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for their invaluable support.
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ABSTRACT

This thesis consists of three essays about modeling counterparty risk and pric-

ing derivative securities.

In the first essay, we analyze the counterparty risk embedded in CDS contracts,

in presence of a bilateral margin agreement. We focus on the pricing of collateralized

counterparty risk, and we derive the bilateral Credit Valuation Adjustment (CVA),

unilateral Credit Valuation Adjustment (UCVA), and Debt Valuation Adjustment

(DVA). We propose a model for the collateral by incorporating all related factors

such as the thresholds, haircuts and margin period of risk. We derive the dynamics

of the bilateral CVA in a general form with related jump martingales. Counterparty

risky and the counterparty risk-free spread dynamics are derived and the dynamics

of the Spread Value Adjustment (SVA) is found as a consequence. We finally employ

a Markovian copula model for default intensities and illustrate our findings with

numerical results.

In the second essay we address the issue of computation of the bilateral CVA

under rating triggers in presence of ratings-linked margin agreements. We consider

collateralized OTC contracts, that are subject to rating triggers, between two parties –

an investor and a counterparty. Moreover, we model the margin process as a function

of the credit ratings of the counterparty and the investor. We employ a Markovian

approach for modeling of the rating transitions and of the default probabilities of the

counterparties. In this framework, we derive the representation for bilateral CVA.

We also introduce a new component in the decomposition of the counterparty risky

price: namely the rating valuation adjustment (RVA) that accounts for the rating

triggers. We consider several dynamic collateralization schemes where the margin

thresholds are linked to the credit ratings of the counterparties. We account for

the rehypothecation risk in the presence of independent amounts. Our results are

ix



illustrated in terms of a CDS contract and an IRS contract.

In the third essay, we study the problem of pricing in incomplete markets with

risk measures and acceptability indices. We propose a model for finding the dynamic

ask and bid prices of derivative securities using Dynamic Coherent Acceptability

Indices (DCAI) in the presence of transaction costs. In this framework, we define

and prove a representation theorem for dynamic bid ask prices. We show that our

prices can be computed using dynamic Gain-Loss Ratio (dGLR), which is a DCAI.

To illustrate our results, we provide several numerical examples, by pricing barrier

options with dGLR.

x
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CHAPTER 1

INTRODUCTION

Pricing, hedging, and risk measurement are the fundamental keystones of the

modern mathematical finance. This thesis is motivated by three problems arising from

these foundational concepts. In the first part, we study the problem of quantifying

the counterparty risk in CDS contracts. The second part addresses the problem

of counterparty risk assessment in the presence of rating triggers on the underlying

contracts. In the final part, we consider the problem of pricing and hedging derivatives

in markets with transaction costs using acceptability indices.

Counterparty risk modeling has gained paramount importance since the fi-

nancial crisis in 2008. As it is noted in Benjamin [Ben10], just shy of one-third of

the losses in the crisis were actually due to realized default events, whereas about

two-third were due to mark-to-market losses associated with the counterparty credit

risk arising from the OTC derivatives transactions. Evidently, this highlights the

significance of the role of the counterparty credit risk in the financial world. As a re-

sult, accurate and efficient measurement, mitigation and hedging of the counterparty

credit risk have been the main focus of attention between the market participants.

Quantification of the counterparty risk requires the computation of potential future

exposures, expected exposures and relevant price adjustments, by considering the de-

fault risks of the counterparties as well as their own default probabilities. One of

the main objectives of the counterparty risk measurement is to calculate the Credit

Valuation Adjustment (CVA). CVA is defined as the difference between the values

of a portfolio of OTC contracts, with and without considering the counterparty risk.

Essentially, CVA specifies the price of the counterparty risk, and indicates the ex-

pected loss or gain incurred in the case of a default of a counterparty or in the case

of an own default. In order to set limits against these losses originating from the
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presence of the counterparty risk, financial institutions utilize various techniques that

allow them to mitigate and hedge their counterparty exposure.

Mitigation of counterparty risk involves incorporation of protective factors

such as collateralization, netting, and break clauses. Collateralization is a procedure

between two parties in a financial contract, where the borrower pledges an asset to the

lender as a reassurance against his default. In case of swap contracts, collateraliza-

tion is carried out bilaterally, thereby reducing the exposure for both counterparties.

Netting is the practice of mutually settling the financial transactions between two

counterparties to a net amount by canceling out the transactions having positive

value with the ones having negative value. Furthermore, netting is an effective tool

for mitigating the counterparty risk by reducing the overall exposure as well as the

operational risks. On the other hand, break clauses are used to decrease the coun-

terparty exposure by imposing optional or mandatory termination of the underlying

contract whenever a predefined termination event occurs. Such events are often de-

fined by incorporating credit rating triggers into the underlying contracts, so that

the termination event occurs if one of the counterparties’ credit rating decreases a

threshold level. These provisions provide protection against the losses associated with

the default events which occur after a termination event. Finally, hedging of coun-

terparty risk is performed in virtue of trading securities such as CCDS (Contingent

CDS), CDS, and IRS contracts. Although neither CCDS nor CDS contracts com-

pletely hedge or eliminate the counterparty exposure, they offer an efficient way to

transfer the default risk. Reducing and controlling the counterparty exposure (or in

general CVA) is one of the main objectives of all major financial institutions. We

present our contributions to these efforts in the first two chapters of this thesis.

The importance of risk measurement and management is beyond the scope

of counterparty credit risk, which specifically focuses on the risks arising from the
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probability of the defaults of the counterparties. It is also crucial for financial insti-

tutions to measure and manage the risks that are associated with the fluctuations

in the security prices, interest rates, and the foreign exchange rates. Incorporating

these market risk factors warrant the development of advanced risk measures. From

Markowitz [Mar52] to Artzner et al. [ADEH97, ADEH99], the amount of academic

literature related to market risk quantification, and in particular risk measures, is

immense. In recent years, the theory of risk measures, in combination with the no-

arbitrage pricing theory, have been used to price derivatives. The contribution of the

last chapter of this thesis is to devise an analogous methodology for pricing derivative

securities.

Since the pioneering work of Pliska and Harrison [HP81], the theory of ar-

bitrage has developed significantly, with various generalizations and extensions to

continuous-time and the presence of transaction costs. Indeed, the arbitrage pricing

theory is the backbone of the entire field of pricing and hedging derivative securities.

Broadly speaking, two important results form the foundation of the arbitrage pricing

theory: the First Fundamental Theorem of Asset Pricing (FFTAP) and the Second

Fundamental Theorem of Asset Pricing (SFTAP). The FFTAP asserts a necessary

and sufficient condition for a financial market to not to exhibit arbitrage opportu-

nities, in terms of the existence of a risk-neutral probability measure. On the other

hand, the SFTAP provides a necessary and sufficient condition for a risk-neutral prob-

ability measure to be unique whenever there are no arbitrage opportunities, which

eventually leads to the uniqueness of the price. Other approaches beyond the arbi-

trage theory have also been considered and studied in the recent literature, from which

the no-good-deal pricing is particularly of our interest. Specifically, it is the relation

between the no-good-deal pricing approach and the theory of risk measures, as well

as the performance measures (i.e. acceptability indices), that makes the no-good-deal

pricing approach specially important. As we stated earlier, our contributions to this
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field are presented in the last chapter of this thesis.

