
DYNAMIC CONIC FINANCE: NO-ARBITRAGE PRICING AND

NO-GOOD-DEAL PRICING FOR DIVIDEND-PAYING SECURITIES IN

DISCRETE-TIME MARKETS WITH TRANSACTION COSTS

BY

RODRIGO RODRIGUEZ

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Applied Mathematics
in the Graduate College of the
Illinois Institute of Technology

Approved
Advisor

Approved
Co-Advisor

Chicago, Illinois
July 2012



c© Copyright by

RODRIGO RODRIGUEZ

July 2012

ii



ACKNOWLEDGMENT

It has been an honor and a pleasure to be a student of Tomasz R. Bielecki

and Igor Cialenco. Their enthusiasm, devotion to research and teaching, and rigor-

ous approach to mathematics helped me become a researcher and a critical thinker.

Throughout my studies, they were generous in sharing their extensive knowledge,

and always inspired deep and helpful discussions. They selected for me very inter-

esting and challenging research topics that allowed me to gain an invaluable insight

into mathematical finance. Without their thoughtful guidance, patience, generosity,

and friendship this thesis would have never happened. I am sincerely grateful for

everything that they have done for me.

I also want to thank the numerous teachers and professors throughout my

educational experience who have taught me and promoted my intellectual curiosity.

Without them, mathematics would have been history for me.

My doctoral studies would have not been possible without the generous fi-

nancial support of the Applied Mathematics Department, the research assistantship

provided to me by my Ph.D. advisors, the IIT Research Scholarship, and my family.

I am beholden to everyone who has helped me financially throughout my education.

I am indebted to Fred J. Hickernell and Tao L. Wu for serving in my Ph.D.

thesis committee. I appreciate their time and effort spent towards this commitment. I

also want to thank Gladys Collins for all the administrative help that she has provided

me during the last four years.

During my studies at the Illinois Institute of Technology, I made many good

friends who made life as a graduate student enjoyable. I especially thank Ismail

Iyigunler for a great friendship, good laughs, and many fruitful conversations. I also

thank all my friends from the University of Chicago who helped make my doctoral

iii



studies such an interesting and exciting time for me (to say the least).

My family’s unconditional support and love has been instrumental in this

achievement. They have always championed my endeavor to pursue happiness and

a life of the mind. I thank my parents, Beatriz and Rodrigo, for giving me love,

encouragement, and support throughout my studies. I also thank my sisters Betina

and Paulina for their friendship, love, and always being there for me. I could not ask

for a better family. Without my family, none of this would have been possible.

I dedicate this thesis to my parents Beatriz and Rodrigo.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1

2. NO-ARBITRAGE PRICING IN MARKETS WITH TRANSAC-
TION COSTS . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Financial Market Model . . . . . . . . . . . . . . . . . 9
2.2. The Value Processes and the Self-Financing Condition . . . 11
2.3. The No-Arbitrage Condition . . . . . . . . . . . . . . . 26
2.4. The First Fundamental Theorem of Asset Pricing . . . . . 39
2.5. Consistent Pricing Systems . . . . . . . . . . . . . . . . 45
2.6. The Superhedging and Subhedging Theorem . . . . . . . . 55

3. DYNAMIC CONIC FINANCE IN MARKETS WITH TRANS-
ACTION COSTS . . . . . . . . . . . . . . . . . . . . . . . 67

3.1. The No-Good-Deal Condition . . . . . . . . . . . . . . . 71
3.2. The Fundamental Theorem of No-Good-Deal Pricing . . . 72
3.3. No-Good-Deal Ask and Bid Prices . . . . . . . . . . . . 76
3.4. The Dynamic Gain-Loss Ratio . . . . . . . . . . . . . . 84
3.5. Good-Deal Prices for Asian Options . . . . . . . . . . . . 94

4. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A. ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 105

v



APPENDIX Page

B. DYNAMIC COHERENT ACCEPTABILITY INDICES . . . . . 115

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi



LIST OF TABLES

Table Page

3.1 Bid Price Process of the Security . . . . . . . . . . . . . . . . . 96

3.2 Prices of an Arithmetic Asian Call Option with λ = 0 . . . . . . . 97

3.3 Prices of an Arithmetic Asian Call Option with λ = 0.005 . . . . . 97

3.4 Prices of an Arithmetic Asian Call Option with λ = 0.01 . . . . . . 98

3.5 Prices of a Geometric Asian Call Option with λ = 0 . . . . . . . . 100

3.6 Prices of a Geometric Asian Call Option with λ = 0.005 . . . . . . 100

3.7 Prices of a Geometric Asian Call Option with λ = 0.01 . . . . . . 101

vii



LIST OF FIGURES

Figure Page

3.1 Liquidity Surface for an Arithmetic Asian call Option . . . . . . 98

3.2 Liquidity Surface for a Geometric Asian call Option . . . . . . . 101

viii



ABSTRACT

This thesis studies no-arbitrage pricing and dynamic conic finance for

dividend-paying securities in discrete-time markets with transaction costs.

The first part investigates no-arbitrage pricing for dividend-paying securities in

discrete-time markets with transaction costs. We introduce the value process and the

self-financing condition in our context. Then, we prove a version of First Fundamental

Theorem of Asset Pricing. Specifically, we prove that the no-arbitrage condition

under the efficient friction assumption is equivalent to the existence of a risk-neutral

measure. We formulate an appropriate notion of a consistent pricing system in our

set-up, and we prove that if there are no transaction costs on the dividends paid by

the securities, then the no-arbitrage condition under the efficient friction assumption

is equivalent to the existence of a consistent pricing system. We finish the chapter

by deriving dual representations for the superhedging ask price and subhedging bid

price of a derivative contract.

The second part studies dynamic conic finance in the set-up introduced in the

first part. We formulate the no-good-deal condition in terms of a family of dynamic

coherent risk measures, and then we prove a version of the Fundamental Theorem of

No-Good-Deal Pricing. The Fundamental Theorem of No-Good-Deal Pricing provides

a necessary and sufficient condition for the no-good-deal condition to hold. Next, we

study the no-good-deal ask and bid prices of a derivative contract. We particularize

our results to the dynamic Gain-Loss Ratio, and compute the no-good-deal prices of

European-style Asian options in a market with transaction costs.

ix
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CHAPTER 1

INTRODUCTION

Three central themes in mathematical finance are no-arbitrage pricing, risk

management, and performance measures. No-arbitrage pricing provides a framework

for pricing derivative contracts, risk management identifies and assesses uncertainty

related to financial positions, and performance measures allows for the attractiveness

of different investments to be compared. There is a growing interest in establishing the

general relationship between all the three themes—specifically the general relationship

between no-arbitrage pricing, risk measures, and acceptability indices. Moreover,

there is an increasing demand from practitioners for financial market models that

include realistic features such as transaction costs. This thesis makes progress towards

these efforts in several directions. In Chapter 2 we develop no-arbitrage pricing for

dividend-paying securities in discrete-time markets with transaction costs1. Then, in

the set-up introduced in Chapter 2, we study dynamic conic finance in Chapter 3.

Dynamic conic finance is a pricing framework that incorporates no-arbitrage pricing,

dynamic coherent risk measures, and dynamic acceptability indices. To illustrate

the theoretical results, we compute and compare the superhedging, subhedging, and

no-good-deal prices of European-style Asian options in a market with transaction

costs.

Let us first outline the contributions of Chapter 2. We begin the chapter by

introducing the value process and the self-financing condition for trading strategies

for markets with dividend-paying securities under transaction costs. The value pro-

cess associated with a trading strategy is interpreted as the value of a portfolio of

securities, and the self-financing condition requires no money to flow in or out of a

1We define a transaction cost as the cost incurred in trading in a market in
which securities’ quoted prices have a bid-ask spread. We do not consider other costs
such as broker’s fees and taxes in the definition of a transaction cost.
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portfolio. These two definitions are the building blocks of the both Chapter 2 and

Chapter 3 because they allow us to formulate the no-arbitrage condition and the

no-good-deal condition in our set-up. For frictionless markets, the value process and

self-financing condition were originated by Harrison and Pliska [HP81]. The value

process and the self-financing condition are rather straightforward to define for fric-

tionless markets because securities can be bought and sold at the same price. On

the contrary, there are several approaches to defining these concepts for markets with

transaction costs (see for instance Jouini and Kallal [JK95]; Kabanov [Kab99]; De-

nis, Guasoni, and Rásonyi [DGR11]). However, these definitions are not suitable for

dividend-paying securities because transaction costs associated to dividend-paying

securities may not be proportional to the number of units of securities purchased or

sold. For instance, transaction costs associated with interest rate swap contracts and

credit default swap contracts accrue over time by merely holding the security—for a

non-dividend paying security transaction costs are only charged whenever the secu-

rity is bought or sold. Our consideration of dividends distinguishes the results in this

chapter.

The main topic of Chapter 1 is the no-arbitrage condition (NA). Loosely

speaking2, NA is satisfied if “it is impossible to make something out of nothing.”

Understanding NA is of great practical importance because market participants usu-

ally require for the financial market models that they use to satisfy this condition.

The key to understanding NA is the First Fundamental Theorem of Asset Pricing

(FFTAP), which in our context asserts that NA under the efficient friction assump-

tion (EF) (See (2.16)) is satisfied if and only if there exists a risk-neutral measure3.

Proving a version of the FFTAP in a discrete-time setting for a general state space is

2For the definition of the no-arbitrage condition, see Definition 2.3.1.

3For the definition of a risk-neutral measure, see Definition 2.4.1.
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the main contribution of Chapter 2. The pivotal (and most challenging) step in the

proof is showing that the set of values that can be superhedged at zero cost is closed

with respect to convergence in probability. Once this topological property is proved,

the Kreps-Yan Theorem (Kreps [Kre81]; Yan [Yan80]), which is a general result from

convex analysis, essentially implies the FFTAP.

In the theory of no-arbitrage pricing in markets with transaction costs, con-

sistent pricing systems4 (CPSs), which are interpreted as corresponding frictionless

markets, play a central role. We prove that if there exists a CPS, then NA is sat-

isfied. This result is crucial from the modeling point of view because it provides a

straightforward condition that can be used to verify whether a financial market model

satisfies NA. We also prove that whenever there are no transaction costs on the div-

idends paid by the securities (there may still be transaction costs on the ex-dividend

prices of the securities), NA under EF holds if and only if there exists a CPS.

Finally, we derive dual representations for the superhedging ask price and

subhedging bid price of a derivative contract. These prices are important because they

provide two unique no-arbitrage prices that have meaningful financial interpretations

in the context of hedging.

The FFTAP has been proved in varying levels of generality for frictionless

markets. In a discrete-time setting for a finite state space, the theorem was first

proved in Harrison and Pliska [HP81]. Almost a decade later, Dalang, Morton, and

Willinger [DMW90] proved the FFTAP for the more technically challenging setting

in which the state space is general. Their approach requires the use of advanced,

measurable selection arguments, which motivated several authors to provide alter-

native proofs using more accessible techniques (see Schachermayer [Sch92]; Kabanov

4For the definition of a consistent pricing system, see Definition 2.5.1.
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and Kramkov [KK94]; Rogers [Rog94]; Jacod and Shiryaev [JS98]; Kabanov and

Stricker [KS01b]). Using advanced concepts from functional and stochastic analysis,

the FFTAP was first proved in a general continuous-time set-up in the celebrated pa-

per by Delbaen and Schachermayer [DS94]. A comprehensive review of the literature

pertaining to no-arbitrage pricing in frictionless markets can be found in Delbaen and

Schachermayer [DS06].

The first rigorous treatment of the FFTAP for markets with transaction costs

in a discrete-time setting was carried out by Kabanov and Stricker [KS01a]. Under

the assumption that the state space is finite, it was proved that NA is equivalent to

the existence of a consistent pricing system. However, their results did not extend

to the case of a general state space. As in the frictionless case, the transition from a

finite state space to a general state space is nontrivial due to measure-theoretic and

topological related difficulties. These difficulties were overcome in Kabanov, Rásonyi,

and Stricker [KRS02], where a version of the FFTAP was proven under EF. It was

proved that the strict no-arbitrage condition, a condition which is stronger than NA,

is equivalent to the existence of a strictly consistent pricing system. In that paper, it

was asked whether EF can be discarded. Schachermayer [Sch04] answered this ques-

tion negatively by showing that neither NA nor the strict no-arbitrage condition alone

is sufficiently strong to yield a version of the FFTAP. More importantly, Schacher-

mayer [Sch04] proved a new version of the FFTAP that does not require EF. Namely,

that the robust no-arbitrage condition, which is stronger than the strict no-arbitrage

condition, is equivalent to the existence of a strictly consistent pricing system. Sub-

sequent studies that treat the robust no-arbitrage condition are Bouchard [Bou06],

Vallière, Kabanov, and Stricker [DVK07], Jacka, Berkaoui, and Warren [JBW08].

Recently, Pennanen [Pen11d, Pen11a, Pen11b, Pen11c] studied no-arbitrage pricing

in a general context in which markets can have constraints, and transaction costs

may depend nonlinearly on traded amounts. Therein, the problem of superhedging
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a claims process (e.g. swaps) is also investigated. An excellent survey of the lit-

erature pertaining to no-arbitrage pricing in markets with transaction costs can be

found in Kabanov and Safarian [KS09]. Let us mention that the results in the pa-

pers above cannot be applied to markets with dividend-paying securities in which

transaction costs accrue over time. There is literature that considers arbitrary trans-

action costs (cf. Jouini and Kallal [JK95]; Cherny [Che07b]; Denis, Guasoni, and

Rásonyi [DGR11]). However, they consider a continuous-time setting and stronger

versions of NA. The results in this chapter can also be found in Bielecki, Cialenco,

and Rodriguez [BCR12].

Next, we outline the contributions in Chapter 3. As we mentioned in the

opening paragraph, this chapter develops dynamic conic finance, which is a pric-

ing framework that incorporates no-arbitrage pricing, dynamic coherent risk mea-

sures (DCRMs), and dynamic coherent acceptability indices (DCAIs). Let us first

give a brief overview of coherent risk measures and coherent acceptability indices.

Static coherent risk measures (SCRM) were introduced in the seminal paper by

Artzner et al. [ADEH99]. A function ρ from the set of all risks to the real numbers is

a SCRM if it satisfies the following four properties: monotonicity, positive homogene-

ity, translation invariance, and subadditivity. These four properties are considered

to be desirable for a measure of risk to have5. In Cherny and Madan [CM09], the

notion of a static coherent acceptability index (SCAI) was introduced. A SCAI is

a function from the set of all risks to the (extended) nonnegative real numbers that

satisfies the following four properties: monotonicity, scale invariance, quasi-concavity,

and the Fatou property. SCAIs generalize the concept of performance measures such

as the Sharpe ratio [Sha66] and the Gain-Loss ratio [BL00]. It was found in Cherny

5There is also the notion of a convex risk measure. In the definition of a convex
risk measure, the subadditivity and positive homogeneity property are replaced by a
convexity property (see Föllmer and Schied [FS04]).
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and Madan [CM09] that there is a duality between SCRMs and SCAIs. Specifically,

that every SCAI can be characterized in terms of an increasing family of SCRMs and

vice versa. Recently, Bielecki, Cialenco, and Zhang [BCZ11] extended the notions

of SCRMs and SCAIs to a multi-period setting by introducing dynamic coherent

risk measures (DCRMs) and dynamic coherent acceptability indices (DCAIs). It

was shown therein that DCRMs and DCAIs enjoy a duality property, among other

properties. We direct the reader to Appendix B for definitions and results regarding

DCRMs and DCAIs. DCRMs and DCAIs are central to developing dynamic conic

finance because they allow us to formulate a multi-period version of the no-good-deal

condition.

The main topic of Chapter 3 is the no-good-deal condition (NGD) for

dividend-paying securities in discrete-time markets with transaction costs. We remark

that this chapter adopts the financial market model with transaction costs that is

introduced in Chapter 2. Loosely speaking6 NGD holds if “there does not exist a

zero-cost cash flow with negative risk.” In view of Theorem B.0.2, under an additional

continuity assumption, we may alternatively say that NGD is satisfied if “there

does not exist an acceptable zero-cost cash flow”. At first glance, it appears that

NGD is not related to NA. However, the main result of this chapter, which is the

Fundamental Theorem of No-Good-Deal Pricing (FTNGDP), asserts that NGD and

NA are deeply connected. An immediate consequence of the FTNGDP is that NA

holds whenever NGD is satisfied. This is a desirable consequence from the modeling

point of view because it assures that a financial market model satisfying NGD also

satisfies NA.

In the second part of Chapter 3, we study the no-good-deal pricing framework

introduced in Bielecki et al. [BCIR12] for narrowing the theoretical spread between

6For the definition of NGD, see Definition 3.1.2.
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ask price and bid price of a derivative security using a DCAI. In this study, we partic-

ularize the framework to the dynamic Gain-Loss ratio, which is a DCAI introduced

in Bielecki et al. [BCZ11]. We illustrate the theoretical results by computing the

no-good-deal ask and bid prices of European-style Asian options.

The FTNGDP has been studied in several contexts. In Carr, Geman, and

Madan [CGM01], a version of FTNGDP was formulated and proved in terms of the no-

strictly-acceptable-opportunities condition for frictionless markets, and subsequently

Pinar, Salih, and Camci [PSC10] proved a version of the FTNGDP in the context of

the Gain-Loss ratio in markets with proportional transaction costs. The FTNGDP

has been obtained for markets with transaction costs in the context of static coherent

risk measures, and for frictionless markets using discrete-time coherent risk measures

by Cherny [Che07c] and [Che07d], respectively. Let us remark that Chapter 3 was

mainly motivated by results obtained in Cherny and Madan [CM10], where a version

of the FTNGDP that is formulated in terms of a family of SCRMs is proved.

Our treatment of the FTNGDP differs from the papers mentioned above. First,

our framework allows for (hedging) cash flows to pay dividends and be subjected to

transaction costs. In particular, our no-good-deal pricing approach can be applied to

interest rate swaps and credit default swaps. Second, we prove a version of the FT-

NGDP formulated in terms of a no-good-deal-condition that is dynamically consistent

in time, in the sense that it is defined in terms of a family of DCRMs.

The thesis is organized as follows. Chapter 2 studies no-arbitrage pricing

for dividend-paying securities in discrete-time markets with transaction costs. In

Section 2.1 we introduce our financial market model, and in Section 2.2 we study

the value process and self-financing condition. Then, in Section 2.3, we formulate

the no-arbitrage condition under the efficient friction assumption, and prove a key

closedness property of the set of values that can be superhedged at zero cost. Next, in
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Section 2.4, we prove a version of the First Fundamental Theorem of Asset Pricing.

In Section 2.5, we investigate the relationship between the no-arbitrage condition

and consistent pricing systems. We conclude Chapter 2 with Section 2.6, where

we introduce the superhedging ask price and subhedging bid price of a derivative

contract, and derive dual representations for these prices. In Chapter 3, we study

dynamic conic finance. We begin the chapter by studying the no-good-deal condition

in Section 3.1. Subsequently, in Section 3.2, we prove the Fundamental Theorem

of No-Good-Deal Pricing. In Section 3.3, the no-good-deal prices are studied, and

then we particularize them to the dynamic Gain-Loss ratio in Section 3.4. We finish

Chapter 3 with Section 3.5, where we compute the no-good-deal prices of European-

style Asian options in a market with transaction costs.
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CHAPTER 2

NO-ARBITRAGE PRICING IN MARKETS WITH TRANSACTION COSTS

In this chapter, we develop no-arbitrage pricing for dividend-paying securities

in discrete-time markets with transaction costs.

2.1 Financial Market Model

Let T be a fixed time horizon, and define T := {0, 1, . . . , T}. Next, let

(Ω,FT ,F = (Ft)t∈T ,P) be the underlying filtered probability space.

On this probability space, we consider a market consisting of a savings account

B and of N traded securities satisfying the following properties:

• The savings account can be purchased and sold according to the price process

B :=
((∏t

s=0(1 + rs)
))T

t=0
, where (rt)

T
t=0 is a nonnegative process specifying

the risk-free rate.

• The N securities can be purchased according to the ex-dividend price process

P ask :=
(
(P ask,1

t , . . . , P ask,N
t )

)T
t=0

; the associated (cumulative) dividend process

is denoted by Aask :=
(
(Aask,1t , . . . , Aask,Nt )

)T
t=1

.

• The N securities can be sold according to the ex-dividend price process P bid :=(
(P bid,1

t , . . . , P bid,N
t )

)T
t=0

; the associated (cumulative) dividend process is denoted

by Abid :=
(
(Abid,1t , . . . , Abid,Nt )

)T
t=1

.

We assume that the processes introduced above are adapted. In what follows, we

will denote by ∆ the backward difference operator: ∆Xt := Xt −Xt−1, and we take

the convention that Aask0 = Abid0 = 0. It is straightforward to verify that ∆ satisfies
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following product rule:

∆(XtYt) = Xt−1∆Yt + Yt∆Xt

= Xt∆Yt + Yt−1∆Xt

= Xt∆Yt + Yt∆Xt −∆Xt∆Yt,

for any processes X and Y .

Remark 2.1.1. For any t = 1, 2, . . . , T and j = 1, 2, . . . , N , the random variable

∆Aask,jt is interpreted as amount of dividend associated with holding a long position

in security j from time t− 1 to time t, and the random variable ∆Abid,jt is interpreted

as amount of dividend associated with holding a short position in security j from time

t− 1 to time t.

We illustrate the processes introduced above in the context of a vanilla Credit

Default Swap (CDS) contract.

Example 2.1.1. A CDS contract is a contract between two parties, a protection

buyer and a protection seller, in which the protection buyer pays periodic fees to the

protection seller in exchange for some payment made by the protection seller to the

protection buyer if a pre-specified credit event of a reference entity occurs. Let τ be the

nonnegative random variable specifying the time of the credit event of the reference

entity. Suppose the CDS contract admits the following specifications: initiation date

t = 0, expiration date t = T , and nominal value $1. For simplicity, we assume that

the loss-given-default is a nonnegative scalar δ and is paid at default. Typically, CDS

contracts are traded on over-the-counter markets in which dealers quote CDS spreads

to investors. Suppose that the CDS spread quoted by the dealer to sell a CDS contract

with above specifications is κbid (to be received every unit of time), and the CDS spread

quoted by the dealer to buy a CDS contract with above specifications is κask (to be paid

every unit of time). We remark that the CDS spreads κask and κbid are specified in
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the CDS contract, so the CDS contract to sell protection is a different contract than

the CDS contract to buy protection.

The cumulative dividend processes Aask and Abid associated with buying and

selling the CDS with specifications above, respectively, are defined as

Aaskt := 1{τ≤t}δ − κask
t∑

u=1

1{u<τ}, Abidt := 1{τ≤t}δ − κbid
t∑

u=1

1{u<τ}

for all t ∈ T ∗. In this case, the ex-dividend ask and bid price processes P bid and P ask

specify the mark-to-market values of the CDS.

From now on, we make the following standing assumption.

Assumption (A): P ask ≥ P bid and ∆Aask ≤ ∆Abid.

Note that if this assumption is violated, then market exhibits arbitrage by

simultaneously buying and selling the corresponding security.

For convenience, we define T ∗ := {1, 2, . . . , T}, J := {0, 1, . . . , N}, and

J ∗ := {1, 2, . . . , N}. Unless stated otherwise, all inequalities and equalities between

processes and random variables are understood P-a.s. and coordinate-wise.

2.2 The Value Processes and the Self-Financing Condition

A trading strategy is a predictable process φ :=
(
(φ0

t , φ
1
t , . . . , φ

N
t )
)T
t=1

, where

φjt is interpreted as the number of units of security j held from time t − 1 to time

t. Processes φ1, . . . , φN correspond to the holdings in the N securities, and process

φ0 corresponds to the holdings in the savings account B. We take the convention

φ0 = (0, . . . , 0).

Definition 2.2.1. The value process (Vt(φ))Tt=0 associated with a trading strategy φ
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is defined as

Vt(φ) =



φ0
1 +

∑N
j=1 φ

j
1(1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid,j
0 ), if t = 0,

φ0
tBt +

∑N
j=1 φ

j
t(1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t )

+
∑N

j=1 φ
j
t(1{φjt<0}∆A

bid,j
t + 1{φjt≥0}∆A

bid,j
t ), if 1 ≤ t ≤ T .

Remark 2.2.1. (i) Note the difference in the use of bid and ask prices, in the above

definition, between the time t = 0 and the time t = 1, . . . , T . At time t = 0, V0(φ) is

interpreted as the cost of setting up the portfolio associated with φ. For t = 1, . . . , T ,

the value process Vt(φ) equals the sum of the liquidation value of the portfolio associ-

ated with trading strategy φ before any time t transactions and the dividends associated

with φ from time t− 1 to t.

(ii) Due to the presence of transaction costs, the value process V may not be linear in

its argument, i.e. Vt(φ) + Vt(ψ) 6= Vt(φ + ψ), and Vt(αφ) 6= αVt(φ) for some α < 0,

and some trading strategies φ, ψ, some time t ∈ T . This is the major difference from

the frictionless setting.

Next, we introduce the self-financing condition, which is appropriate in the

context of this paper.

Definition 2.2.2. A trading strategy φ is self-financing if

Bt∆φ
0
t+1 +

N∑
j=1

∆φjt+1(1{∆φjt+1≥0}P
ask,j
t + 1{∆φjt+1<0}P

bid,j
t )

=
N∑
j=1

φjt(1{φjt≥0}∆A
ask,j
t + 1{φjt<0}∆A

bid,j
t ) (2.1)

for t = 1, 2, . . . , T − 1.

The self-financing condition imposes the restriction that no money can flow

in or out of the portfolio. We note that if P ask = P bid and Aask = Abid, then the

self-financing condition in the frictionless case is recovered.
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Remark 2.2.2. The self-financing condition not only takes into account transac-

tion costs due to purchases and sales of securities (left hand side of (2.1)), but also

transaction costs accrued through the dividends (right hand side of (2.1)).

The next result gives a useful characterization of the self-financing condition

in terms of the value process.

Proposition 2.2.1. A trading strategy φ is self-financing if and only if the value

process V (φ) satisfies

Vt(φ) = V0(φ) +
t∑

u=1

φ0
u∆Bu +

N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
−

N∑
j=1

t∑
u=1

∆φju

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
+

N∑
j=1

t∑
u=1

φju

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
for all t ∈ T ∗.

Proof. By the definition of V (φ),

Vt(φ) =
t∑

u=2

∆(φ0
uBu) + φ0

1B1 +
N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
+

N∑
j=1

(
t∑

u=2

∆
(

1{φju≥0}φ
j
u∆A

ask,j
u

)
+ 1{φj1≥0}φ

j
1∆Aask,j1

)

+
N∑
j=1

(
t∑

u=2

∆
(

1{φju<0}φ
j
u∆A

bid,j
u

)
+ 1{φj1<0}φ

j
1∆Abid,j1

)

for any trading strategy φ, for all t ∈ T ∗. Using the product rule for the backwards
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difference operator ∆,

Vt(φ) =
t∑

u=2

(
φ0
u∆Bu +Bu−1∆φ0

u

)
+ φ0

1B1 +
N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
+

N∑
j=1

t∑
u=2

(
1{φju≥0}φ

j
u∆(∆Aask,ju ) + ∆Aask,ju−1 ∆

(
1{φju≥0}φ

j
u

)
+ 1{φj1≥0}φ

j
1∆Aask,j1

)
+

N∑
j=1

t∑
u=2

(
1{φju<0}φ

j
u∆(∆Abid,ju ) + ∆Abid,ju−1 ∆

(
1{φju<0}φ

j
u

)
+ 1{φj1<0}φ

j
1∆Abid,j1

)
.

Rearranging terms, we see that

Vt(φ) =
t∑

u=1

φ0
u∆Bu +

t∑
u=2

Bu−1∆φ0
u + φ0

1 +
N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
+

N∑
j=1

t∑
u=1

1{φju≥0}φ
j
u∆A

ask,j
u −

N∑
j=1

t∑
u=2

1{φju−1≥0}φ
j
u−1∆Aask,ju−1

+
N∑
j=1

t∑
u=1

1{φju<0}φ
j
u∆A

bid,j
u −

N∑
j=1

t∑
u=2

1{φju−1<0}φ
j
u−1∆Abid,ju−1 .

