
15b8t

16a5
+

3b6c2t

8a4
+

195b8e−6att

16a5
− 585b6c2e−6att

8a4
+

195b4c4e−6att

4a3

− 13b2c6e−6att

2a2
− 135b8e−4att

16a5
+

513b6c2e−4att

8a4
− 171b4c4e−4att

4a3

+
9b2c6e−4att

2a2
− 75b8e−2att

16a5
− 75b6c2e−2att

8a4
+

15b4c4e−2att

2a3
+

3b8t2

16a4

+
243b8e−4att2

16a4
− 243b6c2e−4att2

4a3
+

81b4c4e−4att2

4a2
− 75b8e−2att2

8a4

+
75b6c2e−2att2

4a3
,

E(ξ3
k(t)u

2
k(t)) = − 9b8

128a7
+

69b6c2

64a6
+

15b4c4

32a5
+
b2c6

16a4
− 105b8e−8at

128a7
+

105b6c2e−8at

16a6

− 105b4c4e−8at

16a5
+

7b2c6e−8at

4a4
− c8e−8at

8a3
− 75b8e−6at

32a7
+

315b6c2e−6at

64a6

+
195b4c4e−6at

32a5
− 61b2c6e−6at

16a4
+

3c8e−6at

8a3
− 27b8e−4at

64a7
− 621b6c2e−4at

32a5
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+
111b4c4e−4at

32a5
+

39b2c6e−4at

16a4
− 3c8e−4at

8a3
+

117b8e−2at

32a7
− 183b6c2e−2at

64a6

− 111b4c4e−2at

32a5
− 7b2c6e−2at

16a4
+
c8e−2at

8a3
+

69b8t

64a6
+

15b6c2t

16a5
+

3b4c4t

16a4

− 585b8e−6att

64a6
+

1755b6c2e−6att

32a5
− 585b4c4e−6att

16a4
+

39b2c6e−6att

8a3

− 729b8e−4att

64a6
+

513b4c4e−4att

16a4
− 27b2c6e−4att

4a3
+

285b8e−2att

64a6

− 585b6c2e−2att

32a5
− 75b4c4e−2att

16a4
+

15b2c6e−2att

8a3
+

15b8t2

32a5
+

3b6c2t2

16a4

− 729b8e−4att2

32a5
+

729b6c2e−4att2

8a4
− 243b4c4e−4att2

8a3
− 75b8e−2att2

16a5

− 225b6c2e−2att2

16a4
+

75b4c4e−2att2

8a3
+
b8t3

16a4
− 125b8e−2att3

16a4

+
125b6c2e−2att3

8a3
,

and

Eξ4
k(t) = −3519b8

256a8
− 9b6c2

32a7
+

69b4c4

32a6
+

5b2c6

8a5
+

c8

16a4
+

105b8e−8at

256a8

− 105b6c2e−8at

32a7
+

105b4c4e−8at

32a6
− 7b2c6e−8at

8a5
+
c8e−8at

16a4
+

165b8e−6at

64a8

− 75b6c2e−6at

8a7
+

2b2c6e−6at

a5
− c8e−6at

4a4
+

783b8e−4at

128a8
− 27b6c2e−4at

16a7

− 123b4c4e−4at

16a6
− 3b2c6e−4at

4a5
+

3c8e−4at

8a4
+

297b8e−2at

64a8
+

117b6c2e−2at

8a7

+
9b4c4e−2at

4a6
− b2c6e−2at

a5
− c8e−2at

4a4
− 9b8t

32a7
+

69b6c2t

16a6
+

15b4c4t

8a5

+
b2c6t

4a4
+

195b8e−6att

32a7
− 585b6c2e−6att

16a6
+

195b4c4e−6att

8a5
− 13b2c6e−6att

4a4

+
729b8e−4att

32a7
− 729b6c2e−4att

16a6
− 135b4c4e−4att

8a5
+

27b2c6e−2att

4a4

+
765b8e−2att

32a7
+

285b6c2e−2att

16a6
− 75b4c4e−2att

8a5
− 15b2c6e−2att

4a4
+

69b8t2

32a6

+
15b6c2t2

8a5
+

3b4c4t2

8a4
+

729b8e−4att2

32a6
− 729b6c2e−4att2

8a5
+

243b4c4e−4att2

8a4

+
525b8e−2att2

16a6
− 75b6c2e−2att2

4a5
− 75b4c4e−2att2

4a4
+

5b8t3

8a5
+
b6c2t3

4a4

+
125b8e−2att3

8a5
− 125b6c2e−2att3

4a4
+
b8t4

16a4
.
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A similar argument leads to the computation of the second expectation in (3.19). To

sum up, with the help of Mathematica, we obtain that

Var(Zk) =
−16917b8

512a10
+

1093b6c2

32a9
+

303b4c4

32a8
+

35b2c6

48a7
+

3b8e−8aT

128a10
− 3b6c2e−8aT

16a9

+
21b4c4e−8aT

128a8
− b2c6e−8aT

32a7
+

79b8e−6aT

128a10
− 3b6c2e−6aT

a9
+

19b4c4e−6aT

16a8

+
b2c6e−6aT

48a7
+

2953b8e−4aT

512a10
− 447b6c2e−4aT

32a9
− 65b4c4e−4aT

128a8
+

15b2c6e−4aT

32a7

+
3409b8e−2aT

128a10
− 17b6c2e−2aT

a9
− 165b4c4e−2aT

16a8
− 19b2c6e−2aT

16a7
+

1093b8T

32a9

− 659b6c2T

32a8
− 155b4c4T

16a7
− 9b2c6T

8a6
+

45b8e−6aTT

64a9
− 135b6c2e−6aTT

32a8

+
5b4c4e−6aTT

2a7
− b2c6e−6aTT

4a6
+

1165b8e−4aTT

128a9
− 953b6c2e−4aTT

32a8

+
127b4c4e−4aTT

32a7
+

3b2c6e−4aTT

4a6
+

2321b8e−2aTT

64a9
− 1753b6c2e−2aTT

32a8

− 11b4c4e−2aTT

a7
− 659b8T 2

64a8
− 5b6c2T 2

4a7
+

31b4c4T 2

16a6
+
b2c6T

2a5

+
53b8e−4aTT 2

16a8
− 121b6c2e−4aTT 2

8a7
+

21b4c4e−4aTT 2

4a6
− b2c6e−4aTT 2

4a5

+
71b8e−2aTT 2

8a8
− 255b6c2e−2aTT 2

8a7
− b4c4e−2aTT 2

4a6
+
b2c6e−2aTT 2

2a5

− 5b8T 3

12a7
+

23b6c2T 3

12a6
+

2b4c4T 3

3a5
− 5b8e−4aTT 3

8a7
+

5b6c2e−4aTT 3

2a6

− 5b4c4e−4aTT 3

6a5
− 113b8e−2aTT 3

24a7
− 7b6c2e−2aTT 3

12a6
+

7b4c4e−2aTT 3

2a5

+
23b8T 4

48a6
+
b6c2T 4

3a5
− 5b8e−2aTT 4

2a6
+

5b6c2e−2aTT 4

a5
+
b8T 5

15a5
.

which implies (3.14). The proof to (3.15) and (3.16) are done similarly through the

symbolic computation in Mathematica®. We omit the details here. The code for the

detailed computation can be obtained from the author upon request.

Remark 3.2.1. The above proposition implies that

E(Zk) �
1

µ2
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)2
, (3.20)
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Var(Zk) �
λ−2γ
k

µ5
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)3
, (3.21)

E(Ak) �
λ−2γ
k

µ2
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)
, (3.22)

Var(Ak) �
λ−2γ
k

µ3
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)3
. (3.23)

These formulas will be used to obtain the exact asymptotic bias and the exact rate of

convergence in the proof of asymptotic normality.

3.2.4 The Consistency of TFE. In this subsection we prove the large-space con-

sistency of the TFE θ̃N , as N → ∞. The proof relies on the classical version of the

Strong Law of Large Numbers (cf. [Shi96, Theorem IV.3.2]), which we state in the

Appendix for sake of completeness. With this at hand, we now present the first main

result of this section.

Theorem 3.2.1 (Consistency of TFE). Let the assumptions (i) - (v) be satisfied.

Moreover, assume that

∞∑
k=1

ν2
k E(Zk) =∞. (3.24)

Then,

lim
N→∞

θ̃N = θ, P− a. s..

Proof. By (3.12),

θ̃N − θ = −
∑N

k=1 νkAk

2
∑N

k=1 ν
2
k E(Zk)

·
∑N

k=1 ν
2
k E(Zk)∑N

k=1 ν
2
kZk

. (3.25)
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We first study the second factor in (3.25). Clearly,

∞∑
N=1

ν4
N Var(ZN)(∑N
k=1 ν

2
k E(Zk)

)2 ≤
Var(Z1)

(E(Z1))2 +
∞∑
N=2

ν4
N Var(ZN)∑N−1

k=1 ν
2
k E(Zk) ·

∑N
k=1 ν

2
k EZk

=
Var(Z1)

(E(Z1))2 +
∞∑
N=2

ν2
NVar(ZN)

E(ZN)

(
1∑N−1

k=1 ν
2
kE(Zk)

− 1∑N
k=1ν

2
kE(Zk)

)
. (3.26)

By (3.20), (3.21) and the assumption (iii), as N →∞,

ν2
N Var(ZN)

E(ZN)
= O

ν2
N ·

λ−2γ
N

µ5N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)3

1
µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)2


= O

(
λ−2γ
N

µN(θ)

(
u2
N(0) + σ2Tλ−2γ

N

))
.

Since u0 ∈ H, we have

lim
N→∞

u2
N(0) = 0. (3.27)

Together with the assumptions (ii), (iv) and (v),

lim
N→∞

λ−2γ
N

µN(θ)

(
u2
N(0) + σ2Tλ−2γ

N

)
= lim

N→∞

1

µN(θ)ν
γ/m
N

(
u2
N(0) +

σ2T

ν
γ/m
N

)
= 0.

Hence, there exists a universal constant C1 > 0 such that

ν2
N Var(ZN)

E(ZN)
≤ C1 for all N ∈ N,

which, together with (3.26), implies that

∞∑
N=1

ν4
N Var(ZN)(∑N
k=1 ν

2
k E(Zk)

)2 ≤
Var(Z1)

(E(Z1))2 + C1

∞∑
N=2

(
1∑N−1

k=1 ν
2
k E(Zk)

− 1∑N
k=1 ν

2
k E(Zk)

)

=
Var(Z1)

(E(Z1))2 +
C1

ν2
1 E(Z1)

<∞. (3.28)
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Combining (3.24) with (3.28), we conclude by Remark B.0.1 that

lim
N→∞

∑N
k=1 ν

2
kZk∑N

k=1 ν
2
k E(Zk)

= 1, P− a. s.. (3.29)

Next, we will analyze the asymptotic behavior of the first factor in (3.25). By

(3.20), (3.23), (3.27) and the assumptions (ii), (iv) and (v), as N →∞, we get that

Var(AN)

E(ZN)
= O

 λ−2γ
N

µ3N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)3

1
µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)2


= O

(
1

µN(θ)ν
γ/m
N

(
u2
N(0) +

σ2T

ν
γ/m
N

))
→ 0.

An argument similar to that of (3.26) and (3.28) shows that, there exists a universal

constant C2 > 0, such that

∞∑
N=1

ν2
NVar(AN)(∑N
k=1 ν

2
k E(Zk)

)2 ≤
Var(A1)

ν2
1 (E(Z1))2

+
∞∑
N=2

Var(AN)

E(ZN)

(
1∑N−1

k=1 ν
2
k E(Zk)

− 1∑N
k=1 ν

2
k E(Zk)

)

≤ Var(A1)

ν2
1 (E(Z1))2 +

C2

ν2
1 E(Z1)

<∞. (3.30)

In view of Theorem B.0.1, (3.24) and (3.30) imply that

lim
N→∞

∑N
k=1 νk (Ak − E(Ak))∑N

k=1 ν
2
k E(Zk)

= 0, P− a. s..