This thesis is organized as follows:

In Chapter 2, we address the problem of counterparty risk modeling in CDS

contracts, in presence of a bilateral margin agreement. In Section 2.2, we first define

the dividend processes regarding the counterparty risky and the counterparty risk-free

CDS contract in case of a bilateral margin agreement. We also define and characterize

the CVA, UCVA, and the DVA terms as well as the credit exposures such as PFE,

EPE and ENE. We then prove the dynamics of the CVA in Section 2.3. Moreover, we

find the fair spread adjustment term and its dynamics in Section 2.3.2. In Section 2.4,

we simulate the collateralized exposures, and the CVA using our Markovian copula

model of default dependence. The results of this chapter are based on Bielecki,

Cialenco and Iyigunler [BCI11]. Parts of these results have also been presented in the

AMS 2011 Spring Central Section Meeting, Iowa City, IA, March 18-20, 2011 and in

the Stochastic Analysis in Finance and Insurance Workshop, University of Michigan,

Ann Arbor, MI, May 17-20, 2011.

We consider the issue of computation of the bilateral credit valuation adjust-

ment (CVA) under rating triggers in presence of ratings-linked margin agreements in

Chapter 3. In section 3.2, we present a general framework for the valuation of collat-

eralized credit valuation adjustment in the presence of rating triggers. Moreover, we

study dynamic collateralization in Section 3.2.3 and rehypothecation in Section 3.2.4.

We employ the Markovian copulae approach for modeling the joint rating transitions

of the counterparty and the investor in Section 3.3. Finally, we present numerical

results in case of a CDS contract and an IRS contract in Section 3.4. This chapter is

based on Bielecki, Cialenco and Iyigunler [BCI12]. Part of this chapter has been pre-

sented in the 7th World Congress of the Bachelier Finance Society, Sydney, Australia,

June 19-22, 2012.
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In Chapter 4, the problem of pricing derivatives using dynamic coherent ac-

ceptability indices is examined. We define the no-arbitrage condition and the no-

good-deal condition in our set-up, and then present the Fundamental Theorem of

Good-Deal Pricing, in Section 4.2. Next, in Section 4.3.1, we introduce the defini-

tions of the good-deal ask and bid prices, and proceed by proving a representation

theorem for them. Finally, in Section 4.4, we derive an increasing family of dynami-

cally consistent sets of probability measures corresponding to the dynamic Gain-Loss

Ratio. We show that it satisfies some desirable properties, and then use it to compute

the good-deal ask and bid prices of some Barrier options. Results of this chapter are

based on Bielecki, Cialenco, Iyigunler and Rodriguez [BCIR12]. Parts of the results

of this chapter have also been presented in the Workshop on the Mathematics of Fi-

nancial Risk Management, Penn State University, University Park, PA, May 10-11,

2012.
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CHAPTER 2

COUNTERPARTY RISK AND THE IMPACT OF
COLLATERALIZATION IN CDS CONTRACTS

2.1 Introduction

Not very long after the collapse of prestigious institutions like Long-Term

Capital Management, Enron and Global Crossing, the financial industry has again

witnessed dramatic downfalls of financial institutions such as Lehman Brothers, Bear

Stearns and Wachovia in 2008. These recent collapses have stressed out the impor-

tance of measuring, managing and mitigating counterparty risk appropriately.

Counterparty risk is defined as the risk that a party in an over-the-counter

(OTC) contract will default and will not be able to honor its contractual obliga-

tions. Since the exchange-traded derivative contracts are subject to clearing by the

exchange, counterparty risk arises from OTC derivatives only. The main challenge

in counterparty risk modeling is that the exposures of OTC derivatives are stochas-

tic and involve dependencies and systemic risk factors such as wrong way risks; the

additional level of complexity is introduced by risk mitigation techniques such as

collateralization, netting and additional termination events. Therefore, one needs

to model potential future exposures and price the counterparty risk appropriately

according to margin agreements that underlie the collateralization procedures.

Brigo and Capponi [BC09] focuses on a Gaussian copula model and study bi-

lateral counterparty risk using a CIR++ intensity model. Brigo, Capponi, Pallavicini

and Papatheodorou [BCPP11] extended this methodology to the collateralized con-

tracts with an application to interest rate swaps under bilateral margin agreements.

Hull and White [HW01] propose a static copula model and study unilateral counter-

party risk on credit default swaps. Bielecki, Crepey, Jeanblanc and Zargari [BCJZ11]

study unilateral counterparty risk with the absence of any margin agreements. As-
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sefa, Bielecki, Crepey and Jeanblanc [ABCJ11] consider the portfolio of credit de-

fault swaps using the Markovian copula model and consider only fully collateralized

contracts. Furthermore, Bielecki and Crepey [BC11] proposed a methodology for dy-

namically hedging the unilateral counterparty exposure using the same setup based

on the min-variance hedging principles. The problem of hedging the counterparty risk

is also studied by Kjaer [Kja11] using single-name credit default swaps and vanilla

options on the underlying contracts. Jarrow and Yu [JY01] deal with the counter-

party risk by using a dependence structure based on the default intensities of the

counterparties. This approach, that also addresses the contagion risk issue, is also

considered in Leung and Kwok [LK05]. Note that all these works mentioned above

employ the reduced form modeling technology. However, structural models have also

been used to model counterparty risk. Good examples of this approach are papers by

Lipton and Sepp [LS09] and Blanchet-Scalliet and Patras [BSP11]. Moreover, Stein

and Lee [SL11] study and illustrate credit valuation adjustment computations in the

fixed income markets.

Alternatively, Albanese, Brigo and Oertel [ABO12] suggest several securiti-

zation frameworks for structuring the credit valuation adjustment between counter-

parties where they also consider an additional party as the margin lender. Recently,

Crepey [Cre12a, Cre12b] proposed a general theoretical framework considering the

borrowing and lending costs as a price adjustment, which is called the funding val-

uation adjustment. In addition, Pallavicini, Perini and Brigo [PDB12] studied the

problem of incorporating the asymmetric collateral and funding rates, and developed a

similar framework in a discrete time setup. The problem of incorporating the funding

costs in counterparty risk modeling is also studied in various setups and applications

by Morini and Prampolini [MP11], Fries [Fri11], Castagna [Cas11], Piterbarg [Pit10],

Burgard and Kjaer [BK11a, BK11b, BK12], and by Fujii, Shimada and Takahashi

[FST10].
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Various issues regarding the simulation of credit valuation adjustments under

margin agreements are studied by Pykhtin in [Pyk09]. The problem of fast com-

putation of credit valuation adjustment sensitivities is considered by Capriotti, Lee

and Peacock [CL11] and by Capriotti and Giles [CG12] using the method of algorith-

mic differentiation. On the other hand, Albanese, Bellaj, Gimonet and Pietronero

[ABGP11] proposed a computational framework for the efficient simulation and val-

uation of counterparty risk.