From the definition of V0(φ), we have that

φ0
1 = V0(φ)−

N∑
j=1

φj1

(
1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid,j
0

)
.

Therefore,

Vt(φ) = V0(φ) +
t∑

u=1

φ0
u∆Bu +

t∑
u=2

Bu−1∆φ0
u (2.2)

−
N∑
j=1

φj1

(
1{φj1<0}P

bid,j
0 + 1{φj1≥0}P

ask,j
0

)
+

N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
+

N∑
j=1

t∑
u=1

φju

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
−

N∑
j=1

t∑
u=2

φju−1

(
1{φju−1<0}∆A

bid,j
u−1 + 1{φju−1≥0}∆A

ask,j
u−1

)
.

We now show that sufficiency and necessity hold.
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If φ is self-financing, then (2.2) reduces to

Vt(φ) = V0(φ) +
t∑

u=1

φ0
u∆Bu +

N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
(2.3)

−
N∑
j=1

t∑
u=1

∆φju

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
+

N∑
j=1

t∑
u=1

φju

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
for t ∈ T ∗.

Conversely, assume that the value process satisfies

Vt(φ) = V0(φ) +
t∑

u=1

φ0
u∆Bu +

N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
(2.4)

−
N∑
j=1

t∑
u=1

∆φju

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
+

N∑
j=1

t∑
u=1

φju

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
for t ∈ T ∗. Subtracting (2.4) from (2.2) yields

0 =
t∑

u=2

Bu−1∆φ0
u +

N∑
j=1

t∑
u=2

∆φju

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
−

N∑
j=1

t∑
u=2

φju−1

(
1{φju−1<0}∆A

bid,j
u−1 + 1{φju−1≥0}∆A

ask,j
u−1

)
for t = 2, 3, . . . , T . Applying the backwards difference ∆ to both sides of the equation

above gives us

0 = Bt−1∆φ0
t +

N∑
j=1

∆φjt

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
−

N∑
j=1

φjt−1

(
1{φjt−1<0}∆A

bid,j
t−1 + 1{φjt−1≥0}∆A

ask,j
t−1

)
for t = 2, 3, . . . , T . It follows that φ is self-financing.

The next lemma extends the previous result in terms of our numéraire B. For

convenience, we let V ∗(φ) := B−1V (φ) for all trading strategies φ.
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Proposition 2.2.2. A trading strategy φ is self-financing if and only if the discounted

value process V ∗(φ) satisfies

V ∗t (φ) = V0(φ) +
N∑
j=1

φjtB
−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
−

N∑
j=1

t∑
u=1

∆φjuB
−1
u−1

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
+

N∑
j=1

t∑
u=1

φjuB
−1
u

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
for all t ∈ T ∗.

Proof. Suppose that φ is self-financing. We may apply Proposition 2.2.1 to see that

∆
(
B−1
t Vt(φ)

)
= B−1

t−1∆Vt(φ) + Vt(φ)∆B−1
t

= B−1
t−1

(
φ0
t∆Bt +

N∑
j=1

∆
(
φjt
(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))
−

N∑
j=1

∆φjt

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
+

N∑
j=1

φjt

(
1{φjt≥0}∆A

ask,j
t + 1{φjt<0}∆A

bid,j
t

))

+

(
φ0
tBt +

N∑
j=1

φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
+

N∑
j=1

φjt

(
1{φjt≥0}∆A

ask,j
t + 1{φjt<0}∆A

bid,j
t

))
∆B−1

t

for all t ∈ T ∗. We notice that

B−1
t−1∆Bt +Bt∆B

−1
t = 0, (2.5)

and

B−1
t−1∆

(
φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))
+ ∆B−1

t φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
= ∆

(
φjtB

−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))
(2.6)



17

by the product rule for ∆. Putting everything together, we obtain that

∆
(
B−1
t Vt(φ)

)
=

N∑
j=1

∆

(
φjtB

−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))

−
N∑
j=1

∆φjtB
−1
t−1

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
+

N∑
j=1

φjtB
−1
t

(
1{φjt≥0}∆A

ask,j
t + 1{φjt<0}∆A

bid,j
t

)
for all t ∈ T ∗. Summing both sides of the equation from u = 1 to u = t proves

necessity.

Conversely, if the value process V (φ) satisfies

B−1
t Vt(φ) = V0(φ) +

N∑
j=1

φjtB
−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

)
−

N∑
j=1

t∑
u=1

∆φjuB
−1
u−1

(
1{∆φju≥0}P

ask,j
u−1 + 1{∆φju<0}P

bid,j
u−1

)
+

N∑
j=1

t∑
u=1

φjuB
−1
u

(
1{φju≥0}∆A

ask,j
u + 1{φju<0}∆A

bid,j
u

)
for all t ∈ T ∗, then

∆Vt(φ) = ∆
(
BtB

−1
t Vt(φ)

)
= Bt−1∆

(
B−1
t Vt(φ)

)
+
(
B−1
t Vt(φ)

)
∆Bt

= Bt−1

(
N∑
j=1

∆
(
φjtB

−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))
−

N∑
j=1

∆φjtB
−1
t−1

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
+

N∑
j=1

φjtB
−1
t

(
1{φjt≥0}∆A

ask,j
t + 1{φjt<0}∆A

bid,j
t

))

+

(
φ0
t +

N∑
j=1

φjtB
−1
t

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

+ 1{φjt≥0}∆A
ask,j
t + 1{φjt<0}∆A

bid,j
t

))
∆Bt.
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From equations (2.5) and (2.6) we obtain

∆Vt(φ) = φ0
t∆Bt +

N∑
j=1

∆

(
φjt

(
1{φjt≥0}P

bid,j
t + 1{φjt<0}P

ask,j
t

))

−
N∑
j=1

∆φjt

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
+

N∑
j=1

φjt

(
1{φjt≥0}∆A

ask,j
t + 1{φjt<0}∆A

bid,j
t

)
.

After summing both sides of the equation above from u = 1 to u = t and applying

Proposition 2.2.1, we see that φ is self-financing.

Remark 2.2.3. If P := P ask = P bid and A := ∆Aask = ∆Abid, then we recover the

classic result: a trading strategy φ is self-financing if and only if the value process

satisfies

V ∗t (φ) = V0(φ) +
N∑
j=1

t∑
u=1

φju∆
(
B−1
u P j

u +
u∑

w=1

B−1
w Ajw

)
for all t ∈ T ∗.

For convenience, we define P ask,∗ := B−1P ask, P bid,∗ := B−1P bid, Aask,∗ :=

B−1∆Aask, and Abid,∗ := B−1∆Abid,.

In frictionless markets, the set of all self-financing trading strategies is a linear

space because securities’ prices are not influenced by the direction of trading. This

is no longer the case if the direction of trading matters: the trading strategy φ + ψ

may not be self-financing whenever φ and ψ are self-financing. Intuitively this is true

because transaction costs can be avoided whenever φjtψ
j
t < 0 by combining orders.

However, the trading strategy (θ0, φ1 + ψ1, φ2 + ψ2, . . . , φN + ψN) can enjoy the self-

financing property if the units in the savings account θ0 are properly adjusted. The

next lemma shows that such θ0 exists, is unique, and satisfies φ0 + ψ0 ≤ θ0.

Proposition 2.2.3. Let ψ and φ be any two self-financing trading strategies with

V0(ψ) = V0(φ) = 0. Then there exists a unique predictable process θ0 such that the
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trading strategy θ defined as θ := (θ0, φ1 + ψ1, . . . , φN + ψN) is self-financing with

V0(θ) = 0. Moreover, φ0 + ψ0 ≤ θ0.

Proof. The trading strategies φ and ψ are self-financing, so by definition we have that

Bt−1∆φ0
t+

N∑
j=1

∆φjt

(
1{∆φjt≥0}P

ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1

)
(2.7)

=
N∑
j=1

φjt−1

(
1{φjt−1≥0}∆A

ask,j
t−1 + 1{φjt−1<0}∆A

bid,j
t−1

)
and

Bt−1∆ψ0
t+

N∑
j=1

∆ψjt

(
1{∆ψjt≥0}P

ask,j
t−1 + 1{∆ψjt<0}P

bid,j
t−1

)
(2.8)

=
N∑
j=1

ψjt−1

(
1{ψjt−1≥0}∆A

ask,j
t−1 + 1{ψjt−1<0}∆A

bid,j
t−1

)
for t = 2, 3, . . . , T . By adding equations (2.7) and (2.8) we see that

Bt−1∆(ψ0
t + φ0

t ) = −
N∑
j=1

P ask,j
t−1

(
1{∆φjt≥0}∆φ

j
t + 1{∆ψjt≥0}∆ψ

j
t

)
−

N∑
j=1

P bid,j
t−1

(
1{∆φjt<0}∆φ

j
t + 1{∆ψjt<0}∆ψ

j
t

)
+

N∑
j=1

(
φjt−11{φjt−1≥0} + ψjt−11{ψjt−1≥0}

)
∆Aask,jt−1

+
N∑
j=1

(
φjt−11{φjt−1<0} + ψjt−11{ψjt−1<0}

)
∆Abid,jt−1

for t = 2, 3, . . . , T . Using the equality 1E + 1Ec = 1 for any set E, we have that

ψ0
t + φ0

t = ψ0
t−1 + φ0

t−1 +B−1
t−1

(
−

N∑
j=1

P ask,j
t−1

(
∆φjt + ∆ψjt

)
(2.9)

+
N∑
j=1

(
φjt−1 + ψjt−1

)
∆Aask,jt−1

+
N∑
j=1

(
P ask,j
t−1 − P

bid,j
t−1

)(
1{∆φjt<0}∆φ

j
t + 1{∆ψjt<0}∆ψ

j
t

)
+

N∑
j=1

(
1{φjt−1<0}φ

j
t−1 + 1{ψjt−1<0}ψ

j
t−1

)(
∆Abid,jt−1 −∆Aask,jt−1

))



20

for t = 2, 3, . . . , T . Now, recursively define the process θ0 as

θ0
1 : = −

N∑
j=1

(
1{φj1≥0}φ

j
1 + 1{ψj1≥0}ψ

j
1

)
P ask,j

0 −
N∑
j=1

(
1{φj1<0}φ

j
1 + 1{ψj1<0}ψ

j
1

)
P bid,j

0 ,

and

θ0
t := θ0

t−1 +B−1
t−1

(
−

N∑
j=1

∆
(
φjt + ψjt

)
P ask,j
t−1 +

N∑
j=1

(
φjt−1 + ψjt−1

)
∆Aask,jt−1 (2.10)

+
N∑
j=1

1{∆(φjt+ψ
j
t )<0}∆

(
φjt + ψjt

)(
P ask,j
t−1 − P

bid,j
t−1

)
+

N∑
j=1

1{φjt−1+ψjt−1<0}
(
φjt−1 + ψjt−1

)(
∆Abid,jt−1 −∆Aask,jt−1

))

for t = 2, 3, . . . , T . It follows that θ0 is unique and satisfies

Bt−1∆θ0
t +

N∑
j=1

∆
(
φjt + ψjt

)(
1{∆(φjt+ψ

j
t )≥0}P

ask,j
t−1 + 1{∆(φjt+ψ

j
t )<0}P

bid,j
t−1

)
=

N∑
j=1

(
φjt−1 + ψjt−1

)(
1{φjt−1+ψjt−1≥0}∆A

ask,j
t−1 + 1{φjt−1+ψjt−1<0}∆A

bid,j
t−1

)
for t = 2, 3, . . . , T . By definition, the trading strategy θ := (θ0, φ1 +ψ1, . . . , φN +ψN)

is self-financing. Subtracting (2.9) from (2.10) yields

θ0
t − (φ0

t + ψ0
t ) = θ0

t−1 −
(
φ0
t−1 + ψ0

t−1

)
(2.11)

+
N∑
j=1

1{∆φjt+ψ
j
t )<0}∆

(
φjt + ψjt

)(
P ask,j
t−1 − P

bid,j
t−1

)
−

N∑
j=1

(
1{∆φjt<0}∆φ

j
t + 1{∆ψjt<0}∆ψ

j
t

)(
P ask,j
t−1 − P

bid,j
t−1

)
+

N∑
j=1

(
φjt−1 + ψjt−1

)
1{φjt−1+ψjt−1<0}

(
∆Abid,jt−1 −∆Aask,jt−1

)
−

N∑
j=1

(
φjt−11{φjt−1<0} + ψjt−11{ψjt−1<0}

)(
∆Abid,jt−1 −∆Aask,jt−1

)
for t = 2, 3, . . . , T . By Lemma A.0.6, the inequality

1{X<0}X + 1{Y <0}Y ≤ 1{X+Y <0}(X + Y )
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holds for any random variables X and Y . Moreover, the inequalities P bid ≤ P ask and

∆Aask ≤ ∆Abid hold by assumption. Hence, (2.11) reduces to

θ0
t −

(
φ0
t + ψ0

t

)
≥ θ0

t−1 −
(
φ0
t−1 + ψ0

t−1

)
(2.12)

for t = 2, 3, . . . , T . Since V0(φ) = V0(ψ) = 0, we have

φ0
1 = −

N∑
j=1

φj1

(
1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid,j
0

)
,

ψ0
1 = −

N∑
j=1

ψj1

(
1{ψj1≥0}P

ask,j
0 + 1{ψj1<0}P

bid,j
0

)
.

It follows that θ0
1 = φ0

1 +ψ0
1 and V0(θ) = V0(φ) + V0(ψ) = 0. After recursively solving

(2.12), we conclude that θ0
t ≥ φ0

t + ψ0
t for all t ∈ T ∗.

The next result is the natural extension of the previous proposition to value

processes. It is intuitively true since some transaction costs may be avoided by com-

bining orders.

Proposition 2.2.4. Let φ and ψ be any two self-financing trading strategies such that

V0(φ) = V0(ψ) = 0. There exists a unique predictable process θ0 such that the trading

strategy defined as θ := (θ0, φ1 + ψ1, . . . , φN + ψN) is self-financing with V0(θ) = 0,

and VT (θ) satisfies

VT (φ) + VT (ψ) ≤ VT (θ).
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Proof. Let φ and ψ be self-financing trading strategies. Due to Proposition 2.2.1,

VT (φ) + VT (ψ) =
T∑
u=1

(φ0
u + ψ0

u)∆Bu

+
N∑
j=1

((
1{φjT≥0}φ

j
T + 1{ψjT≥0}ψ

j
T

)
P bid,j
T +

(
1{φjT<0}φ

j
T + 1{ψjT<0}ψ

j
T

)
P ask,j
T

)

−
N∑
j=1

T∑
u=1

(
1{∆φju≥0}∆φ

j
u + 1{∆ψju≥0}∆ψ

j
u

)
P ask,j
u−1

−
N∑
j=1

T∑
u=1

(
1{∆φju<0}∆φ

j
u + 1{∆ψju<0}∆ψ

j
u

)
P bid,j
u−1

+
N∑
j=1

T∑
u=1

((
1{φju≥0}φ

j
u + 1{ψju≥0}ψ

j
u

)
∆Aask,ju +

(
1{φju<0}φ

j
u + 1{ψju<0}ψ

j
u

)
∆Abid,ju

)
.

Using the equality 1E + 1Ec = 1 for any set E, we may write

VT (φ) + VT (ψ) =
T∑
u=1

(
φ0
u + ψ0

u

)
∆Bu +

N∑
j=1

(
φjT + ψjT

)(
P bid,j
T + P ask,j

T

)
− C1

−
N∑
j=1

T∑
u=1

(
∆φu + ∆ψu

)(
P ask,j
u−1 + P bid,j

u−1

)
+

N∑
j=1

T∑
u=1

(
φju + ψju

)(
∆Aask,ju + ∆Abid,ju

)
,

where C1 is defined as

C1 :=
N∑
j=1

((
1{φjT≥0}φ

j
T + 1{ψjT≥0}ψ

j
T

)
P ask,j
T +

(
1{φjT<0}φ

j
T + 1{ψjT<0}ψ

j
T

)
P bid,j
T

)

−
N∑
j=1

T∑
u=1

(
1{∆φju<0}∆φ

j
u + 1{∆ψju<0}∆ψ

j
u

)
P ask,j
u−1

−
N∑
j=1

T∑
u=1

(
1{∆φju≥0}∆φ

j
u + 1{∆ψju≥0}∆ψ

j
u

)
P bid,j
u−1

+
N∑
j=1

T∑
u=1

((
1{φju≥0}φ

j
u + 1{ψju≥0}ψ

j
u

)
∆Abid,ju +

(
1{φju<0}φ

j
u + 1{ψju<0}ψ

j
u

)
∆Aask,ju

)
.
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We use the equality 1E + 1Ec = 1 again to arrive at

VT (φ) + VT (ψ)

=
T∑
u=1

(φ0
u + ψ0

u)∆Bu +
N∑
j=1

(
φjT + ψjT

)(
1{φjT+ψjT≥0}P

bid,j
T + 1{φjT+ψjT<0}P

ask,j
T

)
−

N∑
j=1

T∑
u=1

(
∆φju + ∆ψju

)(
1{∆φju+∆ψju≥0}P

ask,j
u−1 + 1{∆φju+∆ψju<0}P

bid,j
u−1

)
(2.13)

+
N∑
j=1

T∑
u=1

(
φju + ψju

)(
1{φju+ψju≥0}∆A

ask,j
u + 1{φju+ψju<0}∆A

bid,j
u

)
− C1 − C2,

where C2 is defined as

C2 := −
N∑
j=1

(
φjT + ψjT

)(
1{φjT+ψjT<0}P

bid,j
T + 1{φjT+ψjT≥0}P

ask,j
T

)
+

N∑
j=1

T∑
u=1

(
∆φju + ∆ψju

)(
1{∆φju+∆ψju≥0}P

bid,j
u−1 + 1{∆φju+∆ψju<0}P

ask,j
u−1

)
−

N∑
j=1

T∑
u=1

(
φju + ψju

)(
1{φju+ψju≥0}∆A

bid,j
u + 1{φju+ψju<0}∆A

ask,j
u

)
.

By Proposition 2.2.3, there exists a unique predictable process θ0 such that the trading

strategy defined as θ := (θ0, φ1 + ψ1, . . . , φN + ψN) is self-financing with V0(θ) = 0

and satisfies φ0 + ψ0 ≤ θ0. In view of Proposition 2.2.2, since θ is self-financing, it

follows that

VT (θ) =
T∑
u=1

θ0
u∆Bu +

N∑
j=1

(
φjT + ψjT

)(
1{φjT+ψjT≥0}P

bid,j
T + 1{φjT+ψjT<0}P

ask,j
T

)
−

N∑
j=1

T∑
u=1

(
∆φju + ∆ψju

)(
1{∆φju+∆ψju≥0}P

ask,j
u−1 + 1{∆φju+∆ψju<0}P

bid,j
u−1

)
+

N∑
j=1

T∑
u=1

(
φju + ψju

)(
1{φju+ψju≥0}∆A

ask,j
u +

T∑
u=1

1{φju+ψju<0}∆A
bid,j
u

)
. (2.14)

Comparing equations (2.13) and (2.14) we see that

VT (φ) + VT (ψ) = VT (θ) +
T∑
u=1

(φ0
u + ψ0

u − θ0
u)∆Bu − C1 − C2. (2.15)
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According to Lemma A.0.6, the random variable C1 + C2 is nonnegative. Since

φ0 + ψ0 ≤ θ0 and ∆B ≥ 0, it follows that

T∑
u=1

(φ0
u + ψ0

u − θ0
u)∆Bu ≤ 0.

From (2.15), we conclude that VT (φ) + VT (ψ) ≤ VT (θ).

The following technical lemma, which will be used in the next section, follows

directly from Proposition 2.2.1 and Lemma A.0.2.

Lemma 2.2.1. If a sequence of self-financing trading strategies φm converges a.s. to

φ, then V (φm) converges a.s. to V (φ).

2.2.1 Set of Values that can be Superhedged at Zero Cost. For all t ∈

T , denote by L0(Ω,Ft,P ;R(N+1)) the space of all (P-equivalence classes of) R(N+1)-

valued, Ft-measurable random variables. We equip L0(Ω,Ft,P ;R) with the topology

of convergence in measure P. Also, we denote by S the set of all self-financing trading

strategies. For the sake of conciseness, we will refer to sets that are closed with respect

to convergence in measure P simply as P-closed.

We define the sets

K :=
{
V ∗T (φ) : φ ∈ S, V0(φ) = 0

}
,

L0
+(Ω,FT ,P ;R) :=

{
X ∈ L0(Ω,FT ,P ;R) : X ≥ 0

}
,

K − L0
+(Ω,FT ,P ;R) :=

{
Y −X : Y ∈ K and X ∈ L0

+(Ω,FT ,P ;R)
}
.

The set K is the set of attainable values at zero cost, and has the interpretation of

all possible terminal values associated with zero cost self-financing trading strategies.

On the other hand, K − L0
+(Ω,FT ,P ;R) is the set of values that can be superhedged

at zero cost : for any X ∈ K − L0
+(Ω,FT ,P ;R), there exists φ ∈ S with V0(φ) = 0 so

that X ≤ VT (φ).
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The following lemma is needed to apply the Kreps-Yan Theorem (Theorem

A.0.8), which will be used to prove the FFTAP.

Lemma 2.2.2. The set K − L0
+(Ω,FT ,P ;R) is a convex cone.

Proof. Let Y 1, Y 2 ∈ K−L0
+(Ω,FT ,P ;R). Then there exist K1, K2 ∈ K and Z1, Z2 ∈

L0
+(Ω,FT ,P ;R) such that Y 1 = K1−Z1 and Y 2 = K2−Z2. By definition of K, there

exist φ1, φ2 ∈ S with V0(φ1) = V0(φ2) = 0 such that K1 = V ∗T (φ1) and K2 = V ∗T (φ2).

We will prove that for any positive scalars α1 and α2 the following holds

α1(V ∗T (φ1)− Z1) + α2(V ∗T (φ2)− Z2) ∈ K − L0
+(Ω,FT ,P ;R),

or, equivalently, that there exists K ∈ K such that

α1V
∗
T (φ1) + α2V

∗
T (φ2)− α1Z

1 − α2Z
2 ≤ K.

The value process is positive homogeneous, so α1V
∗
T (φ1) + α2V

∗
T (φ2) = V ∗T (α1φ

1) +

V ∗T (α2φ
2). According to Proposition 2.2.4, there exists a unique predictable process θ0

such that the trading strategy defined as θ := (θ0, α1φ
1,1+α2φ

2,1, . . . , α1φ
1,N+α2φ

2,N)

is self-financing with V0(θ) = 0, and satisfies V ∗T (α1φ
1) + V ∗T (α2φ

2) ≤ V ∗T (θ). By

definition of K, we have V ∗T (θ) ∈ K. Since

α1V
∗
T (φ1) + α2V

∗
T (φ2)− α1Z

1 − α2Z
2 = V ∗T (α1φ

1) + V ∗T (α2φ
2)− α1Z

1 − α2Z
2

≤ V ∗T (θ)− α1Z
1 − α2Z

2

≤ V ∗T (θ),

we may conclude that the claim holds.

Remark 2.2.4. The set K is not necessarily a convex cone. To see this, let us suppose

that T = 1, J = {0, 1}, and r = 0. Consider the trading strategies φ = {φ0, 1} and

ψ = {ψ0,−1}, where φ0 and ψ0 are chosen so that V0(φ) = V0(ψ) = 0. By definition

of K, we have that V1(φ), V1(ψ) ∈ K. However, the random variable

V ∗1 (φ) + V ∗1 (ψ) = P bid
1 − P ask

1 + Aask1 − Abid1 + P bid
0 − P ask

0
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is generally not in the set K. In frictionless markets, K is a linear space since the

value process is linear.

2.3 The No-Arbitrage Condition

We begin by introducing the definition of the no-arbitrage condition in our

context.

Definition 2.3.1. The no-arbitrage condition (NA) is satisfied if for each φ ∈ S

such that V0(φ) = 0 and VT (φ) ≥ 0, we have VT (φ) = 0.

In the present context, NA has the usual interpretation that “it is impos-

sible to make something out of nothing.” The no-arbitrage condition can also be

interpreted as: “if the zero payoff can be superhedged with a zero-cost, self-financing

trading strategy, then this trading strategy must have zero terminal value.” Next,

we provide equivalent conditions for NA to hold, which are more mathematically

convenient.

Lemma 2.3.1. The following conditions are equivalent:

(i) NA is satisfied.

(ii)
(
K − L0

+(Ω,FT ,P ;R)
)
∩ L0

+(Ω,FT ,P ;R) = {0}.

(iii) K ∩ L0
+(Ω,FT ,P ;R) = {0}.

Proof. (ii) =⇒ (iii) If
(
K − L0

+(Ω,FT ,P ;R)
)
∩ L0

+(Ω,FT ,P ;R) = {0}, then

{0} ⊂ K ∩ L0
+(Ω,FT ,P ;R) ⊂

(
K − L0

+(Ω,FT ,P ;R)
)
∩ L0

+(Ω,FT ,P ;R) = {0},

since 0 ∈ K ∩ L0
+(Ω,FT ,P ;R). Therefore (iii) holds.
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(iii) =⇒ (ii) Assume that X ∈ K ∩ L0
+(Ω,FT ,P ;R) = {0} and

X ∈
(
K−L0

+(Ω,FT ,P ;R)
)
∩L0

+(Ω,FT ,P ;R). Then there exists Z ∈ L0
+(Ω,FT ,P ;R)

and φ ∈ S with V0(φ) = 0 such that

X = V ∗T (φ)− Z ≥ 0.

It follows that V ∗T (φ) ≥ 0. However, since K ∩ L0
+(Ω,FT ,P ;R) = {0}, we have that

V ∗T (φ) = 0. Thus, X ≥ 0. Since K ∩ L0
+(Ω,FT ,P ;R) = {0}, we obtain X = 0.

(i) =⇒ (iii) Suppose that K ∩ L0
+(Ω,FT ,P ;R) 6= {0}. This implies that there exists

X ∈ K and E ⊆ Ω with P(E) > 0 such that X(ω) ≥ 0 for ω ∈ Ω, and X(ω) > 0

for ω ∈ E. By the definition of K, there exists φ ∈ S with V0(φ) = 0 such that

X = V ∗T (φ). This contradicts NA, so K ∩ L0
+(Ω,FT ,P ;R) = {0}.

(iii) =⇒ (i) Let φ ∈ S so that V0(φ) = 0 and V ∗T (φ) ≥ 0, and assume that K ∩

L0
+(Ω,FT ,P ;R) = {0}. Since V ∗T (φ) ∈ K, we have that VT (φ) = 0. Hence, NA

holds.

We proceed by defining The Efficient Friction Assumption in our context (cf.

Kabanov et al. [KRS02]).

The Efficient Friction Assumption (EF):

{
φ ∈ S : V0(φ) = VT (φ) = 0

}
= {0}. (2.16)

Note that if (2.16) is satisfied, then for each φ ∈ S, we have V0(φ) = VT (φ) = 0

if and only if φ = 0. Consequently, if NA holds under EF, then for each φ ∈ S such

that V0(φ) = 0 and VT (φ) ≥ 0, we have φ = 0.

Next, we exemplify the importance of EF in the context of markets with

transaction costs.
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Example 2.3.1. Let T = {0, 1} and J = {0, 1}, and assume that P bid,1
t < P ask,1

t ,

for t = 0, 1, and Aask,11 < Abid,11 . Suppose that there exists a trading strategy φ that is

nonzero a.s. so that V0(φ) = V1(φ) = 0. By the definition of the value process,

φ0
1 + 1{φ11≥0}φ

1
1P

ask,1
0 − 1{φ11<0}φ

j
1P

bid,1
0 = 0,

and

V ∗1 (φ) = 1{φ11≥0}φ
1
1

(
P bid,1

1 + Aask,11 − P ask,1
0

)
+ 1{φ11<0}φ

1
1

(
P ask,1

1 + Abid,11 − P bid,1
0

)
= 0.