If the series
∑N

k=1 νk E(Ak) converges, then by (3.24), we clearly have that

lim
N→∞

∑N
k=1 νk E(Ak)∑N
k=1 ν

2
k E(Zk)

= 0, (3.31)

On the other hand, if the series in the numerator of (3.31) diverges, then by Stolz–
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Cesàro Theorem

lim
N→∞

∑N
k=1 νk E(Ak)∑N
k=1 ν

2
k E(Zk)

= lim
N→∞

νN E(AN)

ν2
N E(ZN)

,

and by (3.20), (3.22) and the assumption (iv), as N →∞, we deduce that

E(AN)

νN E(ZN)
= O

 λ−2γ
N

µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)
νN

µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)2

 = O

(
1

νN
(
u2
N(0)λ2γ

N + σ2T
))

= O
(
ν−1
N

)
→ 0.

Combining the above, we conclude that

lim
N→∞

∑N
k=1 νkAk∑N

k=1 ν
2
k E(Zk)

= 0, P− a. s.. (3.32)

Finally, by (3.25), (3.29) and (3.32) we conclude the proof.

Remark 3.2.2. A note on condition (3.24) is in order. The divergence of the series

(3.24) is needed for the Law of Large Numbers to hold true. In view of (3.20), the

condition (3.24) can be equivalently stated in terms of the known primary objects – the

initial data u(0), the asymptotics of the eigenvalues of A0 and A1, and the covariance

structure of the noise (see Proposition 3.2.2 below). In particular, the consistency of

the TFE does not depend on the regularity of the initial data.

3.2.5 The Asymptotic Normality of TFE. In this subsection, we will investigate

the asymptotic normality of the TFE θ̃N . The proof is based on classical Central

Limit Theorem (CLT) for independent random variables with the Lyapunov condition

(which is a sufficient condition for the Lindeberg condition to hold). For convenience,

we list this result in the Appendix, and the complete proof can be found, for instance,

in [Shi96, Section III.4].
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In what follows we will make use of the following technical lemma.

Lemma 3.2.1. Let ξk(t), k ∈ N, t ∈ [0, T ], be defined as in (3.10). Then, for any

n ∈ N, there exist a constant Dn = Dn(t) > 0, depending only on n and t, such that,

for every k ∈ N,

E (ξnk (t)) ≤ Dn

(
u2
k(0) + σ2t λ−2γ

k

µk(θ)

)n
, t ∈ [0, T ].

Proof. By (3.5) and Cauchy–Schwartz inequality, for any 0 ≤ s ≤ t ≤ T ,

u2
k(s) = e−2µk(θ)s

(
uk(0) + σλ−γk

∫ s

0

eµk(θ)r dwk(r)

)2

≤ e−2µk(θ)s
(
u2
k(0) + σ2λ−2γ

k t
)(

1 +
1

t

(∫ s

0

eµk(θ)r dwk(r)

)2
)
.

Hence, for any t ∈ [0, T ], and n ∈ N,

ξnk (t) ≤
(
u2
k(0) + σ2λ−2γ

k t
)n{∫ t

0

e−2µk(θ)s

[
1 +

1

t

(∫ s

0

eµk(θ)r dwk(r)

)2
]
ds

}n

=
(
u2
k(0) + σ2λ−2γ

k t
)n [1− e−2µk(θ)t

2µk(θ)
+

1

t

∫ t

0

e−2µk(θ)s

(∫ s

0

eµk(θ)r dwk(r)

)2

ds

]n
≤
(
u2
k(0) + σ2λ−2γ

k t
)n

·

{(
1− e−2µk(θ)t

µk(θ)

)n
+

2n

tn

[∫ t

0

e−2µk(θ)s

(∫ s

0

eµk(θ)r dwk(r)

)2

ds

]n}
.

By [Lot09, Theorem 2.1], there exists a constant D̃n = D̃n(t) > 0, such that

E

([∫ t

0

e−2µk(θ)s

(∫ s

0

eµk(θ)r dwk(r)

)2

ds

]n)
≤ D̃n

µnk(θ)
.

Therefore, for any t ∈ [0, T ] and n ∈ N,

E (ξnk (t)) ≤
(
u2
k(0) + σ2λ−2γ

k t
)n( 1

µnk(θ)
+

2nD̃n

tn
1

µnk(θ)

)
=Dn

(
u2
k(0) + σλ−2γ

k t

µk(θ)

)n
,
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where Dn = Dn(t) := 1 + 2nt−nD̃n.

Now we present a version of the large-space asymptotic normality of the TFE

θ̃N .

Theorem 3.2.2 (Asymptotic Normality of TFE). In addition to the conditions of

Theorem 3.2.1, assume further that

∞∑
k=1

ν2
k Var (Ak) =∞. (3.33)

Then, as N →∞,

θ̃N − θ + aN
bN

D−→ N (0, 1),

where

aN :=

∑N
k=1 νk E(Ak)

2
∑N

k=1 ν
2
k E(Zk)

, bN :=

√∑N
k=1 ν

2
k Var(Ak)

2
∑N

k=1 ν
2
k E(Zk)

,

and where
D−→ denotes the convergence in distribution.

Proof. The proof is split in two steps.

Step 1. We will first show that the sequence {νkAk}k∈N satisfies the Lyapunov con-

dition (B.1) with δ = 2. Clearly,

E
(
(Ak − E(Ak))

4)
= E

(
A4
k

)
− 4E

(
A3
k

)
E(Ak) + 6E

(
A2
k

)
(E(Ak))

2 − 3 (E(Ak))
4

= E
(
A4
k

)
− 4E

(
A3
k

)
E(Ak) + 6 Var(Ak) (E(Ak))

2 + 3 (E(Ak))
4 . (3.34)

We will estimate each term in the above expression separately. To begin with, for
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every k ∈ N, let ζk := (ζk(t))t∈[0,T ], where

ζk(t) :=

∫ t

0

uk(s) dwk(s), t ∈ [0, T ].

By (3.8) and (3.10), for any k ∈ N and t ∈ [0, T ],

u2
k(t) = u2

k(0) + σ2λ−2γ
k t− 2µk(θ)ξk(t) + 2σλ−γk ζk(t),

which, when multiplied by ξk(t), and then integrated on [0, T ], leads to

Ak = 2σλ−γk

∫ T

0

ζk(t)ξk(t) dt, k ∈ N.

Hence, by the Cauchy–Schwartz inequality and the definition of ξk, for any k ∈ N,

E
(
A4
k

)
≤ 16σ4λ−4γ

k E

((∫ T

0

ζ2
k(t) dt ·

∫ T

0

ξ2
k(t) dt

)2
)

≤ 16σ4λ−4γ
k

(
E

((∫ T

0

ζ2
k(t)dt

)4
)
E

((∫ T

0

ξ2
k(t)dt

)4
))1/2

≤ 16σ4λ−4γ
k

(
T 2 E

((∫ T

0

ζ4
k(t) dt

)2
)
· T 4 E

(
ξ8
k

))1/2

≤ 16σ4T 7/2λ−4γ
k

(
E
(∫ T

0

ζ8
k(t) dt

)
E
(
ξ8
k

))1/2

.

Moreover, by the Burkholder–Davis–Gundy inequality, there exists a constant C1 =

C1(T ) > 0, depending only on T , such that

E

(
sup
t∈[0,T ]

ζ8
k(t)

)
≤ C1 E

(
[ζk, ζk]

4 (T )
)

= C1 E
(
ξ4
k

)
.
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Together with Lemma 3.2.1, we obtain that, for any k ∈ N,

E
(
A4
k

)
≤ 16C1σ

4 T 4λ−4γ
k

√
E (ξ4

k)E (ξ8
k) ≤ C2

(
u2
k(0) + σ2Tλ−2γ

k

)8

µ6
k(θ)

,

where C2 := 16C1

√
D4D8T

2 > 0 is a constant depending only on T .

Next, we will study the last three terms of (3.34). In view of (3.22) and (3.23),

there exists a universal constant C3 > 0, such that for any k ∈ N,

E(Ak) ≤ C3

(
u2
k(0) + σ2Tλ−2γ

k

)2

µ2
k(θ)

, Var(Ak) ≤ C2

(
u2
k(0) + σ2Tλ−2γ

k

)4

µ3
k(θ)

.

Hence, it suffices to estimate E(A3
k). By the definition of Ak in (3.12),

−u2
k(0)Yk − σ2λ−2γ

k Xk ≤ Ak ≤
1

2
ξ2
k + 2µk(θ)Zk.

Moreover, since ξk(t) is increasing in t, we deduce that

Yk =

∫ T

0

ξk(t) dt ≤ Tξk, Xk =

∫ T

0

tξk(t) dt ≤ T 2ξk, Zk =

∫ T

0

ξ2
k(t) dt ≤ Tξ2

k,

and thus,

−T
(
u2
k(0) + σ2Tλ−2γ

k

)
ξk ≤ Ak ≤

(
1

2
+ 2µk(θ)T

)
ξ2
k.

Together with Lemma 3.2.1, we obtain that

−D3T

(
u2
k(0) + σ2Tλ−2γ

k

)6

µ3
k(θ)

≤ E(A3
k) ≤ D6(2T + 1)

(
u2
k(0) + σ2Tλ−2γ

k

)6

µ3
k(θ)

. (3.35)

Combining (3.34)–(3.35), we conclude that there exists a constant C4 = C4(T ) >
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0, depending only on T , such that for any k ∈ N,

E
(
(νkAk − E(νkAk))

4) ≤ C4
ν4
k

µ5
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)8
.

On the other hand, by (3.23) again, we can find a universal constant C5 > 0, such

that

Var (νkAk) ≥ C5
ν2
k

µ3
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)4
, for all k ∈ N.

In view of the assumptions (ii)-(v), and since limk→∞ u
2
k(0) = 0, we deduce that there

exists a constant C6 = C6(c0, σ, T ) > 0, depending on c0, σ and T , such that

E
(
(νkAk − E(νkAk))

4) ≤ C6Var (νkAk) , for all k ∈ N.

Finally, by (3.33), we obtain that

lim
N→∞

∑N
k=1 E

(
(νkAk − E(νkAk))

4)(∑N
k=1 Var (νkAk)

)2 ≤ lim
N→∞

C6∑N
k=1 Var (νkAk)

= 0.

Step 2: Note that

θ̃N − θ + aN
bN

= −
∑N

k=1 νk (Ak − E(Ak))

2 bN
∑N

k=1 ν
2
kZk

−
∑N

k=1 νk E(Ak)

2 bN
∑N

k=1 ν
2
kZk

+
aN
bN
. (3.36)

For the first term in (3.36), by (3.29), Step 1 and Theorem B.0.2, as N →∞, we get

−
∑N

k=1 νk (Ak − E(Ak))

2 bN
∑N

k=1 ν
2
kZk

= −
∑N

k=1 ν
2
k E(Zk)∑N

k=1 ν
2
kZk

·
∑N

k=1 νk (Ak − E(Ak))√∑N
k=1 ν

2
k Var(Ak)

D−→ N (0, 1).
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Moreover, for the last two terms in (3.36), we derive that

aN
bN
−
∑N

k=1 νk E(Ak)

2 bN
∑N

k=1 ν
2
kZk

=
2
∑N

k=1 ν
2
k E(Zk)√∑N

k=1 ν
2
k Var(Ak)

( ∑N
k=1 νk E(Ak)

2
∑N

k=1 ν
2
k E(Zk)

−
∑N

k=1 νk E(Ak)

2
∑N

k=1 ν
2
kZk

)

=

∑N
k=1 ν

2
k E(Zk)∑N

k=1 ν
2
kZk

·
∑N

k=1 νk E(Ak)√∑N
k=1 ν

2
k Var(Ak)

·
∑N

k=1 ν
2
k (Zk − E(Zk))∑N
k=1 ν

2
k E(Zk)

. (3.37)

In light of (3.29), we only need to show that the product of the last two factors above

converges to zero in probability, as N → ∞. Note that, by the independence of Zk,

k ∈ N,

E

 ∑N
k=1 νk E(Ak)√∑N
k=1 ν

2
k Var(Ak)

·
∑N

k=1 ν
2
k (Zk − E(Zk))∑N
k=1 ν

2
k E(Zk)

2
=

(∑N
k=1 νk E(Ak)∑N
k=1 ν

2
k E(Zk)

)2 ∑N
k=1 ν

4
k Var(Zk)∑N

k=1 ν
2
k Var(Ak)

.