The manuscripts by Cesari et al. [CAC+10] and Gregory [Gre09] provide

thorough treatments of the methods and the applications used in practice regarding

the counterparty risk.

In this chapter, we analyze the counterparty risk in a Credit Default Swap

(CDS) contract in presence of a bilateral margin agreement. There are three risky

names associated with the contract: the reference entity, protection seller (the coun-

terparty) and the protection buyer (the investor). Contrary to the common approach

which starts with defining the Potential Future Exposure (PFE) and derives the

Credit Valuation Adjustment (CVA) as the price of the counterparty risk, we find

the CVA as the difference between the market values of a counterparty risk-free and

a counterparty risky CDS contract and deduct the relevant credit exposures accord-

ingly. We consider the problem of bilateral counterparty risk assessment; that is, we

consider the situation where the two counterparties of the CDS contract, i.e. the

investor and the counterparty, are subject to default risk in a counterparty risky CDS

contract.

We focus on collateralized contracts, where a bilateral margin agreement is in

force as a vital risk mitigation tool, and it requires the counterparty and the investor

to post collateral in case their exposure exceeds specific threshold values. We propose

a model for the collateral by incorporating all related factors, such as thresholds,
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margin period of risk and minimum transfer amount. We derive the dynamics of the

bilateral CVA, which are essential for dynamic hedging of counterparty risk. We also

compute the decomposition of the fair spread for the CDS, and we analyze the so called

Spread Value Adjustment (SVA). Essentially, SVA represents the adjustment to be

made to the fair spread to incorporate counterparty risk into the CDS contract. More

importantly, our results regarding the CVA and SVA representations are model-free.

Therefore, our results can be used under any particular model for relevant quantities

such as the default times, interest rates etc. Using the bilateral CVA formula, we

derive relevant formulas for assessment of credit exposures, such as PFE, Expected

Positive Exposure (EPE) and Expected Negative Exposure (ENE).

In our model, the dependence between defaults and the wrong way risk is

represented by a Markovian copula framework that accounts for simultaneous defaults

among the three names represented in a CDS contract.

2.2 Pricing Counterparty Risk: CVA, UCVA and DVA

We consider a standard CDS contract. A CDS contract is a swap contract

between a protection buyer and a protection seller referring to an underlying credit

name, called the reference name. The mechanics of a vanilla CDS contract can be

summarized as follows: the protection buyer periodically pays a fee, which is called

the spread, to the protection seller in exchange for a one-time payment made by

the protection seller to the protection buyer if a pre-specified credit event (such as

default) regarding the reference name occurs. We refer to the protection buyer as

the investor, and to the protection seller as the counterparty. We label by 1 the

counterparty, by 2 the investor, and by 3 the reference name. Traditionally, when

pricing CDS contracts, only the reference name’s default risk is considered. However,

in reality both the counterparty and the investor may default before the maturity of

the CDS contract, which is the source of the counterparty risk. The main goal of this
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chapter is to incorporate the default risks of the counterparty and the investor in the

context of a CDS contract.

In what follows, we denote by τ1, τ2, and τ3 the respective default times. These

times are modeled as non-negative random variables on a underlying probability space

(Ω,G,Q). We let T and κ denote the maturity and the spread of our CDS contract,

respectively. We assume the recovery at default covenant; that is, we assume that

recoveries are paid at times of default.

We introduce right-continuous processes H i
t by setting H i

t =1{τi≤t} and we

denote by Hi the associated filtrations so that Hi
t = σ (H i

u : u ≤ t) for i = 1, 2, 3.

We assume that we are given a market filtration F, and we define the enlarged

filtration G = F∨H1∨H2∨H3, that is Gt = σ (Ft ∪H1
t ∪H2

t ∪H3
t ) for any t ∈ R+.

For each t ∈ R+ total information available at time t is captured by the σ-field Gt.

In particular, processes H i are G-adapted and the random times τi are G-stopping

times for i = 1, 2, 3.

Next, we define the first default time as the minimum of τ1, τ2 and τ3 as

τ = τ1 ∧ τ2 ∧ τ3, and the corresponding indicator process defined as Ht := 1{τ≤t}. In

addition, we define the first default time of the two counterparties: τ̂ := τ1 ∧ τ2, and

the corresponding indicator process Ĥt := 1{τ̂≤t}.

We also denote by B the savings account process, that is

Bt := e
∫ t
0 rsds,

where the F-progressively measurable process r models the short-term interest rate.

We also postulate that Q represents a martingale measure associated with the choice

of the savings account B as a discount factor (or numeraire).

2.2.1 Dividend Processes and Marking-to-Market. We start by introducing
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the counterparty-risk-free dividend process D, which describes all cash flows associ-

ated with a counterparty-risk-free CDS contract;1 that is, D does not account for the

counterparty risk. Note that all cash flows and the prices are considered from the

perspective of the investor.

Definition 2.2.1. The cumulative dividend process D of a counterparty risk-free CDS

contract maturing at time T is given as,

Dt =

∫
]0,t]

δ1
udH

3
u − κ

∫
]0,t]

(
1−H3

u

)
du, (2.1)

for every t ∈ [0, T ], where δ1 : [0, T ]→ R is an F-predictable processes.

Process δ1 represents the loss given default (LGD); that is δ1 = 1−R3
t , where

R3 is the fraction of the nominal that is recovered in case of the default of the reference

name. We assume unit nominal, for simplicity.

The ex-dividend price process of the counterparty risk-free CDS contract, say

S, describes the current market value, or the Mark-to-Market (MtM) value of this

contract.

Definition 2.2.2. The ex-dividend price process S of a counterparty risk-free CDS

contract maturing at time T is given by,

St = BtE
[∫

]t,T ]

B−1
u dDu

∣∣∣∣ Gt ] , t ∈ [0, T ] . (2.2)

Remark 2.2.1. Accordingly, we define the cumulative (dividend) price process, say

Ŝ, of a counterparty risk-free CDS contract as

Ŝt = St +Bt

∫
]0,t]

B−1
u dDu , t ∈ [0, T ] .

1We shall refer to such contract as the clean contract.
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Now, we are in position to define the dividend process DC of a counterparty

risky CDS contract, that is the CDS contract that accounts for the counterparty risk

associated with the two counterparties of the contract.

Definition 2.2.3. The dividend process DC of a T -maturity counterparty-risky CDS

contract is given as

DC
t =

∫
]0,t]

CudHu +

∫
]0,t]

δ̃1
u (1−Hu−) dH3

u +

∫
]0,t]

δ̃2
u (1−Hu−) dH1

u

+

∫
]0,t]

δ̃3
u (1−Hu−) dH2

u +

∫
]0,t]

δ̃4
u (1−Hu−) d[H1, H2]u (2.3)

+

∫
]0,t]

δ̃5
u (1−Hu−) d[Ĥ,H3]u − κ

∫
]0,t]

(1−Hu) du , t ∈ [0, T ] ,

where δ̃i : [0, T ] → R, i = 1, 2, . . . , 5 are F-predictable processes representing the

close-out cash flows and C : [0, T ] → R is an F-predictable process representing the

collateral amount kept in the margin account.