Suppose that there exists another market (B, P̃ bid,1, P̃ ask,1, Ãask,1, Ãbid,1)

satisfying P bid,1
1 < P̃ bid,1

1 ≤ P̃ ask,1
1 < P ask,1

1 , and Ãask,11 = Aask,11 , Ãbid,11 = Abid,11 ,

P̃ bid,1
0 = P bid,1

0 , and P̃ ask
0 = P ask

0 . If we denote by Ṽ (φ) the value process corresponding

to the market (B, P̃ bid, P̃ ask, Ãask, Ãbid), we then have Ṽ0(φ) = V0(φ) = 0, Ṽ1(φ) ≥ 0,

and P(Ṽ1(φ) > 0) > 0, which violates NA for the market (B, P̃ bid, P̃ ask, Ãask, Ãbid).

We will denote by NAEF the no-arbitrage condition under the efficient friction

assumption.

In what follows, we denote by P the set of all RN -valued, F-predictable pro-

cesses. Also, we define the mapping

F (φ) :=
N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)
(2.17)

for all RN -valued stochastic processes

(φs)
T
s=1 ∈ L0(Ω,FT ,P;RN)× · · · × L0(Ω,FT ,P;RN),

and let K := {F (φ) : φ ∈ P}.
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Remark 2.3.1.

(i) Note that F is defined on the set of all RN -valued stochastic processes. On the

contrary, the value process is defined on the set of trading strategies, which are

RN+1-valued predictable processes.

(ii) The set K has the same financial interpretation as the set K. We introduce the

set K because it is more convenient to work with from the mathematical point

of view.

(iii) F (αφ) = αF (φ) for any nonnegative random variable α.

The next result provides an equivalent condition for EF to hold.

Lemma 2.3.2. The efficient friction assumption (EF) is satisfied if and only if

{ψ ∈ P : F (ψ) = 0} = {0}.

Proof. Let ψ ∈ P such that F (ψ) = 0. Let us define the trading strategy φ :=

(φ0, ψ1, . . . , ψN), where φ0 is recursively defined as

φ0
t :=


−
∑N

j=1 ψ
j
1

(
1{ψj1≥0}P

ask,j
0 + 1{ψj1<0}P

bid.j
0

)
, t = 1,

φ0
t−1 +B−1

t−1

(
−
∑N

j=1 ∆ψjt (1{∆ψjt≥0}P
ask,j
t−1 + 1{∆ψjt<0}P

bid,j
t−1 )

+
∑N

j=1 ψ
j
t−1(1{ψjt−1≥0}∆A

ask,j
t−1 + 1{ψjt−1<0}∆A

bid,j
t−1 )

)
, t = 2, . . . , T.

By definition, φ ∈ S and V0(φ) = 0. According to Proposition 2.2.2,

V ∗T (φ) =
N∑
j=1

ψjT
(
1{ψjT≥0}P

bid,j,∗
T + 1{ψjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆ψju
(
1{∆ψju≥0}P

ask,j,∗
u−1 + 1{∆ψju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

ψju
(
1{ψju≥0}A

ask,j,∗
u + 1{ψju<0}A

bid,j,∗
u

)
,
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so V ∗T (φ) = F (ψ). Thus, V ∗T (φ) = 0. EF is satisfied, so φj = 0 for j = 0, . . . , N ,

which in particular implies that ψj = 0 for j = 1, . . . , N .

Conversely, suppose EF holds, and fix φ ∈ S so that V0(φ) = V ∗T (φ) = 0. By

Proposition 2.2.2, we have

V ∗T (φ) =
N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)
.

Define the predictable process ψj := φj for j = 1, . . . , N . From the equation above

we see that F (ψ) = V ∗T (φ), so F (ψ) = 0. By assumption, we have that ψj = 0 for

j = 1, . . . , N , which implies φj = 0 for j = 1, . . . , N . From the definition of V0(φ),

V0(φ) = φ0
1 +

N∑
j=1

φj1
(
1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid.j
0

)
.

It follows that φ0
1 = 0 because V0(φ) = 0. Since φ ∈ S,

φ0
t = φ0

t−1 +B−1
t−1

(
−

N∑
j=1

∆φjt(1{∆φjt≥0}P
ask,j
t−1 + 1{∆φjt<0}P

bid,j
t−1 )

+
N∑
j=1

φjt−1(1{φjt−1≥0}∆A
ask,j
t−1 + 1{φjt−1<0}∆A

bid,j
t−1 )

)
, t = 2, . . . , T.

By recursively solving for φ0
2, . . . , φ

0
T , we deduce φ0

t = 0 for t = 2, . . . , T . Hence,

φj = 0 for j = 0, 1, . . . , N .

Lemma 2.3.3. We have that K = K.

Proof. Suppose K ∈ K. Then K = V ∗T (φ) for some φ ∈ S with V0(φ) = 0. According
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to Proposition 2.2.2,

K =
N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)
.

Define ψj := φj for j = 1, . . . , N , we obtain K = F (ψ) ∈ K.

If W ∈ K, then there exists ψ ∈ P so that W = F (ψ). Let φj := ψj

for j = 1, . . . , N , and define φ0 so that φ ∈ S and V0(φ) = 0 (as in the proof of

Lemma 2.3.2). Then, from Proposition 2.2.2,

V ∗T (φ) =
N∑
j=1

ψjT
(
1{ψjT≥0}P

bid,j,∗
T + 1{ψjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆ψju
(
1{∆ψju≥0}P

ask,j,∗
u−1 + 1{∆ψju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

ψju
(
1{ψju≥0}A

ask,j,∗
u + 1{ψju<0}A

bid,j,∗
u

)
,

which gives us W = V ∗T (φ) ∈ K.

2.3.1 A Key Closedness Property of the Set of Attainable Values at Zero

Cost. In this section, we prove that K − L0
+(Ω,FT ,P ;R) is P-closed whenever

NAEF is satisfied. This plays a central role in this study because it allows us to

apply the Kreps-Yan theorem, which essentially implies the FFTAP (Theorem 2.4.1).

We will denote by ‖ · ‖ the Euclidean norm on RN .

Let us first recall the following lemma from Schachermayer [Sch04], which is

a version of Lemma 2 in Kabanov and Stricker [KS01b].

Lemma 2.3.4. For a sequence of random variables Xm ∈ L0(Ω,F ,P;RN) there is a

strictly increasing sequence of positive, integer-valued, F-measurable random variables
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τm such that Xτm converges a.s. in the one-point-compactification RN ∪{∞} to some

random variable X ∈ L0(Ω,F ,P;RN ∪{∞}). Moreover, we may find the subsequence

such that ‖X‖ = lim supm ‖Xm‖, where ‖∞‖ =∞.

The next result extends Lemma 2.3.4 to processes, which will be a key ingre-

dient for proving Theorem 2.3.1.

Lemma 2.3.5. Let F i be a σ-algebra, and Y m
i ∈ L0(Ω,F i,P;RN) for i = 1, . . . ,M .

Suppose that F i ⊆ F j for all i ≤ j, and that Y m
i satisfies lim supm ‖Y m

i ‖ < ∞ for

i = 1, . . . ,M . Then there is a strictly increasing sequence of positive, integer-valued,

FM -measurable random variables τm such that, for i = 1, . . . ,M , the sequence Y τm

i

converges a.s. to some Yi ∈ L0(Ω,F i,P;RN).

Proof. We first apply Lemma 2.3.4 to the random variable Y m
1 : there exists a strictly

increasing sequence of positive, integer-valued, F1-measurable random variables τm1

such that {τ 1
1 (ω), τ 2

1 (ω), . . . , } ⊆ N for ω ∈ Ω, and Y
τm1

1 converges a.s. to some Y1 ∈

L0(Ω,F1,P;RN). Since lim supm ‖Y m
2 ‖ < ∞, we also have that lim supm ‖Y

τm1
2 ‖ <

∞. Moreover, Y
τm1

2 ∈ L0(Ω,F2,P;RN) since F1 ⊆ F2. Therefore, we may apply

Lemma 2.3.4 to the sequence Y
τm1

2 to find a strictly increasing sequence of positive,

integer-valued, F2-measurable random variables τm2 such that

{τ 1
2 (ω), τ 2

2 (ω), . . . } ⊆ {τ 1
1 (ω), τ 2

1 (ω), . . . } ⊆ N, a.e. ω ∈ Ω, (2.18)

and Y
τm2

2 converges a.s. to some Y2 ∈ L0(Ω,F2,P;RN). From (2.18), the sequence

Y
τm2

1 converges a.s. to Y1.

We may continue by recursively repeating the argument above to the sequences

Y m
i , for i = 3, . . . ,M , to find strictly increasing sequences of positive, integer-valued,

F i-measurable random variables τmi such that

{τ 1
i (ω), τ 2

i (ω), . . . } ⊆ · · · ⊆ {τ 1
1 (ω), τ 2

1 (ω), . . . } ⊆ N, a.e. ω ∈ Ω, (2.19)
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and Y
τmi
i converges a.s. to some Yi ∈ L0(Ω,F i,P;RN). Because of (2.19), we see that

Y
τmM
i converges a.s. to Yi for i = 1, . . . ,M . Therefore, τm := τmM defines the desired

sequence.

Lemma 2.3.6. Let F i be a σ-algebra, and Y m
i ∈ L0(Ω,F i,P;RN) for i = 1, . . . ,M .

Suppose that F i ⊆ F j for all i ≤ j, and that there exists k ∈ {1, . . . ,M} and

Ω′ ⊆ Ω with P(Ω′) > 0 such that lim supm ‖Y m
k (ω)‖ = ∞ for a.e. ω ∈ Ω′, and

lim supm ‖Y m
i (ω)‖ < ∞ for i = 1, . . . , k − 1 and for a.e. ω ∈ Ω. Then there ex-

ists a strictly increasing sequence of positive, integer-valued, Fk-measurable random

variables τm such that limm ‖Y τm

k (ω)‖ =∞, for a.e. ω ∈ Ω′, and 7

Xm
i (ω) := 1Ω′(ω)

Y
τm(ω)
i (ω)

‖Y τm(ω)
k (ω)‖

, ω ∈ Ω, i = 1, . . . ,M,

satisfies limmX
m
i (ω) = 0, for i = 1, . . . , k − 1 and for a.e. ω ∈ Ω

Proof. Since lim supm ‖Y m
k (ω)‖ = ∞ for a.e. ω ∈ Ω′, we may apply Lemma 2.3.4

to the sequence Y m
k to find a strictly increasing sequence of positive, integer-valued,

Fk-measurable random variables τm so that ‖Y τm(ω)
k (ω)‖ diverges for a.e. ω ∈ Ω′.

Because lim supm ‖Y m
i ‖ <∞ for i = 1, . . . , k−1, we have lim supm ‖Y τm

i ‖ <∞

for i = 1, . . . , k − 1. Now since ‖Y τm(ω)
k (ω)‖ diverges for a.e. ω ∈ Ω′,

lim
m→∞

‖Xm
i (ω)‖ = 1Ω′(ω) lim

m→∞

‖Y τm(ω)
i (ω)‖

‖Y τm(ω)
k (ω)‖

= 0, a.e. ω ∈ Ω, i = 1, . . . , k − 1.

Thus, ‖Xm
i ‖ converges a.s. to 0 for i = 1, . . . , k−1, which implies that Xm

i converges

a.s. to 0 for i = 1, . . . , k − 1. Hence, the claim holds.

We are now ready to prove a crucial result in this chapter.

7We take Xm
i (ω) = 0 whenever ‖Y τm(ω)

k (ω)‖ = 0. We will take the convention
x/0 = 0 throughout this section.
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Theorem 2.3.1. If the no-arbitrage condition under the efficient friction assumption

(NAEF) is satisfied, then the set K − L0
+(Ω,FT ,P;R) is P-closed.

Proof. According to Lemma 2.3.3, we may equivalently prove that K−L0
+(Ω,FT ,P;R)

is P-closed. Suppose that Xm ∈ K − L0
+(Ω,FT ,P;R) converges in probability to X.

Then there exists a subsequence Xkm of Xk so that Xkm converges a.s. to X. With a

slight abuse of notation, we will denote by Xm the sequence Xkm in what follows. By

the definition of K−L0
+(Ω,FT ,P;R), there exists Zm ∈ L0

+(Ω,FT ,P;R) and φm ∈ P

so that

Xm = F (φm)− Zm. (2.20)

We proceed the proof in two steps. In the first step, we show by contradiction

that lim supm ‖φms ‖ <∞ for all s ∈ T ∗.

Step 1a: Let us assume that lim supm ‖φms ‖ <∞ for all s ∈ T ∗ does not hold. Then

I0 :=
{
s ∈ T ∗ : ∃ Ω′ ⊆ Ω s.t P(Ω′) > 0, lim sup

m→∞
‖φms (ω)‖ =∞ for a.e. ω ∈ Ω′

}
is nonempty. Let t0 := min I0, and define the Ft0−1-measurable set

E0 :=
{
ω ∈ Ω : lim sup

m→∞
‖φmt0(ω)‖ =∞}.

Note that P(E0) > 0 by assumption. We now apply Lemma 2.3.6 to φm: there exists

a strictly increasing sequence of positive, integer-valued, Ft0−1-measurable random

variables τm0 such that

lim
m→∞

‖φτ
m
0 (ω)
t0 (ω)‖ =∞, a.e. ω ∈ E0, (2.21)

and

ψm,(0)
s := 1E0

φ
τm0
s

‖φτ
m
0
t0 ‖

, s ∈ T ∗, (2.22)

satisfies limm ψ
m,(0)
s (ω) = 0, for s = 1, . . . , t0 − 1, for a.e. ω ∈ Ω.



35

If lim supm ‖ψ
m,(0)
s ‖ <∞ for all s ∈ {t0 + 1, . . . , T}, then define k := 1 and the

sequence ϕm := ψm,(0). Otherwise we repeat the procedure above to ψm,(0) on the set

E0. Towards this, we define

t1 := min
{
s ∈ {t0 + 1, . . . , T} : ∃ Ω′ ⊆ E0 such that P(Ω′) > 0,

lim sup
m→∞

‖ψm,(0)
s (ω)‖ =∞ for a.e. ω ∈ Ω′

}
,

and define the Ft1−1-measurable set

E1 :=
{
ω ∈ E0 : lim sup

m→∞
‖ψm,(0)

t1 (ω)‖ =∞}.

Next, we apply Lemma 2.3.6 to ψm,(0) to find a strictly increasing sequence of positive,

integer-valued, Ft1−1-measurable random variables τm1 such that

lim
m→∞

‖ψτ
m
1 (ω),(0)
t1 (ω)‖ =∞, a.e. ω ∈ E1, (2.23)

and

ψm,(1)
s := 1E1

ψ
τm1 ,(0)
s

‖ψτ
m
1 ,(0)
t1 ‖

, s ∈ T ∗, (2.24)

satisfies limm ψ
m,(1)
s (ω) = 0, for s = 1, . . . , t1 − 1, for a.e. ω ∈ Ω. Observe that the

sequence ψm,(1) satisfies

ψm,(1)
s = 1E0∩E1

φ
τ0◦τm1
s

‖ψτ
m
1 ,(0)
t1 ‖ · ‖φτ0◦τ

m
1

t0 ‖
, s ∈ T ∗.

where we denote by τ0 ◦ τm1 the composition τ
τm1
0 .

As above, we proceed as follows.

Recursively for i = 2, . . . , T

If lim supm ‖ψ
m,(i−1)
s ‖ <∞ for all s ∈ {ti−1 +1, . . . , T}, then define k := i and

ϕm := ψm,(k−1), and proceed to Step 1b.
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Else, define

ti := min
{
s ∈ {ti−1 + 1, . . . , T} : ∃ Ω′ ⊆ Ei−1 s.t. P(Ω′) > 0,

lim sup
m→∞

‖ψm,(i−1)
s (ω)‖ =∞ for a.e. ω ∈ Ω′

}
,

and

Ei :=
{
ω ∈ Ei−1 : lim sup

m→∞
‖ψm,(i−1)

ti (ω)‖ =∞}.

Next, apply Lemma 2.3.6 to ψm,(i): there exists a strictly increasing sequence of

positive, integer-valued, Fti−1-measurable random variables τmi such that

{τ 1
i (ω), τ 2

i (ω), . . . } ⊆ · · · ⊆ {τ 1
0 (ω), τ 2

0 (ω), . . . }, a.e. ω ∈ Ω, (2.25)

the sequence ψ
τmi ,(i−1)
ti satisfies

lim
m→∞

‖ψτ
m
i (ω),(i−1)
ti (ω)‖ =∞, a.e. ω ∈ Ei, (2.26)

and the sequence ψm,(i) defined as

ψm,(i)s := 1Ei
ψ
τmi ,(i−1)
s

‖ψτ
m
i ,(i−1)
ti ‖

, s ∈ T ∗, (2.27)

satisfies limm ψ
m,(i)
s (ω) = 0 for s = 1, . . . , ti − 1, for a.e. ω ∈ Ω.

Repeat: i→ i+ 1.

Given this construction, we define

βmi (ω) := τi ◦ τi+1 ◦ · · · ◦ τmk (ω), i ∈ {0, . . . , k}, ω ∈ Ω,

Um(ω) : = ‖φβ
m
0 (ω)
t0 (ω)‖

k∏
i=1

‖ψβ
m
i (ω),(i−1)
ti (ω)‖, ω ∈ Ω.

We make the following observations on this construction:

(i) The construction always produces a sequence ϕm such that lim supm ‖ϕms ‖ <∞

for all s ∈ T ∗. Indeed, if ti = T for some i = 1, . . . , T , then limm ψ
m,(i)
s (ω) = 0
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for s = 1, . . . , T − 1, for a.e. ω ∈ Ω, and limm ‖ψm,(i)T (ω)‖ = 1Ei(ω), for a.e.

ω ∈ Ω. The sequence ψm,(i) clearly satisfies lim supm ‖ψ
m,(i)
s ‖ < ∞ for all

s ∈ T ∗.

(ii) We have that ϕms ∈ L0(Ω,Ftk−1,P,RN) for s = 1, . . . , tk − 1, and ϕms ∈

L0(Ω,Fs−1,P,RN) for s = tk, . . . , T . Hence, the sequence ϕm is not a sequence

of predictable processes. However, the limit of any a.s. convergent subsequence

of ϕm is predictable because ϕms converges a.s. to 0 for s = 1, . . . , tk − 1.

(iii) Ek ⊆ · · · ⊆ E0, and P(Ek) > 0.

(iv) Any a.s. convergent subsequence of ϕm converges a.s. to a nonzero process

since ‖ϕmtk‖ converges a.s. to 1Ek , which is nonzero a.s. since P(Ek) > 0.

(v) From (2.22), (2.24), and (2.27), we have ϕms = 1Eφ
βm0
s /Um for all s ∈ T ∗, where

E :=
⋂k
i=1E

i. Because Ek ⊆ · · · ⊆ E0,

ϕms = 1Ek
φ
βm0
s

Um
, s ∈ T ∗. (2.28)

(vi) Um(ω) diverges for a.e. ω ∈ Ek since (2.21), (2.23), (2.25), and (2.26) hold.

Step 1b: By the previous step, lim supm ‖ϕms ‖ < ∞ for all s ∈ T ∗. We apply

Lemma 2.3.5 to ϕm to find a strictly increasing sequence of positive, integer-valued,

FT−1-measurable random variables ρm so that ϕρ
m

converges a.s. to some process ϕ

such that8 ϕs ∈ L0(Ω,Ftk−1,P;RN) for s = 1, . . . , tk− 1, and ϕs ∈ L0(Ω,Fs−1,P;RN)

for s = tk, . . . , T . By observation (ii) in Step 1a, we have that ϕ is predictable.

Step 1c: We proceed by showing that NAEF implies P(E0) = 0, which contradicts

the assumption that P(E0) > 0.

8See observation (ii) in Step 1a.
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Towards this, we first show that the process ϕ constructed in Step 1b satisfies

F (ϕ) ∈ K. For the sake of notation, we define ηm := βρ
m

0 . From (2.28), we have

ϕρ
m

= 1Ekφ
ηm/Uρm . Since 1Ek and Uρm are nonnegative, R-valued random variables,

1Ek
F (φη

m
)

Uρm
= F

(
1Ek

φη
m

Uρm

)
= F (ϕρ

m

). (2.29)

Because ϕρ
m

converges a.s. to ϕ, we may apply Lemma A.0.2 to see that F (ϕρ
m

)

converges a.s. to F (ϕ). Since ϕ is predictable, we have from the definition of K that

F (ϕ) ∈ K.

We proceed by showing that F (ϕ) ∈ L0
+(Ω,FT ,P;R). Towards this, we define

X̃m := Xηm/Uρm and Z̃m := Zηm/Uρm . From (2.20), we see that

F (φη
m

) = Xηm + Zηm . (2.30)

By multiplying both sides of (2.30) by 1Ek/U
ρm , we see from (2.29) that

F (ϕρ
m

) = 1Ek(X̃
m + Z̃m). (2.31)

The sequence Xm converges a.s. by assumption, so the sequence Xηm also converges

a.s. Recall that the sequence Um(ω) diverges9 for a.e. ω ∈ Ek, so Uρm(ω) diverges for

a.e. ω ∈ Ek since {ρ1(ω), ρ2(ω), . . . , } ⊆ N for a.e. ω ∈ Ω. Hence, 1EkX̃
m converges

a.s. to 0. Since F (ϕρ
m

) and 1EkX̃
m converge a.s., the sequence 1EkZ̃

m also converges

a.s. to some Z ∈ L0
+(Ω,FT ,P;R). Thus, F (ϕρ

m
) converges a.s. to Z, which implies

F (ϕ) ∈ L0
+(Ω,FT ,P;R).

Since F (ϕ) ∈ K, we immediately see that F (ϕ) ∈ K ∩ L0
+(Ω,FT ,P;R). It is

assumed that NA is satisfied, so by Lemmas 2.3.1 and 2.3.3 we deduce that F (ϕ) = 0.

We are supposing that EF holds, so according to Lemma 2.3.2 we have ϕ = 0.

This cannot happen given our assumption that P(Ek) > 0 because10 ‖ϕtk‖ = 1Ek .

9See observations (vi) in Step 1a.

10See observations (iv) in Step 1a.
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Therefore, we must have that P(Ek) = 0. This contradicts the construction in Step

1a, so P(E0) = 0.

Step 2: By the conclusion in Step 1, we obtain that lim supm ‖φms ‖ <∞ for s ∈ T ∗.

By applying Lemma 2.3.5 to φm, we may find a strictly increasing sequence of positive,

integer-valued, FT−1-measurable random variables σm such that φσ
m

converges a.s.

to some predictable process φ.

By Lemma A.0.2, the sequence F (φσ
m

) converges a.s. to F (φ). Since φ ∈ P ,

we have F (φ) ∈ K. Because Xm converges a.s. to X, the sequence Xσm also converges

a.s. to X. From (2.20), it is true that Xσm = F (φσ
m

)−Zσm . Since Xσm and F (φσ
m

)

converges a.s., the sequence Zσm also converges a.s. Thus, F (φσ
m

)−Xσm converges

a.s. to some nonnegative random variable Z := F (φ) − X, which gives us that

X = F (φ) − Z. We conclude that X ∈ K − L0
+(Ω,FT ,P;R). This finishes the

proof.

2.4 The First Fundamental Theorem of Asset Pricing

In this section, we formulate and prove a version of the First Fundamental

Theorem of Asset Pricing (FFTAP). We define the following set for convenience:

Z := {Q : Q ∼ P, and P ask,∗, P bid,∗, Aask,∗, Abid,∗ are Q-integrable}.

We now define a risk-neutral measure in our context.

Definition 2.4.1. A probability measure Q is a risk-neutral measure if Q ∈ Z, and if

EQ[V ∗T (φ)] ≤ 0 for all φ ∈ S such that φj is bounded a.s., for j ∈ J ∗, and V0(φ) = 0.

A natural question to ask is whether the expectation appearing in the definition

above exists. The following lemma shows that, indeed, it does.
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Lemma 2.4.1. Suppose that Q ∈ Z, and let φ ∈ S be such that φj is bounded a.s.,

for j ∈ J ∗, and V0(φ) = 0. Then V ∗T (φ) is Q-integrable.

Proof. From the definition of Z, the processes P ask,∗, P bid,∗, Aask,∗, Abid,∗ are Q-

integrable. Since φ is self-financing, we have by Proposition 2.2.2 that

EQ[|V ∗T (φ)|] = EQ

[∣∣∣ N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)∣∣∣].
Because Q is equivalent to P, and since φj is bounded P-a.s. for j ∈ J ∗, we have

that φj is bounded Q-a.s. for j ∈ J ∗. Therefore, from the equation above, we deduce

from the triangle inequality that EQ[|V ∗T (φ)|] <∞. Hence V ∗T (φ) is Q-integrable.

The next lemma provides a mathematically convenient condition that is equiv-

alent to NA.

Lemma 2.4.2. The no-arbitrage condition (NA) is satisfied if and only if for each

φ ∈ S such that φj is bounded a.s. for j ∈ J ∗, V0(φ) = 0, and VT (φ) ≥ 0, we have

VT (φ) = 0.

Proof. Necessity holds immediately, so we only show sufficiency. Let φ ∈ S be a

trading strategy so that V0(φ) = 0 and VT (φ) ≥ 0. We will show that VT (φ) = 0.

First, define the Ft−1 measurable set Ωm,j
t := {ω ∈ Ω : |φjt(ω)| ≤ m} for

m ∈ N, t ∈ T ∗, and j ∈ J ∗, and define the sequence of trading strategies ψm as

ψm,jt := 1Ωm,jt
φjt for t ∈ T ∗ and j ∈ J ∗, where ψm,0 is chosen so that ψm is self-

financing and V0(ψm) = 0. By Lemma A.0.3, the sequence 1Ωm,jt
converges a.s. to 1

for all t ∈ T ∗ and j ∈ J ∗. Thus, ψm,jt converges a.s. to φjt for all t ∈ T ∗ and j ∈ J ∗.
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Now we prove that V0(ψm) converges a.s. to V0(φ). Towards this, we first

show that ψm,j1 converges a.s. to φj1 for all j ∈ J . By the definition of V0(ψm),

V0(ψm) = ψm,01 +
N∑
j=1

ψm,j1

(
1{ψm,j1 ≥0}P

ask,j
0 + 1{ψm,j1 <0}P

bid,j
0

)
.

Since ψm,0 is chosen so that V0(ψm) = 0, we have

ψm,01 = −
N∑
j=1

ψm,j1

(
1{ψm,j1 ≥0}P

ask,j
0 + 1{ψm,j1 <0}P

bid,j
0

)
.

The sequence ψm,j1 converges a.s. to φj1 for all j ∈ J ∗, so by Lemma A.0.2 the

sequence ψm,01 converges a.s. to

−
N∑
j=1

φj1
(
1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid,j
0

)
.

However, V0(φ) = 0, so

φ0
1 = −

N∑
j=1

φj1
(
1{φj1≥0}P

ask,j
0 + 1{φj1<0}P

bid,j
0

)
.

Hence, ψm,01 converges a.s. to φ0
1. Thus, ψm,j1 converges a.s. to φj1 for all j ∈ J . Thus,

V0(ψm) converges to V0(φ).

According to Lemma 2.2.1, V ∗T (ψm) converges a.s. to V ∗T (φ) since ψm,jt con-

verges a.s. to φjt for all t ∈ T ∗ and j ∈ J ∗.

Next, since ψm is self-financing and ψm,j is bounded a.s. for all j ∈ J ∗ and

all m ∈ N, we obtain

V0(ψm) = 0, VT (ψm) ≥ 0 =⇒ VT (ψm) = 0, m ∈ N. (2.32)

Because B > 0, it immediately follows that

V0(ψm) = 0, V ∗T (ψm) ≥ 0 =⇒ V ∗T (ψm) = 0, m ∈ N.

Since V0(ψm) converges a.s. to V0(φ), and V ∗T (ψm) converges a.s. to V ∗T (φ) we have

V0(φ) = 0, V ∗T (φ) ≥ 0 =⇒ V ∗T (φ) = 0.
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Hence,

V0(φ) = 0, VT (φ) ≥ 0 =⇒ VT (φ) = 0.

Since V0(φ) = 0 and VT (φ) ≥ 0, we conclude that VT (φ) = 0, so NA holds.