By (3.21), (3.23) and the assumption (iii), there exists a universal constant C7 > 0,

such that

∑N
k=1 ν

4
k Var(Zk)∑N

k=1 ν
2
k Var(Ak)

≤ C7

∑N
k=1

ν4kλ
−2γ
k

µ5k(θ)
(u2

k(0) + σ2Tλ−2γ
k )3∑N

k=1

ν2kλ
−2γ
k

µ3k(θ)
(u2

k(0) + σ2Tλ−2γ
k )3

≤ C7c0,

Similarly, by (3.20), (3.22) and the assumption (iii),

∑N
k=1 νk E(Ak)∑N
k=1 ν

2
k E(Zk)

≤ C8

∑N
k=1

νkλ
−2γ
k

µ2k(θ)
(u2

k(0) + σ2Tλ−2γ
k )∑N

k=1

ν2k
µ2k(θ)

(u2
k(0) + σ2Tλ−2γ

k )2
, (3.38)

where C8 > 0 is some universal constant. Using (3.20) and (3.24), we conclude that

the series in the denominator on the right-hand side of (3.38) diverges. Hence, the

right-hand side of (3.38) converges to 0, as N → ∞, if the series in the numerator
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on the right-hand side of (3.38) converges. Now assume that the numerator on the

right-hand side of (3.38) diverges. By Stolz–Cesàro Theorem,

lim
N→∞

∑N
k=1

νkλ
−2γ
k

µ2k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)
∑N

k=1

ν2k
µ2k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)2
= lim

N→∞

νNλ
−2γ
N

µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)
ν2N

µ2N (θ)

(
u2
N(0) + σ2Tλ−2γ

N

)2

≤ lim
N→∞

1

σ2TνN
= 0.

Therefore, we have shown that

∑N
k=1 νk E(Ak)√∑N
k=1 ν

2
k Var(Ak)

·
∑N

k=1 ν
2
k (Zk − E(Zk))∑N
k=1 ν

2
k E(Zk)

→ 0 in L2(Ω), N →∞. (3.39)

Combining (3.29), (3.36), (3.37) and (3.39) completes the proof.

The next result provides some equivalent conditions, given explicitly in terms

of the model coefficients, for (3.24) and (3.33) to hold. In particular, we note that the

consistency and the asymptotic normality of the TFE do not depend on the regularity

of the initial data.

Proposition 3.2.2. Under the assumptions (i) - (v),

∞∑
k=1

ν2
k E(Zk) =∞ ⇔

∞∑
k=

ν2
kλ
−4γ
k

µ2
k(θ)

=∞, (3.40)

∞∑
k=1

ν2
k Var(Ak) =∞ ⇔

∞∑
k=1

ν2
kλ
−8γ
k

µ3
k(θ)

=∞. (3.41)

Proof. We will only present the proof for (3.41), as (3.40) can be obtained similarly.

Clearly, (3.23) implies the “⇐” direction in (3.41). Now assume that

∞∑
k=1

ν2
k Var(Ak) =∞,
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which, by (3.23), is equivalent to

∞ =
∞∑
k=1

ν2
kλ
−2γ
k

µ3
k(θ)

(
u2
k(0) + σ2Tλ−2γ

k

)3
=
∞∑
k=1

ν2
kλ
−2γ
k u6

k(0)

µ3
k(θ)

+ 3σ2T

∞∑
k=1

ν2
kλ
−4γ
k u4

k(0)

µ3
k(θ)

+ 3σ4T 2

∞∑
k=1

ν2
kλ
−6γ
k u2

k(0)

µ3
k(θ)

+ σ6T 3

∞∑
k=1

ν2
kλ
−8γ
k

µ3
k(θ)

.

Hence, it suffices to show that the first three series on the right-hand side above are

all convergent. We will only check the first series, and the other two can be verified

using a similar argument. Indeed, by the assumptions (ii) - (v) and since u(0) ∈ H

(so that limk→∞ uk(0) = 0), there exists a universal constant C > 0 such that

∞∑
k=1

ν2
kλ
−2γ
k u6

k(0)

µ3
k(θ)

≤ c2
0C

∞∑
k=1

u2
k(0) <∞.

This concludes the proof.

We conclude this section by providing the asymptotically equivalent formulas

for the sequences {aN}N∈N and {bN}N∈N in Theorem 3.2.2, given in terms of the model

coefficients. In light of Proposition 3.2.2, the relations (3.24) and (3.33) imply that

each of the last terms in (3.13)–(3.16) give the exact leading order term for E(Zk),

Var(Zk), E(Ak) and Var(Ak), respectively. The following result follows immediately

from Stolz–Cesàro Theorem.

Corollary 3.2.1. Under the conditions of Theorem 3.2.2, as N →∞, we have

aN ∼
3

T

∑N
k=1

νkλ
−4γ
k

µ2k(θ)∑N
k=1

ν2kλ
−4γ
k

µ2k(θ)

, bN ∼
√

12

5T

√∑N
k=1

ν2kλ
−8γ
k

µ3k(θ)∑N
k=1

ν2kλ
−4γ
k

µ2k(θ)

.

3.2.6 Examples. In this part, we will present two examples that illustrate the

theoretical results obtained before. Throughout this section, let G ⊆ Rd be a smooth
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and bounded domain, H := L2(G), and let ∆ be the Laplace operator on G with zero

boundary condition. It is known (cf. [Shu01]) that ∆ has a complete orthonormal

system of eigenfunctions {hk}k∈N in H. Moreover, the corresponding eigenvalues

{τk}k∈N can be arranged such that 0 ≤ −τ1 ≤ −τ2 ≤ · · · , and there exists a universal

constant c1 > 0 so that

lim
k→∞
|τk| · k−2/d = c1.

Example 3.2.1. Consider the following fractional stochastic heat equation driven by

an additive noise, possibly colored in space,

du(t, x) + θ(−∆)βu(t, x) dt = σ
∞∑
k=1

λ−γk hk(x) dwk(t), t ∈ [0, T ], x ∈ G,

with initial condition u(0, x) = u0(x) ∈ H, where θ > 0, β > 0, γ ≥ 0 and σ ∈ R\{0}

are constants, and where λk :=
√
−τk, k ∈ N. In this case, ρk = 0 for all k ∈ N, and

νk ∼ c1k
2β/d, µk(θ) ∼ c1θ k

2β/d, λk ∼
√
c1 k

1/d, k →∞.

Together with Proposition 3.2.2, the conditions (3.24) and (3.33) are equivalent to

1

c2γ
1 θ

2

∞∑
k=1

1

k4γ/d
=∞, and

1

c1+4γ
1 θ3

∞∑
k=1

1

k(2β+8γ)/d
=∞,

respectively. Therefore, the consistency and the asymptotic normality hold for the

TFE θ̃N given by (3.11), whenever

2β + 8γ ≤ d.

Example 3.2.2. Let us consider the following SPDE, with the parameter of interest
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θ in front of lower order differential operator,

du(t, x) + (∆u(t, x) + θu(t, x)) dt =
∞∑
k=1

hk(x) dwk(t), t ∈ [0, T ], x ∈ G,

with initial condition u(0, x) = u0(x) ∈ H. In this case, γ = 0, νk ≡ 1 for all k ∈ N,

and

ρk ∼ c1 k
2/d, µk(θ) ∼ θ + c1 k

2/d, k →∞.

Together with Proposition 3.2.2, the conditions (3.24) and (3.33) are equivalent to

∞∑
k=1

1

(θ + c1k2/d)
2 =∞ and

∞∑
k=1

1

(θ + c1k2/d)
3 =∞,

respectively. Therefore, in order for the consistency and the asymptotic normality of

θ̃N to hold true, we need to have d ≥ 6.

3.3 p-Variation Type Estimators

Apart from spectral approach, the literature on parameter estimation for

SPDEs is limited, and only few papers are devoted to discretely sampled SPDEs

[PR97, Mar03, PvsT07]. Of course, one way to deal with discretely sampled data, is

to discretize or approximate the MLEs using the available discrete data, and show

that the statistical properties are preserved. On the other hand, if we assume that the

solution itself is observed at some space-time grid points, one needs to approximate

additionally the Fourier modes. To best of our knowledge, a rigorous asymptotic

analysis of this idea still has to be done. Finally, it needs to be mentioned, that by

its very nature, the Fourier decomposition has to be performed with respect to the

basis formed by the eigenfunctions of the operator A1. Usually, A1 is a differential

operator, and thus essentially one has to deal with bounded domains.
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In this section, we study the parameter estimation problem for simple parabolic

SPDEs (3.51) and (3.55), when data is sampled discretely. Namely, we consider the

stochastic heat equation, one dimensional, driven by an additive or multiplicative

space-time noise, either on bounded domain or whole space, and when the solution u

is observed at some discrete space-time points. As such, we do not rely on spectral

approach, but rather use some suitable representations of the solution to derive the

corresponding estimators. The key idea of the proposed method relies on an intu-

itively simple observation: the p-variation of a stochastic process is invariant with

respect to smooth perturbations. Hence, if the p-variation of a process X can be

computed by an explicit formula, and the parameter of interest enters non-trivially

into this formula, one can derive consistent estimators of this parameter (similar to

estimating the volatility through quadratic variation). However, since the p-variation

of the perturbed process X + Y remains the same, given that Y is smooth enough,

then the same estimator remains consistent assuming that X+Y is observed. Analo-

gous arguments remain valid for asymptotic normality property. According to Theo-

rem 3.3.1 and Theorem 3.3.2, using the p-variation idea described above, both θ and

σ can be estimated in either time or space sampling regime. Hence, to construct a

consistent, and asymptotically normal estimator for θ or σ it is enough to observe

the solution at one time instant and discretely on a spacial grid of a finite interval,

with mesh diameters going to zero. By the same token, it is sufficient to observe

the solution just at one spacial point, and over a time-grid interval. We focus our

study on these two sampling schemes. It should be mentioned that similar estimators,

and same sampling schemes were studied in [PvsT07], where the authors considered

the heat equation on R driven by a multiplicative noise. The methods of proof in

[PvsT07] are different from ours. As already mentioned, there are no ready avail-

able results on the representations of the solution in time at a fixed spacial point for

bounded domains is more delicate. We prove that the solution can be represented as a
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sum of a smooth process and a zero-mean Gaussian process with known finite fourth

variation. Moreover, using some elements of Malliavin calculus, as well as a version

of the central limit theorem from [NOL08], we establish a central limit type theorem

for the fourth variation of the solution. Consequently, we derive weakly consistent

estimators for θ and σ, and prove their asymptotic normality. The results on the

representation of the solution are of independent interest, and could be used beyond

statistical inference problems. It would be fair to note that a similar methodology of

using Malliavin calculus techniques to establish central limit theorem can be found in

[Cor12], albeit applied to similar processes but with a simpler covariance structure.

As usual, everywhere below, all equalities and inequalities between random

variables, unless otherwise noted, will be understood in the P-a.s. sense. The nota-

tions
D−→ will be used for convergence in distribution, while

P−→ or P− lim will stand

for convergence in probability.

We assume that θ ∈ Θ ⊂ (0,+∞) and σ ∈ S ⊂ (0,+∞) are the (unknown)

parameters of interest. In this work we focus on two sampling schemes4:

(A) Fixed time and discrete space. For a fixed instant of time t > 0, and given

interval [a, b] ⊂ G, the solution u is observed at points (t, xj), j = 1, . . . ,m, with

xj = a+ (b− a)j/m, j = 0, 1, . . . ,m.

(B) Fixed space and discrete time. For a fixed x from the interior of G, and given

time interval [c, d] ⊂ (0,+∞), the solution u is observed at points {(ti, x), i =

1, . . . , n}, where ti := c+ (d− c)i/n, i = 0, 1, . . . , n.

The main goal of this section is to derive consistent estimators for the parameters θ

4For simplicity of writing, we assume that the sampling points form a uniform
grid. Generally speaking all the results hold true assuming only that the mesh size
of the grid goes to zero.
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and σ under these sampling schemes, and to study the asymptotic properties of these

estimators. Our method is based on p-variation of the stochastic processes. We first

review its definition and prove a result that smooth perturbation does not affect the

p-variation of the original process.