A margin account is a contractual tool that supplements the CDS contract so

as to reduce potential losses that may be incurred by one of the counterparties in case

of the default of the other counterparty, while the CDS contract is still alive. For

the detailed description of the mechanics of the collateral formation in the margin

account we refer to Section 2.2.1.1 (see also [BC11]).

In case of any credit event associated with the collateralized CDS contract, the

first cash flow that takes place is the “transfer” of the collateral amount; for example,

in case when the underlying entity defaults at time t = τ = τ 3, (before any of the

counterparties defaults) the collateral in the margin account is acquired by one of the

counterparties (depending on the sign of Cτ ). Thus, consistent with the convention

of so called close-out cash flows (cf. [BC11]) we define the δ̃is as follows:

• We set δ̃1
t = δ1

t−Ct. This is because after the collateral transfer the counterparty

pays the remaining recovery amount δ1
t − Ct.
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• At time t = τ = τ 1, when the counterparty defaults, if the uncollateralized

mark-to-market (MtM) of the CDS contract, St + 1{t=τ3}δ
1
t − Ct2, is negative,

then the investor closes out the position by paying the defaulting counterparty

the uncollateralized MtM. If the uncollateralized MtM is positive, the investor

closes out the position and receives a fraction R1 of the uncollateralized MtM

from the counterparty. Therefore, in this case, the close-out payment is defined

as

δ̃2
t = R1

(
St + 1{t=τ1}δ

1
t − Ct

)+ −
(
St + 1{t=τ1}δ

1
t − Ct

)−
.

• In the case of investor default, that is at time t = τ = τ 2, if the uncollateralized

MtM is positive, that is if St + 1{t=τ3}δ
1
t − Ct > 0, the counterparty closes out

the position by paying the uncollateralized MtM. If the uncollateralized MtM is

negative, the counterparty receives a fraction R2 of the uncollateralized MtM.

Hence, the close-out payment is defined as

δ̃3
t =

(
St + 1{t=τ3}δ

1
t − Ct

)+ −R2

(
St + 1{t=τ3}δ

1
t − Ct

)−
.

• If the investor and the counterparty default simultaneously at time t = τ =

τ1 = τ2, and if the uncollateralized MtM is negative, the counterparty receives a

fraction R2 of the uncollateralized MtM; however, if the uncollateralized MtM

is positive, the investor receives a fraction R1 of the uncollateralized MtM.

Therefore, we set

δ̃4
t = −

(
St + 1{t=τ3}δ

1
t − Ct

)
.

• If t = τ = τ̂ = τ3, that is when the investor or the counterparty default

simultaneously with the reference entity, the investor receives a fraction R1 of

the remaining recovery amount, (δ1
t − Ct)

+
, when the counterparty defaults.

2The term 1{t=τ3}δ
1
t represents the exposure in case when the counterparty and

the underlying entity default simultaneously.
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Likewise, if the investor defaults, the counterparty receives a portion R2 of the

remaining recovery amount, (δ1
t − Ct)

−
. The close-out payment in joint defaults

including the underlying entity has the form

δ̃5
t = −

(
δ1
t − Ct

)
.

Remark 2.2.2. Notice that if τ1 = τ2 = ∞ we have H1 = H2 = 0 and H = H3,

which leads to

DC
t =

∫
]0,t]

CudH
3
u +

∫
]0,t]

δ̃1
u

(
1−H3

u−
)
dH3

u − κ
∫

]0,t]

(
1−H3

u

)
du

for all t ∈ [0, T ]. Substituting δ̃1
u, we get

DC
t =

∫
]0,t]

CudH
3
u +

∫
]0,t]

(δ1
t − Cu)

(
1−H3

u−
)
dH3

u − κ
∫

]0,t]

(
1−H3

u

)
du

=

∫
]0,t]

δ1
t dH

3
u − κ

∫
]0,t]

(
1−H3

u

)
du,

and therefore DC = D.

We are now ready to define the price processes associated with a counterparty

risky CDS contract.

Definition 2.2.4. The ex-dividend price process SC of a counterparty risky CDS

contract maturing at time T is given as,

SCt = BtE
[∫

]t,T ]

B−1
u dDC

u

∣∣∣∣ Gt ] , t ∈ [0, T ]. (2.4)

The cumulative price process ŜC of a counterparty risky CDS contract is given by,

ŜCt = SCt +Bt

∫
]0,t]

B−1
u dDC

u , t ∈ [0, T ].

2.2.1.1 Bilateral Margin Agreement and Collateral Modeling. Collateral-

ization is one of the most important techniques of mitigation of counterparty risk,
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and modeling the collateral process (also termed the margin call process) is of great

practical importance (cf. [Alg09]). In this section, we propose a model to describe

the formation of the required collateral amount at every time t ∈ [0, T ] with regard

to bilateral margin agreements.3 The following contractual parameters are essential

in bilateral margin agreements and they are precisely defined in CSA documents.

Margin Period of Risk : The margin period of risk consists of several compo-

nents. Firms usually monitor their exposure on a periodic basis and receive or make

appropriate margin calls considering other collateral parameters. The frequency of

this process is called the margin call period and it is typically one day. This period

includes a number of phases such as computation, negotiation, verification and set-

tlement of the margin call also with possible disputes during the process. According

to the ISDA Master Agreement, in case of a potential default, the defaulting coun-

terparty enters into a short forbearance period to recover from a potential default

event where the collateral is pledged by the other firm. This time interval is called

the cure period. If the default is uncured, liquidation process of the collateral assets

starts (cf. [Int10b], page 26). This period mainly depends on the collateral portfolio

selection, precise assessment of asset correlation and concentration risks as well as

their liquidity, volatility and credit quality parameters. Therefore, the time interval

from the last margin call plus the cure period until all collateral assets are liquidated

and the resulting market risk is re-hedged is called the margin period of risk (cf.

[Pyk09]); we shall denote it as ∆.

Threshold : The threshold is the unsecured credit exposure that both coun-

3A bilateral margin agreement is a contractual agreement governed by a Credit
Support Annex (CSA), which is a regulatory part of the ISDA Master Agreement (cf.
[Int05], page 34) describing the use of collateral which is either directly transferred
between counterparties or held by a third party such as a clearing house (cf. [Int05],
page 68).
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terparties are willing to tolerate without holding any collateral. Bilateral margin

agreements specify thresholds for both counterparties and require them to post col-

lateral whenever the current credit exposure exceeds their thresholds (cf. [Int10b],

page 11). These threshold amounts are defined in the related CSA documents and

often set to react to the changes in the credit rating of the counterparties (cf. [Int10a],

page 13). We will denote the counterparty and the investor’s thresholds by Γcpty and

Γinv, respectively. Since we perform our analysis from the point of view of the in-

vestor, we set the counterparty’s threshold Γcpty to be a non-negative constant, and

the investor’s threshold Γinv to be a non-positive constant.

Minimum Transfer Amount : Margin calls for amounts smaller than the MTA

are not allowed. The purpose of the MTA is to prevent calling small amounts; this

is done so to avoid the operational costs involved in small transactions (cf. [Int10b],

page 13). We assume the minimum transfer amount to be the same for the investor

and the counterparty. We denote the minimum transfer amount by a positive constant

θ.