We are now ready prove the FFTAP.

Theorem 2.4.1 (First Fundamental Theorem of Asset Pricing). The following con-

ditions are equivalent:

(i) The no-arbitrage condition under the efficient friction assumption (NAEF) is

satisfied.

(ii) There exists a risk-neutral measure.

(iii) There exists a risk-neutral measure Q so that dQ/dP ∈ L∞(Ω,FT ,P;R).

Proof. In order to prove these equivalences, we show that (ii)⇒ (i), (i)⇒ (iii), and

(iii)⇒ (ii). The implication (iii)⇒ (ii) is immediate, so we only show the remaining

two.

(ii) ⇒ (i): We prove by contradiction. Let Q be a risk-neutral measure and assume

that NA does not hold. By Lemma 2.4.2, there exists φ ∈ S so that φj is bounded

a.s., for j ∈ J ∗, V0(φ) = 0, V ∗T (φ) ≥ 0, and P(V ∗T (φ)(ω) > 0) > 0. Since Q is

equivalent to P, we have V0(φ) = 0, V ∗T (φ) ≥ 0 Q-a.s., and Q(V ∗T (φ)(ω) > 0) > 0. So

EQ[V ∗T (φ)] > 0, which contradicts that Q is risk-neutral. Hence, NA holds.

(i)⇒ (iii): We first construct a probability measure P̃ satisfying P̃ ∈ Z and dP̃/dP ∈

L∞(Ω,FT ,P;R). Towards this, let us define the FT -measurable weight function

w := 1 +
T∑
u=0

‖P ask,∗
u ‖+

T∑
u=0

‖P bid,∗
u ‖+

T∑
u=1

‖Aask,∗u ‖+
T∑
u=1

‖Abid,∗u ‖, (2.33)
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and let P̃ be the measure on FT with Radon-Nikodým derivative dP̃/dP = c̃/w, where

c̃ := 1/EP[1/w]. Since w ≥ 1, we have dP̃/dP ∈ L∞(Ω,FT ,P;R). Since 1 ≤ c, the

measure P̃ is equivalent to P. Next, because EP[dP̃/dP] = 1, we deduce that the

measure P̃ is a probability measure. By the choice of the weight function w, the

processes P ask,∗, P bid,∗, Aask,∗, Abid,∗ are P̃-integrable:

EP̃[‖P ask,∗
t ‖] = c̃ EP[‖P ask,∗

t ‖/w] ≤ c̃ <∞,

EP̃[‖P bid,∗
t ‖] = c̃ EP[‖P bid,∗

t ‖/w] ≤ c̃ <∞,

EP̃[‖Aask,∗t ‖] = c̃ EP[‖Aask,∗t ‖/w] ≤ c̃ <∞,

EP̃[‖Abid,∗t ‖] = c̃ EP[‖Abid,∗t ‖/w] ≤ c̃ <∞,

for all t ∈ T . It follows that P̃ ∈ Z.

Since P̃ is equivalent to P, we have that(
K − L0

+(Ω,FT , P̃ ;R)
)
∩ L0

+(Ω,FT , P̃ ;R) = {0}

by Lemma 2.3.1, the set K−L0
+(Ω,FT , P̃ ;R) is P̃-closed according to Theorem 2.3.1,

and K − L0
+(Ω,FT , P̃ ;R) is a convex cone by Lemma 2.2.2.

Let us now consider the set C :=
(
K−L0

+(Ω,FT , P̃ ;R)
)
∩L1(Ω,FT , P̃ ;R). We

observe the following:

• Convergence in L1(Ω,FT , P̃ ;R) implies convergence in measure P̃, so we have

that C is closed in L1(Ω,FT , P̃ ;R).

• Since 0 ∈ L1
+(Ω,FT , P̃ ;R) ⊆ L0

+(Ω,FT , P̃ ;R) and 0 ∈ C, it is true that

0 ⊆ C ∩ L1
+(Ω,FT , P̃ ;R) ⊆

(
K − L0

+(Ω,FT ,P ;R)
)
∩ L0

+(Ω,FT ,P ;R) = {0}.

Hence, C ∩ L1
+(Ω,FT , P̃ ;R) = {0}.

• The set L1(Ω,FT , P̃ ;R) is a linear space (and thus a convex cone), so C is also

a convex cone since the intersection of two convex cones is a convex cone.
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• Since 0 ∈ K, we have that C ⊇ L1
−(Ω,FT , P̃ ;R), where we denote by

L1
−(Ω,FT , P̃ ;R) the set of non positive P̃-integrable random variables.

Thus, according to Lemma A.0.8, there exists a strictly positive functional11

f ∈ L∞(Ω,FT , P̃ ;R) such that EP̃[Kf ] ≤ 0 for all K ∈ C. Because

0 ∈ L0
+(Ω,FT , P̃ ;R), it follows from the definition of C that

EP̃[Kf ] ≤ 0, K ∈ K ∩ L1(Ω,FT , P̃ ;R).

By the definition of K, this implies that EP̃[V ∗T (φ)f ] ≤ 0 for all φ ∈ S such that

V0(φ) = 0 and V ∗T (φ) ∈ L1(Ω,FT , P̃ ;R). In particular, EP̃[V ∗T (φ)f ] ≤ 0 for all φ ∈ S

such that φj is bounded a.s., for j ∈ J ∗, V0(φ) = 0, and V ∗T (φ) ∈ L1(Ω,FT , P̃ ;R).

Since P̃ ∈ Z, we obtain from Lemma 2.4.1 that V ∗T (φ) is P̃-integrable. Thus,

EP̃[V ∗T (φ)f ] ≤ 0 for all φ ∈ S such that φj is bounded a.s., for j ∈ J ∗, and V0(φ) = 0.

We proceed by constructing a risk-neutral measure. Let Q be the measure

on FT with Radon-Nikodým derivative dQ/dP̃ := cf , where c := 1/EP̃[f ]. Because

f is a strictly positive functional in L∞(Ω,FT , P̃ ;R), we have that Q is equivalent

to P̃. Since P̃ is equivalent to P, it follows that Q is equivalent to P. Moreover,

EP̃[dQ/dP̃] = 1, so Q is a probability measure. Also,

dQ
dP

=
dQ
dP̃

dP̃
dP

= cc̃
f

w
. (2.34)

Thus, since w ≥ 1 and f ∈ L∞(Ω,FT , P̃ ;R), we have dQ/dP ∈ L∞(Ω,FT , P̃;R). This

gives us dQ/dP ∈ L∞(Ω,FT ,P;R) since P̃ is equivalent to P. Moreover, the processes

11For each h ∈ L1
+(Ω,FT , P̃ ;R) with h 6= 0, we have EP̃[fh] > 0.
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P ask,∗, P bid,∗, Aask,∗, Abid,∗ are Q-integrable:

EQ[‖P ask,∗
t ‖] = cc̃ EP[‖P ask,∗

t ‖(f/w)] ≤ cc̃ EP[f ] <∞,

EQ[‖P bid,∗
t ‖] = cc̃ EP[‖P bid,∗

t ‖(f/w)] ≤ cc̃ EP[f ] <∞,

EQ[‖Aask,∗t ‖] = cc̃ EP[‖Aask,∗t ‖(f/w)] ≤ cc̃ EP[f ] <∞,

EQ[‖Abid,∗t ‖] = cc̃ EP[‖Abid,∗t ‖(f/w)] ≤ cc̃ EP[f ] <∞,

for all t ∈ T . Hence, Q ∈ Z. We conclude that Q is a risk-neutral measure since

EQ[V ∗T (φ)] = c EP̃[V ∗T (φ)f ] ≤ 0 for all φ ∈ S such that φj is bounded a.s., for j ∈ J ∗,

and V0(φ) = 0. Thus, (iii) holds.

Remark 2.4.1. (i) Note that EF is not needed to prove the implication (ii)⇒ (i).

(ii) In practice, it is typically required for a market model to satisfy NA. According

to Theorem 2.4.1, it is enough to check that there exists a risk-neutral measure.

However, this is not straightforward because it has to be verified whether there

exists a probability measure Q ∈ Z so that EQ[V ∗T (φ)] ≤ 0 for all φ ∈ S so that

φj is bounded a.s., for j ∈ J ∗, and V0(φ) = 0. We will show in the following sec-

tion that consistent pricing systems help solve this issue (see Proposition 2.5.1

and Theorem 2.5.1).

2.5 Consistent Pricing Systems

Consistent pricing systems (CPSs) are instrumental in no-arbitrage pricing in

markets with transaction costs—they provide a bridge between martingale theory in

no-arbitrage ricing in frictionless markets and more general concepts in no-arbitrage

pricing in markets with transaction costs. Essentially, CPSs are interpreted as corre-

sponding auxiliary frictionless markets. They are very useful from the practical point

of view because they provide a straightforward way to verify whether a financial mar-

ket model satisfies NA. In this section, we explore the relationship between CPSs

and NA.
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We begin by defining a CPS in our context.

Definition 2.5.1. A consistent pricing system (CPS) corresponding to the market

(B,P ask, P bid, Aask, Abid) is a quadruplet {Q, P, A,M} consisting of

(i) a probability measure Q ∈ Z,

(ii) an adapted process P satisfying P bid,∗ ≤ P ≤ P ask,∗,

(iii) an adapted process A satisfying Aask,∗ ≤ A ≤ Abid,∗,

(iv) a martingale M under Q satisfying Mt = Pt +
∑t

u=1Au for all t ∈ T .

Remark 2.5.1. Since our market is fixed throughout the paper, we shall simply

refer to {Q, P, A,M} as a CPS, rather than a CPS corresponding to the market

(B,P ask, P bid, Aask, Abid).

For a CPS {Q, P, A,M}, the process P is interpreted as the corresponding

auxiliary frictionless ex-dividend price process, and the process A has the interpreta-

tion of the corresponding auxiliary frictionless cumulative dividend process, whereas

M is viewed as the corresponding auxiliary frictionless cumulative price process.

The next result establishes a relationship between NA and CPSs in our con-

text.

Proposition 2.5.1. If there exists a consistent pricing system (CPS), then the no-

arbitrage condition (NA) is satisfied.

Proof. Suppose there exists a CPS, call it {Q, P, A,M}, and suppose φ ∈ S is a

trading strategy such that φj is bounded a.s., for j ∈ J ∗, and V0(φ) = 0. By
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Proposition 2.2.2, a trading strategy φ is self-financing if and only if

V ∗T (φ) =
N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)
.

Because P bid ≤ P ≤ P ask and Aask ≤ A ≤ Abid, we have that

V ∗T (φ) ≤
N∑
j=1

(
φjTP

j
T +

T∑
u=1

(−∆φjuP
j
u−1 + φjuA

j
u)
)
.

Since M = P +
∑·

u=1Au is a martingale under Q, and because φj is bounded a.s.,

for j ∈ J ∗, we have

EQ[V ∗T (φ)] ≤
N∑
j=1

EQ

[
φjTP

j
T +

T∑
u=1

(−∆φjuP
j
u−1 + φjuA

j
u)
]

=
N∑
j=1

T∑
u=1

EQ

[
∆φjuEQ

[
P j
T − P

j
u−1 +

T∑
w=u

Ajw

∣∣∣Fu−1

]]

=
N∑
j=1

T∑
u=1

EQ

[
∆φjuEQ

[
P j
T +

T∑
w=1

Ajw − P
j
u−1 −

u−1∑
w=1

Ajw

∣∣∣Fu−1

]]

=
N∑
j=1

T∑
u=1

EQ

[
∆φjuEQ

[
M j

T −M
j
u−1

∣∣∣Fu−1

]]

= 0.

Therefore, Q is a risk-neutral measure. According to Theorem 2.4.1, we may conclude

that NA holds.

At this point, a natural question to ask is whether there exists a CPS whenever

NA is satisfied. In general, this is still an open question. However, for the special

case in which there are no transaction costs in the dividends paid by the securities,

Aask = Abid, will show in Theorem 2.5.1 that there exists a CPS if and only if NAEF

is satisfied.
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Proposition 2.5.1 is important from the modeling point of view because it

provides a sufficient condition for a model to satisfy NA. As the next example below

illustrates, it is usually straightforward to check whether there exists a CPS.

Example 2.5.1. Lets consider the CDS specified in Example 2.1.1. Recall that the

cumulative dividend processes Aask and Abid corresponding to the CDS are defined as

Aaskt := 1{τ≤t}δ − κask
t∑

u=1

1{u<τ},

Abidt := 1{τ≤t}δ − κbid
t∑

u=1

1{u<τ}

for all t ∈ T ∗. Let us fix any probability measure Q equivalent to P. We postulate

that the ex-dividend prices P ask and P bid satisfy

P ask,∗
t = EQ

[ T∑
u=t+1

Abid,∗u

∣∣∣Ft],
P bid,∗
t = EQ

[ T∑
u=t+1

Aask,∗u

∣∣∣Ft],
for all t ∈ T ∗. By substituting Aask,∗ and Abid,∗ into the equations for P ask,∗ and P bid,∗

above, we see that

P ask,∗
t = EQ

[
1{t<τ≤T}B

−1
τ δ − κbid

T∑
u=t+1

B−1
u 1{u<τ}

∣∣∣Ft],
P bid,∗
t = EQ

[
1{t<τ≤T}B

−1
τ δ − κask

T∑
u=t+1

B−1
u 1{u<τ}

∣∣∣Ft].
For a fixed κ ∈ [κbid, κask], we define12

At := B−1
t

(
1{τ=t}δ − κ1{t<τ}

)
, t ∈ T ∗,

Pt := EQ

[ T∑
u=t+1

Au

∣∣∣Ft] = EQ

[
1{t<τ≤T}B

−1
τ δ − κ

T∑
u=t+1

B−1
u 1{u<τ}

∣∣∣Ft], t ∈ T ,

Mt := Pt +
t∑

u=1

Au, t ∈ T .

12We take the convention A0 = 0.
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The quadruplet {Q, P, A,M} is a CPS. To see this, first observe that A and

P are Q-integrable since A is bounded Q-a.s. Thus, Q ∈ Z. Next, M satisfies

Mt = EQ

[
1{τ≤T}B

−1
τ δ − κ

T∑
u=1

B−1
u 1{u<τ}

∣∣∣Ft], t ∈ T ,

so M is a Doob martingale under Q. Also, since κ ∈ [κbid, κask], we have Aask,∗ ≤

A ≤ Abid,∗ and P bid,∗ ≤ P ≤ P ask,∗. Thus, {Q, P, A,M} is a CPS. According

to Proposition 2.5.1, we may additionally conclude that the financial market model

{B,P ask, P bid, Aask, Abid} satisfies NA.

2.5.1 Consistent Pricing Systems Under the Assumption Aask = Abid. In

this section, we investigate the relationship between risk-neutral measures and CPSs

under the assumption Aask = Abid. Let us denote by A the process Aask. We begin

by proving two preliminary lemmas that hold in general (without the assumption

Aask = Abid).

Lemma 2.5.1. If Q is a risk-neutral measure, then

P bid,j,∗
σ1

≤ EQ

[
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Abid,j,∗u

∣∣∣Fσ1],
P ask,j,∗
σ1

≥ EQ

[
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aask,j,∗u

∣∣∣Fσ1],
for all j ∈ J ∗ and stopping times 0 ≤ σ1 < σ2 ≤ T .

Proof. Suppose Q is a risk-neutral measure. For stopping times 0 ≤ σ1 < σ2 ≤ T

and random variables ξσ1 ∈ L∞(Ω,Fσ1 ,P; RN), we define the trading strategy

θ(σ1, σ2, ξσ1) :=
((
θ0
t (σ1, σ2, ξσ1), 1{σ1+1≤t≤σ2}ξ

1
σ1
, . . . , 1{σ1+1≤t≤σ2}ξ

N
σ1

))T
t=1
,

where θ0(σ1, σ2, ξσ1) is chosen such that θ(σ1, σ2, ξσ1) is self-financing and

V0(θ(σ1, σ2, ξσ1)) = 0. Due to Proposition 2.2.2, the value process associated with θ
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satisfies

V ∗T (θ(σ1, σ2, ξσ1)) =
N∑
j=1

1{ξjσ1≥0}ξ
j
σ1

(
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aask,j,∗u − P ask,j,∗
σ1

)
+

N∑
j=1

1{ξjσ1<0}ξ
j
σ1

(
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Abid,j,∗u − P bid,j,∗
σ1

)
.

Since Q is a risk-neutral measure, we have EQ[V ∗T (θ(σ1, σ2, ξσ1))] ≤ 0 for all stopping

times 0 ≤ σ1 < σ2 ≤ T and random variables ξσ1 ∈ L∞(Ω,Fσ1 ,P; RN). Hence, we

are able to obtain

EQ

[ N∑
j=1

1{ξjσ1≥0}ξ
j
σ1

(
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aask,j,∗u − P ask,j,∗
σ1

)
+

N∑
j=1

1{ξjσ1<0}ξ
j
σ1

(
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Abid,j,∗u − P bid,j,∗
σ1

)]
≤ 0,

for all stopping times 0 ≤ σ1 < σ2 ≤ T and random variables

ξσ1 ∈ L∞(Ω,Fσ1 ,P; RN). Therefore, we get that

EQ

[
N∑
j=1

1{ξjσ1≥0}ξ
j
σ1
EQ

[
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aask,j,∗u − P ask,j,∗
σ1

∣∣∣Fσ1]
+

N∑
j=1

1{ξjσ1<0}ξ
j
σ1
EQ

[
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Abid,j,∗u − P bid,j,∗
σ1

∣∣∣Fσ1]
]
≤ 0.

for all stopping times 0 ≤ σ1 < σ2 ≤ T and ξσ1 ∈ L∞(Ω,Fσ1 ,P; RN). By

Lemma A.0.7, we are able to conclude that

P bid,j,∗
σ1

≤ EQ

[
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Abid,j,∗u

∣∣∣Fσ1],
P ask,j,∗
σ1

≥ EQ

[
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aask,j,∗u

∣∣∣Fσ1],
for all j ∈ J ∗, and all stopping times 0 ≤ σ1 < σ2 ≤ T .

The next result is motivated by Theorem 4.5 in Cherny [Che07b]. We will

denote by Tt the set of stopping times in {t, t+ 1, . . . , T}, for all t ∈ T .
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Lemma 2.5.2. Suppose Q is a risk-neutral measure, and let

Xb,j
s := ess sup

σ∈Ts
EQ

[
P bid,j,∗
σ +

σ∑
u=1

Aask,j,∗u

∣∣∣Fs],
Xa,j
s := ess inf

σ∈Ts
EQ

[
P ask,j,∗
σ +

σ∑
u=1

Abid,j,∗u

∣∣∣Fs],
for all j ∈ J ∗ and s ∈ T . Then Xb is a supermartingale and Xa is a submartingale,

both under Q, and satisfy Xb ≤ Xa.

Proof. Let us fix j ∈ J ∗. The processes Xb,j and Xa,j are Snell envelopes, so Xa,j is a

supermartingale and Xb.j is a submartingale, both under Q (see for instance, Föllmer

and Schied [FS04]).

We now show that Xb,j ≤ Xa,j. Let us define the process

Xj
t := EQ

[
P bid,j,∗
τ1

+

τ1∑
u=1

Aask,j,∗u

∣∣∣Ft]− EQ

[
P ask,j,∗
τ2

+

τ2∑
u=1

Abid,j,∗u

∣∣∣Ft], t ∈ T .

For any stopping times τ1, τ2 ∈ Tt, we see that

Xj
t = EQ

[
EQ

[
P bid,j,∗
τ1

+

τ1∑
u=1

Aask,j,∗u − P ask,j,∗
τ2

−
τ2∑
u=1

Abid,j,∗u

∣∣Fτ1∧τ2]∣∣∣Ft]
= EQ

[
1{τ1≤τ2}

(
P bid,j,∗
τ1

+

τ1∑
u=1

Aask,j,∗u − EQ

[
P ask,j,∗
τ2

+

τ2∑
u=1

Abid,j,∗u

∣∣∣Fτ1])∣∣∣Ft]
+ EQ

[
1{τ1>τ2}

(
EQ

[
P bid,j,∗
τ1

+

τ1∑
u=1

Aask,j,∗u

∣∣∣Fτ2]− P ask,j,∗
τ2

−
τ2∑
u=1

Abid,j,∗u

)∣∣∣Ft].
After rearranging terms, we deduce that

Xj
t = EQ

[
1{τ1≤τ2}P

bid,j,∗
τ1

+

τ1∑
u=1

(Aask,j,∗u − Abid,j,∗u )

− 1{τ1≤τ2}EQ

[
P ask,j,∗
τ2

+

τ2∑
u=τ1+1

Abid,j,∗u

∣∣∣Fτ1]∣∣∣Ft]
+ EQ

[
1{τ1>τ2}EQ

[
P bid,j,∗
τ1

+

τ1∑
u=τ2+1

Aask,j,∗u

∣∣∣Fτ2]
− 1{τ1>τ2}(P

ask,j,∗
τ2

+

τ2∑
u=1

(Abid,j,∗u − Aask,j,∗u ))
∣∣∣Ft].
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Because Aask,∗ ≤ Abid,∗, we are able to obtain

Xj
t ≤ EQ

[
1{τ1≤τ2}

(
P bid,j,∗
τ1

− EQ

[
P ask,j,∗
τ2

+

τ2∑
u=τ1+1

Abid,j,∗u

∣∣∣Fτ1])∣∣∣Ft]
+ EQ

[
1{τ1>τ2}

(
EQ

[
P bid,j,∗
τ1

+

τ1∑
u=τ2+1

Aask,j,∗u

∣∣∣Fτ2]− P ask,j,∗
τ2

)∣∣∣Ft]. (2.35)

Since Q is a risk-neutral measure, we see from Lemma 2.5.1 and (2.35) that Xj
t ≤ 0.

The stopping times τ1 and τ2 are arbitrary in the definition of Xj, so we conclude

that Xb,j ≤ Xa,j.

The next theorem gives sufficient and necessary conditions for there to exist a

CPS (cf. Cherny [Che07b]; Denis, Guasoni, and Rásonyi [DGR11]).

Theorem 2.5.1. Under the assumption that Aask = Abid, there exists a consistent

pricing system (CPS) if and only if the no-arbitrage condition under the efficient

condition (NAEF) is satisfied.

Proof. Necessity is shown in Proposition 2.5.1, so we only prove sufficiency. Suppose

that NAEF is satisfied. According to Theorem 2.4.1, there exists a risk-neutral

measure Q. By Lemma 2.5.1,

P bid,j,∗
σ1

≤ EQ

[
P ask,j,∗
σ2

+

σ2∑
u=σ1+1

Aj,∗u

∣∣∣Fσ1],
P ask,j,∗
σ1

≥ EQ

[
P bid,j,∗
σ2

+

σ2∑
u=σ1+1

Aj,∗u

∣∣∣Fσ1],
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for all j ∈ J ∗ and stopping times 0 ≤ σ1 < σ2 ≤ T . Now, let us define the processes

Y b,j
t := ess sup

σ∈Tt
EQ

[
P bid,j,∗
σ +

σ∑
u=t+1

Aj,∗u

∣∣∣Ft],
Y a,j
t := ess inf

σ∈Tt
EQ

[
P ask,j,∗
σ +

σ∑
u=t+1

Aj,∗u

∣∣∣Ft],
Xb,j
t := Y b,j

t +
t∑

u=1

Aj,∗t , (2.36)

Xa,j
t := Y a,j

t +
t∑

u=1

Aj,∗t ,

for all t ∈ T and j ∈ J ∗. From Lemma 2.5.2, we know that under Q the process

Xa is a submartingale and the process Xb is a supermartingale, and that they satisfy

Xb ≤ Xa.

For t = 0, 1, . . . , T − 1 and j ∈ J ∗, recursively define

M j
0 := Y a,j

0 ,

P j
0 := Y a,j

0 ,

P j
t+1 := λjtY

a,j
t+1 + (1− λjt)Y

b,j
t+1, (2.37)

M j
t+1 := P j

t+1 +
t+1∑
u=1

Aju,

where λjt satisfies

λjt =


M j

t − EQ[Xb,j
t+1|Ft]

EQ[Xa,j
t+1 −X

b,j
t+1|Ft]

, if EQ[Xa,j
t+1|Ft] 6= EQ[Xb,j

t+1|Ft],

1

2
, otherwise.

(2.38)

Lets fix j ∈ J ∗ for the rest of the proof.

Step 1: In this step, we show that the processes above are well defined and adapted.

First, note that P0 and M0 are well defined, and that, by (2.38),

λj0 =
M j

0 − EQ[Xb,j
1 |F0]

EQ[Xa,j
1 −X

b,j
1 |F0]

, or λj0 =
1

2
.
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Thus, λj0 is well defined and F0-measurable. Next, we compute P j
1 and M j

1 , and

consequently we compute λj1; all of them being F1-measurable. Inductively, we see

that P j
t , M j

t , and λjt , for t = 2, . . . , T are well defined and Ft-measurable.

Step 2: We inductively show that λjt ∈ [0, 1] for t = 0, 1, . . . , T − 1. We first show

that λj0 ∈ [0, 1]. If EQ[Xa,j
1 −X

b,j
1 |F0] = 0, then λj0 ∈ [0, 1] automatically, so suppose

that EQ[Xa,j
1 −X

b,j
1 |F0] > 0. Now, by the definition of M j, we have that M j

0 = Xa,j
0 ,

so (2.38) gives that

λj0 =
Xa,j

0 − EQ[Xb,j
1 |F0]

EQ[Xa,j
1 −X

b,j
1 |F0]

. (2.39)

The process Xa,j is a submartingale under Q, so it immediately follows that λj0 ≤ 1.

On the other hand, since Xb,j is a supermartingale under Q,

λj0 ≥
Xa,j

0 −X
b,j
0

EQ[Xa,j
1 −X

b,j
1 |F0]

.

Because Xa,j
0 ≥ Xb,j

0 , we deduce that λj0 ≥ 0.

Suppose that λjt ∈ [0, 1] for t = 0, 1, . . . , T−2. We now prove that λjT−1 ∈ [0, 1].

If EQ[Xa,j
T −X

b,j
T |FT−1] = 0, then λjT−1 = 1/2, so assume that EQ[Xa,j

T −X
b,j
T |FT−1] >

0. According to (2.38) and the definition of M j, we have that

λjT−1 =
λjT−2X

a,j
T−1 + (1− λjT−2)Xb,j

T−1 − EQ[Xb,j
T |FT−1]

EQ[Xa,j
T −X

b,j
T |FT−1]

. (2.40)

Since λjT−2 ≤ 1, and because Xb,j is a supermartingale under Q, we have that

λjT−1 ≥
λjT−2(Xa,j

T−1 −X
b,j
T−1)

EQ[Xa,j
T −X

b,j
T |FT−1]

.

Because Xa,j ≥ Xb,j, we arrive at λjT−1 ≥ 0. Now, since Xa,j
T−1 ≥ Xb,j

T−1 and λjT−2 ≤ 1,

we see from (2.40) that

λjT−1 ≤
Xa,j
T−1 − EQ[Xb,j

T |FT−1]

EQ[Xa,j
T −X

b,j
T |FT−1]

.

The process Xa,j is a submartingale under Q, so it follows that λjT−1 ≤ 1.
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Thus, we conclude that λjt ∈ [0, 1] for t = 0, 1, . . . , T − 1.

Step 3: Next, we show that M is a martingale under Q. First we note that by (2.36)

and (2.37) we have

M j
t+1 = λjtX

a,j
t+1 + (1− λjt)X

b,j
t+1. (2.41)

From here, the Q-integrability of M j follows from Q-integrability of Xa,j, Xb,j and

boundedness of λj. From (2.38) and (2.41), we get that EQ[M j
t+1|Ft] = M j

t , for

t = 0, 1, . . . , T − 1. Hence, M j is a martingale under Q.

Step 4: We continue by showing that P j satisfies P bid,∗,j ≤ P j ≤ P ask,∗,j. Let us first

show that P bid,j
0 ≤ P j

0 ≤ P ask,j
0 . By definition of P j

0 , we have that P j
0 = Y a,j

0 , and by

(2.36) we see that Y a,j
0 = Xa,j

0 . Therefore, the claim holds since P bid,j
0 ≤ Xa,j

0 ≤ P ask,j
0 .