3.3.1 p-Variation of a Stochastic Process. In what follows, we will use the

notation Υm(a, b) = {aj | aj = a + (b − a)j/m, j = 0, 1, . . . ,m} for the uniform

partition of size m of a given interval [a, b] ⊂ R. For a given stochastic process X on

some interval [a, b], and p ≥ 1, we will denote by Vpm(X; [a, b]) the sum

Vpm(X; [a, b]) :=
m∑
j=1

|X(tj)−X(tj−1)|p,

where tj ∈ Υm(a, b). Correspondingly,

Vp(X; [a, b]) := lim
m→∞

Vpm(X; [a, b]), P− a.s.,

VpP(X; [a, b]) := P− lim
m→∞

Vpm(X; [a, b]),

will denote the p-variation ofX on [a, b], in P-a.s. sense and respectively in probability.

If no confusions arise, we will simply write Vp(X), and Vpm(X) instead of Vp(X; [a, b])

and Vpm(X; [a, b]); same applies to VpP(X).

As already mentioned, the estimators proposed in this work are derived using

the p-variation of some suitable processes. The next result shows that the ‘quadratic

variation type arguments’ of estimating the diffusion coefficient are invariant with

respect to smooth perturbations.

Proposition 3.3.1. Let X(t), Y (t), t ∈ [a, b], be stochastic processes with continuous

paths, and assume that the process Y has C1[a, b] sample paths, and there exists p > 1,
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such that 0 < Vp(X) <∞. Then,

Vp(X + Y ; [a, b]) = Vp(X; [a, b]). (3.42)

Similarly, if 0 < VpP(X) <∞, then

VpP(X + Y ; [a, b]) = VpP(X; [a, b]). (3.43)

If in addition, there exist α, σ0 > 0 such that, α + 1/p < 1,

nα (Vpn(X; [a, b])− Vp(X; [a, b]))
D−−−→

n→∞
N (0, σ2

0), (3.44)

then

nα (Vpn(X + Y ; [a, b])− Vp(X; [a, b]))
D−−−→

n→∞
N (0, σ2

0). (3.45)

Moreover, if Y has C2[a, b] sample paths, and (3.44) holds for p = 2 and α = 1/2,

then (3.45) holds true too, with p = 2, α = 1/2.

Proof. First we prove (3.42). It should be noted that a similar result is proved

in [CNW06, Corollary 2]. For completeness, we outline our proof too. All ‘p-

variations’ below are on the fixed interval [a, b], and as agreed above, we will omit

writing their dependence on [a, b]. By Minkowski’s inequality, we have that

| (Vpn(X))1/p − (Vpn(Y ))1/p | ≤ (Vpn(X + Y ))1/p ≤ (Vpn(X))1/p + (Vpn(Y ))1/p .(3.46)

Since Y has C1[a, b] sample paths, we have limn→∞ Vpn(Y ) = 0. Hence, passing to

the limit in (3.46), the identity (3.42) follows. As far as (3.43), note that in view of
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(3.46), for any ε > 0,

{∣∣(Vpn(X + Y ))1/p − (VpP(X))1/p
∣∣ ≥ ε

}
=
{

(Vpn(X + Y ))1/p ≥ (VpP(X))1/p + ε
}
∪
{

(Vpn(X + Y ))1/p ≤ (VpP(X))1/p − ε
}

⊂
{

(Vpn(X))1/p + (Vpn(Y ))1/p ≥ (VpP(X))1/p + ε
}

∪
{∣∣∣(Vpn(X))1/p − (Vpn(Y ))1/p

∣∣∣ ≤ (VpP(X))1/p − ε
}

⊂
{∣∣∣(Vpn(X))1/p + (Vpn(Y ))1/p − (VpP(X))1/p

∣∣∣ ≥ ε
}

∪
{∣∣∣(Vpn(X))1/p − (Vpn(Y ))1/p − (VpP(X))1/p

∣∣∣ ≥ ε
}

=
{∣∣∣(Vpn(X))1/p − (VpP(X))1/p

∣∣∣ ≥ ε/2
}
∪
{

(Vpn(Y ))1/p ≥ ε/2
}

(3.47)

Due to the continuity of x1/p, based on our initial assumptions, we have that P −

limn→∞ (Vpn(X))1/p = (VpP(X))1/p, and P − limn→∞ (Vpn(Y ))1/p = 0. Thus, by (3.47),

we get at once that

P− lim
n→∞

(Vpn(X + Y ))1/p = (VpP(X))1/p ,

which consequently implies (3.43).

In view of Slutsky’s Theorem, to prove (3.45), it is enough to show that

lim
n→∞

nα (Vpn(X + Y )− Vpn(X)) = 0.

By (3.46) and by mean-value theorem, we have

Vpn(X + Y ) ≤
(

(Vpn(X))1/p + (Vpn(Y ))1/p
)p

= Vpn(X) + p
(

(Vpn(X))1/p + η1,n (Vpn(Y ))1/p
)p−1

(Vpn(Y ))1/p , (3.48)
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for some η1,n ∈ [0, 1]. Since Y has C1[a, b] sample paths, denotingM = supa≤t≤b | Y ′(t) | ,

and again by mean-value theorem, we get

Vpn(Y ) =
n∑
j=1

|Y (tj)− Y (tj−1)|p =
n∑
j=1

|(tj − tj−1)Y ′(ζj)|p ≤ n(M/n)p. (3.49)

Therefore, by (3.48), and since α + 1/p < 1, we conclude that

nα (Vpn(X + Y )− Vpn(X)) ≤ p
(

(Vpn(X))1/p + η1 (Vpn(Y ))1/p
)p−1

nα+1/p−1M −→
n→∞

0.

Similarly, we have that

nα (Vpn(X + Y )− Vpn(X)) ≥ −p
(

(Vpn(X))1/p − η2 (Vpn(Y ))1/p
)p−1

nα+1/p−1M −→
n→∞

0,

and therefore, (3.45) is proved.

Now suppose that Y has C2[a, b] sample paths, and assume that (3.44) holds

true for p = 2, α = 1/2. To show that (3.45) also holds true, it is enough to prove

that

lim
n→∞

n1/2
(
V2
n(X + Y )− V2

n(X)
)

= 0. (3.50)

Note that,

V2
n(X + Y )− V2

n(X) = 2
n∑
j=1

(X(tj)−X(tj−1)) (Y (tj)− Y (tj−1)) + V2
n(Y ).

Using (3.49), we have n1/2V2
n(Y ) ≤ n3/2(M/n)2 → 0.
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By mean value theorem,

n1/2

n∑
j=1

(X(tj)−X(tj−1)) (Y (tj)− Y (tj−1))

= n−1/2(b− a)
n∑
i=1

(X(tj)−X(tj−1)) (Y ′(ζj)− Y ′(tj−1))

+ n−1/2(b− a)
n∑
i=1

(X(tj)−X(tj−1))Y ′(tj−1)

=: K1 +K2.

Applying Cauchy-Schwartz inequality, we get

|K1| ≤ n−3/2(b− a)2

n∑
i=1

∣∣∣ (X(tj)−X(tj−1)) max
a≤t≤b

| Y ′′(t) |
∣∣∣

≤ n−1(b− a)2 max
a≤t≤b

| Y ′′(t) |
√

V2
n(X) −→

n→∞
0.

We rewrite K2 as

K2 = n−1/2(b− a)

(
X(b)Y ′(b)−X(a)Y ′(a)−

n∑
j=1

X(tj) (Y ′(tj)− Y ′(tj−1))

)
.

Since, limn→∞
∑n

j=1X(tj) (Y ′(tj)− Y ′(tj−1)) =
∫ b
a
X(t)dY ′(t) =

∫ b
a
X(t)Y ′′(t)dt, we

have at once that

lim
n→∞

K2 = lim
n→∞

n−1/2(b− a)

(
X(b)Y ′(b)−X(a)Y ′(a)−

∫ b

a

X(t)Y ′′(t)dt

)
= 0.

Combining the above, (3.50) is proved.

This concludes the proof.

This result allows us to construct directly consistent and asymptotically nor-

mal estimators for some parameter entering the true law of the perturbed process
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X+Y , given that the p-variation Vp(X; [a, b]) of the unperturbed process X depends

non-trivially on the parameter of interest, and this dependence can be computed

explicitly.

For example, let B be a two-sided Brownian motion, and Y be a process with

a C2(R) version, and consider the stochastic process

Z(x) =
√
βB(x) + Y (x), x ∈ R,

where β is a positive, unknown parameter. Assume that Z is observed at grid points

Υm(a, b), for some interval [a, b] ⊂ R. In view of (3.42),

V2(Z; [a, b]) = V2(
√
βB; [a, b]) = β(b− a).

Consequently, the estimator

β̂m =
1

b− a

m∑
j=1

(Z(xj)− Z(xj−1))2 ,

is a consistent estimator of β, namely limm→∞ β̂m = β, P-a.s.. Moreover, it is well-

known (cf. [Nou08, AES16]) that

√
m(V2

m(B, [a, b])− (b− a))
D−−−→

m→∞
N (0, 2(b− a)2),

and thus, by Proposition 3.3.1, the estimator β̂m is asymptotically normal, with the

convergence

√
m(β̂m − β)

D−−−→
m→∞

N (0, 2β2).

Similarly, let BH be a fractional Brownian Motion (fBM) with Hurst index
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H = 1
4
, and Y be a process with continuously differentiable paths in (0,+∞). Assume

that η is the parameter of interest, and suppose that the process

ZH(t) = η1/4BH(t) + Y (t), t > 0.

is sampled at grid points ti ∈ Υn(c, d), i = 0, 1, . . . , n, with [c, d] ⊂ (0,∞). Then,

η̂n =
1

3(d− c)

n∑
i=1

(
ZH(ti)− ZH(ti−1)

)4
,

is a consistent estimator of η, since an fBM with Hurst index H has a finite, non-

zero p = 1/H-variation. The asymptotic normality of V4
n(BH ; [c, d]) is established in

Theorem B.0.3, and Corollary B.0.1, and hence, by (3.45), η̂n is also asymptotically

normal, and satisfying

√
n(η̂n − η)

D−−−→
n→∞

N (0,
1

9
σ̌2η2).

where σ̌2 is an explicit constant given in Corollary B.0.1.

As already mentioned, our method is based on p-variation that is illustrated

above. To apply this method, we need some proper representation of the solution. In

the next section, we will discuss the equations of interest and decompositions of their

solutions.

3.3.2 Stochastic Heat Equations. First, we consider the stochastic heat equation

in R,

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ R, t > 0, (3.51)

u(0, x) = 0, x ∈ R,
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where W denotes a space-time white noise on R2, θ, σ are some positive constants.

Denote

pt(x) :=
1√

4πθt
e−

x2

4θt , t > 0, x ∈ R,

which is the Gaussian density function that corresponds to the heat operator

H :=
∂

∂t
− θ ∂

2

∂x2
.

It is shown in [Kho14, Section 3] that

u(t, x) = σ

∫
(0,t)×R

pt−s(y − x) dW (s, y), (3.52)

is the unique mild solution to (3.51). The following decomposition results of the

solution (3.52) are the keys to later discussion of parameter estimation. The detailed

description of the solution and the proofs can be found in [Kho14, Section 3].

Theorem 3.3.1 ([Kho14]). Let u(t, x) be defined in (3.52). Then we have,

(a) For every fixed t > 0, there exist a two-sided Brownian motion B(x) and a Gaus-

sian process X(x) with a C∞(R) version, such that

u(t, x) =
σ√
2θ
B(x) +X(x), x ∈ R. (3.53)

(b) For every fixed x ∈ R, there exists a fractional Brownian motion BH(t) with

Hurst index H = 1/4 and a Gaussian process Y (t) that is continuous on R+ and

infinitely differentiable on (0,∞), such that

u(t, x) =
σ

(θπ)1/4
BH(t) + Y (t), t > 0. (3.54)
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Next, we consider the stochastic heat equation on the bounded domain G ⊂ R.

For simplicity, let G = [0, π].