Re-hypothecation Risk and Segregation: Collateral assets can be reused as a

funding source on other derivatives transactions. This is known as rehypotheca-

tion. An investor (counterparty) can rehypothecate the collateral received from the

counterparty (investor) by selling or lending out the assets to a third party, which

dramatically increases the credit risk associated with the collateral. Elimination of

this rehypothecation risk is essentially done by segregating the collateral to a third

party, such as a clearing house. This procedure carries certain funding risks, since

the counterparties will not be receiving funding benefit from the collateral posted,

so they need to raise funding in connection with their transactions using their own

funding rates.

According to the standard industry practice collateral amounts are adjusted
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at fixed tenor dates, termed margin call dates. Let us denote the margin call dates

by 0 < t1 < · · · < tn < T . On each margin call date, if the exposure is above the

counterparty’s threshold, Γcpty, and the difference between the current exposure and

the collateral amount is greater than the MTA the counterparty posts collateral and

updates the margin account; otherwise, no collateral exchange takes place since the

transfer amount is less than the MTA. Likewise, the investor delivers collateral on

each margin call date, if the exposure is below investor’s threshold, Γinv, and the

difference between the current exposure and the collateral amount is greater than

MTA (cf. [Int05], pages 52-56). Note that in this model collateral transfers are

allowed only if it is greater than the MTA amount.

In accordance with the above discussion the collateral process is modeled as

follows:

We set C0 = 0. Then, for i = 1, 2, . . . , n we postulate that

Cti+ = 1{Sti−Γcpty−Cti>θ}(Sti − Γcpty − Cti)

+ 1{Sti−Γinv−Cti<−θ}(Sti − Γinv − Cti) + Cti ,

on the set {ti < τ̂}, and it is constant on interval (ti, ti+1]. Moreover, Ct = Cτ̂ on the

set {τ̂ < t < τ̂ + ∆}.

Observe that the collateral increments at each margin call date ti < τ̂ can now

be represented as,

∆Cti : = Cti+ − Cti

= 1{Sti−Γcpty−Cti>θ}(Sti − Γcpty − Cti) + 1{Sti−Γinv−Cti<−θ}(Sti − Γinv − Cti) .

One should also note that the collateral construction given in [Pyk09], which

reads

Ct = 1{St>Γcpty+θ} (St − Γcpty) + 1{St<Γbuy−θ} (St − Γinv) ,
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allows intermediate collateral updates that are smaller than MTA. In our case, we

avoid this intricacy by defining the collateral process as a left-continuous, piecewise

constant process.

Remark 2.2.3. The collateral construction described above is cash based. The net

cash value of the collateral portfolio is determined using haircuts.

The haircut (or, valuation percentage) describes the amount that will be charged

from a particular collateral asset. Effective value of the collateral asset is determined

by subtracting the mark-to-market value of the asset multiplied by an appropriate

haircut (cf. [Int05], page 67). Therefore, the haircuts applied to collateral assets

should reflect the market risk on those assets. The haircut is defined as a percentage,

where 0% haircut implies complete mark-to-market value of the asset to be used as

collateral without any discounting. Government securities having high credit rating

such as Treasury bonds and Treasury bills are usually subjected to 1% to 10% haircut,

while for more risky, volatile or illiquid securities, such as a stock option, the haircut

might be as high as 30%. The only asset that is not subjected to any haircut as

collateral is cash where usually both parties mutually agree to the use of an overnight

index rate (cf. [Int10b], page 27). The term valuation percentage is also used in Credit

Support Annex (CSA) documents. The valuation percentage defines the amount that

the market value of the asset is multiplied by to yield the effective collateral value of

the asset. Hence, we have VPt = 1 − ht, where VPt is the valuation percentage and

ht is the total haircut applied to the collateral assets at time t. We will not go into

the details of the formation of the haircut since it is either pre-determined in the CSA

documents or related to market risk measures such as VaR of the collateral assets.

(cf. [Int05], page 68). The main purpose of the haircut is to mitigate amortization

or depreciation in the collateral asset value at the time of a default and in the margin

period of risk. Moreover, the haircut should be updated as frequently as possible to
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reflect the changes in the volatility or liquidity of the collateral assets (cf. [Int05],

page 63).

Therefore, the total value of the collateral portfolio at time t is equal to (1 +

ht)Ct, where ht is the appropriate haircut applied to the collateral portfolio.

2.2.2 Bilateral Credit Valuation Adjustment. We are interested in the

difference between the price processes S and SC , representing the counterparty risk-

free and the counterparty risky CDS contracts described above. As we stated before,

this difference is called the CVA, and it indicates the price of the counterparty risk. In

this section, we shall define the CVA of a CDS contract that is subject to a bilateral

margin agreement. Moreover, we will prove a representation result for the CVA,

which is essential for computational purposes.

Definition 2.2.5. The bilateral Credit Valuation Adjustment process of a CDS con-

tract maturing at time T is defined as

CVAt = St − SCt , (2.5)

for every t ∈ [0, T ]. The cumulative CVA is defined as,

ĈVAt = Ŝt∧τ − ŜCt∧τ ,

for every t ∈ [0, T ].

We now present a representation of the bilateral CVA.

Proposition 2.2.1. The bilateral CVA process on a CDS contract maturing at time

T satisfies

CVAt = BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ Gt ]

−BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ Gt ] , (2.6)

for every t ∈ [0, T ].
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Proof. We begin by observing that∫
]t,T ]

B−1
u δ̃1

u (1−Hu−) dH3
u = B−1

τ δ̃1
τ1{t<τ=τ3≤T} ,∫

]t,T ]

B−1
u δ̃2

u (1−Hu−) dH1
u = B−1

τ δ̃2
τ1{t<τ=τ1≤T} ,∫

]t,T ]

B−1
u δ̃3

u (1−Hu−) dH2
u = B−1

τ δ̃3
τ1{t<τ=τ2≤T} .

Consequently,∫
]t,T ]

B−1
u dDC

u = B−1
τ δ̃1

τ1{t<τ=τ3≤T} +B−1
τ δ̃2

τ1{t<τ=τ1≤T} +B−1
τ δ̃3

τ1{t<τ=τ2≤T}

+B−1
τ δ̃4

τ1{t<τ=τ1=τ2≤T} +B−1
τ δ̃5

τ1{t<τ=τ∗=τ3≤T} +B−1
τ Cτ1{t<τ≤T}

− κ
∫

]t,T ]

B−1
u 1{τ>u}du . (2.7)

Using the definitions of the close-out cash-flows δ̃iτ , i = 1, . . . , 5, we get from (2.7)∫
]t,T ]

B−1
u dDC

u = B−1
τ

(
δ1
τ − Cτ

)
1{t<τ=τ3≤T} − κ

∫
]t,T ]

B−1
u 1{τ>u}du+B−1

τ Cτ1{t<τ≤T}

+B−1
τ

(
R1

(
Sτ+1{τ=τ3}δ

1
τ − Cτ

)+ −
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−)
1{t<τ=τ1≤T}

+B−1
τ

((
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+ −R2

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−)
1{t<τ=τ2≤T}

−B−1
τ

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)
1{t<τ=τ2=τ3≤T} −B−1

τ

(
δ1
τ − Cτ

)
1{t<τ=τ∗=τ3≤T}.