We proceed by proving that P bid,j
t ≤ P j

t ≤ P ask,j
t for all t ∈ {1, . . . , T}.

Towards this, let t ∈ {1, . . . , T}. By the definition of P j
t , we have P j

t = λjt−1Y
a,j
t +

(1 − λjt−1)Y b,j
t . From (2.36), it is true that Xa,j

t ≥ Xb,j
t if and only if Y a,j

t ≥ Y b,j
t .

Also, since t ∈ Tt, we see from (2.36) that Y b,j
t ≥ P bid,j,∗

t and Y a,j
t ≤ P ask,j

t . According

to Step 1, λjt−1 ∈ [0, 1]. So, putting everything together, we obtain

P bid,j
t ≤ Y b,j

t ≤ P j
t ≤ Y a,j

t ≤ P ask,j
t .

We conclude that {Q, P, A,M} is a CPS.

2.6 The Superhedging and Subhedging Theorem

In this section, we formulate the superhedging ask price and subhedging bid

price of a dividend-paying derivative contract, and then we provide an important

representation theorem for these prices.

For results related to this topic, both for discrete-time and continuous-time

markets with transaction costs, we refer to, among others, Soner, Shreve, and Cvi-

tanic [SSC95]; Levental and Skorohod [LS97]; Cvitanic, Pham, and Touzi [CPT99];
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Touzi [Tou99]; Bouchard and Touzi [BT00]; Kabanov, Rásonyi, and Stricker [KRS02];

Schachermayer [Sch04]; Campi and Schachermayer [CS06]; Cherny [Che07b]; Penna-

nen [Pen11d, Pen11a, Pen11b, Pen11c]. Our contribution to this literature is that we

consider dividend-paying securities, such as swap contracts, as hedging securities.

A derivative contract D is any a.s. bounded, R-valued, F-adapted process.

Here, D is interpreted as the spot cash flow process (not the cumulative cash flow

process). We remark that the boundedness restriction on derivative contracts is

natural for fixed income securities.

Let us now define the set of self-financing trading strategies initiated at time

t ∈ {0, 1, . . . , T − 1} with bounded components (j = 1, . . . , N) as

S∗(t) :=
{
φ ∈ S : φj is bounded a.s. for j ∈ J ∗, φs = 1{t+1≤s}φs for all s ∈ T ∗

}
,

and the set of attainable values at zero cost initiated at time t ∈ {0, 1, . . . , T − 1} as

K(t) :=
{
V ∗T (φ) : φ ∈ S∗(t) such that V0(φ) = 0

}
.

Remark 2.6.1.

(i) S∗(t) and K(t) are closed with respect to multiplication by random variables in

L∞+ (Ω,Ft,P;R).13

(ii) S ⊃ S∗(0) ⊃ S∗(1) ⊃ · · · ⊃ S∗(T − 1) and K ⊃ K(0) ⊃ K(1) ⊃ · · · ⊃ K(T − 1).

Moreover, if Q is a risk-neutral measure, then EQ[K] ≤ 0 for all K ∈ K(t), for

t = 0, 1, . . . , T − 1.

We proceed by defining the main objects of this section.

13L∞+ (Ω,Ft,P;R) := {X ∈ L∞(Ω,Ft,P;R) : X ≥ 0}.
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Definition 2.6.1. The discounted superhedging ask and subhedging bid prices of a

derivative contract D at time t ∈ {0, . . . , T − 1} are defined as

πaskt (D) := ess inf Wa(t,D) and πbidt (D) := ess sup Wb(t,D), where

Wa(t,D) :=
{
W ∈ L0(Ω,Ft,P;R) : −W +

T∑
u=t+1

D∗u ∈ K(t)− L0
+(Ω,FT ,P;R)

}
,

Wb(t,D) :=
{
W ∈ L0(Ω,Ft,P;R) : W −

T∑
u=t+1

D∗u ∈ K(t)− L0
+(Ω,FT ,P;R)

}
.

Note that πaskt (D) = −πbidt (−D), and

Wa(t,D) =
{
W ∈ L0(Ω,Ft,P;R) : ∃K ∈ K(t) such that

T∑
u=t+1

D∗u ≤ K +W
}
,

Wb(t,D) =
{
W ∈ L0(Ω,Ft,P;R) : ∃K ∈ K(t) such that −

T∑
u=t+1

D∗u ≤ K −W
}
.

Remark 2.6.2.

(i) For each t ∈ {0, 1, . . . , T −1}, the prices πaskt (D) and πbidt (D) have the following

interpretations: The price πaskt (D) is interpreted as the least discounted cash

amount W at time t so that the gain −W +
∑T

u=t+1D
∗
u can be superhedged at

zero cost. On the other hand, the random variable πbidt (D) is interpreted as the

greatest discounted cash amount W at time t so that the gain W −
∑T

u=t+1D
∗
u

can be superhedged at zero cost.

(ii) In view of (i) above, it is unreasonable for the discounted ex-dividend ask price

at time t ∈ {0, 1, . . . , T − 1} of a derivative D to be a.s. greater than πaskt (D),

and for the ex-dividend bid price at time t ∈ {0, 1, . . . , T − 1} of a derivative D

to be a.s. less than πbidt (D).

(iii) Direction of trade matters: a market participant can buy a derivative D at price

πaskt (D) and sell D at price πbidt (D). This is in contrast to frictionless markets,

where a derivative contract can be bought and sold at the same price.
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(iv) The prices πaskt (D) and πbidt (D) satisfy πaskt (D) < ∞ and πbidt (D) > −∞. In-

deed, since 0 ∈ K(t), 1 ∈ L0
++(Ω,Ft,P;R), and

∑T
u=t+1 D

∗
u is a.s. bounded, say

by M , we have that −M +
∑T

u=t+1D
∗
u ∈ L0

−(Ω,FT ,P;R). Thus, πaskt (D) ≤M .

Similarly, πbidt (D) ≥ −M .

Next, we define the sets of extended attainable values initiated at time

t ∈ {0, 1, . . . , T − 1} associated with cash amount W ∈ L0(Ω,Ft,P;R):

Ka(t,W ) := K(t) +
{
ξ
(
−W +

T∑
u=t+1

D∗u

)
: ξ ∈ L∞+ (Ω,Ft,P;R)

}
,

Kb(t,W ) := K(t) +
{
ξ
(
W −

T∑
u=t+1

D∗u

)
: ξ ∈ L∞+ (Ω,Ft,P;R)

}
.

Remark 2.6.3.

(i) The sets Ka(t,W ) and Kb(t,W ) are closed with respect to multiplication by

random variables in the set L∞+ (Ω,Ft,P;R), and in view of Lemma 2.2.2 they

are convex cones. Also, K(t) ⊂ Ka(t,W ) ∩ Kb(t,W ) since 0 ∈ L∞+ (Ω,Ft,P;R).

(ii) In view of Proposition 2.2.2,

{
ξ
(
− πaskt (D) +

T∑
u=t+1

D∗u

)
: ξ ∈ L∞+ (Ω,Ft,P;R)

}
(2.42)

is the set of all discounted terminal values associated with zero-cost,

self-financing, buy-and-hold trading strategies in the derivative contract D with

discounted ex-dividend ask price πaskt (D). On the other hand, the convex cone

{
ξ
(
πbidt (D)−

T∑
u=t+1

D∗u

)
: ξ ∈ L∞+ (Ω,Ft,P;R)

}
(2.43)

is the set of all discounted terminal values associated with zero-cost,

self-financing, sell-and-hold trading strategies in the derivative contract D with

discounted ex-dividend bid price πbidt (D).
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We will now introduce definitions related to the sets of extended attainable

values. For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(Ω,Ft,P;R), a probability measure

Q is risk-neutral for Ka(t,X) (Kb(t,X)) if Q ∈ Z and X is Q-integrable, and if

EQ[K] ≤ 0 for all K ∈ Ka(t,X) (K ∈ Kb(t,X)). We denote by Ra(t,X) (Rb(t,X))

the set of all risk-neutral measures Q for Ka(t,X) (Kb(t,X)). We say that NA holds

for Ka(t,X) if Ka(t,X) ∩ L0
+(Ω,FT ,P;R) = {0}, and likewise we say that NA holds

for Kb(t,X) if Kb(t,X) ∩ L0
+(Ω,FT ,P;R) = {0}.

We will say that Ka(t,X) satisfies EF if{
(φ, ξ) ∈ S∗(t)× L∞+ (Ω,Ft,P;R) : V0(φ) = 0, V ∗T (φ) + ξ

(
−X +

T∑
u=t+1

D∗u

)
= 0
}

= {(0, 0)},

and say that Kb(t,X) satisfies EF if{
(φ, ξ) ∈ S∗(t)× L∞+ (Ω,Ft,P;R) : V0(φ) = 0, V ∗T (φ) + ξ

(
X −

T∑
u=t+1

D∗u

)
= 0
}

= {(0, 0)}.

Remark 2.6.4. According to Lemma 2.6.2, for any t ∈ {0, 1, . . . , T − 1} and X ∈

L0(Ω,Ft,P;P), NAEF holds for Ka(t,X) (Kb(t,X)) if and only if Ra(t,X) 6= ∅

(Rb(t,X) 6= ∅).

For each t ∈ {0, 1, . . . , T − 1}, we denote by R(t) the set of all risk-neutral

measures for K(t). Specifically, we define R(t) as

R(t) :=
{
Q ∈ Z : EQ[K] ≤ 0 for all K ∈ K(t)

}
.

We note that Ra(t,X) ∪ Rb(t,X) ⊆ R(t) for any X ∈ L0(Ω,Ft,P;R) since K(t) ⊆

Ka(t,X)∩Kb(t,X). Also, by the definition of a risk-neutral measure, it immediately

follows that any risk-neutral measure Q (as in Definition 2.4.1) satisfies Q ∈ R(t) for

any t ∈ {0, 1, . . . , T − 1}.
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The next technical lemma is needed to derive the dual representations of the

superhedging ask and subhedging bid prices.

Lemma 2.6.1.

(i) For each t ∈ {0, 1, . . . , T − 1}, if R(t) 6= ∅ and Q ∈ R(t), then we have that

EQ[K|Ft] ≤ 0 Q-a.s. for all K ∈ K(t).

(ii) For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(Ω,Ft,P;R), if Ra(t,X) 6= ∅ and

Q ∈ Ra(t,X), then we have that EQ[Ka|Ft] ≤ 0 Q-a.s. for all Ka ∈ Ka(t,X).

(iii) For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(Ω,Ft,P;R), if Rb(t,X) 6= ∅ and

Q ∈ Rb(t,X), then we have that EQ[Kb|Ft] ≤ 0 Q-a.s. for all Kb ∈ Kb(t,X).

Proof. We only prove (i) and (ii). The proof of (iii) is very similar to the proof of (ii).

We fix t ∈ {1, . . . , T −1} throughout the proof. Observe that in view of Lemma 2.4.1,

we have that for each Q ∈ R(t), any K ∈ K is Q-integrable. Moreover, because any

derivative contract is bounded a.s., for each Q ∈ Ra(t,X) (Q ∈ Rb(t,X)), any

Ka ∈ Ka(t,X) (Kb ∈ Kb(t,W )) is Q-integrable.

(i): We prove by contradiction. Let Q ∈ R(t), and suppose that there exists and

K ∈ K(t) such that EQ[K|Ft](ω) > 0 for ω ∈ Ωt, where Ωt ⊆ Ω and P(Ωt) > 0.

Note that Ωt ∈ Ft since EQ[K|Ft] is Ft-measurable. By definition of K(t), there

exists φ ∈ S∗(t) with V0(φ) = 0 such that K = V ∗T (φ). Define the process ψ :=

1Ωtφ. Since Ωt is Ft-measurable and S∗(t) is closed with respect to multiplication

by random variables in the set L∞+ (Ω,Ft,P;R), we have that ψ ∈ S∗(t). Moreover,

V0(ψ) = 1ΩtV0(φ) = 0 because 1Ωt is nonnegative. Therefore, V ∗T (ψ) ∈ K(t). Since

V ∗T (ψ) = 1ΩtV
∗
T (φ) = 1ΩtK, we have that EQ[V ∗T (ψ)] = EQ[1ΩtEQ[K|Ft]] > 0, which

contradicts that Q ∈ R(t).
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(ii): As in (i), we will prove by contradiction. Let X ∈ L0(Ω,Ft,P;R) and Q ∈

Ra(t,X), and assume that there exist K ∈ K(t) and ξ ∈ L∞+ (Ω,Ft,P;R) such that

−ξ(ω)X(ω) + EQ

[
K + ξ

T∑
u=t+1

D∗u

∣∣∣Ft](ω) > 0, ω ∈ Ωt,

where Ωt ⊆ Ω and P(Ωt) > 0. Since Ra(t,X) ⊂ R(t), we have that Q ∈ R(t). In

view of (i) above, it follows that EQ[K|Ft] ≤ 0. Thus,

−ξ(ω)X(ω) + ξ(ω)EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft](ω) > 0, ω ∈ Ωt.

We proceed by defining the Ft-measurable random variable ϑ := 1Ωtξ. Because

Ωt ∈ Ft, it is true that ϑ ∈ L∞+ (Ω,Ft,P;R). Now, by the tower property of conditional

expectations we obtain

EQ

[
ϑ
(
−X +

T∑
u=t+1

D∗u

)]
= EQ

[
1Ωt

(
− ξX + ξEQ

[ T∑
u=t+1

D∗u

∣∣∣Ft])] > 0.

This contradicts that Q ∈ Ra(t,X) since ϑ ∈ L∞+ (Ω,Ft,P;R) and 0 ∈ K(t).

Next result is a version of the FFTAP for the extended markets.

Lemma 2.6.2. For each t ∈ {0, 1, . . . , T − 1} and W ∈ L0(Ω,Ft,P;R), if the no-

arbitrage condition under the efficient friction assumption is satisfied for Ka(t,W )

(Kb(t,W )), then Ra(t,W ) 6= ∅ (Rb(t,W ) 6= ∅).

Proof. Let us first fix t ∈ {0, 1, . . . , T − 1} and W ∈ L0(Ω,Ft,P;R). We only prove

the lemma for Ka(t,W ), because the proof for Kb(t,W ) is similar. Instead of working

with Ka(t,X), we will work with the more mathematically convenient set

Ka(t,W ) := {G(φ, ξ, t,W ) : φ ∈ P(t), ξ ∈ L∞+ (Ω,Ft,P;R)},

where P(t) is the set

P(t) := {φ ∈ P : φj is a.s. bounded for j ∈ J ∗, φs = 1{t+1≤s}φs for all s ∈ T ∗},
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and

G(φ, ξ, t,W ) :=
N∑
j=1

φjT
(
1{φjT≥0}P

bid,j,∗
T + 1{φjT<0}P

ask,j,∗
T

)
−

N∑
j=1

T∑
u=t+1

∆φju
(
1{∆φju≥0}P

ask,j,∗
u−1 + 1{∆φju<0}P

bid,j,∗
u−1

)
+

N∑
j=1

T∑
u=t+1

φju
(
1{φju≥0}A

ask,j,∗
u + 1{φju<0}A

bid,j,∗
u

)
+ ξ
(
−W +

T∑
u=t+1

D∗u

)
(2.44)

for all for all RN -valued stochastic processes

(φs)
T
s=1 ∈ L0(Ω,FT ,P;RN)× · · · × L0(Ω,FT ,P;RN),

and random variables ξ ∈ L∞+ (Ω,FT ,P;R).

Since Ka(t,W ) = Ka(t,W ), we may equivalently prove that

Ka(t,W ) − L0
+(Ω,FT ,P;R) is P-closed whenever NAEF is satisfied for Ka(t,W ).

Let Xm ∈ Ka(t,W ) − L0
+(Ω,FT ,P;R) be a sequence converging in probability to

some X. We may find a subsequence Xkm that converges a.s. to X. With an

abuse of notation we denote this subsequence by Xm. By the definition of Ka(t,W ),

we may find φm ∈ P(t), ξm ∈ L0
+(Ω,Ft,P;R), and Zm ∈ L0

+(Ω,FT ,P;R) so that

Xm = G(φm, ξm, t,W )− Zm. Using the same arguments as in Step 1 in the proof of

Theorem 2.3.1, we prove that lim supm ‖φms ‖ <∞ for all t ∈ T ∗ and lim supm ξ
m <∞.

Then, we apply Lemma 2.3.5 to show that we may find a strictly increasing set

of positive, integer-valued, FT−1 measurable random variables σm such that φσ
m

converges a.s. to some bounded a.s. predictable process φ, and ξσ
m

converges a.s.

to some ξ ∈ L∞+ (Ω,Ft,P;R). This gives us that G(φσ
m
, ξσ

m
, t,W ) − Xσm converges

a.s. to some nonnegative random variable. Therefore Ka(t,W ) − L0
+(Ω,FT ,P;R) is

P-closed.

We now argue that there exists a risk-neutral measure for Ka(t,W ). Towards

this, we define the convex cone Ca := (Ka(t,W )−L0
+(Ω,FT ,P;R))∩L1(Ω,FT ,P;R).
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Due to the closedness property of Ka(t,W ) − L0
+(Ω,FT ,P;R), we have that the set

Ca is closed in L1(Ω,FT ,P;R). As in the proof of Theorem 2.4.1, we may construct a

measure Q ∈ Z such that W is Q-integrable, and EQ[Ka] ≤ 0 for all Ka ∈ Ka(t,X).

This completes the proof.

We are ready to prove the main result of this section: the dual representations

of the superhedging ask price and subhedging bid price.

Theorem 2.6.1. Suppose that the no-arbitrage condition under the efficient friction

assumption (NAEF) is satisfied. Let t ∈ {0, 1, . . . , T − 1} and D be a derivative

contract. Then the following hold:

(i) The essential infimum of Wa(t,D) and the essential supremum of Wb(t,D) are

attained.

(ii) Suppose that for each t ∈ {0, 1, . . . , T −1} and X ∈ L0(Ω,Ft,P;R), the efficient

friction assumption (EF) holds for Ka(t,X) and Kb(t,X). Then the discounted

superhedging ask and subhedging bid prices for derivative contract D at time t

satisfy

πaskt (D) = ess sup
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft], (2.45)

πbidt (D) = ess inf
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft]. (2.46)

Proof. Since πaskt (D) = −πbidt (−D) holds for all t ∈ {0, . . . , T − 1} and derivative

contracts D, it suffices to show that the essential infimum ofWa(t,D) is attained and

(2.45) holds. Let us fix t ∈ {0, 1, . . . , T − 1} throughout the proof.

We first prove (i). Let Wm be a sequence decreasing a.s. to πaskt (D), and fix Km ∈

K(t) and Zm ∈ L0
+(Ω,FT ,P;R) so that −Wm +

∑T
u=t+1D

∗
u = Km − Zm. Since
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a.s. converges implies convergence in probability, we see that the sequence Km−Zm

converges in probability to some Y . Due to Theorem 2.3.1, we have that K(t) −

L0
+(Ω,FT ,P;R) is P-closed. Therefore, Y ∈ K(t)−L0

+(Ω,FT ,P;R). This proves that

−πaskt (D) +
∑T

u=t+1 D
∗
u ∈ K(t)− L0

+(Ω,FT ,P;R).

Next, we show that (ii) holds. We begin by showing that

πaskt (D) ≥ ess sup
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft]. (2.47)

By (i), we have that πaskt (D) ∈ Wa(t,D), so there exists K∗ ∈ K(t) so that

K∗ + πaskt (D)−
T∑

u=t+1

D∗u ≥ 0. (2.48)

We are assuming that NAEF is satisfied, so according to Theorem 2.4.1 there exists

a risk-neutral measure Q∗. Because any risk-neutral measure Q satisfies Q ∈ R(t),

we obtain that Q∗ ∈ R(t). By taking the conditional expectation with respect to Ft

under Q∗ of both sides of the last inequality we deduce that

πaskt (D) + EQ∗ [K
∗|Ft] ≥ EQ∗

[ T∑
u=t+1

D∗u

∣∣∣Ft].
According to part (i) of Lemma 2.6.1, we have that EQ∗ [K

∗|Ft] ≤ 0. As a result,

πaskt (D) ≥ EQ∗
[∑T

u=t+1D
∗
u

∣∣Ft]. Taking the essential supremum of both sides of the

last inequality over R(t) proves that (2.47) holds.

Next, we show that

πaskt (D) ≤ ess sup
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft]. (2.49)

By (i), we have that πaskt (D) > −∞, so we may take X ∈ L0(Ω,Ft,P;R) so that

πaskt (D) > X. We now prove by contradiction that NA holds for Kb(t,X). Towards

this aim, we assume that there exist K ∈ K(t), ξ ∈ L∞+ (Ω,Ft,P;R), and Ω0 ⊆ Ω with

P(Ω0) > 0 so that

K + ξ
(
X −

T∑
u=t+1

D∗u

)
≥ 0 a.s., K + ξ

(
X −

T∑
u=t+1

D∗u

)
> 0 a.s. on Ω0. (2.50)
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Since NA is satisfied for underlying market K, we have from (2.50) that there exists

Ω1 ⊆ Ω0 with P(Ω1) > 0 such that Ω1 ∈ Ft and ξ > 0 a.s. on Ω1. Otherwise, our

assumption that NA holds is contradicted. Of course, if Ω1 ⊆ Ω0 is any set such that

Ω1 ∈ Ft, P(Ω1) > 0, and ξ = 0 a.s. on Ω1, then 1Ω1K ∈ K(t) ∈ K satisfies 1Ω1K ≥ 0

a.s., and 1Ω1K > 0 a.s. on Ω1, which violates that NA is satisfied.

Moreover, we observe that X −
∑T

u=t+1D
∗
u ≥ 0 a.s. on Ω1. If there exists

Ω2 ⊆ Ω1 with P(Ω2) > 0 such that Ω2 ∈ Ft and X −
∑T

u=t+1D
∗
u < 0 a.s. on Ω2, then

from (2.50) we see that K ≥ a.s., and K > 0 a.s. on Ω2, which contradicts that NA

holds for K.

Now, let us define

X̃ := 1Ω1X + 1(Ω1)cπ
ask
t (D), K̃ := 1Ω1

K

supω∈Ω1{ξ(ω)}
+ 1(Ω1)cK

∗.

From (2.48) we immediately have that

K̃ + X̃ −
T∑

u=t+1

D∗u = K∗ + πaskt (D)−
T∑

u=t+1

D∗u ≥ 0 a.s. on (Ω1)c.

On the other hand, from (2.50) and since X −
∑T

u=t+1D
∗
u ≥ 0 a.s. on Ω1, we see that

K̃ + X̃ −
T∑

u=t+1

D∗u =
K

supω∈Ω1{ξ(ω)}
+X −

T∑
u=t+1

D∗u ≥ 0 a.s. on Ω1.

Consequently, K̃+X̃−
∑T

u=t+1 D
∗
u ≥ 0 a.s. on Ω. Now, since 0 ≤ 1/ supω∈Ω1{ξ(ω)} <

∞, and because K(t) is a convex cone that is closed with respect to multiplication

by random variables in L∞+ (Ω,Ft,P;R), we have that K̃ ∈ K(t). Therefore X̃ ∈

Wa(t,D). However, since X̃ satisfies X̃ ≤ πaskt (D) and P(X̃ < πaskt (D)) > 0, we

have that X̃ ∈ Wa(t,D) contradicts πaskt (D) = ess inf Wa(t,D). Thus, NA holds for

Kb(t,X).

By assumption, EF holds for Kb(t,X), so NAEF is satisfied for Kb(t,X).

According to Lemma 2.6.2 there exists Q̂ ∈ Rb(t,X). In view of (iii) in Lemma 2.6.1,
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we see that

ζX + EQ̂[K|Ft] ≤ ζ EQ̂

[ T∑
u=t+1

D∗u

∣∣∣Ft], K ∈ K(t), ζ ∈ L∞+ (Ω,Ft,P;R).

Since 0 ∈ K(t) and 1 ∈ L∞+ (Ω,Ft,P;R), we obtain that X ≤ EQ̂
[∑T

u=t+1 D
∗
u

∣∣Ft].
Now, because Rb(t,X) ⊆ R(t), we have that Q̂ ∈ R(t). Hence,

X ≤ EQ̂

[ T∑
u=t+1

D∗u

∣∣∣Ft] ≤ sup
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft]. (2.51)

The random variable X < πaskt (D) is arbitrary, so for any scalar ε > 0 we may take

X := πaskt (D)− ε. From (2.51), we see that

πaskt (D) ≤ sup
Q∈R(t)

EQ

[ T∑
u=t+1

D∗u

∣∣∣Ft]+ ε, ε > 0.

Letting ε approach zero shows that (2.49) holds. This completes the proof of (i).
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CHAPTER 3

DYNAMIC CONIC FINANCE IN MARKETS WITH TRANSACTION COSTS

This chapter studies dynamic conic finance in the financial market model

introduced in Chapter 2. We first formulate the no-good-deal condition and prove

a version of the Fundamental Theorem of No-Good-Deal Pricing (FTNGDP). Then,

we introduce the no-good-deal prices ask and bid prices of a derivative, and compute

the no-good-deal ask and bid prices of European-style Asian options in a market with

transaction costs.

We extensively use the results on dynamic acceptability indices that were

obtained in Bielecki et al. [BCZ11]. Thus, we adopt the mathematical set-up that

was used therein. In particular, we assume that the underlying probability space is

finite, say Ω = {ω1, . . . , ωN}. This is an assumption that indeed is made so to simplify

the presentation, but the results can be extended to the case of a general probability

space.

In Chapter 2, we worked with the set of values that can be superhedged at

zero cost which we denoted by K. In the context of DCAIs, it is more convenient to

work with processes instead. With this in mind, we define the sets

S(t) :=


{φ : φ ∈ S, V0(φ) = 0}, t = 0

{φ : φ ∈ S, φs = 1{s≥t+1}φs for all s = 1, 2, . . . , T}, t ∈ {1, . . . , T − 1}.

L+(t) :=
{

(Zs)
T
s=0 : Zs ∈ L+(Ω,Fs,P), Zs = I{s≥t+1}Zs, s = 0, . . . , T

}
, (3.1)

H(t) :=
{(

0, . . . , 0,∆(V ∗t+1(φ)− Zt+1), . . . ,∆(V ∗T (φ)− ZT )
)

: φ ∈ S(t), Z ∈ L+(t)
}
,

(3.2)

for t ∈ {0, . . . , T − 1}. Note that for any H ∈ H(t) there eixsts φ ∈ S(t) and



68

Z ∈ L+(t) so that
T∑
s=t

Hs = V ∗T (φ)− ZT .

Therefore, the set H(t) is analogous to the set K(t)− L0
+(Ω,FT ,P;R) used in Chap-

ter 2.

We proceed by defining the no-arbitrage condition for H(t).

Definition 3.0.2. The no-arbitrage condition (NA) at time t ∈ {0, . . . , T − 1} for

H(t) is satisfied if for each H ∈ H(t) satisfying
∑T

s=t+1 Hs ≥ 0, we have

EQ
[∑T

s=t+1Hs

∣∣Ft] = 0.

Next, we define a risk-neutral measure for H(t).

Definition 3.0.3. For any fixed t ∈ {0, . . . , T −1}, we say that a probability measure

Q is risk-neutral for H(t) if Q ∼ P, and if EQ

[∑T
s=t+1Hs

∣∣∣Ft] ≤ 0 for all H ∈ H(t).

The set of all risk-neutral measures for H(t) will be denoted by R(H(t)).

We will refer to H(t) as set of hedging cash flows initiated at time t. We

proceed by proving that H(t) is a convex cone, which follows from Lemma 2.2.2.

Lemma 3.0.3. The set H(t) is a convex cone for all t ∈ {0, . . . , T − 1}.

Proof. Fix t ∈ {0, . . . , T − 1}, H1, H2 ∈ H(t) and λ1, λ2 ≥ 0. By the definition of

H(t), there exists φ, ψ ∈ S(t) and Z1, Z2 ∈ L+(t) such that

H1 =
(

0, . . . , 0,∆(V ∗t+1(φ)− Z1
t+1),∆(V ∗t+2(φ)− Z1

t+2), . . . ,∆(V ∗T (φ)− Z1
T )
)
,

H2 =
(

0, . . . , 0,∆(V ∗t+1(ψ)− Z2
t+1),∆(V ∗t+2(ψ)− Z2

t+2), . . . ,∆(V ∗T (ψ)− Z2
T )
)
.