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ (0, π), t > 0,

u(0, x) = 0, x ∈ (0, π), (3.55)

u(t, 0) = u(t, π) = 0, t > 0,

In this case, the Laplace operator ∆ = ∂xx has only discrete spectrum, with eigenval-

ues λk = −k2, k ∈ N, and corresponding eigenfunctions hk(x) =
√

2/π sin(kx), k ∈

N. Moreover, the functions {hk, k ∈ N} form a complete orthonormal system in

L2(G), and the noise term can be conveniently written as

W (t, x) =
∑
k≥1

wk(t)hk(x),

where wk, k ∈ N, are independent standard Brownian motions. Then by the discussion

in Section 3.2, the solution of this equation admits a Fourier series decomposition,

u(t, x) =
∑
k≥1

uk(t)hk(x), t > 0, x ∈ (0, π),

where each Fourier mode uk(t) is an Ornstein–Uhlenbeck process of the form

duk(t) = −θk2uk(t) dt+ σ dwk(t), t > 0,

uk(0) = 0.

Equivalently, we have that

uk(t) = σ

∫ t

0

e−θk
2(t−s) dwk(s). (3.56)
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Clearly, uk(t) ∼ N (0, (1−e−2θk2t)σ2

2θk2
), and uk, k ∈ N, are independent. We prove the

following counterpart of the representation (3.53).

Theorem 3.3.2. For every fixed t > 0, there is a Brownian motion B(x) on [0, π],

and a Gaussian process R(x), x ∈ [0, π] with a C∞(0, π) version, such that

u(t, x) =
σ√
2θ
B(x) +R(x), x ∈ [0, π].

Proof. Let’s fix t > 0 and compare (3.59) and the solution

u(t, x) =
∑
k≥1

uk(t)hk(x). (3.57)

with

ξk =

√
2θk2

(1− e−2θk2t)σ2
uk(t)

are i.i.d. standard normal random variables. Rewrite (3.57) as

u(t, x) =
σx√
2θπ

ξ0 +
σ√
2θ

∑
k≥1

1

k
ξkhk(x)− σx√

2θπ
ξ0 +

σ√
2θ

∑
k≥1

λk − 1

k
ξkhk(x),

where

λk =
√

1− e−2θk2t.

By Lemma 3.3.1,

x√
π
ξ0 +

∑
k≥1

1

k
ξkhk(x)
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is a standard Brownian motion, denoted by Wx. Let

R(x) = − σx√
2θπ

ξ0 +
σ√
2θ

∑
k≥1

λk − 1

k
ξkhk(x). (3.58)

It follows from Lemma 3.3.2 below, R(x) is infinitely differentiable with respect to x

for x ∈ (0, π). This completes the proof.

Lemma 3.3.1. Let Wt be a Brownian motion on [0, π]. Then Wt admits the following

expansion

Wt =
t√
π
ξ0 +

√
2

π

∑
k≥1

1

k
ξk sin kt, t ∈ [0, π],

=
t√
π
ξ0 +

∑
k≥1

1

k
ξkhk(t), t ∈ [0, π],

where ξk, k ≥ 0 are iid standard normal random variables on L2(Ω,F ,P) and

hk(t) =

√
2

π
sin kt, k ≥ 1.

Proof. Denote

W n
t :=

t√
π
ξ0 +

√
2

π

n∑
k=1

1

k
ξk sin kt,

then W n
t is a Gaussian process for each n ≥ 1. Moreover, for n < m, and any

t ∈ [0, π],

E (W n
t −Wm

t )2 = E

(√
2

π

m∑
k=n+1

1

k
ξk sin kt

)2

(3.59)

=
2

π

m∑
k=n+1

E
(

1

k
ξk sin kt

)2

=
2

π

m∑
k=n+1

1

k2
sin2 kt→ 0,
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as n,m→∞. Therefore, (W n
t )n≥1 is a Cauchy sequence in L2(Ω,F ,P), hence

Wt =
t√
π
ξ0 +

√
2

π

∑
k≥1

1

k
ξk sin kt

belongs to L2(Ω,F ,P). In addition, we have the following expression

Wt =
t√
π
ξ0 +

√
2

π

∑
k≥1

ξk

∫ π

0

1[0,t](s) cos ksds

=
∑
k≥0

ξk(1[0,t](x), φk(x)).

where {φ0(x) = 1√
π
, φk(x) =

√
2
π

cos kx, k ≥ 1} is also a CONS of L2([0, π]). For

t, s ≥ 0,

E (WtWs) =
∑
k≥0

(1[0,t](x), φk(x))(1[0,s](x), φk(x))

= (1[0,t](x),1[0,s](x))

= t ∧ s.

And we have

EeiuWt = lim
k→∞

EeiuW
nk
t = e−

1
2
u2t.

That is, Wt is a standard Brownian motion.

Lemma 3.3.2. R(x) defined in (3.58) is infinitely differentiable with respect to x for

x ∈ (0, π).
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Proof. We only need to show that

∑
k≥1

k(λk − 1)ξkhk(x)

converges for x ∈ (0, π) in L2(Ω,F ,P), that is, to show

m∑
k=n+1

(k(λk − 1)hk(x))2 → 0, (3.60)

as m,n→∞, for x ∈ (0, π). Note that

(λk − 1)2 = (
√

1− e−2θk2t − 1)2

=
e−4θk2t

(
√

1− e−2θk2t + 1)2

≤ e−4θk2t,

then (3.60) is obvious, since |hk(x)| ≤
√

2/π.

There is no ready available representation similar to (3.54). We will present a

close result later.

3.3.3 SPDEs on the Whole Space. Assume that t > 0 is a fixed time instant,

and consider the partition Υm(a, b) of the fixed interval [a, b] ⊂ R. Suppose that

the solution u of (3.51) is observed at the grid points {(t, xj) | xj ∈ Υm(a, b), j =

1, . . . ,m}. Consider the following estimators for θ and σ2 respectively

θ̂m,t :=
(b− a)σ2

2
∑m

j=1(u(t, xj)− u(t, xj−1))2
, (3.61)

σ̂2
m,t :=

2θ

b− a

m∑
j=1

(u(t, xj)− u(t, xj−1))2. (3.62)
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Clearly, (3.61) assumes that σ is known, while (3.62) assumes that θ is known. The

following results show that these estimators are consistent and asymptotically normal.

Theorem 3.3.3. Assuming that σ is known, the estimator (3.61) of θ is:

(i) consistent, that is limm→∞ θ̂m,t = θ, P− a.s.,

(ii) asymptotically normal,

√
m(θ̂m,t − θ)

D−−−→
m→∞

N (0, 2θ2). (3.63)

Proof. Using the representation (3.53), and in view of Proposition 3.3.1, consistency

of θ̂m,t follows at once. In addition, we also have that

√
m

(
m∑
j=1

(u(t, xj)− u(t, xj−1))2 − (b− a)σ2

2θ

)
D−−−→

m→∞
N (0,

(b− a)2σ4

2θ2
).

Consequently, a direct application of Delta-Method yields (3.63), and this concludes

the proof.

Similarly, employing again Proposition 3.3.1, one has the following result.

Theorem 3.3.4. Assuming that θ is known, the estimator (3.62) is a consistent and

asymptotically normal estimator of σ2, with

√
m(σ̂2

m,t − σ2)
D−−−→

m→∞
N (0, 2σ4). (3.64)

In this section we assume that the solution u of (3.55) is observed at the grid

points {(ti, x) : i = 1, . . . , n}, where x ∈ R is a fixed spatial point, and 0 < c < d <

∞. We consider the following estimators for θ and σ2 respectively,

θ̂n,x :=
3(d− c)σ4

π
∑n

i=1(u(ti, x)− u(ti−1, x))4
, (3.65)
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σ̂2
n,x :=

√√√√ θπ

3(d− c)

n∑
i=1

(u(ti, x)− u(ti−1, x))4. (3.66)

Similar the previous section, the following results about asymptotic properties

of these estimators hold.

Theorem 3.3.5. Given that σ is known, we have that

lim
n→∞

θ̂n,x = θ, P− a.s.
√
n(θ̂n,x − θ)

D−−−→
n→∞

N (0,
1

9
θ2σ̌2).

Assuming that θ is known, we have that

lim
n→∞

σ̂2
n,x = σ2, P− a.s.

√
n(σ̂2

n,x − σ2)
D−−−→

n→∞
N (0,

1

36
σ4σ̌2).

where σ̌2 is the constant given in (B.3).

The proof is analogous to the proofs of Theorems 3.3.3 and 3.3.4 and is omitted

here.

3.3.4 SPDEs on a Bounded Domain. In view of Theorem 3.3.2, and similar

to the Theorem 3.3.3, the estimator with spatial sampling at a fixed time instant is

studied in the following result. The proof is analogous and is omitted here.

Theorem 3.3.6. Let u be the solution to (3.55), and assume that u is sampled at

discrete points {(t, xj) | xj ∈ Υm(a, b)}, for some fixed t > 0 and a, b ∈ (0, π). Then,

assuming σ is known, θ̂m,t given by (3.61) is a consistent and asymptotically normal

estimator for θ, satisfying (3.63). Respectively, if θ is known, then σ̂2
m,t in (3.62) is a

consistent and asymptotically normal estimator of σ2, satisfying (3.64).
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The case of sampling the solution in time at a fixed spatial point for bounded

domains is more delicate, primarily since there is no ready available representation

similar to (3.54). In [Wal81] the author proved that for a similar SPDE at x = 0 the

4-variation (in time) of the solution converges to a constant. We start by proving

that the 4−variation converges to a constant at any fixed space point x. In addition,

we also establish the asymptotic normality property of the 4-variation.

Proposition 3.3.2. Let x ∈ (0, π) be a fixed space point. Then, the solution u(t, x)

of the equation (3.55) admits the following decomposition

u(t, x) =
σ

(πθ)1/4
v(t) + S(t), t > 0, (3.67)

where v and S are zero-mean Gaussian processes such that:

(a) S(t) is continuous on [0,+∞), and infinitely differentiable on (0,∞);

(b) v(t) has finite 4−variation (with convergence in probability)

P− lim
n→∞

V4
n(v; [c, d]) = 3(d− c). (3.68)

(c) the 4-variation admits the asymptotic normality property

√
n

(
V4
n(v; [c, d])

nσ4
n

− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4), (3.69)

where

σ2
n =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−(d−c)θk2/n),

σ̄2
2 = 72 + 144 lim

n→∞

n−1∑
j=1

(1− j

n
)|F (j)

σ2
n

|2, σ̄2
4 = 24 + 48 lim

n→∞

n−1∑
j=1

(1− j

n
)|F (j)

σ2
n

|4,
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and

F (j) =
1√
πθ

∑
k≥1

sin2(kx)

k2

(
2e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n − e−(j−1)(d−c)θk2/n
)
.

Moreover,

√
n

(
πθV4

n (u(·, x); [c, d])

nσ4
nσ

4
− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4). (3.70)

where σ2
n, σ̄

2
2 and σ̄2

4 are given above.

Before we prove Proposition 3.3.2, we first prove the following key limit.

Lemma 3.3.3. For any x ∈ (0, π) and θ > 0, the following holds true

lim
n→∞

√
n
∑
k≥1

sin2(kx)

k2

(
1− e−θk2/n

)
=

√
πθ

2
. (3.71)

Proof. Note that

sin2(kx) =
1

2
− sin((2k + 1)x)− sin((2k − 1)x)

4 sinx
,

and therefore,

√
n
∑
k≥1

sin2(kx)

k2

(
1− e−θk2/n

)
√
n
∑
k≥1

1

2k2

(
1− e−θk2/n

)
−
√
n
∑
k≥1

sin((2k + 1)x)− sin((2k − 1)x)

4k2 sinx

(
1− e−θk2/n

)

=: L1
n − L2

n.
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To prove (3.71), we will show that L1
n →

√
πθ/2, and L2

n → 0.

It is straightforward to check that for any ε > 0, the function (1 − e−εx)/x,

x > 0, is decreasing. It is also easy to show that

∫ ∞
0

1− e−z2

z2
dz =

√
π.