(2.8)

Since

1{t<τ≤T} = 1{t<τ=τ1≤T} + 1{t<τ=τ2≤T} + 1{t<τ=τ3≤T} − 1{t<τ=τ1=τ2≤T} − 1{t<τ∗=τ3≤T} ,

using the equality

Ri (Sτ − Cτ )+ − (Sτ − Cτ )− + Cτ = Sτ − (1−Ri) (Sτ − Cτ )+
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and observing that 1{τ=τ3}Sτ = 0, we can rearrange the terms in (2.8) as follows,∫
]t,T ]

B−1
u dDC

u = B−1
τ δ1

τ1{t<τ=τ3≤T} − κ
∫

]t,T ]

B−1
u 1{τ>u}du (2.9)

+B−1
τ Sτ

(
1{t<τ=τ1≤T} + 1{t<τ=τ2≤T} − 1{t<τ=τ1=τ2≤T}

)
1{τ 6=τ3}

−B−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
1{t<τ=τ1≤T}

+B−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−
1{t<τ=τ2≤T} .

Now, combining (2.9) with (2.1) we see that

SCt = BtE
[(
1{t<τ=τ3≤T} + 1{τ>T}

) ∫
]t,T ]

B−1
u dDu

∣∣∣∣ Gt) (2.10)

+BtE
( (

1{t<τ=τ1≤T} + 1{t<τ=τ2≤T}

−1{t<τ=τ1=τ2≤T}
)
1{τ 6=τ3}

)
E
[∫

]τ,T ]

B−1
u dDu

∣∣∣∣ Gτ ] ∣∣∣∣ Gt ]
−BtE

[
1{t<τ=τ1≤T}B

−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ Gt ]

+BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ Gt ] .
From here, observing that

1{τ≤t} + 1{τ>T} + 1{t<τ=τ3≤T}

+
(
1{t<τ=τ1≤T} + 1{t<τ=τ2≤T} − 1{t<τ=τ1=τ2≤T}

)
1{τ 6=τ3} = 1,

we get

SCt = BtE
[∫

]t,T ]

B−1
u dDu

∣∣∣∣ Gt ]
−BtE

[
1{t<τ=τ1≤T}B

−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ Gt ]

+BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ Gt ] ,
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which is

SCt = St −BtE
[
1{t<τ=τ1≤T}B

−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ Gt ]

+BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ Gt ] .
This proves the result.

The result above shows that the CVA is the difference between the expected

loss in case the counterparty defaults first and the expected loss in case the investor

defaults first. It is more straightforward to compute the CVA using the representation

proved above than computing S − SC .

Remark 2.2.4. Alternatively, the value of the bilateral CVA can be interpreted as

the value of an exotic option. Indeed, the value of the CVA is equal to the sum of the

values of a long position in a zero-strike call option on the uncollateralized amount

and a short position in a zero-strike put option on the uncollateralized amount.

2.2.2.1 Unilateral CVA and Debt Value Adjustment. The bilateral na-

ture of the counterparty risk is a consequence of the default risk of the counterparty

and the default risk of the investor. The values of potential losses associated with

these two components are called unilateral CVA (UCVA) and debt value adjustment

(DVA), respectively, and defined below. In practice, these two components are com-

puted separately. This is the main reason why we need to consider UCVA and DVA

components in this section.

Definition 2.2.6. The Unilateral Credit Value Adjustment is defined as,

UCVAt = BtE
[
1{t<τ=τ1≤T}B

−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ Gt ] ,

for t ∈ [0, T ], and symmetrically the Debt Value Adjustment is defined as,

DVAt = BtE
[
1{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ Gt ] ,
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for t ∈ [0, T ].

Remark 2.2.5. DVA accounts for the risk of investor’s own default, and it repre-

sents the value of any potential outstanding liabilities of the investors that will not be

honored at the time of the investor’s default:

In fact, at time of his/her default, the investor only pays to the counterparty

the recovery amount, that is R2

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−
. Therefore, the investor gains

the remaining amount, which is equal to (1−R2)
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−
, on his/her

outstanding liabilities by defaulting. Risk management of this component is of great

importance for financial institutions.

When considering the unilateral counterparty risk DVA is set to zero.

In view of Proposition 2.2.1 and of the above definition we have that

CVAt = UCVAt −DVAt,

for all t ∈ [0, T ]. Note that the bilateral CVA amount may be negative for the investor

due to “own default risk”. This also indicates that the price SC of counterparty risky

CDS contract may be greater than the price S of counterparty risk-free contract.

Remark 2.2.6. (Upfront CDS Conversion)

After the “CDS Big Bang” (cf. [Mar09]) a process originated to replace stan-

dard CDS contracts with so called upfront CDS contracts. An upfront CDS contract

is composed of an upfront payment, which is an amount to be exchanged upon the

inception of the contract, and a fixed spread. The fixed spread, say κ̂, will be 100bps

for investment grade CDS contracts, and 500bps for high yield CDS contracts. The

recovery rate is also standardized to two possible values: 20% or 40%, depending on

the credit worthiness of the reference name. The corresponding cumulative dividend
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process of a counterparty-risk-free CDS contract is described in the following defini-

tion.

Definition 2.2.7. The cumulative dividend process D̂ of a counterparty-risk-free up-

front CDS contract, maturing at time T , is given as

D̂t =

∫
]0,t]

δ1
udH

3
u − UP− κ̂

∫
]0,t]

(
1−H3

u

)
du , t ∈ [0, T ],

where UP is the upfront payment, and κ̂ is the fixed spread.

Recall that the spread κ0 of a standard CDS contract is set such that the pro-

tection leg PL0 and fixed leg κ0DV 010 are equal at initiation (making the price of

the contract equal to zero). Similarly, in the case of an upfront CDS contract, with κ̂

being fixed, the upfront payment UP is chosen such that the contract has zero value at

initiation. It is easy to convert the conventional spread κ0 into an upfront payment

PU and vice versa. Indeed, directly from the Definition 2.2.7, and definitions of PL0

and DV 010, we have

PL0 − UP − κ̂DV 010 = PL0 − κ0DV 010 = 0 ,

which implies the following representations

UP = (κ0 − κ̂)DV 010 and κ0 =
UP

DV 010

+ κ̂ .

In view of the conversion formulae presented above the discussion of CVA,

DVA and UCVA done for standard CDS contracts can be adopted to the case of the

upfront CDS contracts in a straightforward manner.

2.2.2.2 CVA via Credit Exposures. Credit exposure is defined as the potential

loss that may be suffered by either one of the counterparties due to the other party’s

default. Here, we discuss some measures commonly used to quantify credit exposure,
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such as Potential Future Exposure (PFE), Expected Positive Exposure (EPE) and

Expected Negative Exposure (ENE), and their relation to CVA. These notions are

commonly used in practice, since CVA computation can be performed using them.