According to Lemma 2.2.2, the set

K(s) := {V ∗s (φ)−X : φ is self-financing, X is an Fs-measurable r.v., and X ≥ 0}
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is a convex cone for all s ∈ T . Let us define the process

Y := λ1

(
0, . . . , 0, V ∗t+1(φ)− Z1

t+1, V
∗
t+2(φ)− Z1

t+2, . . . , V
∗
T (φ)− Z1

T

)
+ λ2

(
0, . . . , 0, V ∗t+1(ψ)− Z2

t+1, V
∗
t+2(ψ)− Z2

t+2, . . . , V
∗
T (ψ)− Z2

T

)
.

Note that λ1H
1 +λ2H

2 = ∆Y . By Proposition 2.2.4 there exists a unique predictable

process θ0 so that

• θ := (θ0, λ1φ
1 + λ2ψ

1, . . . , λ1φ
N + λ2ψ

N) ∈ S(t),

• V0(θ) = 0,

• λ1V
∗(φ) + λ2V

∗(ψ) = V ∗(θ)− Z3, for some Z3 ∈ L+(t) .

Hence,

λ1(V ∗(φ)− Z1) + λ2(V ∗(ψ)− Z2) = V ∗(θ)− Z,

where Z := −λ1Z
1 − λ2Z

2 − Z3.

Therefore, we have that

Y = (0, . . . , 0, V ∗t+1(θ)− Zt+1, V
∗
t+2(θ)− Zt+2, . . . , V

∗
T (θ)− ZT ),

and hence

∆Y = (0, . . . , 0,∆(V ∗t+1(θ)− Zt+1),∆(V ∗t+2(θ)− Zt+2), . . . ,∆(V ∗T (θ)− ZT ))

for some θ ∈ S(t) and some Z ∈ L+(t). We conclude that λ1H
1 + λ2H

2 ∈ H(t).

The next result follows from Theorem 2.4.1.

Proposition 3.0.1. If R(H(t)) 6= ∅, then the no-arbitrage condition holds true at

time t ∈ {0, . . . , T − 1} for H(t).

Next, we define the notion of no-arbitrage bounds.
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Definition 3.0.4. Let t ∈ {0, . . . , T − 1}.

• A set of extended cash flows associated with an Ft-measurable random variable

St and a process D ∈ L0 is defined as

H̃(t, St) :=
{(

0, . . . , 0, ξtSt, Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T
)

: H ∈ H(t), ξt is an Ft-measurable r.v.
}
.

• The pricing interval associated with a process D ∈ L0 and a set of probability

measures X is defined as

I(t,D;R(H(t))) :=
{
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft] : Q ∈ X
}
.

A cash flow in H̃(t, St) is interpreted as the sum of a position in H(t) and a

static position of ξt units in the discounted cash flow (0, . . . , 0, St,−D∗t+1, . . . ,−D∗T ).

We will say that I(t,D;X ) is a risk-neutral pricing interval if it is nonempty,

and if for each St ∈ I(t,D;X ) the no-arbitrage condition is satisfied for H̃(t, St).

That is, I(t,D;X ) is a risk-neutral pricing interval if it is nonempty, and if for

each St ∈ I(t,D;X ) and each H̃ ∈ H̃(t, St) such that
∑T

s=t+1 H̃s ≥ 0, we have∑T
s=t+1 H̃s = 0. If I(t,D;X ) is a risk-neutral pricing interval, we call any St ∈

I(t,D;X ) a risk-neutral price, supQ∈R(H(t)) E
Q
t

[∑T
s=t+1D

∗
s

]
the upper no-arbitrage

bound, and infQ∈R(H(t)) EQ
t

[∑T
s=t+1D

∗
s

]
the lower no-arbitrage bound.

The following lemma gives a necessary condition for I(t,D,X ) to be a risk-

neutral pricing interval.

Lemma 3.0.4. Let t ∈ {0, . . . , T − 1} and D ∈ L0. If R(H(t)) 6= ∅, then

I(t,D;R(H(t))) is a risk-neutral pricing interval.

Proof. Fix t ∈ {0, . . . , T − 1}, D ∈ L0, and St ∈ I(t,D;R(H(t))). Let H̃ ∈ H̃(t, St)
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be a cash flow such that
∑T

s=t+1 H̃s ≥ 0. By definition of H̃(t, St), we have that

ξtSt +
T∑

s=t+1

(Hs − ξtD∗s) ≥ 0 (3.3)

for some H ∈ H(t) and some Ft-measurable random variable ξt.

Now, since R(H(t)) 6= ∅ and St ∈ I(t,D;R(H(t))), there exists Q ∈ R(H(t))

such that St = EQ
t

[∑T
s=t+1 D

∗
s

]
. It follows that ξtEQ

t

[∑T
s=t+1D

∗
s

]
− ξtSt = 0. From

(3.3) we see that EQ
t

[∑T
s=t+1 Hs

]
≥ 0 holds. Since Q ∈ R(H(t)), we have that

EQ
t

[∑T
s=t+1Hs

]
= 0, which gives us that

ξtSt + EQ
t

[ T∑
s=t+1

(Hs − ξtD∗s)
]

= 0. (3.4)

Equations (3.3) and (3.4) allow us to conclude that ξtSt +
∑T

s=t+1(Hs − ξtD∗s) = 0,

which implies that the no-arbitrage condition holds for H̃(t, St).

3.1 The No-Good-Deal Condition

It was shown in [BCZ11] that any Dynamic Coherent Acceptability Index α

can be associated with a left-continuous, increasing family of Dynamic Coherent Risk

Measures (DCRMs) (ργ){γ>0}, and consequently to a family of dynamically consistent

sequences of sets of probability measures (see Appendix B for definitions and related

results.) In what follows, we fix such a family of DCRMs (ργ){γ>0}, and denote by

Q =
((
Qγt
)
t∈T

)
γ>0

the corresponding family of dynamically consistent sequences of

sets of probability measures.

Definition 3.1.1. A good-deal for H(t) at time t ∈ {0, . . . , T − 1} and level γ > 0 is

a cash flow H ∈ H(t) such that ργt (H)(ω) < 0 for some ω ∈ Ω.

Note that a good-deal depends on the family of DCRMs and the level γ. A

cash flow that is a good-deal with respect to a family of DCRMs might not be a
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good-deal with respect to another family of DCRMs. Also, note that, for a fixed

family of DCRMs, a cash flow stream that is a good-deal at level γ0 might not be a

good-deal at some other level γ′ > γ0. Although, since ργ is monotone increasing in

γ, if a cash flow is a good-deal for γ0, then it will also be a good deal for any level

γ′ ≤ γ0.

Definition 3.1.2. The no-good-deal condition (NGD) is satisfied for H(t) at time

t ∈ {0, . . . , T − 1} and level γ > 0 if ργt (H) ≥ 0 for all H ∈ H(t).

In view of Theorem B.0.2, if NDG is satisfied at time t and level γ, then

αt(H) < γ for all H ∈ H(t). Therefore, there are no cash flows with acceptability

level larger than γ at time t whenever NGD is satisfied at time t for H(t).

We will make the following technical assumption on Q.

Assumption (B): We assume that, for each γ > 0 and t ∈ T , any probability

measure Q ∈ Qγt is equivalent to P, and the set

Eγt :=

{
dQ
dP

: Q ∈ Qγt
}

is closed and convex.

Since it is assumed that Ω is finite and P is of full support, the set Eγt is

bounded. Hence, Eγt is compact for all γ > 0 and t ∈ T . In Section 3.4.2, we show

that a family of densities E corresponding to the dynamic Gain-Loss Ratio satisfies

this assumption.

3.2 The Fundamental Theorem of No-Good-Deal Pricing

A practitioner using a specific financial market model may want to verify

whether a financial market model satisfies NGD for some time t and level γ. However,

it is not easy to check whether ργt (H)(ω) ≥ 0 holds for all H ∈ H(t) and ω ∈ Ω.

Thus, it is very useful to have a condition that is equivalent to NGD, and that
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is straightforward to verify. The Fundamental Theorem of No-Good-Deal Pricing

(FTNGP) offers precisely this.

Theorem 3.2.1 (The Fundamental Theorem of No-Good-Deal Pricing). The no-

good-deal condition (NGD) is satisfied for H(t) at time t ∈ {0, . . . , T − 1} and level

γ > 0 if and only if R(H(t)) ∩Qγt 6= ∅.

Proof. Let us fix t ∈ {0, . . . , T − 1} and γ > 0 throughout the proof.

Suppose that Q ∈ R(H(t)) ∩Qγt . By definition, we have

EQ
[∑T

s=t+1Hs

∣∣Ft] ≤ 0 for all H ∈ H(t). Due to Theorem B.0.3 (Robust Represen-

tation of DCRM), we have that

−ργt (H) = inf
Q∈Qγt

EQ

[ T∑
s=t+1

Hs

∣∣∣Ft] ≤ EQ

[ T∑
s=t+1

Hs

∣∣∣Ft] ≤ 0 ,

for all H ∈ H(t). Thus, ργt (H) ≥ 0 for any H ∈ H(t), and hence NGD is satisfied

for H(t) at time t and level γ.

Let us now prove the converse. Fix M ∈ N and H := (H1, H2, . . . , HM) ∈

H(t) × H(t) × · · · × H(t). Let Eγt be the set defined in Assumption (B), and let us

consider the set of matrices

Zt(H) :=


[
EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj)]
j=1,...,N ;i=1,...,M

: η ∈ Eγt

 ⊂ RN×M .

Since Eγt is compact, by continuity of the mapping

Eγt 3 η 7→ EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj), i = 1, 2, . . . ,M ; j = 1, 2, . . . , N,

we conclude that Zt(H) is compact in RN×M . Also note that, by convexity of Eγt and

linearity of conditional expectations above w.r.t. η, the set Zt(H) is convex.

Next, we prove by contradiction that the closed, convex set

C := (−∞, 0]N×M ⊆ RN×M satisfies Zt(H) ∩ C 6= ∅. Towards this end let us assume
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that Zt(H) ∩ C = ∅. By a separation theorem (see Theorem A.0.1), there exists a

linear functional ϕt,H ∈ RN×M , and εt,H > 0 such that

εt,H ≤ ϕt,H(x), (3.5)

ϕt,H(z) ≤ 0, (3.6)

for all x ∈ Zt(H), z ∈ C. From the Riesz representation theorem, there exists

ht,H ∈ RN×M such that ϕt,H(x) = 〈ht,H , x〉 for all x ∈ RN×M , where 〈x, y〉 :=∑N
j=1

∑M
i=1 xijyij for all x ∈ RN×M , y ∈ RN×M denotes the Frobenius inner prod-

uct in RN×M . From (3.6), we have that 〈ht,H , z〉 ≤ 0 for all z ∈ C, and therefore,

ht,Hij ≥ 0 for i = 1, . . . ,M and j = 1, . . . , N . Since, in view of (3.5) we have that

ht,H 6= 0, we may assume without loss of generality that
∑M

i=1 h
t,H
ij = 1. Also in view

of (3.5), we deduce that

0 < εt,H ≤
N∑
j=1

M∑
i=1

ht,Hij EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj) =
N∑
j=1

EP

[
η

T∑
s=t+1

H̃s(j)
∣∣∣Ft](ωj)

for all η ∈ Eγt , where H̃(j) :=
∑M

i=1 h
t,H
ij H

i for j = 1, . . . , N . Therefore, there exists

j ∈ {1, . . . , N} and an ε > 0 so that

0 < ε < EP

[
η

T∑
s=t+1

H̃s(j)
∣∣∣Ft](ωj) .

Let us define

ε′ := inf
η∈Eγt

ε

EP[η|Ft](ωj)
.

Since η > 0 and supη∈Eγt EP[η|Ft](ωj) <∞, it follows that

0 < ε′ ≤
EP

[
η
∑T

s=t+1 H̃s(j)
∣∣∣Ft](ωj)

EP[η|Ft](ωj)
= EQ

[ T∑
s=t+1

H̃s(j)
∣∣∣Ft](ωj)

for all Q ∈ Qγt . Consequently, taking infimum with respect to Q ∈ Qγt and applying

Theorem B.0.3, we get

0 < ε′ ≤ −ργt (H̃(j))(ωj) . (3.7)
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By Lemma 3.0.3, the set H(t) is a convex cone, hence H̃(j) ∈ H(t). Thus, in view

of (3.7), the cash flow H̃(j) ∈ H(t) violates NGD for H(t) at time t and level

γ, which is a contradiction. Hence, Zt(H) ∩ C 6= ∅ for all t ∈ {0, . . . , T − 1} and

H ∈ H(t)× · · · ×H(t). Consequently, for each t ∈ T , H ∈ H(t)× · · · ×H(t), the set

Γt(H) : =

{
η ∈ Eγt : EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj) ≤ 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N

}
is nonempty.

Next, we construct a risk-neutral measure for H(t) that is in Qγt . Let us define

the following mapping

Ψt,H(ζ) :=

[
EP

[
ζ

T∑
s=t+1

H i
s

∣∣∣Ft](ωj)]
j=1,...,N ;i=1,...,M

,

for any random variable ζ : Ω→ R. Since

Zt(H) ∩ C =


[
EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj)]
j=1,...,N ;i=1,...,M

: η ∈ Eγt , EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj) ≤ 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N

}
,

we have that Ψ−1
t,H(Zt(H) ∩ C) = Γt(H). Recall that Zt(H) is compact and hence

Zt(H) ∩ C is closed, and since Ψt,H is continuous, we conclude that Γt(H) is closed.

Now, note that

Γt(H) =
M⋂
i=1

{
η ∈ Eγt : EP

[
η

T∑
s=t+1

H i
s

∣∣∣Ft](ωj) ≤ 0 for all j = 1, 2, . . . , N
}
6= ∅.

Therefore, the family of subsets{
η ∈ Eγt : EP

[
η

T∑
s=t+1

Hs

∣∣∣Ft](ωj) ≤ 0 for all j = 1, 2, . . . , N
}
H∈H(t)

⊆ Eγt

satisfies the finite intersection property14. Since Eγt is compact, we have by

14The family of sets {Yi}i∈I has finite intersection property if
⋂
i∈I′ Yi is non-

empty for any finite I ′ ⊂ I.
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Lemma A.0.9 that the set

Ut :=
⋂

H∈H(t)

{
η ∈ Eγt : EP

[
η

T∑
s=t+1

Hs

∣∣∣Ft] ≤ 0
}

(3.8)

is nonempty. Therefore, there exists an η̂ ∈ Eγt so that EP[η̂
∑T

s=t+1Hs|Ft](ω) ≤ 0

for all ω ∈ Ω and H ∈ H(t). Now, let Q̂ be a measure corresponding to η̂, so that

Q̂ ∈ Qγt . Using the abstract version of Bayes rule applied to Q̂ we get

EQ̂

[ T∑
s=t+1

Hs

∣∣∣Ft] =
EP[η̂

∑T
s=t+1Hs|Ft]

EP[η̂|Ft]
≤ 0

for all H ∈ H(t). So we see that Q̂ ∈ R(H(t)). Thus, R(H(t))∩Qγt 6= ∅. This proves

the theorem.

Since R(H(t)) ∩ Qγt 6= ∅ implies R(H(t)) 6= ∅, it is immediate from Proposi-

tion 3.0.1 and Theorem 3.2.1 that if NGD holds, then the no-arbitrage for H(t) also

holds.

3.3 No-Good-Deal Ask and Bid Prices

In this section, we recall from Bielecki et al. [BCIR12] one of the main objects

of dynamic conic finance: the no-good-deal (NGD) ask and bid prices corresponding

to a given DCAI α. In what follows, we will denote by L0 := L0(Ω,FT , (Ft)t∈T ,P)

the set of all F-adapted processes. Recall from Chapter 2 that a derivative contract

is any adapted process D ∈ L0.

Definition 3.3.1. The discounted no-good-deal (NGD) ask and bid prices of a deriva-

tive contract D ∈ L0, at level γ > 0, at time t ∈ {1, . . . , T − 1} are defined as

Πask,γ
t (D)(ω) : = inf{v ∈ R : ∃ H ∈ H(t) s.t. αt(δt(1v) +H − δ+

t (D∗))(ω) ≥ γ},

Πbid,γ
t (D)(ω) : = sup{v ∈ R : ∃ H ∈ H(t) s.t. αt(δ

+
t (D∗) +H − δt(1v))(ω) ≥ γ},

for all ω ∈ Ω.
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The discounted NGD ask price Πask,γ
t (D) can be interpreted as the minimum

amount of cash v such that v plus the resulting hedging error acceptable (in the sense

of acceptability index α) at least at level γ. Similarly, the discounted NGD bid price

Πbid,γ
t (D) can be viewed as the maximum amount of cash v such that −v plus the

resulting hedging error is α-acceptable at least at level γ.

A natural question is then: how should γ be chosen to find the NGD prices of

a derivative contract? As in Cherny and Madan [CM10] and Madan and

Schoutens [MS11a, MS11b], for a given α, the level γ can be calibrated from simi-

lar securities. Then, using this γ, the NGD prices are computed for the derivative

contract.

Remark 3.3.1. We note that the NGD prices depend on the choice of DCAI α, level

γ, and the set of hedging cash flows H(t). First, we see that the NGD ask (bid) price is

non-decreasing (non-increasing) in γ from the monotonicity property of DCAIs (D3).

Secondly, the NGD ask (bid) price is non-increasing (non-decreasing) in H(t) since

Πask,γ
t (D)(ω) = inf

⋃
H∈H(t)

{v ∈ R : αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ},

Πbid,γ
t (D)(ω) = sup

⋃
H∈H(t)

{v ∈ R : αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ}

for all ω ∈ Ω.

Remark 3.3.2. By Theorem B.0.4, we have that

αt(δt(1v) +H − δ+
t (D∗))(ω)

= sup
{
γ ∈ (0,∞) : v + inf

Q∈Qγt
EQ
[ T∑
s=t+1

Hs −D∗s
∣∣Ft](ω) ≥ 0

}
,

for all ω ∈ Ω, t ∈ {1, . . . , T − 1}, and D ∈ L0. Since the cash flows D∗ and

H ∈ H(t) are discounted, the prices Πask,γ(D) and Πbid,γ(D) are also discounted. We

took the liberty to denote them by Πask,γ(D) and Πbid,γ(D) rather than Πask,γ,∗(D) and

Πbid,γ,∗(D) (which would agree with earlier notation) to ease exposition.
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The following proposition guarantees that the infimum and supremum appear-

ing in Definition 3.3.1 are taken over non-empty sets (although Πask,γ
t , Πbid,γ

t can still

be −∞,∞, respectively).

Proposition 3.3.1. For any fixed t ∈ {1, . . . , T − 1}, D ∈ L0, and γ > 0, the sets

{v ∈ R : ∃ H ∈ H(t) such that αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ},

{v ∈ R : ∃ H ∈ H(t) such that αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ}

are nonempty for all ω ∈ Ω.

Proof. Let us fix t ∈ {1, . . . , T − 1}, D ∈ L0, and γ > 0. We prove by contradiction.

Suppose that

αt(δt(1v) +H − δ+
t (D∗)) < γ

for all v ∈ R and H ∈ H(t). By Theorem B.0.4, we have that

αt(δt(1v) +H − δ+
t (D∗))(ω) = sup

{
β ∈ (0,+∞) :

v + inf
Q∈Qβt

EQ

[ T∑
s=t+1

Hs −Ds

∣∣∣Ft](ω) ≥ 0
}
< γ

for all v ∈ R and H ∈ H(t). Since α is normalized, there exists D′ ∈ L0 such that

αt(D
′) = +∞. Let us define v∗ as the scalar

v∗ := sup
ω∈Ω

sup
H∈H(t)

{
sup
Q∈Qβt

EQ

[ T∑
s=t+1

D′s

∣∣∣Ft](ω)− inf
Q∈Qβt

EQ

[ T∑
s=t+1

Hs −Ds

∣∣∣Ft](ω)

}
.

Then, we see that

v∗ + EQ

[ T∑
s=t+1

Hs −Ds

∣∣∣Ft](ω) ≥ EQ

[ T∑
s=t+1

D′s

∣∣∣Ft](ω),

for all Q ∈ Qγt , ω ∈ Ω, and H ∈ H(t). From the monotonicity property of α, we have

that

αt(δt(1v
∗) +H − δ+

t (D∗)) ≥ αt(D
′) = +∞,

which contradicts αt(δt(1v) +H − δ+
t (D∗))(ω) < γ for all v ∈ R.
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We now turn out attention to a representation theorem for the discounted

NGD ask and bid prices. First, let us make a third standing assumption, which

will make use of in the proof. In Proposition 3.4.3, we will show that the dynamic

Gain-Loss Ratio satisfies this assumption.

Assumption (C): The mapping γ 7→ ργ is continuous.

The next result shows that the prices Πask
t (D) and Πbid

t (D) have useful rep-

resentations in terms of the sets R(H(t)) and Qγt (H(t)). The proof can be found in

Bielecki et al. [BCIR12].

Theorem 3.3.1. The discounted NGD ask and bid prices of a derivative contract

D ∈ L0, at level γ > 0, at time t ∈ {1, . . . , T − 1} satisfy

Πask,γ
t (D) = sup

Q∈Qγt ∩R(H(t))

EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft] ,
Πbid,γ
t (D) = inf

Q∈Qγt ∩R(H(t))
EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft] .
Let us now make a few remarks regarding Theorem 3.3.1.

Remark 3.3.3. If NGD is not satisfied for H(t), at time t ∈ {1, . . . , T −1}, at level

γ, then

Πask,γ
t (D)(ω) = −∞,

Πbid,γ
t (D)(ω) =∞,

for all ω ∈ Ω and D ∈ L0.

In the next remark, we treat the case in which the markets are frictionless and com-

plete.

Remark 3.3.4. If, for t ∈ {1, . . . , T − 1}, the set of hedging cash flows H(t) satisfies

the no-arbitrage condition, and H(T − 1) is complete (for any D ∈ L0, there exists
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H ∈ H(T − 1) so that HT = DT ), then it follows from the Fundamental Theorems of

Asset Pricing that R(H(t)) 6= ∅, for t = 1, 2, . . . , T − 2, and R(H(T − 1)) = {Q∗}.

Since R(H(0)) ⊆ · · · ⊆ R(H(T − 1)), we have that R(H(t)) = {Q∗} 6= ∅ for t =

0, 1, . . . , T − 2. By Theorems 3.2.1 and 3.3.1, if NGD holds then the NGD ask and

bid prices of a derivative contract D ∈ L0, at time t ∈ T and level γ >, satisfy

Πask,γ
t (D) = Πbid,γ

t (D) = EQ∗
[ T∑
s=t+1

D∗s

∣∣∣Ft] .
Notice that, naturally, the NGD prices no longer depend on the acceptance level γ.

The next remark treats the case in which there are no nonzero hedging cash

flows.

Remark 3.3.5. If for some t ∈ {1, . . . , T −1}, we have that Qγt 6= ∅ and H(t) = {0},

then we have R(H(t)) = {Q : Q ∼ P}, so Qγt ⊆ R(H(t)). In this case the NGD ask

and bid prices of a derivative contract D ∈ L0, at time t ∈ T and level γ > 0, satisfy

Πask,γ
t (D) = sup

Q∈Qγt
EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft] ,
Πbid,γ
t (D) = inf

Q∈Qγt
EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft] .
We continue by explaining one of the main reasons the topic of this thesis is

called dynamic conic finance.

Remark 3.3.6. Let us consider the sets of extended cash flows associated with NGD

prices Πask,γ
t (D) and Πbid,γ

t (D):

Ĥ(t) =
{(

0, . . . , 0, ξtΠ
ask,γ
t (D), Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
,

H(t) =
{(

0, . . . , 0,−ξtΠbid,γ
t (D), Ht+1 + ξtD

∗
t+1, . . . , HT + ξtD

∗
T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
.
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If H(t) is frictionless and complete (and therefore linear), and NGD is satisfied, then

as in Remark 3.3.4, we have that Π(D) := Πask,γ
t (D) = Πbid,γ

t (D). In this case, the

set

Ĥ(t) +H(t) =
{(

0, . . . , 0, ξtΠt(D), Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T
)

: H ∈ H(t), ξt is Ft-measurable
}

is a linear space. Whenever Πask,γ
t (D) > Πbid,γ

t (D), as in our general case, we have

that

Ĥ(t) +H(t) =
{(

0, . . . , 0, ξtΠ
ask,γ
t (D)− φtΠbid,γ

t (D), Ht+1 − (ξt − φt)D∗t+1,

. . . , HT − (ξt − φt)D∗T
)

: H ∈ H(t), ξt, φt is Ft-measurable, ξt, φt ≥ 0
}

is only a convex cone. This is one of the main reasons why we call our approach

dynamic conic finance.

Next, we remark on the relationship between the NGD prices and the super-

hedging prices.

Remark 3.3.7. (i) In view of Lemma 3.0.4 and Theorem 3.3.1, if NGD is satisfied

then Πbid,γ
t (D) and Πask,γ

t (D) satisfy

inf
Q∈R(H(t))

EQ
t

[ T∑
s=t+1

D∗t

]
≤ Πbid,γ

t (D) ≤ Πask,γ
t (D) ≤ sup

Q∈R(H(t))

EQ
t

[ T∑
s=t+1

D∗t

]
.

(ii) According to Theorem 2.6.1, if NGD under the efficient friction assumption

(EF) is satisfied, then the NDG prices and the superhedging and subhedging

prices πaskt (D) and πbidt (D) satisfy

πbidt (D) ≤ Πbid,γ
t (D) ≤ Πask,γ

t (D) ≤ πaskt (D) (3.9)

for all γ ∈ (0,∞) and t ∈ T . This is intuitively true.
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Indeed, by definition, πaskt (D) is the least random variable such that the there

exists a cash flow H ∈ H(t) so that

πaskt (D)(ω) +
T∑

s=t+1

(Hs(ω)−D∗s(ω)) ≥ 0, ω ∈ Ω.

Now, by the definition of the NGD ask price at level γ, and in view of the

Theorem B.0.4, Πask,γ
t (D) is the least random variable such that there15 a cash

flow H ∈ H(t) so that

Πask,γ
t (D)(ω) + inf

Q∈Qγt
EQ

[ T∑
s=t+1

(Hs −D∗s)
∣∣∣Ft](ω) ≥ 0, ω ∈ Ω,

where Q is the corresponding family of dynamically consistent sequences of sets

of probability measures.

Because the condition

T∑
s=t+1

(Hs(ω)−D∗s(ω)) ≥ 0, ω ∈ Ω,

is clearly stronger than

inf
Q∈Qγt

EQ

[ T∑
s=t+1

(Hs −D∗s)
∣∣∣Ft](ω) ≥ 0, ω ∈ Ω, γ ∈ (0,∞),

the inequality Πask,γ
t (D) ≤ πaskt (D) holds for all γ ∈ (0,∞). Using a similar

argument, we also see that πbidt (D) ≤ Πbid,γ
t (D).

We proceed by introducing the NGD forward ask and bid prices. We suppose

that the risk-free interest rate r is deterministic.

Definition 3.3.2. The no-good-deal (NGD) ask and bid forward prices, with delivery

at time T , written at time t ∈ {1, . . . , T − 1}, of a derivative contract D ∈ L0, at

15Assuming that the infimum in the definition of Πask,γ
t (D) is attained.
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level γ > 0 are defined as

F ask,γ,T
t (D)(ω) : = inf{f ∈ R : ∃ H ∈ H(t) s.t

αt(δT (1B−1
T f) +H − δ+

t (D∗))(ω) ≥ γ},

F bid,γ,T
t (D)(ω) : = sup{f ∈ R : ∃ H ∈ H(t) s.t

αt(−δT (1B−1
T f) +H + δ+

t (D∗))(ω) ≥ γ}

for all ω ∈ Ω.