Using these, we obtain

L1
n =
√
n
∑
k≥1

∫ k

k−1

1

2k2

(
1− e−θk2/n

)
dz ≤

√
n
∑
k≥1

∫ k

k−1

1

2z2

(
1− e−θz2/n

)
dz

=

√
n

2

∫ ∞
0

1

z2

(
1− e−θz2/n

)
dz =

√
n

2

∫ ∞
0

1

y2n/θ

(
1− e−y2

)
dy
√
n/θ

=

√
θ

2

∫ ∞
0

1

y2

(
1− e−y2

)
dy =

√
πθ

2
. (3.72)

On the other hand,

L1
n =
√
n
∑
k≥1

∫ k+1

k

1

2k2

(
1− e−θk2/n

)
dz ≥

√
n
∑
k≥1

∫ k+1

k

1

2z2

(
1− e−θz2/n

)
dz

=

√
n

2

∫ ∞
1

1

z2

(
1− e−θz2/n

)
dz =

√
n

2

∫ ∞
√
θ/n

1

y2n/θ

(
1− e−y2

)
dy
√
n/θ

=

√
θ

2

∫ ∞
√
θ/n

1

y2

(
1− e−y2

)
dy −→

n→∞

√
πθ

2
. (3.73)

Combing (3.72) and (3.73), we conclude that L1
n →

√
πθ/2.

Denote by

fk :=
1− e−θk2/n

k2
, k ≥ 1,

and as above, one can show that {fk, k ∈ N} is a decreasing sequence. By simple
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rearrangement of terms, we get

L2
n =
√
n
∑
k≥2

sin((2k − 1)x) (fk−1 − fk)−
√
n sinxf1.

Thus,

|L2
n| ≤

√
n
∑
k≥2

∣∣∣ sin((2k − 1)x)
∣∣∣ (fk−1 − fk) +

√
n sinxf1

≤
√
n
∑
k≥2

(fk−1 − fk) +
√
nf1 ≤ 2

√
nf1 = 2

√
n
(
1− e−θ/n

)
≤ 2
√
n
θ

n
= 2

θ√
n
−→
n→∞

0.

The proof is complete.

Now let us prove Proposition 3.3.2.

Proof of Proposition 3.3.2. Assume that x ∈ (0, π) is fixed. We start by constructing

the Gaussian processes S, v. Let {ηk, k ∈ N} be a sequence of i.i.d. standard normal

random variables, independent of {uk, k ∈ N}, and let

Sk(t) :=
σ√
2θk

e−θk
2tηk, k ∈ N, t ≥ 0,

S(t) :=
∞∑
k=1

Sk(t)hk(x), t ≥ 0.

Consequently, we put

vk(t) :=
(θπ)1/4

σ
(uk(t)− Sk(t)) , k ∈ N, t ≥ 0,

v(t) :=
∑
k≥1

vk(t)hk(x), t ≥ 0, x ∈ (0, π).

Clearly, S and v are zero-mean Gaussian processes that satisfying (3.67).
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(a) It is straightforward to check that S is continuous on [0,+∞)] and infinitely

differentiable on (0,∞). Moreover,

E |Sk(t+ ε)− Sk(t)|2 =
σ2

2θk2
e−2θk2t

(
1− e−θk2ε

)2

, k ∈ N, t ≥ 0. (3.74)

(b) By direct computations, using (3.56), one can show that

E |uk(t+ ε)− uk(t)|2 =
σ2

2θk2
(1− e−θk2ε)

(
2− (1− e−θk2ε)e−2θk2t

)
, (3.75)

for t ≥ 0, ε > 0, k ∈ N. Combining (3.74), (3.75) and the independence between Sk

and uk, we deduce that

E |vk(t+ ε)− vk(t)|2 =

√
π√
θk2

(1− e−θk2ε), k ∈ N, t ≥ 0.

Consequently, we have that

E |v(t+ ε)− v(t)|2 =
∑
k≥1

E |vk(t+ ε)− vk(t)|2 h2
k(x) =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−θk2ε).

We will prove (3.68) by showing that

lim
n→∞

E
(
V4
n(v; [c, d])

)
= 3(d− c), (3.76)

lim
n→∞

Var
(
V4
n(v; [c, d])

)
= 0. (3.77)

Denote by

σ2
n := E |v(tj)− v(tj−1)|2 =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−(d−c)θk2/n), n ∈ N.
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In view of Lemma 3.3.3,

lim
n→∞

√
nσ2

n =
√
d− c. (3.78)

Since v is a zero-mean Gaussian process, we have

E |v(tj)− v(tj−1)|4 = 3
(
E |v(tj)− v(tj−1)|2

)2
= 3σ4

n,

therefore

lim
n→∞

E
(
V4
n(v; [c, d])

)
= lim

n→∞

n∑
j=1

E |v(tj)− v(tj−1)|4 = lim
n→∞

3nσ4
n = 3(d− c),

and hence (3.76) is proved. Next, note that

Var
(
V4
n(v; [c, d])

)
= E

(
V4
n(v; [c, d])− E

(
V4
n(v; [c, d])

))2

=
n∑
j=1

E
(
|v(tj, x)− v(tj−1, x)|4 − 3σ4

n

)2

+ 2
∑
i<j

E
(
|v(ti, x)− v(ti−1, x)|4 − 3σ4

n

) (
|v(tj, x)− v(tj−1, x)|4 − 3σ4

n

)
=: J1 + J2.

According to (3.78), we deduce that

J1 =
n∑
j=1

E
(
|v(tj, x)− v(tj−1, x)|8

)
− 9nσ8

n = 96nσ8
n −→
n→∞

0. (3.79)

As far as J2, for j ≥ 1, we put

F (j) := E (v(ti, x)− v(ti−1, x)) (v(ti+j, x)− v(ti+j−1, x))

=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
2e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n − e−(j−1)(d−c)θk2/n
)
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= Gj −Gj−1,

where

Gj :=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n
)
, j ≥ 0,

and also put F (0) := σ2
n. Since F (j) < 0, we have that Gj < Gj−1. Using the

property of joint normal distributions, we continue

J2 = 2
∑
i<j

E
(
|v(ti, x)− v(ti−1, x)|4 − 3σ4

n

) (
|v(tj, x)− v(tj−1, x)|4 − 3σ4

n

)
= 2

∑
i<j

(
24F 4(j − i) + 72F 2(j − i)σ4

n

)
.

From here, since |F (j − i)| ≤ σ2
n, we deduce that

J2 ≤ 2
∑
i<j

(
24|F (j − i)|σ6

n + 72|F (j − i)|σ6
n

)
= 192

∑
i<j

|F (j − i)|σ6
n

= 192σ6
n

n−1∑
j=1

(n− j) (Gj−1 −Gj) .

Note that
∑n−1

j=1 (n− j) (Gj−1 −Gj) = nG0 −
∑n−1

j=0 Gj, and since

n−1∑
j=0

Gj =
n−1∑
j=0

1√
πθ

∑
k≥1

sin2(kx)

k2

(
e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n
)

=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2

)
=

1

2
σ2

1,
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and G0 = 1
2
σ2
n, we conclude that

J2 ≤ 192σ6
n

(
n

1√
πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2/n

)
− 1√

πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2

))

= 192σ6
n

(
n

2
σ2
n −

1

2
σ2

1

)
n→∞−→ 0. (3.80)

according to (3.78). Combining (3.79) and (3.80), (3.77) is proved. Consequently, by

(3.76) and (3.77), we also have that V4
n(v; [c, d]) converges to 3(d− c), both in L2 and

in probability.

(c) We will apply Theorem B.0.4, by showing that (B.4) and along with condition

(N1) are satisfied. We begin by establishing the following estimates

r∑
j=−l

|F (|j|)|m ≤ 2σ2m
n , (3.81)

for any m ≥ 1, `, r ∈ N. Since m ≥ 1,

r∑
j=1

|F (j)|m =
r∑
j=1

|F (j)|m−1 |F (j)| ≤
r∑
j=1

σ2(m−1)
n |F (j)|

=
r∑
j=1

σ2(m−1)
n (Gj−1 −Gj) = σ2(m−1)

n (G0 −Gr−1)

≤ σ2(m−1)
n G0 =

1

2
σ2m
n ,

where we used the fact that Gj ≥ 0 and G0 = 1
2
σ2
n. Therefore,

r∑
j=−l

|F (|j|)|m = (σ2
n)m +

r∑
j=1

|F (j)|m +
l∑

j=1

|F (j)|m

≤ σ2m
n +

1

2
σ2m
n +

1

2
σ2m
n = 2σ2m

n .
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With slight abuse of notations, just in this proof, we denote by ∆vnj := v(tj, x) −

v(tj−1, x). Let H be the closed subspace of L2(Ω,F ,P) generated by the random

variables
∆vnj
σn

, 1 ≤ j ≤ n; j, n ∈ N. Then,

∣∣∣∣∆vnjσn
∣∣∣∣4 − 3 =

(∣∣∣∣∆vnjσn
∣∣∣∣4 − 6

∣∣∣∣∆vnjσn
∣∣∣∣2 + 3

)
+ 6

(∣∣∣∣∆vnjσn
∣∣∣∣2 − 1

)

= H4

(
∆vnj
σn

)
+ 6H2

(
∆vnj
σn

)
= I4

[(
∆vnj
σn

)⊗4
]

+ 6I2

[(
∆vnj
σn

)⊗2
]
.

Therefore,

√
n

(
V4
n(v; [c, d])

nσ4
n

− 3

)
= I4

[
1√
n

n∑
j=1

(
∆vnj
σn

)⊗4
]

+ I2

[
6√
n

n∑
j=1

(
∆vnj
σn

)⊗2
]

(3.82)

Let

f (2)
n :=

6√
n

n∑
j=1

(
∆vnj
σn

)⊗2

, f (4)
n :=

1√
n

n∑
j=1

(
∆vnj
σn

)⊗4

, (3.83)

and consider the sequence of two-dimensional random vectors Fn :=
(
I2(f

(2)
n ), I4(f

(4)
n )
)

,

n ∈ N, to which we will apply Theorem B.0.4. Using the properties of Wiener integral,

we obtain that

lim
n→∞

E
(
I2(f (2)

n )I4(f (4)
n )
)

= 0,

and hence (B.4) is satisfied.

Next, we move to verification of condition (N1), which in this case becomes

lim
n→∞

‖f (m)
n ⊗r f (m)

n ‖2
H2⊗(m−r) = 0. (3.84)
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for m = 2, 4, and 1 ≤ r ≤ m− 1.

Using the linearity of the inner products and the properties of the tensor

products of Hilbert spaces, we obtain

E
(
I2(f (2)

n )
)2

= 2〈f (2)
n , f (2)

n 〉H⊗2 =
72

n

〈 n∑
j=1

(
∆vnj
σn

)⊗2

,

n∑
j=1

(
∆vnj
σn

)⊗2 〉
H⊗2

=
72

n

n∑
i,j=1

〈(∆vni
σn

)⊗2

,

(
∆vnj
σn

)⊗2 〉
H⊗2

=
72

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉2

H

=
72

n

n∑
i,j=1

[
E
(

∆vni
σn
·

∆vnj
σn

)]2

=
72

n

n∑
i,j=1

|F (|j − i|)|2

σ4
n

=
72

nσ4
n

(
n∑
j=1

|F (0)|2 + 2
∑
i<j

|F (j − i)|2
)

=
72

nσ4
n

(
nσ4

n + 2
n−1∑
j=1

(n− j)|F (j)|2
)

= 72 +
144

σ4
n

n−1∑
j=1

(1− j

n
)|F (j)|2 = 72 + 144

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 .
In view of (3.81), we have that

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 ≤ ∞∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 <∞,
and thus

σ̄2
2 := lim

n→∞
E
(
I2(f (2)

n )
)2

= 72 + 144 lim
n→∞

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 <∞.
Similarly,

E
(
I4(f (4)

n )
)2

= 24
〈
f (4)
n , f (4)

n

〉
H⊗4

=
24

n

〈 n∑
j=1

(
∆vnj
σn

)⊗4

,

n∑
j=1

(
∆vnj
σn

)⊗4 〉
H⊗4

=
24

n

n∑
i,j=1

〈(∆vni
σn

)⊗4

,

(
∆vnj
σn

)⊗4 〉
H⊗4

=
24

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉4

H
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=
24

n

n∑
i,j=1

[
E
(

∆vni
σn
·

∆vnj
σn

)]4

=
24

n

n∑
i,j=1

|F (|j − i|)|4

σ8
n

≤ 24 + 48
n−1∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 ≤ 24 + 48
∞∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 < ∞,
and consequently,

σ̄2
4 := lim

n→∞
E
(
I4(f (4)

n )
)2

= 24 + 48 lim
n→∞

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 <∞.
Let a2 = 6, a4 = 1. Then,

‖f (m)
n ⊗r f (m)

n ‖2
H2⊗(m−r) = ‖ am√

n

n∑
j=1

(
∆vnj
σn

)⊗m
⊗r

am√
n

n∑
j=1

(
∆vnj
σn

)⊗m
‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

(
∆vni
σn

)⊗m
⊗r
(

∆vnj
σn

)⊗m
‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉r
H

(
∆vni
σn

)⊗(m−r)

⊗
(

∆vnj
σn

)⊗(m−r)

‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

|F (|j − i|)|r

σ2r
n

(
∆vni
σn

)⊗(m−r)

⊗
(

∆vnj
σn

)⊗(m−r)

‖2
H⊗2(m−r)

=
a4
m

n2σ4m
n

n∑
i,j,i′,j′=1

|F (|j − i|)|r|F (|j′ − i′|)|r|F (|i′ − i|)|m−r|F (|j′ − j|)|m−r

≤ a4
m

n2σ4m
n

n∑
i,j,i′,j′=1

|F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)|σ4m−8
n

=
a4
m

n2σ8
n

n∑
i,j,i′,j′=1

|F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)|

= O1 + 2O2,

where

O1 :=
a4
m

n2σ8
n

n∑
i′,j′=1

n∑
i=1

∣∣∣ F (0)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i|)
∣∣∣ ,



100

O2 :=
a4
m

n2σ8
n

n∑
i′,j′=1

∑
i<j

∣∣∣ F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)
∣∣∣ .