Potential Future Exposure is the basic measure of credit exposure:

Definition 2.2.8. The Potential Future Exposure of a CDS contract with a bilateral

margin agreement is defined as follows,

PFE = 1{τ=τ1} (1−R1)
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+

− 1{τ=τ2} (1−R2)
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)−
.

Note that there exist several forms by which the potential future exposure is de-

fined by financial institutions. The PFE definition given above, as a random variable,

is in line with the PFE definitions in (cf. [DPR]), as opposed to the rather classical

definition of the PFE as the quantile of the exposure distribution (cf. [CAC+10]).

Remark 2.2.7. Observe that the CVA can be computed using PFE as follows,

CVAt = BtE
[
1{t<τ≤T}B

−1
τ PFE

∣∣ Gt ] , t ∈ [0, T ].

Expected Positive Exposure is defined as the expected amount the investor will

lose if the counterparty default happens at time t, and Expected Negative Exposure

is defined as the expected amount the investor will lose if his own default happens at

time t. Note that the losses are conditional on default at time t. EPE and ENE are

necessary quantities to price and hedge counterparty risk.

Definition 2.2.9. The Expected Positive Exposure of a CDS contract with a bilateral

margin agreement is defined as,

EPEt = E
[

(1−R1)
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∣∣∣ τ = τ1 = t

]
,
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and the Expected Negative Exposure is defined as,

ENEt = E
[

(1−R2)
(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∣∣∣ τ = τ2 = t
]

for every t ∈ [0, T ].

Remark 2.2.8. It is shown (cf. [ABCJ11]) that in case of a deterministic discount

factor, the CVA process can be represented in terms of EPE and ENE as follows

CV At = Bt

∫ T

t

B−1
s EPEsG

−1(t)Q (τ = τ 2 ∈ ds)

−Bt

∫ T

t

B−1
s ENEsG

−1(t)Q (τ = τ 3 ∈ ds)

for every t ∈ [0, T ].

2.3 Dynamics of CVA

In this section, we derive the dynamics of the CVA. The dynamics of the CVA

are important for deriving formulae for dynamic hedging of counterparty risk. This

problem is left for future work.

We begin with defining some auxiliary stopping times, that will be useful later

on:

τ {1} :=


τ3 if τ3 6= τ1, τ3 6= τ2

∞ otherwise

, τ {2} :=


τ1 if τ1 6= τ3, τ1 6= τ2

∞ otherwise

,

τ {3} :=


τ2 if τ2 6= τ3, τ2 6= τ1

∞ otherwise

, τ {4} :=


τ1 if τ1 = τ2, τ1 6= τ3

∞ otherwise

,

τ {5} :=


τ3 if τ3 = τ1, τ3 6= τ2

∞ otherwise

, τ {6} :=


τ3 if τ3 = τ2, τ3 6= τ 1

∞ otherwise

,
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τ {7} :=


τ1 if τ1 = τ2 = τ3

∞ otherwise

.

Accordingly, we define the default indicator processes:

H
{1}
t : = 1{τ3≤t,τ3 6=τ1,τ3 6=τ2} = 1{τ{1}≤t},

H
{2}
t : = 1{τ1≤t,τ1 6=τ3,τ1 6=τ2} = 1{τ{2}≤t},

H
{3}
t : = 1{τ2≤t,τ2 6=τ3,τ2 6=τ1} = 1{τ{3}≤t},

H
{4}
t : = 1{τ1=τ2≤t,τ3 6=τ1} = 1{τ{4}≤t},

H
{5}
t : = 1{τ3=τ1≤t,τ3 6=τ2} = 1{τ{5}≤t},

H
{6}
t : = 1{τ3=τ2≤t,τ3 6=τ1} = 1{τ{6}≤t},

H
{7}
t : = 1{τ3=τ1=τ2≤t} = 1{τ{7}≤t}.

Remark 2.3.1. Note that one can represent processes H
{i}
t , i = 1, . . . , 7, as follows

H
{1}
t = H3

t − [H3, H1]t − [H3, H2]t + [[H3, H1], H2]t,

H
{2}
t = H1

t − [H3, H1]t − [H1, H2]t + [[H3, H1], H2]t,

H
{3}
t = H2

t − [H3, H2]t − [H1, H2]t + [[H3, H1], H2]t,

H
{4}
t = [H1, H2]t − [[H3, H1], H2]t,

H
{5}
t = [H3, H1]t − [[H3, H1], H2]t,

H
{6}
t = [H3, H2]t − [[H3, H1], H2]t,

H
{7}
t = [[H3, H1], H2]t,

where [X, Y ] denotes the quadratic covariation of processes X and Y . In particular,

these processes are G-adapted processes.
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Let G(t) = Q (τ > t | Ft) be the survival probability process of τ with respect

to filtration F. It is a F supermartingale and it admits unique Doob-Meyer decom-

position G = µ − ν where µ is the martingale part and ν is a predictable increasing

process. We assume that G is a continuous process and v is absolutely continuous with

respect to the Lebesgue measure, so that dνt = vtdt for some F-progressively measur-

able, non-negative process v. We denote by l the F-progressively measurable process

defined as lt = G(t)−1vt. Finally, we assume that all F martingales are continuous.

We assume that hazard process of each stopping time τ {i} admits an (F,G)-

intensity process qi for every i = 1, . . . , 7, so that the process M{i}, given by the

formula,

M
{i}
t = H

{i}
t −

∫ t

0

(
1−H{i}u

)
qiudu

is a G-martingale for every t ∈ [0, T ] and i = 1, . . . , 7.

We now have the following technical result,

Lemma 2.3.1. The processes

M i
t := M

{i}
t∧τ = H

{i}
t∧τ −

∫ t∧τ

0

liudu, t ≥ 0, i = 1, 2, . . . , 7,

and

Mt := Ht∧τ −
∫ t∧τ

0

ludu, t ≥ 0,

where

lit = 1{τ≥t}q
i
t and lt =

7∑
i=1

lit, t ≥ 0, i = 1, 2, . . . , 7,

are G-martingales.

Proof. Fix i = 1, . . . , 7. Process M i follows a G-martingale, since it is G-martingale

M{i} stopped at the G stopping time τ. Moreover, we have that Mt =
∑7

i=1 M
i
t , so

that process M is also a G-martingale.
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We shall now proceed with deriving some useful representations for the pro-

cesses SC and S.

Lemma 2.3.2. The ex-dividend price process, SC, of a counterparty risky CDS con-

tract, given in (2.4), can be represented as follows,

SCt = BtE

[
B−1
τ

7∑
i=1

1{t<τ=τ{i}≤T}δ
i

τ − κ
∫

]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣∣ Gt
]

(2.11)

where

δ
1

t = δ1
t ,

δ
2

t = St − (1−R2)(St + 1{t=τ3}δ
1
τ − Ct)+

δ
3

t = St + (1−R3)(St + 1{t=τ3}δ
1
τ − Ct)−,

δ
4

t = St − (1−R2)(St + 1{t=τ3}δ
1
τ − Ct)+ + (1−R3)(St + 1{t=τ3}δ

1
τ − Ct)−

δ
5

t = δ1
t − (1−R2)(δ1

t − Ct)+,

δ
6

t = δ1
t + (1−R3)(δ1

t − Ct)−

δ
7

t = δ1
t − (1−R2)(δ1

t − Ct)+ + (1−R3)(δ1
t − Ct)−.