Note that the cash flow δT (1B−1
T f) +H − δ+

t (D∗) represents an exchange of a

cash payment f at time T for a discounted cash flow D that is hedged with H. The

NGD forward ask price at level γ is the minimum amount of cash f at time T so that

δT (1B−1
T f) +H − δ+

t (D∗) is acceptable at level γ at time t.

The following result shows that the NGD forward ask and bid prices have a

useful representation. See Bielecki, et al. [BCIR12] for the proof.

Theorem 3.3.2. The no-good-deal (NGD) ask and bid forward prices of a derivative

contract D ∈ L0, with delivery at time T , written at time t ∈ {1, . . . , T − 1} and level

γ > 0, satisfy

F ask,γ,T
t (D)(ω) = BTΠask,γ

t (D),

F bid,γ,T
t (D)(ω) = BTΠbid,γ

t (D).

Remark 3.3.8. If r is deterministic and the set of hedging cash flows H(t) forms

a market that is frictionless, complete, and arbitrage-free, then R(H(t)) is a single-

ton, say {Q∗}, and so by Theorem 3.3.2 we have that F ask,γ,T
t (D) = F bid,γ,T

t (D) =

BTEQ∗
[∑T

u=t+1D
∗
u

∣∣Ft]. This is compatible with the classic result that states that in a

frictionless, complete, and arbitrage-free market the discounted forward price fTt (D)

of a derivative contract D, with delivery at time T , written at time t ∈ {1, . . . , T −1},
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is given as

fTt (D) = BTSt(D),

where S(D) is the discounted risk-neutral spot price given by

St(D) = EQ∗
[ T∑
u=t+1

D∗u

∣∣∣Ft].
Remark 3.3.9. From Theorem 3.3.2, we see that the relationship between the good-

deal ask and bid forward prices is classic, in the sense that

F ask,γ,T
t (D)

Πask,γ
t (D)

=
F bid,γ,T
t (D)

Πbid,γ
t (D)

=
fTt (D)

St(D)
, γ ∈ (0,∞), D ∈ L0,

where fTt (D) and St(D) are the forward and spot prices, respectively, corresponding

to a frictionless, complete, and arbitrage-free market.

3.4 The Dynamic Gain-Loss Ratio

In this section, we first prove some auxiliary results that hold for general

DCAIs. Then, we particularize these results to the very important special case of

DCAI, namely to the dynamic Gain-Loss Ratio (dGLR). In this section, without a

loss of generality, we assume that r = 0.

3.4.1 Characterization of DCAIs. In this section, we will prove an auxil-

iary result for DCAIs. For basic facts and notions regarding DCAIs, we refer to

Appendix B.

From [BCZ11], we recall that for every normalized and right-continuous DCAI

α there exist family Q =
((
Qγt
)
t∈T

)
γ∈(0,∞)

of dynamically consistent sequences of

sets of probability measures that is increasing (in γ), such that the following robust

representation holds true

αt(D)(ω) = sup
{
γ ∈ (0,∞) : inf

Q∈Qγt
EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0
}

(3.10)
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for all ω ∈ Ω, t ∈ T , and D ∈ L0. We say that a family Q of dynamically consistent

sequences of sets of probability measures that is increasing (in γ) corresponds to a

given normalized and right-continuous DCAI α if Q satisfies (3.10). Now, we will

establish a characterization of families Q that correspond to a given normalized and

right-continuous DCAI α.

Lemma 3.4.1. Suppose that α is a normalized and right-continuous DCAI. A family

Q corresponds to α if and only if Q ∈ Qα, where 16

Qα :=
{
U : αt(D)(ω) ≥ γ if and only if

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0, ω ∈ Ω, γ ∈ (0,∞), t ∈ T , D ∈ L0
}
.

Proof. (⇐=) Let U ∈ Qα. We fix t ∈ T , D ∈ L0, and ω ∈ Ω. Define the set

Γ(U) :=
{
β ∈ (0,∞) : inf

Q∈Uβt
EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0
}
.

If αt(D)(ω) =∞, then

inf
Q∈Uβt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0, β ∈ (0,∞).

Therefore, Γ(U) = (0,∞), and thus sup Γ(U) =∞. Hence, (3.10) holds true.

If Γ(U) = ∅, then

inf
Q∈Uβt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) < 0, β ∈ (0,∞).

Since U ∈ Qα, it is true that αt(D)(ω) < β for all β ∈ (0,∞). However, α is

nonnegative by definition, thus αt(D)(ω) = 0. By convention, we are taking sup ∅ = 0,

so we also have that sup Γ(U) = 0. Hence, (3.10) holds true.

16We will generically denote by U =
((
Uγt
)
t∈T

)
γ∈(0,∞)

a family of dynamically

consistent sequences of sets of probability measures that is increasing (in γ).
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If αt(D)(ω) = 0, then, since U ∈ Qα, we have that

inf
Q∈Uβt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) < 0, β ∈ (0,∞).

It follows that Γ(U) = ∅, and so (3.10) holds true.

Suppose Γ(U) 6= ∅. Assume that αt(D)(ω) <∞. We first show that αt(D)(ω)

is an upper bound of Γ(U). Observe that if γ ∈ Γ(U), then

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0.

Now, since U ∈ Qα, we have that αt(D)(ω) ≥ γ. So αt(D)(ω) is an upper bound of

Γ(U). If we let β′ := αt(D)(ω), then, because U ∈ Qα, we have that

inf
Q∈Uβ

′
t

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0.

Thus, β′ ∈ Γ(U). It follows that (3.10) holds.

(=⇒) Now, suppose U satisfies (3.10), and let γ ∈ (0,∞). If

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0,

then γ ∈ Γ(U). By (3.10), we have that αt(D)(ω) ≥ γ.

Assume αt(D)(ω) ≥ γ. We consider the cases αt(D)(ω) > γ and αt(D)(ω) = γ

separately. If αt(D)(ω) > γ, then, since Uγ is increasing in γ, we have that

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0.

Next, suppose that αt(D)(ω) = γ and

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) < 0.

By Theorem B.0.3, the mapping

γ 7−→ inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω)
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is left-continuous and monotone decreasing. Thus, by left-continuity there exists ε > 0

so that

inf
Q∈Uγ−εt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) < 0,

and by monotonicity and (3.10), we deduce that αt(D)(ω) ≤ γ− ε. This implies that

ε ≤ 0, which is a contradiction. Hence, we have that

inf
Q∈Uγt

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0,

which concludes the proof.

3.4.2 Characterization of the dGLR. A performance measure that is very popu-

lar among practitioners is the Sharpe Ratio, which was introduced in Sharpe [Sha64].

However, the Sharpe ratio is not monotone. Bernardo and Ledoit [BL00] proposed the

static Gain-Loss Ratio, which is a monotone performance measure that is unbounded

for arbitrage opportunities, and, as proved in Cherny and Madan [CM09], is also a

static coherent acceptability index. Recently, Bielecki et al. [BCZ11] introduced the

dynamic Gain-Loss Ratio, which is defined17 as

dGLRt(D)(ω) :=


EP
t [
∑T

s=tDs](ω)

EP
t [(
∑T

s=tDs)−](ω)
, if EP

t

[ T∑
s=t

Ds

]
(ω) > 0 ,

0 , otherwise .

(3.11)

It is shown in [BCZ11] that the dGLR satisfies conditions (D1)–(D7), and therefore

it is a dynamic coherent acceptability index (see Definition B.0.1).

Remark 3.4.1. It is worth to remark on the interpretation of the dGLR in the

context of arbitrage, which was first noticed in Bernardo and Ledoit [BL00] for the

17By convention, dGLR(0) =∞.



88

static Gain-Loss Ratio. Towards this end we note that

T∑
s=t

Hs(ω) ≥ 0 for all ω ∈ Ω, EP

[ T∑
s=t

Hs

∣∣∣Ft](ω) > 0 for some ω ∈ Ω,

if and only if EP

[( T∑
s=t

Hs

)−∣∣∣Ft](ω) = 0 for all ω ∈ Ω,

EP

[ T∑
s=t

Hs

∣∣∣Ft](ω) > 0 for some ω ∈ Ω

if and only if dGLRt(H)(ω) =∞ for some ω ∈ Ω.

Therefore, in view of Definition 3.0.2, a cash flow H ∈ H(t) is an arbitrage opportu-

nity at time t ∈ T if and only if dGLRt(H)(ω) = ∞ for some ω ∈ Ω. Equivalently,

the no-arbitrage condition holds true at time t ∈ T if and only if dGLRt(H) is bounded

for all H ∈ H(t). This equivalence gives an intuitive interpretation of the dGLR in

terms of the no-arbitrage condition. �

Next, we will show that Q̂ := {Q̂γ, γ > 0} defined in (3.12) below is an

increasing family of dynamically consistent sets of probability measures corresponding

to the dGLR. We define a family Q̂ as

Q̂γ :=
{
Q : dQ/dP = c(1 + Λ), c > 0, Λ ∈ Lγ, cEP[1 + Λ] = 1

}
, (3.12)

for all γ ∈ (0,∞), where

Lγ := {Λ : Λ is an FT -measurable r.v., 0 ≤ Λ ≤ γ}.

Proposition 3.4.1. The family Q̂ is an increasing family of dynamically consistent

sets of probability measures. In addition, this family corresponds to the dGLR.

Proof. We start by observing that, for each γ > 0, the set Q̂γ is nonempty since,

in particular, we may take Λ = 0 in the definition of Q̂γ. Also, we note that Q̂γ is

increasing in γ.
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For the rest of the proof we fix γ > 0. We denote by Υt = {P t
1, P

t
2, . . . , P

t
nt}

the unique partition of Ω at time t that generates Ft. In order to prove our result it

suffices to show that Q̂γ is weakly consistent (see Corollary 4.1.1 in [Zha11]), which

is

IP ti inf
Q∈Qγ

EQ[X|Ft] ≤ IP ti max
ω∈P ti

{
inf

Q∈Qγ
EQ[X|Ft+1](ω)

}
, (3.13)

for every t ∈ {0, . . . , T − 1}, P t
i ∈ Υt, and X ∈ FT . Next, take 0 ≤ Λ ≤ γ and

suppose that

max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft+1

]
(ω)

EP[1 + Λ|Ft+1](ω)
≤ a,

for some a ∈ R. Hence,

EP[(1 + Λ)X|Ft+1](ω) ≤ aEP[1 + Λ|Ft](ω),

for all ω ∈ P t
i . Therefore, using the tower property of conditional expectations, we

have that

EP[(1 + Λ)X|Ft](ω) ≤ aEP[1 + Λ|Ft](ω),

for all ω ∈ P t
i , and, consequently

max
ω∈P ti

EP[(1 + Λ)X|Ft](ω)

EP[1 + Λ|Ft](ω)
≤ a.

Thus, we showed that for any a ∈ R the following implication holds,

max
ω∈P ti

EP[(1 + Λ)X|Ft+1](ω)

EP[1 + Λ|Ft+1](ω)
≤ a =⇒ max

ω∈P ti

EP[(1 + Λ)X|Ft](ω)

EP[1 + Λ|Ft](ω)
≤ a,

so that

max
ω∈P ti

EP
[
(1 + Λ)X|Ft

]
(ω)

EP[1 + Λ|Ft](ω)
≤ max

ω∈P ti

EP[(1 + Λ)X|Ft+1](ω)

EP[1 + Λ|Ft+1](ω)
.

Hence, we have

IP ti
EP[(1 + Λ)X|Ft](ω)

EP[1 + Λ|Ft](ω)
≤ IP ti max

ω∈P ti

EP[(1 + Λ)X|Ft](ω)

EP[1 + Λ|Ft](ω)

≤ IP ti max
ω∈P ti

EP[(1 + Λ)X|Ft+1](ω)

EP[1 + Λ|Ft+1](ω)
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for all ω ∈ Ω. Thus, for Q = c(1 + Λ)P, we have that

IP tiEQ[X|Ft](ω) ≤ IP ti max
ω∈P ti

EQ[X|Ft+1](ω),

for all ω ∈ Ω. Therefore,

IP ti inf
Q∈Qγ

EQ[X|Ft] ≤ IP ti inf
Q∈Qγ

{
max
ω∈P ti

EQ[X|Ft+1](ω)

}
≤ IP ti max

ω∈P ti

{
inf

Q∈Qγ
EQ[X|Ft+1](ω)

}
,

which proves the weak consistency of Q̂γ.

We now show that the family Q̂ corresponds to the dGLR. By Lemma 3.4.1,

this is equivalent to show that

dGLRt(D)(ω) ≥ γ ⇐⇒ inf
Q∈Q̂γ

EQ
[
XT
t

∣∣Ft](ω) ≥ 0, (3.14)

for all ω ∈ Ω, t ∈ T and D ∈ L0, where for convenience we denoted XT
t =

∑t
u=T Du.

In the rest of the proof we fix ω ∈ Ω, t ∈ T and D ∈ L0.

In order to show (3.14) we first observe that since any η ∈ Eγ is strictly

positive, we may apply the abstract Bayes formula to write

inf
Q∈Q̂γ

EQ
[
XT
t

∣∣Ft](ω) ≥ 0 ⇐⇒ inf
η∈Eγ

EP
[
ηXT

t

∣∣Ft](ω)

EP[η|Ft](ω)
≥ 0

⇐⇒
EP
[
ηXT

t

∣∣Ft](ω)

EP[η|Ft](ω)
≥ 0, η ∈ Eγ

⇐⇒ EP
[
ηXT

t

∣∣Ft](ω) ≥ 0, η ∈ Eγ

⇐⇒ inf
η∈Eγ

EP
[
ηXT

t

∣∣Ft](ω) ≥ 0. (3.15)

Next, recall that by definition of Eγ we have that

inf
η∈Eγ

EP
[
ηXT

t

∣∣Ft](ω) = inf
Λ∈Lγ

EP
[
(1 + Λ)XT

t

∣∣Ft](ω). (3.16)
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Observing that

EP
[
(1 + Λ)XT

t

∣∣Ft](ω) = EP
[
XT
t + ΛI{XT

t ≤0}X
T
t + ΛI{XT

t >0}X
T
t

∣∣Ft](ω)

≥ EP
[
XT
t + ΛI{XT

t ≤0}X
T
t

∣∣Ft](ω)

≥ EP
[
XT
t + γI{XT

t ≤0}X
T
t

∣∣Ft](ω)

= EP
[
(1 + Λ∗)XT

t

∣∣Ft](ω),

where Λ∗ := γI{XT
t ≤0} ∈ Lγ.

Consequently, we obtain that

inf
Λ∈Lγ

EP
[
(1 + Λ)XT

t

∣∣Ft](ω) = EP
[
(1 + Λ∗)XT

t

∣∣Ft](ω).

Thus, in view of (3.16), we get

inf
η∈Eγ

EP
[
ηXT

t

∣∣Ft](ω) = EP
[
XT
t

∣∣Ft](ω) + γEP
[
I{XT

t ≤0}X
T
t

∣∣Ft](ω)

= EP
[
XT
t

∣∣Ft](ω) + γEP
[
I{XT

t ≤0}
((
XT
t

)+ −
(
XT
t

)−)∣∣Ft](ω)

= EP
[
XT
t

∣∣Ft](ω)− γEP
[(
XT
t

)−∣∣Ft](ω).

From here and (3.15) we deduce that

inf
Q∈Q̂γ

EQ
[
XT
t

∣∣Ft](ω) ≥ 0 ⇐⇒ EP
[
XT
t

∣∣Ft](ω) ≥ γEP
[(
XT
t

)−∣∣Ft](ω). (3.17)

To complete the proof of (3.14) we shall consider the following three cases:

EP[XT
t |Ft](ω) > 0, EP

[
XT
t

∣∣Ft](ω) < 0, and EP
[
XT
t

∣∣Ft](ω) = 0.

Case 1: EP[XT
t |Ft](ω) > 0.

From the definition of the dGLR and from (3.17) we have that

inf
Q∈Q̂γ

EQ
[
XT
t

∣∣Ft](ω) ≥ 0 ⇐⇒ EP
[
XT
t

∣∣Ft](ω) ≥ γEP
[(
XT
t

)−∣∣Ft](ω) (3.18)

⇐⇒ dGLRt(D)(ω) ≥ γ. (3.19)
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Therefore, (3.14) holds true.

Case 2: EP
[
XT
t

∣∣Ft](ω) < 0.

Since P ∈ Q̂γ, we have that

inf
Q∈Q̂γ

EQ[XT
t |Ft](ω) ≤ EP

[
XT
t

∣∣Ft](ω) < 0.

Also, by the definition of the dGLR, we have that dGLRt(D)(ω) = 0. As a result,

dGLRt(D)(ω) < γ ⇐⇒ inf
Q∈Q̂γ

EQ[XT
t |Ft](ω) < 0,

and so (3.14) holds true.

Case 3: EP
[
XT
t

∣∣Ft](ω) = 0.

Case 3a: If EP[(XT
t )−|Ft](ω) = 0, then EP[(XT

t )+|Ft](ω) = 0. Since ω ∈ Ω is

arbitrary, we may conclude that in this case XT
t = 0. Thus dGLRt(D) = ∞ and

infQ∈Q̂γ EQ
[
XT
t

∣∣Ft] = 0, showing that (3.14) holds true.

Case 3b: Now, assume that γEP
[
(XT

t )−
∣∣Ft](ω) > EP

[
XT
t

∣∣Ft](ω) = 0. By

(3.17), it follows that infQ∈Q̂γ EQ
[
XT
t

∣∣Ft](ω) < 0. Due to the definition of the dGLR,

we thus have that dGLRt(D)(ω) = 0, and so (3.14) holds true in this case as well.

The proof of the proposition is complete.

The following two propositions will be needed in order to apply dGLR for

pricing. In the first one we show that the family Ê satisfies Assumption (B). In the

second one, we show that, for fixed t ∈ T and D ∈ L0, the function

ργt (D) = inf
Q∈Q̂γ

EQ

[ T∑
s=t

Ds

∣∣∣Ft] , γ ∈ (0,∞)

satisfies Assumption (C).

Proposition 3.4.2. For each γ ∈ (0,∞), the set of densities Êγ is closed and convex.
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Proof. Fix γ ∈ (0,∞). We first show that Êγ is closed (in RN).18 Let ηk be a sequence

in Êγ converging to some η. By the definition of Êγ, there exist sequences Λk and

ck so that ηk = ck(1 + Λk), ck > 0, ck = 1/EP[1 + Λk], and 0 ≤ Λk(ωj) ≤ γ for

j = 1, . . . , N . For each ωj, we have that Λk(ωj) is bounded by γ, so Λk is bounded.

By the Bolzano-Weierstrass Theorem, there exists a subsequence Λkm such that Λkm

converges to some Λ. This limit must satisfy 0 ≤ Λ(ωj) ≤ γ for j = 1, . . . , N , since a

sequence converges in RN if and only if it converges coordinate-wise. If Λkm converges,

then EP[1 + Λkm ] converges. Since EP[1 + Λkm ] is strictly greater than zero, we have

that 1/EP[1 + Λkm ] converges to c := 1/EP[1 + Λ], which means that ckm converges

to c. Consequently, ηkm converges to c(1 + Λ). It follows that η ∈ Êγ. Hence, Êγ is

closed.

We proceed by showing that Êγ is convex. Let η1, η2 ∈ Êγ and 0 ≤ λ ≤ 1. Let

ci and Λi correspond to ηi, in the sense of definition of Êγ, that is, ηi = ci(1 + Λi),

i = 1, 2.

We need to show that λc1(1 + Λ1) + (1− λ)c2(1 + Λ2) ∈ Êγ. Define

c̃ := λc1 + (1− λ)c2 and Λ̃ :=
λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

.

Since

λc1(1 + Λ1) + (1− λ)c2(1 + Λ2) = c̃(1 + Λ̃),

it suffices to show that 0 ≤ Λ̃ ≤ γ and c̃ = 1/EP[1 + Λ̃]. We first notice that since

0 ≤ Λ1,Λ2 ≤ γ, the scalars c1, c2 satisfy c1, c2 > 0, and since 0 ≤ λ ≤ 1, we have that

0 ≤ λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

≤ γ
λc1 + (1− λ)c2

λc1 + (1− λ)c2

= γ.

18Clearly, we may consider Êγ as a subset of RN .
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Therefore, 0 ≤ Λ̃ ≤ γ. Next, because c1EP[1 + Λ1] = c2EP[1 + Λ2] = 1, it is true that

c̃EP[1 + Λ̃] = (λc1 + (1− λ)c2)EP

[
1 +

λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

]
= λc1 + (1− λ)c2 + λc1EP[1 + Λ1] + (1− λ)c2EP[1 + Λ2]− λc1 − (1− λ)c2

= 1.

As a result, Êγ is convex.

Proposition 3.4.3. For each t ∈ T , D ∈ L0 the function of γ ∈ (0,∞) defined as

ργt (D) := inf
Q∈Q̂γ

EQ

[ T∑
s=t

Ds

∣∣∣Ft] , (3.20)

is continuous.

Proof. Let ω ∈ Ω. By the abstract Bayes Theorem, we have that

inf
Q∈Q̂γ

EQ

[ T∑
s=t

Ds

∣∣∣Ft](ω) = inf
η∈Êγ

EP
[
η
∑T

s=tDs

∣∣Ft](ω)

EP[η|Ft](ω)

= inf
Λ∈Lγ

EP
[
(1 + Λ)

∑T
s=tDs

∣∣Ft](ω)

EP[1 + Λ|Ft](ω)
.

The function g defined as

g(Λ)(ω) :=
EP
[
(1 + Λ)

∑T
s=tDs

∣∣Ft](ω)

EP[(1 + Λ)
∣∣Ft](ω)

, 0 ≤ Λ an FT -measurable r.v.

is continuous in Λ. Applying Lemma A.0.4, we conclude that the proposition holds

true.

Remark 3.4.2. Note that the LHS of (3.20) is the value of a DCRM associated with

Q̂ (see B.0.3).

3.5 Good-Deal Prices for Asian Options

One of the main advantages of our dynamic framework is that NGD ask and

bid prices, as defined in 3.3.1, can be computed for path-dependent options in a
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dynamically consistent manner. In this section, using a simple model for ask and bid

prices of a security, and choosing the dGLR as acceptability index, we compute the

NGD ask and bid prices of European-style Asian and Barrier call options in a market

with transaction costs19. We compare these NGD prices with the corresponding

superhedging and subhedging prices.

According to Theorem 3.3.1, the NGD ask and bid prices of a derivative con-

tract D ∈ L0, at level γ > 0, at time t = 0 satisfy

Πask,γ
0 (D) = sup

Q∈Q̂γ∩R(H(0))

EQ
[ T∑
s=1

Ds

]
,

Πbid,γ
0 (D) = inf

Q∈Q̂γ∩R(H(0))
EQ
[ T∑
s=1

Ds

]
.

We recall that Q̂, defined in (3.12), is a dynamically consistent family of sets of

probability measures that corresponds to the dGLR. In what follows, we will use

the representations above to compute the NGD ask and bid prices of the options.

To compute the superhedging and subhedging prices, we use the representation in

Theorem 2.6.1:

πask0 (D) = sup
Q∈R(H(0))

EQ
[ T∑
s=1

Ds

]
,

πbid0 (D) = inf
Q∈R(H(0))

EQ
[ T∑
s=1

Ds

]
.

We suppose that the bid price of the security20 is given in Table 3.1. The

ask price process is assumed to satisfy P ask := P bid(1 + λ), where λ ∈ [0,∞) is the

transaction costs coefficient (cf. Bensaid et al. [BLPS92]; Boyle and Vorst [BV92]).

19We explain how the NGD ask and bid prices behave for different γ and λ only
for the arithmetic mean Asian option only: the remaining options display similar
behavior.

20See Example 4.10 in Pliska [Pli97], page 134.
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Table 3.1. Bid Price Process of the Security

ω t = 0 t = 1 t = 2

ω1 50 80 90

ω2 50 80 70

ω3 50 80 60

ω4 50 40 60

ω5 50 40 30

We define P ask := (1+λ)P bid as the ask price process for the security. Also, we define

the mid price process as Pmid := (P ask + P bid)/2.

We recall that Q̂ is defined in terms of the reference measure P, which we will

now assume to be

(
P(ω1),P(ω2),P(ω3),P(ω4),P(ω5)

)
= (1/10, 1/8, 1/4, 1/4, 11/40) .

3.5.1 Arithmetic Mean Asian option. We now compute the ask and bid price

of a European-style arithmetic Asian call option with a strike of 75. The derivative

contract associated with this option is

Da :=
(

0, 0,

(
1

3

(
Pmid

0 + Pmid
1 + Pmid

2

)
− 75

)+ )
.

Recall that Πask,γ
0 (Da) and Πbid,γ

0 (Da) denotes the NGD prices computed using dGLR,

whereas πask0 (Da) and πbid0 (Da) represents the ask superhedging price and subhedging

bid price, respectively.

Our results are presented in Tables 3.2, 3.2, 3.2 for different transaction cost

coefficients. In Figure 3.1 we display the “liquidity surface”, which is the plot of good-

deal bid-ask spread as a function of the level γ and transaction costs coefficient λ.
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Table 3.2. Prices of an Arithmetic Asian Call Option with λ = 0

γ πask0 (Da) Πask,γ
0 (Da) Πbid,γ

0 (Da) πbid0 (Da)

0.0001 1.388854 1.341775 1.341559 1.250035

0.001 – 1.342746 1.340587 –

0.005 – 1.347062 1.336288 –

0.01 – 1.352446 1.330952 –

0.05 – 1.388853 1.289754 –

0.1 – 1.388853 1.250036 –

0.25 – 1.388853 1.250036 –

0.5 – 1.388854 1.250036 –

0.75 – 1.388854 1.250036 –

1 – 1.388854 1.250035 –

1.25 – 1.388854 1.250035 –

Table 3.3. Prices of an Arithmetic Asian Call Option with λ = 0.005

γ πask0 (Da) Πask,γ
0 (Da) Πbid,γ

0 (Da) πbid0 (Da)

0.0001 1.484025 1.376819 1.376598 1.230204

0.001 – 1.377816 1.375601 –

0.005 – 1.382244 1.371189 –

0.01 – 1.387769 1.365714 –

0.05 – 1.431586 1.323440 –

0.1 – 1.484025 1.274140 –

0.25 – 1.484024 1.230207 –

0.5 – 1.484024 1.230205 –

0.75 – 1.484024 1.230205 –

1 – 1.484025 1.230205 –

1.25 – 1.484025 1.230205 –
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Table 3.4. Prices of an Arithmetic Asian Call Option with λ = 0.01

γ πask0 (Da) Πask,γ
0 (Da) Πbid,γ

0 (Da) πbid0 (Da)

0.0001 1.550037 1.411864 1.411636 1.167264

0.001 – 1.412886 1.410614 –

0.005 – 1.417427 1.406090 –

0.01 – 1.423092 1.400476 –

0.05 – 1.468024 1.357126 –

0.1 – 1.523222 1.306571 –

0.25 – 1.550036 1.175234 –

0.5 – 1.550035 1.167266 –

0.75 – 1.550036 1.167265 –

1 – 1.550036 1.167264 –

1.25 – 1.550036 1.167264 –

0

0.5

1

1.5

0

0.005

0.01
0

0.1

0.2

0.3

0.4
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Figure 3.1. Liquidity Surface for an Arithmetic Asian call Option
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In Figure 3.1, it is apparent that the good-deal bid-ask spread is increasing

both in the acceptance level γ and in the transaction cost coefficient λ. The good-deal

bid-ask spread increases in γ because of the representations in Theorem 3.3.1, and

since Qγ is increasing in γ. On the other hand, the good-deal bid-ask spread, as well

as the difference between superhedging and subhedging prices, increases in λ since

hedging the derivative contract becomes more expensive as λ increases.

We also note from Tables 3.2, 3.2, 3.2 that the superhedging, subhedging, and

good-deal prices increase in λ, and that the good-deal ask and bid prices converge to

the no-arbitrage bounds at higher γ values. This is also due to the fact that hedging is

more expensive as λ increases. For example, in case λ = 0, the prices Πask,γ
0 (Da) and

Πbid,γ
0 (Da) approximately converge to πask0 (Da) and πbid0 (Da), respectively, at γ = 0.1,

whereas if λ = 0.005 this happens at approximately γ = 0.25, and in the case λ = 0.01

it happens at approximately γ = 0.5.