First note that, by direct computations and using (3.81), we have

O1 =
a4
m

n2σ6
n

n∑
i′,j′=1

n∑
i=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)F (|j′ − i|)
∣∣∣

≤ a4
m

n2σ6
n

n∑
i′,j′=1

n∑
i=1

| F (|j′ − i′|) | F (|i′ − i|)2 + F (|j′ − i|)2

2

≤ a4
m

n2σ6
n

n∑
i′,j′=1

| F (|j′ − i′|) | 2σ4
n + 2σ4

n

2
≤ 2a4

m

n2σ2
n

n∑
i′,j′=1

| F (|j′ − i′|) |

≤ 2a4
m

n2σ2
n

(
n∑
j=1

|F (0)|+ 2
∑
i<j

| F (j − i) |

)

≤ 2a4
m

n
+

4a4
m

n2σ2
n

n−1∑
j=1

(n− j) | F (j) | =
2a4

m

n
+

4a4
m

n

n−1∑
j=1

(1− j

n
) | F (j)

σ2
n

|

−→
n→∞

0.

Similarly,

O2 =
a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (|i+ k − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i− k|)
∣∣∣

=
a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (k)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i− k|)
∣∣∣

≤ a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)
∣∣∣ F (k)2 + F (|j′ − i− k|)2

2

≤ 2a4
m

n2σ4
n

n∑
i′,j′=1

n−1∑
i=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)
∣∣∣ ≤ 4a4

m

n2σ2
n

n∑
i′,j′=1

∣∣∣ F (|j′ − i′|)
∣∣∣

−→
n→∞

0.

Thus, (3.84) holds true. Therefore, (N2) from Theorem B.0.4 holds true, namely, we
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have that

Fn
D−−−→

n→∞
N

0,

 σ̄2
2 0

0 σ̄2
4


 . (3.85)

Consequently, (3.69) follows from (3.82),(3.83) and (3.85). Finally, (3.69) implies

(3.70), by using that

√
n

(
πθV4

n (u(·, x); [c, d])

nσ4
nσ

4
− V4

n(v; [c, d])

nσ4
n

)
→ 0, in L2 and in probability.(3.86)

The proof of (3.86) follows by similar arguments as in proof of Proposition 3.3.1 and

we omit it here.

The proof is complete.

Next, we present the main results of this subsection on consistency and asymp-

totic normality of the estimators (3.65) and (3.66).

Theorem 3.3.7. Let u be the solution to (3.55), and assume that u is sampled at

discrete points {(ti, x) | ti ∈ Υn(c, d)}, for some fixed x ∈ (0, π), and 0 < c < d <∞.

Then, assuming σ is known, θ̂n,x given by (3.65) is a weakly consistent estimator for

θ, that is

P− lim
n→∞

θ̂n,x = θ. (3.87)

Respectively, if θ is known, then σ̂2
n,x in (3.66) is a weakly consistent estimator of σ2.

Moreover, θ̂n,x and σ̂2
n,x satisfy the following central limit type convergence

√
n

(
θ̂n,x −

(d− c)θ
nσ4

n

)
D−−−→

n→∞
N (0, θ2

(
σ̄2

2 + σ̄2
4

)
), (3.88)
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√
n

(
σ̂2
n,x −

√
nσ2

n√
d− c

σ2

)
D−−−→

n→∞
N (0,

1

36
σ4
(
σ̄2

2 + σ̄2
4

)
). (3.89)

Proof. Consistency is a direct consequence of Proposition 3.3.2.(a)-(b) and (3.43)

from Proposition 3.3.1.

Combining (3.65) and (3.70), we have

√
n

(
3(d− c)θ
θ̂n,xnσ4

n

− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4). (3.90)

Due to (3.87), and by Slutsky’s theorem, multiply by θ̂n,x/3 on the left side of (3.90),

(3.88) follows at once.

Combining (3.66) and (3.70), we have

√
n

(
3(d− c)σ̂4

n,x

nσ4
nσ

4
− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4). (3.91)

According to (3.78), we have

lim
n→∞

nσ4
n = d− c,

and thus by Slutsky’s theorem, multiply nσ4
n/(d− c) on the left side of (3.91) will not

affect the convergence in distribution, that is,

√
n

(
3σ̂4

n,x

σ4
− 3nσ4

n

d− c

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4).

Note that

3σ̂4
n,x

σ4
− 3nσ4

n

d− c
=

(
σ̂2
n,x

σ2
−
√
nσ2

n√
d− c

)(
3σ̂2

n,x

σ2
+

3
√
nσ2

n√
d− c

)
,
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and

3σ2
n,x

σ2
+

3
√
nσ2

n√
d− c

→ 6 as n→∞,

we have

√
n

(
σ̂2
n,x

σ2
−
√
nσ2

n√
d− c

)
D−−−→

n→∞
N (0,

1

36
(σ̄2

2 + σ̄2
4)).

Multiply σ2 gives (3.89). This completes the proof.

3.4 Numerical Simulation of Estimators

We conclude this chapter with numerical simulations of the solutions and es-

timators for the stochastic heat equation (3.55),

du(t, x) = θ∆u(t, x) dt+ σ dW (t, x), t ≥ 0, x ∈ (0, π),

u(0, x) = 0, x ∈ (0,π), u(t, 0) = u(t, π) = 0, t ≥ 0.

where

W (t, x) =
∑
k≥0

√
2/π sin(kx)wk(t),

and wk, k ≥ 0 are independent standard Brownian motions. The simulations and

plots in this section are implemented in MATLAB®, the programs are available from

the author upon request.

3.4.1 Simulation of Fourier Modes and Solution. We know that the solution

is

u(t, x) =
∑
k≥1

uk(t)hk(x), t > 0, x ∈ (0, π), (3.92)
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where each Fourier mode uk(t) is an Ornstein–Uhlenbeck process of the form

duk(t) = −θk2uk(t) dt+ σ dwk(t), t > 0, uk(0) = 0. (3.93)

We can simulate each Fourier mode uk(t) for k = 1, 2, . . . , N and then approximate

(3.92) by

uN(t, x) =
N∑
k=1

uk(t)hk(x). (3.94)

To simulate uk, we first prove the following lemma.

Lemma 3.4.1. Suppose that f(t) is some nonzero deterministic integrable function.

Let

g(t) =

∫ t

0

[f(s)]2 ds.

If the process Y is the solution to the SDE

dY (t) = f(t) dB(t), Y (0) = 0

where B is a standard Brownian motion, then

Y (t) = W (g(t)),

for some standard Brownian motion W .

Proof. Define τs := inf{t ≥ 0 : g(t) > s}. It is easy to see that τs is a stopping

time w.r.t the natural filtration of B. And moreover, τs is strictly increasing w.r.t s.

Applying Itô’s formula to eivYt , here i =
√
−1,

deivY (t) = iveivY (t)f(t) dB(t)− 1

2
v2eivY (t)f 2(t) dt (3.95)



105

Integrating (3.95) from τs1 to τs2 , s1 < s2,

eivY (τs2 ) − eivY (τs1 ) =

∫ τs2

τs1

iveivY (t)f(t) dB(t)− 1

2
v2

∫ τs2

τs1

eivY (t)f 2(t) dt

Consider the change of variable t = τs, then

∫ τs2

τs1

eivY (t)f 2(t) dt =

∫ s2

s1

eivY (τs) ds

Therefore

eivY (τs2 ) = eivY (τs1 ) +

∫ τs2

τs1

iveivY (t)f(t) dB(t)− 1

2
v2

∫ s2

s1

eivY (τs) ds

Define Z(s, s1) := E
(
eiv(Y (τs)−Y (τs1 ))|Gs1

)
, where Gs = Fτs , with Ft, t ≥ 0 is the

natural filtration generated by B. Then

Z(s2, s1) = 1− 1

2
v2

∫ s2

s1

Z(s, s1) ds, Z(s1, s1) = 1.

Solving the above integral equation,

Z(s2, s1) = e−
1
2
v2(s2−s1),

which essentially means Y (τs2)−Y (τs1) ∼ N(0, s2− s1). And Y (τs2)−Y (τs1) is inde-

pendent of Gs1 . In addition, E(Y (τs2)−Y (τs1))
4 = 3(s2−s1)2. Thus, by Kolmogorov’s

Criterion, Y (τs) is continuous. In conclusion, Y (τs) is a standard Brownian motion,

denoted by W . Then changing the variable, we get

Y (t) = W (g(t)).
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By (3.93),

deθk
2tuk(t) = σeθk

2t dwk(t).

Let f(t) := σeθk
2t, g(t) :=

∫ t
0
[f(s)]2ds, then by Lemma 3.4.1,

eθk
2tuk(t)− eθk

2suk(s) = w̃k(g(t))− w̃k(g(s)),

for some standard Brownian motion w̃k. Moreover, we know

g(t) = σ2 · e
2θk2t − 1

2θk2
.

If we have a partition 0 = t0 < t1 < · · · < tn = T of [0, T ] with tj = j∆t, j =

0, 1, · · · , n and ∆t = T/n, then we have a numerical scheme for approximating uk,

ũk(tj) = e−θk
2∆tũk(tj−1) + σ

√
1− e−2θk2∆t

2θk2
ξj,

where ξj, j = 1, 2, · · · , n are iid standard normal random variables. Once we simulate

the Fourier modes, we can approximate the solution using (3.94).

3.4.2 Simulation of MLE and TFE. Once we simulate the first N Fourier modes,

we are ready to compute MLE and TFE from these modes using (3.2) and (3.11), re-

spectively. Here we give a plot of the convergence for these estimators as N increases.

3.4.3 Simulation of p-Variation Type Estimator. Once we simulate the solu-

tion u(t, x), we are ready to compute the estimators (3.61), (3.62), (3.65), and (3.66).

Here we give the plots of the convergence for these estimator as number of observa-

tions increase.
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Figure 3.1. Convergence of MLE and TFE as N →∞
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Figure 3.2. Convergence of the estimators for θ and σ2
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CHAPTER 4

FUTURE WORK

In Chapter 2, we have studied the Wiener-Hopf factorization for finite-state

time-inhomogeneous Markov chains with a piece-wise constant generator matrix. We

plan to address the following problems as part of future research.

1. We will start by developing the theory of Wiener-Hopf factorization for finite

state Markov chains with general time dependent generators that are non nec-

essarily piece-wise constant matrices.

2. Next we will study the theory of Wiener-Hopf factorization for time-inhomogeneous

Markov processes with general state space.

3. We will investigate the so-called “noisy” Wiener-Hopf factorization where the

additive functional is perturbed by an independent standard Brownian motion

and the Markov chain is time-inhomogeneous.

4. We will study the connection between the Wiener-Hopf factorization for Markov

processes developed herein and the existing Winer-Hopf factorization theory for

Lévy processes. Consequently, we plant to develop the Wiener-Hopf factoriza-

tion for time-inhomogeneous Lévy processes.

In Chapter 3, we have studied the statistical inference for SPDEs mostly driven

by an additive noise. One of the major future task is to study the parameter estima-

tion problem for SPDEs with multiplicative noise.

1. We will study the estimators for SPDEs with multiplicative noise within spectral

approach.
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2. Beyond spectral approach, we also plan to study the discrete sampling for

stochastic heat equation with multiplicative noise. The consistency of the es-

timators is already studied, while the asymptotic normality remains an open

question.

3. Since the solution to a stochastic heat equation with additive space-time white

noise is a Gaussian random field, we know the characteristics of this random

field, namely the mean and the covariance structure. Thus, the discretely sam-

pled data has a multivariate normal distribution, and we plan to study the statis-

tical inference problem using the methods from classical statistics for Gaussian

fields.

4. Finally, we will investigate problems in statistical inference for SPDEs driven

by non-Gaussian noises, such as Lévy noise.
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APPENDIX A

NUMERICAL INVERSE LAPLACE TRANSFORM
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For the convenience of the reader, we will briefly recall the basics of Laplace

transform and its inverse. Then, we will proceed with an important result regarding

the approximation of the multivariate inverse Laplace transform.

Let f : [0,∞)n → [0,∞) be a Borel measurable function such that

∫ ∞
0

· · ·
∫ ∞

0

f(t1, . . . , tn)
n∏
k=1

e−qktk dt1 · · · dtn

exists for any q1, . . . , qn > 0. Then, the multivariate Laplace transform f̂ of f , defined

by

f̂(q1, . . . , qn) = L(f)(q1, . . . , qn) :=

∫ ∞
0

· · ·
∫ ∞

0

f(t1, . . . , tn)
n∏
k=1

e−qktk dt1 · · · dtn,

is well-defined for any qk ∈ C+, k = 1, . . . , n, where5 C+ := {z ∈ C | <(z) > 0} with

<(z) denoting the real part of z ∈ C. The inverse multivariate Laplace transform

of function g : (C+)n → C, is the function ǧ, such that L(ǧ) = g. We will also

write ǧ = L−1(g). The existence and uniqueness of the inverse Laplace transform is

a well understood subject (cf. [Wid41]). Although there are explicit formulas of the

inverse Laplace transform for many functions, generally speaking, in many practical

situations the inverse Laplace transform of a function is computed by numerical ap-

proximation techniques. We refer the reader to [AW06], and the references therein,

for a unified framework for numerically inverting the Laplace transform. For sake of

completeness, we present here one such method – the Talbot inversion formula – for

one and two dimensional case; the multidimensional case is done by analogy.

Assume that f̂ is the Laplace transform of a function f : (0,+∞) → C. The

5We will denote by <(z) the real part of z ∈ C, and i =
√
−1 will be used to

denote the imaginary unit.
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Talbot inversion formula to approximate f is given by

f bM(t) =
2

5t

M−1∑
k=0

<
(
γkf̂(

δk
t

)

)
, (A.1)

where

δ0 =
2M

5
, δk =

22kπ

5
(cot(

kπ

M
) + i), 0 < k < M,

γ0 =
1

2
eδ0 , γk =

(
1 + i

kπ

M
(1 + cot2(

kπ

M
))− i cot(

kπ

M
)

)
eδk , 0 < k < M.(A.2)

Analogously, given a Laplace transform ĝ of a complex-valued function g of two non-

negative real variables, the Talbot inversion formula to compute g(t1, t2) numerically

is given by

gbM(t1, t2) =
2

25t1t2

M−1∑
k1=0

<

{
γk1

M−1∑
k2=0

[
γk2 ĝ

(
δk1
t1
,
δk2
t2

)
+ γ̄k2 ĝ

(
δk1
t1
,
δ̄k2
t2

)]}
,

where δk, γk, 0 ≤ k < M, are given in (A.2).

Next let us consider a function f : [0,∞)→ [0,∞) and its Laplace transform

f̂(q), for q ∈ C+. It turns out that the inverse Laplace transform of f can be

approximated numerically by using only values of the function f̂ on the positive real

line. One such approximation is the Gaver-Stehfest formula

fn(t) =
n log 2

t

(
2n

n

) n∑
k=0

(−1)k
(
n

k

)
f̂

(
(n+ k) log 2

t

)
. (A.3)

For other methods and the comparison of their speeds of convergence we refer to

[AW06]. Consecutive application of (A.3) leads to the multivariate Gaver-Stehfest

formula.
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AUXILIARY RESULTS FROM STATISTICAL INFERENCE FOR SPDES



115

In this section, we present several results that are used in Chapter 3. The first

important result is the Strong Law of Large Numbers in which the random variables

are not necessarily identically distributed.

Theorem B.0.1 ([Shi96]). (Strong Law of Large Number) Let {ηn}n∈N be a

sequence of independent random variables, and let {bn}n∈N be a sequence of non-

decreasing positive numbers such that limn→∞ bn =∞. If

∞∑
n=1

Var (ηn)

b2
n

<∞,

then

lim
n→∞

1

bn

n∑
k=1

(ηk − E(ηk)) = 0, P− a. s..

Remark B.0.1. As an immediate corollary, if {ηn}n∈N is a sequence of independent

non-negative random variables with

∞∑
n=1

E(ηn) =∞ and
∞∑
n=1

Var (ηn)

(
∑n

k=1 E(ηk))
2 <∞,

then

lim
n→∞

∑n
k=1 ηk∑n

k=1 E(ηk)
= 1, P− a. s..

Next we discuss three central limit theorems in which the random variables

are not necessarily identically distributed and/or independent.

Theorem B.0.2 ([Shi96]). (Lyapunov Central Limit Theorem) Let {ηn}n∈N be a

sequence of independent random variables with finite second moments. If there exists
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some δ > 0, such that

lim
n→∞

1

(
∑n

k=1 Var(ηk))
2+δ

n∑
k=1

E
(
|ηk − E(ηk)|2+δ

)
= 0, (B.1)

then

∑n
k=1 (ηk − E(ηk))√∑n

k=1 Var(ηk)

D−→ N (0, 1), n→∞.

The next result is a central limit theorem for the summation of Hermite poly-

nomials of stationary Gaussian increments. In this result, the summands are not

necessarily independent.

Theorem B.0.3. Let {Xt, t ≥ 0} be a Gaussian process with the following properties

(i) X0 = 0, and EXt = 0, t ≥ 0.

(ii) Xt+s −Xt ∼ N (0, σ2(s)), where σ(s) is a deterministic function of s.

(iii) There exists a constant γ > 0 such that (Xαt, t ≥ 0)
D
= αγ (Xt, t ≥ 0), for any

α > 0.

(iv) For any t ≥ 0,∆t > 0, the sequence Xt+n∆t −Xt+(n−1)∆t, n ∈ N is stationary.

In particular, Yn = Xn−Xn−1

σ(1)
, n ∈ N, is a zero mean and stationary Gaussian

sequence with unit variance.

(v) Let r be the covariance function of Y , r(n) = EYmYm+n, and assume that for

some positive integer k,
∑

n≥1 r
k(n) <∞.

Then,

1√
n

n∑
j=1

H

(
nγ

σ(1)

(
Xj/n −X(j−1)/n

)
; k

)
D−−−→

n→∞
σ̌N (0, 1), (B.2)
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where

σ̌2 =
∞∑
l=k

c2
l l!σ̌

2
l , σ̌2

l = lim
n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|).

Proof. By [BM83, Theorem 1], applied to the sequence Y , we immediately get

1√
n

n∑
j=1

H(Yj; k)
D−−−→

n→∞
σ̌N (0, 1),

where

σ̌2 =
∞∑
l=k

c2
l l!σ̌

2
l , σ̌2

l = lim
n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|).

Since

(Xj/n −X(j−1)/n, j = 1, 2, . . . , n)
law
=

1

nγ
(Xj −Xj−1, j = 1, 2, . . . , n),

we conclude that (B.2) holds.

The following result is an immediate consequence of Theorem B.0.3.

Corollary B.0.1. Let BH be a fractional Brownian motion with Hurst parameter

H = 1/4. Then,

√
n
(
V4
n(BH ; [a, b])− 3(b− a)

) D−−−→
n→∞

(b− a)σ̌N (0, 1),

where

σ̌2 = 72σ̌2
2 + 24σ̌2

4, σ̌2
l = lim

n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|). (B.3)

The last central limit theorem we discuss here is a result from [NOL08], used

in the proof of Proposition 3.3.2. For most of this part, we will use the standard
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notations from [Nua06] and [NOL08]. We will denote by H(x; k) a polynomial with

Hermite rank k, that is, H can be expanded in the form

H(x; k) =
∞∑
j=k

cjHj(x),

where Hj is the jth Hermite polynomial (with leading coefficient 1), and ck 6= 0. Let

H be a separable Hilbert space. For every n ≥ 1, the notation H⊗n will stand for the

nth tensor product of H, and H�n will denote the nth symmetric tensor product of

H, endowed with the modified norm
√
n!‖·‖H⊗n . Suppose that X = {X(h), h ∈ H} is

an isonormal Gaussian process on H, on some fixed probability space, say (Ω,F ,P),

and assume that F is generated by X.

For every n ≥ 1, let Hn be the nth Wiener chaos of X, that is, the closed

linear subspace of L2(Ω,F ,P) generated by the random variables {Hn(X(h)), h ∈

H, ‖h‖H = 1}, where Hn is the nth Hermite polynomial. We denote by H0 the space

of constant random variables. The mapping In(h⊗n) = Hn(X(h)), for n ≥ 1, provides

a linear isometry between H�n and Hn. For n = 0, we have that H0 = R, and take I0

to be the identity map. It is well known that any square integrable random variable

F ∈ L2(Ω,F ,P) admits the following expansion

F =
∞∑
n=0

In(fn),

where f0 = EF , and the fn ∈ H�n are uniquely determined by F .

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H�n and

g ∈ H�m, for ` = 0, . . . , n∧m, the contraction of f and g of order ` is the element of
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H⊗(n+m−2`) defined by

f ⊗` g =
∑
i1,...,i`

〈f, ei1 ⊗ · · · ⊗ ei`〉H⊗l ⊗ 〈g, ei1 ⊗ · · · ⊗ ei`〉H⊗l

Theorem B.0.4 ([NOL08]). For d ≥ 2, fix d natural numbers 1 ≤ n1 ≤ · · · ≤ nd.

Let {Fk}k∈N be a sequence of random vectors of the form

Fk = (F 1
k , . . . , F

d
k ) = (In1(f

1
k ), . . . , Ind(f

d
k )),

where f ik ∈ H�ni and Ini is the Wiener integral of order ni, such that, for every

1 ≤ i, j ≤ d,

lim
k→∞

E
[
F i
kF

j
k

]
= δij. (B.4)

The following two6 statements are equivalent.

(N1) For all 1 ≤ i ≤ d, 1 ≤ ` ≤ ni − 1, ‖f (i)
k ⊗` f

(i)
k ‖2

H2⊗(ni−`) → 0, as k →∞.

(N2) The sequence {Fk}k∈N, as k →∞, converges in distribution to a d-dimensional

standard Gaussian vector Nd (0, Id).

Finally, we recall the BDG inequality that is used in the proof of Theorem 3.2.2.

Theorem B.0.5 ([Cho07]). Let Mt, t ∈ [0, T ] be any continuous real-valued martin-

gale with M0 = 0 and E|MT |p < ∞. Then for any p > 0, there exist two positive

constants cp and Cp such that

cpE
(

[M ]
p/2
T

)
≤ E

(
sup
t∈[0,T ]

|Mt|p
)
≤ CpE

(
[M ]

p/2
T

)
.

6The original result [NOL08, Theorem 7] contains six equivalent conditions; we
list only those two that we use in this presentation.
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