3.5.1.1 Geometric Asian Option. We continue by computing the ask and bid

prices of a geometric Asian call option with strike 75. The derivative contract asso-

ciated with this option is

Dg :=

(
0, 0,

((
Pmid

0 Pmid
1 Pmid

2

) 1
3 − 75

)+
)
.
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Table 3.5. Prices of a Geometric Asian Call Option with λ = 0

γ πask0 (Dg) Πask,γ
0 (Dg) Πbid,γ

0 (Dg) πbid0 (Dg)

0.0001 1.022926 0.954010 0.953852 0.819950

0.001 – 0.954721 0.953141 –

0.005 – 0.957881 0.949995 –

0.01 – 0.961824 0.946092 –

0.05 – 0.993159 0.916010 –

0.1 – 1.022926 0.881052 –

0.25 – 1.022923 0.819953 –

0.5 – 1.022923 0.819953 –

0.75 – 1.022924 0.819951 –

1 – 1.022925 0.819951 –

1.25 – 1.022926 0.819951 –

Table 3.6. Prices of a Geometric Asian Call Option with λ = 0.005

γ πask0 (Dg) Πask,γ
0 (Dg) Πbid,γ

0 (Dg) πbid0 (Dg)

0.0001 1.100503 0.988085 0.987922 0.815067

0.001 – 0.988816 0.987191 –

0.005 – 0.992063 0.983958 –

0.01 – 0.996116 0.979947 –

0.05 – 1.028320 0.949031 –

0.1 – 1.068030 0.913103 –

0.25 – 1.100502 0.820396 –

0.5 – 1.100501 0.815071 –

0.75 – 1.100499 0.815070 –

1 – 1.100502 0.815069 –

1.25 – 1.100503 0.815069 –
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Table 3.7. Prices of a Geometric Asian Call Option with λ = 0.01

γ πask0 (Dg) Πask,γ
0 (Dg) Πbid,γ

0 (Dg) πbid0 (Dg)

0.0001 1.149457 1.022159 1.021992 0.767216

0.001 – 1.022910 1.021242 –

0.005 – 1.026244 1.017921 –

0.01 – 1.030407 1.013802 –

0.05 – 1.063480 0.982052 –

0.1 – 1.104262 0.945155 –

0.25 – 1.149455 0.849945 –

0.5 – 1.149456 0.767218 –

0.75 – 1.149456 0.767217 –

1 – 1.149457 0.767216 –

1.25 – 1.149457 0.767216 –
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Figure 3.2. Liquidity Surface for a Geometric Asian call Option
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We notice that the subhedging, superhedging, and good-deal prices for the

geometric Asian call option display a similar relationship to the acceptance level

γ and transaction cost coefficient λ as for the arithmetic Asian call option in the

previous section.
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CHAPTER 4

FUTURE WORK

The following are open questions and further research problems regarding the no-

arbitrage pricing for dividend-paying securities in markets with transaction costs

studied in Chapter 2.

1. In Theorem 2.5.1, we proved that no-arbitrage condition under the efficient

friction assumption (NAEF) is satisfied if and only if there exists a consistent

pricing system (CPS) for the case in which there are no transaction costs on

the dividends paid by the securities. An open question is to prove or disprove,

in the general, whether a CPS exists whenever NAEF (or versions of) holds.

2. We illustrated our no-arbitrage pricing framework with a vanilla credit default

swap contract. A further research problem is to construct a financial market

model for pricing and hedging CDSs in markets with transaction costs.

3. In this thesis, we studied a version of the First Fundamental Theorem of Asset

Pricing (FFTAP) in the context of NAEF. An open research problem is to

study the present version of the FFTAP in the context of the robust no-arbitrage

condition (or versions of) defined in Schachermayer [Sch04].

4. Develop the no-arbitrage pricing for a continuous-time setting. One possible

direction is to work with the generalized arbitrage pricing model condition intro-

duced in Cherny [Che07b, Che07a]. Therein, simple trading strategies are con-

sidered, and the price processes are assumed to be adapted, infinite-dimensional,

càdlàg, and have components that are bounded from below (or above). Another

possible direction is to adopt the robust no-free-lunch with vanishing risk con-

dition studied in Denis et al. [DGR11]. Both approaches allow for securities’

prices to be negative (which is required for securities such as CDSs).
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Next, we state open questions and further research problems regarding the

dynamic conic finance framework studied in Chapter 3.

1. We studied dynamic conic finance in a discrete-time setting under the assump-

tion that the state space is finite. An open research problem is to prove the

FTNGDP in a continuous-time setting and/or for a general state space.

2. We particularized our results to the case in which the chosen dynamic coherent

acceptability index is the dynamic Gain-Loss ratio. A research problem is to

apply dynamic conic finance to dynamic coherent acceptability indices other

than the dynamic Gain-Loss ratio. Insights into the problem of finding examples

of dynamic coherent acceptability indices can be found in Bielecki et al. [BCZ11].
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APPENDIX A

ANALYSIS
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We begin by recalling a basic result in probability (see for instance Jacod and

Protter [JP04]).

Lemma A.0.1. Let f : RN → R be a continuous function, and suppose that Xm is

a sequence of RN -valued random variables that converges a.s. to X. Then f(Xm)

converges a.s. to f(X).

The next useful result is a consequence of the previous lemma.

Lemma A.0.2. Let (Xm, Y m) ∈ L0(Ω,FT ,P;RN × RN) be sequence converging a.s.

to (X, Y ). Then

(i) The sequence Y mXm converges a.s. to Y X.

(ii) For any Y a, Y b, the sequence

Zm := 1{Xm≥0}X
mY b + 1{Xm<0}X

mY a

converges a.s. to

Z := 1{X≥0}XY
b + 1{X<0}XY

a.

Proof. (i): This claim follows directly from Lemma A.0.1 by considering the function

f : R2 → R defined as f(x, y) := xy.

(ii): In view of Lemma A.0.1, it is enough to prove that the function g : R→ R

defined as

g(x) := 1{x≥0}xy
b + 1{x<0}xy

a,

where ya, yb ∈ R, is continuous. It is immediate that g(x) is continuous for all x 6= 0,

so we only show it is continuous at x = 0. By the triangle inequality, we notice that

|g(x)| = |1{x≥0}xy
b + 1{x<0}xy

a| ≤ 1{x≥0}x|yb|+ 1{x<0}|x||ya|

≤ |x|max{|ya|, |yb|} ≤ |x|max{|ya|, |yb|, 1}.
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Thus, for any arbitrary ε > 0, if |x| ≤ δ, then choosing δ := ε/(max{|ya|, |yb|, 1})

proves the claim.

The following result is related to a.s. convergence of bounded random vari-

ables.

Lemma A.0.3. Suppose X ∈ L0(Ω,F ,P;R) and let Ωn := {ω ∈ Ω : |X(ω)| < n}.

Then 1Ωm converges a.s. to 1.

Proof. First, define

Ω̃n := {ω ∈ Ω : n− 1 ≤ |X(ω)| < n}, n ∈ N.

The sets {Ω̃n}n∈N forms a partition of Ω, and Ωm =
⋃m
n=1 Ω̃n. Hence, 1⋃m

n=1 Ω̃n(ω) =∑m
n=1 1Ω̃n(ω). Also, because that the Dirac measure δ defined as δ(E) := 1E for any

E ∈ F is countably additive, we have 1⋃∞
n=1 Ω̃n(ω) =

∑∞
n=1 1Ω̃n(ω). Therefore, we see

that

lim
m→∞

1Ωm(ω) = lim
m→∞

1⋃m
n=1 Ω̃n(ω) = lim

m→∞

m∑
n=1

1Ω̃n(ω)

=
∞∑
n=1

1Ω̃n(ω) = 1⋃∞
n=1 Ω̃n(ω) = 1Ω = 1, for a.e. ω ∈ Ω.

Therefore, P(limm 1Ωm = 1) = 1.

Next, we prove a lemma concerning the continuity of the infimum of a contin-

uous function.

Lemma A.0.4. If g : R→ R is continuous, then the function f : (0,∞)→ R defined

by f(γ) := inf0≤y≤γ g(y) is continuous.

Proof. Since g is continuous, f(γ) = min0≤y≤γ g(y). We first show that

lim
γ→γ+0

min
γ0≤y≤γ

g(y) = lim
γ→γ−0

min
γ0≤y≤γ

g(y) = g(γ0).



108

Fix γ0 ∈ (0,∞) and suppose that ε > 0 and γ ∈ [γ0,∞). From the continuity of g,

for all ε′ > 0 there exists δ > 0 such that |γ − γ0| < δ implies |g(γ)− g(γ0)| < ε′. We

notice that

|g(γ0)− min
γ0≤y≤γ

g(y)| = g(γ0)− min
γ0≤y≤γ

g(y)

= min
γ0≤y≤γ

{g(γ0)− g(y)}

≤ min
γ0≤y≤γ

{|g(γ0)− g(y)|}

≤ min
γ0≤y≤γ

{|g(γ0)− g(γ)|+ |g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ min
γ0≤y≤γ

{|g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ |g(γ)− g(γ0)|

= 2|g(γ0)− g(γ)| < 2ε′.

Taking ε = 2ε′ shows that limγ→γ+0
minγ0≤y≤γ g(y) = g(γ0).

We now show that limγ→γ−0
minγ≤y≤γ0 g(y) = g(γ0) Let γ0 ∈ (0,∞) and sup-

pose that ε > 0 and γ ∈ (0, γ0]. Since g is continuous, for any ε′ > 0 there exists

δ > 0 such that |γ − γ0| < δ implies |g(γ)− g(γ0)| < ε′. Notice that
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|g(γ0)− min
γ≤y≤γ0

g(y)| = g(γ0)− min
γ≤y≤γ0

g(y)

= min
γ≤y≤γ0

{g(γ0)− g(y)}

≤ min
γ≤y≤γ0

{|g(γ0)− g(y)|}

= min
γ≤y≤γ0

{|g(γ0)− g(γ) + g(γ)− g(y)|}

≤ min
γ≤y≤γ0

{|g(γ0)− g(γ)|+ |g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ min
γ≤y≤γ0

{|g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ |g(γ)− g(γ0)|

= 2|g(γ0)− g(γ)| < 2ε′.

Taking ε = 2ε′ shows that limγ→γ−0
minγ0≤y≤γ g(y) = g(γ0).

We now show that f is continuous:

lim
γ→γ+0

f(γ) = lim
γ→γ−0

f(γ) = f(γ0).

Since f is non-increasing and bounded, the limit exists. For any γ0 ∈ (0,∞), let

γ ∈ [γ0,∞). Since min(·, ·) : R× R→ R is a continuous function it follows that

f(γ0)− lim
γ→γ+0

f(γ) = min
0≤y≤γ0

g(y)− lim
γ→γ+0

min
0≤y≤γ

g(y)

= min
0≤y≤γ0

g(y)− lim
γ→γ+0

min

(
min

0≤y≤γ0
g(y), min

γ0≤y≤γ
g(y)

)
= min

0≤y≤γ0
g(y)−min

(
min

0≤y≤γ0
g(y), lim

γ→γ+0
min

γ0≤y≤γ
g(y)

)

= min
0≤y≤γ0

g(y)−min

(
min

0≤y≤γ0
g(y), g(γ0)

)
= 0.

It follows that f is right-continuous.
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Now let γ ∈ (0, γ0]. Similarly as above, we obtain

f(γ0)− lim
γ→γ−0

f(γ) = min
0≤y≤γ0

g(y)− lim
γ→γ−0

min
0≤y≤γ

g(y)

= lim
γ→γ−0

min
0≤y≤γ0

g(y)− lim
γ→γ−0

min
0≤y≤γ

g(y)

= lim
γ→γ−0

min

(
min

0≤y≤γ
g(y), min

γ≤y≤γ0
g(y)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), lim
γ→γ−0

min
γ≤y≤γ0

g(y)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), g(γ0)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

From the continuity of g and min(·, ·), we see that

min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), g(γ0)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), lim
γ→γ−0

g(γ)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= lim
γ→γ−0

min

(
min

0≤y≤γ
g(y), g(γ)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= 0

Thus, f is left-continuous, so we conclude that f is continuous.

The following lemma is an auxiliary result needed for Theorem 3.3.1.

Lemma A.0.5. For any monotone increasing, continuous function f : (0,∞) → R,

we have that f(γ) ≤ 0 if and only if

sup{β ∈ (0,∞) : f(β) ≤ 0} ≥ γ,

for any γ > 0.

Proof. Let us define the set Γ := {β ∈ (0,∞) : f(β) ≤ 0}. Assume that f(γ) ≤ 0 for

some γ > 0. Then γ ∈ Γ, and therefore sup Γ ≥ γ.
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Conversely, suppose that sup Γ ≥ γ and define β∗ := sup Γ. If sup Γ =∞, then

f(x) ≤ 0, for all x > 0, and in particular for x = γ. Now assume that β∗ ∈ (0,∞).

We first argue by contradiction that β∗ ∈ Γ. If β∗ /∈ Γ, then f(β∗) > 0. Now,

since f is continuous, there exists ε′ > 0 so that 0 < f(β∗ − ε′). By the definition

of the supremum of a set, we have that, for all ε > 0, there exists βε ∈ Γ so that

β∗ − ε < βε. Therefore, because f is monotonically increasing, f(β∗ − ε) ≤ f(βε).

Hence, 0 < f(β∗−ε′) ≤ f(βε), which contradicts βε ∈ Γ. We proceed by showing that

f(γ) ≤ 0. Since γ ≤ β∗ and f is monotonically increasing, we have that f(γ) ≤ f(β∗).

However, β∗ ∈ Γ, so f(γ) ≤ f(β∗) ≤ 0.

We proceed by showing an important lemma that we use throughout Chap-

ter 2.

Lemma A.0.6. For any W,X, Y, Z ∈ L0(Ω,FT ,P;R) with W ≥ Z, the following

random variables R1 and R2 are nonnegative:

R1 := (1{X≥0}X + 1{Y≥0}Y )W + (1{X<0}X + 1{Y <0}Y )Z

− 1{X+Y≥0}(X + Y )W − 1{X+Y <0}(X + Y )Z,

R2 := −(1{X≥0}X + 1{Y≥0}Y )Z − (1{X<0}X + 1{Y <0}Y )W

+ 1{X+Y≥0}(X + Y )Z + 1{X+Y <0}(X + Y )W.

Proof. Define the subsets

Ω1 := {X ≥ 0} ∩ {Y ≥ 0}, Ω2 := {X < 0} ∩ {Y < 0},

Ω3 := {X < 0} ∩ {Y ≥ 0}, Ω4 := {X ≥ 0} ∩ {Y < 0},

Ω5 := {X + Y ≥ 0}, Ω6 := {X + Y < 0}.

Notice that the subsets Ω1,Ω2,Ω3 ∩Ω5,Ω3 ∩Ω6,Ω4 ∩Ω5,Ω4 ∩Ω6 form a partition of

Ω, so we may argue that the R1 is nonnegative on each of these subset separately.
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We first show that R1 ≥ 0.

On the sets Ω1 and Ω2: R1 = 0. On the set Ω3 ∩ Ω5 :

R1 = XZ + YW − (X + Y )W = −X(W − Z) ≥ 0.

On the set Ω3 ∩ Ω6 :

R1 = XZ + YW − (X + Y )Z = Y (W − Z) ≥ 0.

On the set Ω4 ∩ Ω5:

R1 = XW + Y Z − (X + Y )W = −Y (W − Z) ≥ 0.

On the set Ω4 ∩ Ω6:

R1 = XW + Y Z − (X + Y )Z = X(W − Z) ≥ 0.

Therefore, R1 ≥ 0 on Ω.

Next, if we define Z̃ := −Z and W̃ := −W , then Z̃ ≥ W̃ . Applying the result

for R1 to Z̃, W̃ gives us that R2 ≥ 0.

The following result is used in Chapter 2.

Lemma A.0.7. Let {Yi}{i=1,...,M} ∈ L1(Ω,P,F ;R). If EP
[∑M

i=1XiYi
]
≤ 0 for all

{Xi}{i=1,...,M} ∈ L∞+ (Ω,P,F ;R), then {Yi}{i=1,...,M} are non-positive.

Proof. Let us take Xi := 1{Yi>0} for i = 1, 2, . . . ,M . Then

0 ≥ EP

[ M∑
i=1

XiYi

]
=

M∑
i=1

EP
[
1{Yi>0}Yi

]
.

Hence, P(Yi > 0) = 0 for j = 1, 2, . . . ,M .

The next lemma is the celebrated result due to Yan [Yan80] and Kreps [Kre81].
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Lemma A.0.8 (Kreps-Yan). Let C be a closed convex cone in L1(Ω,F ,P;R) contain-

ing L1
−(Ω,F ,P;R) such that C ∩L1

+(Ω,F ,P;R) = {0}. Then there exists a functional

f ∈ L∞(Ω,F ,P;R) such that, for each h ∈ L1
+(Ω,F ,P;R) with h 6= 0, we have that

EP[fh] > 0 and EP[fg] ≤ 0 for any g ∈ C.

Next, we recall a well-known characterization of compact sets. For a proof,

see Lemma I.5.6 in Dunford and Schwartz [DS58].

Lemma A.0.9. A subset of a topological space is compact if and only if every family

of closed sets with the finite intersection property has a nonempty intersection.

The following theorem is an application of Hahn-Banach theorem, regarding

the separation of hyperplanes.

Theorem A.0.1. If Z and C are disjoint, closed, convex subsets of RN , and if Z is

compact, then there exists a constant ε with ε > 0, and a continuous linear functional

ϕ ∈ RN , so that

ϕ(c) ≤ 0 < ε < ϕ(z)

for all z ∈ Z and c ∈ C.

Proof. By Theorem V.2.10 in Dunford and Schwartz [DS58], there exists constants a

and ε′ with ε′ > 0, and a continuous linear functional ϕ ∈ RN , so that

ϕ(x) ≤ a− ε′ < a ≤ ϕ(z) (A.1)

for all z ∈ Z and x ∈ C. We now argue that ϕ(x) ≤ 0 for all x ∈ C. Suppose there

exists a0 > 0 and x0 ∈ C so that ϕ(x0) = a0. Since C is a cone, we have that λx0 ∈ C

for all λ > 0. Thus,

sup
x∈C

ϕ(x) ≥ sup
λ>0

ϕ(λx0) = sup
λ>0

λa0 = +∞,
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which contradicts (A.1), and hence ϕ(x) ≤ 0, x ∈ C. From here, and since ϕ is linear

and 0 ∈ C, it follows that supx∈C ϕ(x) = 0. Thus, a− ε′ ≥ 0, and hence a > 0. Taking

ε = a concludes the proof.
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APPENDIX B

DYNAMIC COHERENT ACCEPTABILITY INDICES
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In this section, we present some important definitions and results from the

theory of Dynamic Coherent Acceptability Indices. For a more detailed discussion

and proofs of results we refer to Bielecki, Cialenco, and Zhang [BCZ11].

We first recall the definition of a dynamic coherent acceptability index.

Definition B.0.1. A dynamic coherent acceptability index (DCAI) is a function

α : T × L0 × Ω→ [0,∞] that satisfies the following properties:

(D1) Adaptiveness. For any t ∈ T and D ∈ L0, αt(D) is Ft-measurable;

(D2) Independence of the past. For any t ∈ T and D,D′ ∈ L0, if there exists

A ∈ Ft such that IADs = IAD′s for all s ≥ t, then IAαt(D) = IAαt(D′);

(D3) Monotonicity. For any t ∈ T and D,D′ ∈ L0, if Ds(ω) ≥ D′s(ω) for all s ≥ t

and ω ∈ Ω, then αt(D) ≥ αt(D
′) for all ω ∈ Ω;

(D4) Scale invariance. αt(λD) = αt(D) for all λ > 0, D ∈ L0, t ∈ T , and ω ∈ Ω;

(D5) Quasi-concavity. If αt(D) ≥ x and αt(D
′) ≥ x for some t ∈ T , ω ∈ Ω,

D,D′ ∈ L0, and x ∈ (0,∞], then αt(λD + (1− λ)D′) ≥ x for all λ ∈ [0, 1];

(D6) Translation invariance. αt(D + mI{t}) = αt(D + mI{s}) for every t ∈ T ,

D ∈ L0, ω ∈ Ω, s ≥ t and every Ft-measurable random variable m;

(D7) Dynamic consistency. For any t ∈ [0, . . . , T − 1] and D,D′ ∈ L0, if Dt(ω) ≥

0 ≥ D′t(ω) for all ω ∈ Ω, and there exists a non-negative Ft-measurable random

variable m such that αt+1(D) ≥ m(ω) ≥ αt+1(D′) for all ω ∈ Ω, then αt(D) ≥

m(ω) ≥ αt(D
′) for all ω ∈ Ω.

Next, we recall the definition of a dynamic coherent risk measure.

Definition B.0.2. Dynamic coherent risk measure (DCRM) is a function

ρ : {0, . . . , T} × L0 × Ω→ R that satisfies the following properties:
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(A1) Adaptiveness. ρt(D) is Ft-measurable for all t ∈ T and D ∈ L0;

(A2) Independence of the past. If IADs = IAD′s for some t ∈ T , D,D′ ∈ L0, and

A ∈ Ft and for all s ≥ t, then IAρt(D) = IAρt(D′);

(A3) Monotonicity. If Ds(ω) ≥ D′s(ω) for some t ∈ T and D,D′ ∈ L0, and for all

s ≥ t and ω ∈ Ω, then ρt(D) ≤ ρt(D
′) for all ω ∈ Ω;

(A4) Homogeneity. ρt(λD) = λρt(D) for all λ > 0, D ∈ L0, t ∈ T , and ω ∈ Ω;

(A5) Subadditivity. ρt(D + D′) ≤ ρt(D) + ρt(D
′) for all t ∈ T , D,D′ ∈ L0, and

ω ∈ Ω;

(A6) Translation invariance. ρt(D+mI{s}) = ρt(D)−m for every t ∈ T , D ∈ L0,

Ft-measurable random variable m, and all s ≥ t;

(A7) Dynamic consistency.

IA(min
ω∈A

ρt+1(D)−Dt) ≤ IAρt(D) ≤ IA(max
ω∈A

ρt+1(D)−Dt) ,

for every t ∈ {0, 1, . . . , T − 1}, D ∈ L0 and A ∈ Ft.

We now recall an important result that provides the representation of a DCAI

in terms of a family of DCRMs, and the representation of DCRM in terms of a DCAI.

The proof the following theorem can be found in [BCZ11].

Theorem B.0.2.

(i) If α is a normalized, right-continuous, dynamic coherent acceptability index,

then there exists a left-continuous and increasing family of dynamic coherent

risk measures (ργ)γ∈(0,∞), such that

αt(D)(ω) = sup{γ ∈ (0,∞) : ργt (D)(ω) ≤ 0}, ω ∈ Ω, t ∈ T , D ∈ L0.

(B.1)
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(ii) If (ργ)γ∈(0,∞) is a left-continuous and increasing family of dynamic coherent risk

measures, then there exists a right-continuous and normalized dynamic coherent

acceptability index α such that,

ργt (D)(ω) = inf{c ∈ R : αt(D + δt(1c))(ω) ≥ γ}, ω ∈ Ω, t ∈ T , D ∈ L0.

We take inf ∅ =∞ and sup ∅ = 0.

Next, we recall the definitions of a dynamically consistent sequence of sets

of probability measures and an increasing family of sequences of sets of probability

measures.

Definition B.0.3.

(i) A sequence of sets of probability measures (Qt)Tt=0 absolutely continuous with

respect to P is called dynamically consistent with respect to the filtration (Ft)Tt=0

if the sequence is of full-support and the following inequality holds true

IE min
ω∈E

{
inf

Q∈Qt+1

EQ[X|Ft+1](ω)
}
≤ IE inf

Q∈Qt
EQ[X|Ft]

≤ IE max
ω∈E

{
inf

Q∈Qt+1

EQ[X|Ft+1](ω)
}

for all t ∈ {0, 1, . . . , T − 1}, E ∈ Ft, and FT -measurable random variables X.

(ii) A family of sequences of sets of probability measures (Qγt )Tt=0)γ∈(0,∞) is called

increasing if Qγt ⊇ Q
β
t , for all γ ≥ β > 0 and t ∈ T .

The following is representation theorem for dynamic coherent risk measures

in terms of dynamically consistent set of probabilities. These results, combined with

the results from Theorem B.0.2 about duality between DCAI and DCRM, gives a

representation theorem for dynamic coherent acceptability indices.



119

Theorem B.0.3 (Robust Representation Theorem for DCRM). For γ > 0, a func-

tion ργ : {0, 1, . . . , T}×L0×Ω→ R is a dynamic coherent risk measure if and only if

there exists a dynamically consistent family of sets of probabilities (Qγt )Tt=0 such that,

ργt (D) = − inf
Q∈Qγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft] , t ∈ T , D ∈ L0. (B.2)

The proof this theorem can be found in [BCZ11].

A direct consequence of Theorem B.0.2 and Theorem B.0.3 is the following:

Theorem B.0.4.

(i) Assume that (Qγt )Tt=0)γ∈(0,∞) is an increasing family of dynamically consistent

sequences of sets of probability measures. Then, the function α : {0, 1, . . . , T}×

L0 × Ω→ [0,∞] defined as

αt(D)(ω) = sup
{
γ ∈ (0,∞) : inf

Q∈Qγt
EQ
[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0
}
,

for ω ∈ Ω, t ∈ T , and D ∈ L0 is a normalized and right-continuous dynamic

coherent acceptability index.

(ii) If α is a normalized and right-continuous dynamic coherent acceptability in-

dex, then there exists a family of dynamically consistent sequences of sets of

probability measures (Qγt )Tt=0)γ∈(0,∞) such that

αt(D)(ω) = sup
{
γ ∈ (0,∞) : inf

Q∈Qγt
EQ
t

[ T∑
s=t

Ds

∣∣∣Ft](ω) ≥ 0
}

for ω ∈ Ω, t ∈ T , and D ∈ L0. Here we adopt the convention that inf ∅ = ∞

and sup ∅ = 0.



120

BIBLIOGRAPHY

[ADEH99] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of
risk. Math. Finance, 9(3):203–228, 1999.

[BCIR12] T.R. Bielecki, I. Cialenco, I. Iyigunler, and R. Rodriguez. Dynamic Conic
Finance: Pricing and Hedging via Dynamic Coherent Acceptability In-
dices with Transaction Costs. Working Paper, 2012.

[BCR12] T.R. Bielecki, I. Cialenco, and R. Rodriguez. No-arbitrage pricing theory
for dividend-paying securities in discrete-time markets with transaction
costs. Preprint, 2012.

[BCZ11] T.R. Bielecki, I. Cialenco, and Z. Zhang. Dynamic coherent acceptability
indices and their applications to finance. forthcoming in Math. Finance,
2011.

[BL00] A. Bernardo and O. Ledoit. Gain, loss, and asset pricing. J. of Polit.
Econ., 108:144–172, 2000.

[BLPS92] B. Bensaid, J. Lesne, H. Pags, and J. Scheinkman. Derivative asset pricing
with transaction costs. Math. Finance, 2(2):63–86, 1992.

[Bou06] B. Bouchard. No-arbitrage in discrete-time markets with proportional
transaction costs and general information structure. Finance Stoch.,
10:276–297, 2006.

[BT00] B. Bouchard and N. Touzi. Explicit solution to the multivariate
super-replication problem under transaction costs. Ann. Appl. Probab.,
10(3):685–708, 2000.

[BV92] P.P. Boyle and T. Vorst. Option replication in discrete time with trans-
action costs. J. of Finance, 47(1):271–293, 1992.

[CGM01] P. Carr, H. Geman, and D.B. Madan. Pricing and hedging in incomplete
markets. J. Finan. Econ., 62(1):131–167, 2001.

[Che07a] A. Cherny. General arbitrage pricing model: I probability approach.
In Catherine Donati-Martin, Michel mery, Alain Rouault, and Christophe
Stricker, editors, Sminaire de Probabilits XL, volume 1899, pages 415–445.
Springer Berlin / Heidelberg, 2007.

[Che07b] A. Cherny. General arbitrage pricing model. II. Transaction costs. In
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