Proof. Let us rewrite (2.10) using (2.9) in the following form,

SCt = BtE

[
B−1
τ δ1

τ

∑
i=1,5,6,7

1{t<τ=τ{i}≤T} +B−1
τ Sτ

∑
i=2,3,4

1{t<τ=τ{i}≤T}

−B−1
τ (1−R1)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)+
∑

i=2,4,5,7

1{t<τ=τ{i}≤T}

+B−1
τ (1−R2)

(
Sτ + 1{τ=τ3}δ

1
τ − Cτ

)− ∑
i=3,4,6,7

1{t<τ=τ{i}≤T}

−κ
∫

]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣ Gt ] ,
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which, after rearranging terms, leads to

SCt = BtE
[
B−1
τ δ1

τ1{t<τ=τ{1}≤T} +B−1
τ

(
Sτ − (1−R1) (Sτ − Cτ )+)

1{t<τ=τ{2}≤T}

+B−1
τ

(
Sτ + (1−R2) (Sτ − Cτ )−

)
1{t<τ=τ{3}≤T}

+B−1
τ

(
Sτ − (1−R1) (Sτ − Cτ )+ + (1−R2) (Sτ − Cτ )−

)
1{t<τ=τ{4}≤T}

+B−1
τ

(
δ1
τ − (1−R1)

(
δ1
τ − Cτ

)+
)
1{t<τ=τ{5}≤T}

+B−1
τ

(
δ1
τ + (1−R2)

(
δ1
τ − Cτ

)−)
1{t<τ=τ{6}≤T}

+B−1
τ

(
δ1
τ − (1−R1)

(
δ1
τ − Cτ

)+
+ (1−R2)

(
δ1
τ − Cτ

)−)
1{t<τ=τ{7}≤T}

−κ
∫

]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣ Gt ] .
This proves the result.

In case when R1 = R2 = 1 process S is the same as process SC . Thus, we obtain

from the above

Corollary 2.3.1. The ex-dividend price process S of a counterparty risk-free CDS

contract, can be represented 4 as follows,

St = BtE

[
B−1
τ

7∑
i=1

1{t<τ=τ{i}≤T}δ̂
i
τ − κ

∫
]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣∣ Gt
]
, (2.12)

where δ̂1
t = δ̂5

t = δ̂6
t = δ̂7

t = δ1
t , and δ̂2

t = δ̂3
t = δ̂4

t = St. Thus,

St = BtE

[
B−1
τ 1{t<τ=τ3≤T}δ

1
τ +B−1

τ

4∑
i=2

1{t<τ=τ{i}≤T}Sτ (2.13)

−κ
∫

]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣ Gt ] .
4We note that formula (2.13) provides a representation of St, which is convenient

for our purposes. The traditional representation of St, typically used in the context
of counterparty risk free CDS contracts is

St = BtE
[
B−1
τ3
1{t<τ3≤T}δ

1
τ3
− κ

∫
]t,T ]

B−1
u 1{τ3>u}du

∣∣∣∣ Gt ] .
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The following result is borrowed from [BJR08] (see Lemma 3.1 therein)

Lemma 2.3.3. The following equality holds (Q-a.s.)

BtE
[
1{t<τ=τ{i}≤T}B

−1
τ δ

i

τ

∣∣∣ Gt ] = 1{t<τ}
Bt

G(t)
EQ

(∫ T

t

B−1
u liuδ

i

uG (u) du

∣∣∣∣ Ft ] ,
(2.14)

for every t ∈ [0, T ].

The pre-default ex-dividend price processes, say S̃ and S̃C , are defined as the

(unique) F-adapted processes (cf. [BJR08]) such that

SCt = 1{t<τ}S̃
C
t , St = 1{t<τ}S̃t.

In view of the above we thus obtain the following result

Lemma 2.3.4. We have that, for every t ∈ [0, T ],

S̃Ct =
Bt

G(t)
EQ

[∫ T

t

B−1
u G (u)

(
7∑
i=1

liuδ
i

u − κ

)
du

∣∣∣∣∣ Ft
]
, (2.15)

and

S̃t =
Bt

G(t)
EQ

[∫ T

t

B−1
u G (u)

(
7∑
i=1

liuδ̂
i
u − κ

)
du

∣∣∣∣∣ Ft
]
. (2.16)

Proof. From Lemma 2.3.2 we have that

SCt = BtE

[
B−1
τ

7∑
i=1

1{t<τ=τ{i}≤T}δ
i

t

∣∣∣∣∣ Gt
]
− κBtE

[∫
]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣ Gt ] .
Now, in view of (2.14) we see that

BtE

[
B−1
τ

7∑
i=1

1{t<τ=τ{i}≤T}δ
i

t

∣∣∣∣∣Gt
]

= 1{t<τ}
Bt

G(t)
E

[
7∑
i=1

∫ T

t

B−1
u liuδ

i

uG (u) du

∣∣∣∣∣Ft
]
.

Let us now fix t ≥ 0, and define Ys := −κ
∫

]t,s]
B−1
u du for s ≥ t. Thus, we get

−κBtE
[∫

]t,T ]

B−1
u 1{τ>u}du

∣∣∣∣ Gt ] = BtE
[
1{τ>T}YT

∣∣ Gt ]
+BtE

[
1{t<τ≤T}Yτ

∣∣ Gt ] .
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It is known from [BJR08], that

BtE
[
1{t<τ≤T}Yτ

∣∣ Gt ] = −1{t<τ}
Bt

G(t)
E
[∫ T

t

YudG(u)

∣∣∣∣ Ft ]
and

BtE
[
1{τ>T}YT

∣∣ Gt ] = 1{t<τ}
Bt

G(t)
E [G(T )YT | Ft ] .

Finally, since Y is of finite variation, (2.15) follows by applying the integration by

parts formula

G(t)YT −
∫ T

t

YsdG (s) =

∫ T

t

G (s) dYs = −κ
∫ T

t

G (s)B−1
u du.

Equality (2.16) is obtained as a special case of (2.15), by setting R1 = R2 = 1.

We are ready now to derive dynamics of the pre-default price processes, that

we shall use in order to derive the dynamics of the CVA process.

Lemma 2.3.5.

(i) The pre-default ex-dividend price of a counterparty risky CDS contract follows

the dynamics given as

dS̃Ct =

(
(rt + lt) S̃

C
t −

(
7∑
i=1

litδ
i

t − κ

))
dt+G−1(t)

(
Btdm

C
t − S̃Ct dµ

)
+G−2(t)

(
S̃Ct d 〈µ〉t −Btd

〈
µ,mC

〉
t

)
,

for t ∈ [0, T ], where

mC
t = E

[∫ T

0

B−1
u G (u)

(
7∑
i=1

liuδ
i

u − κ

)
du

∣∣∣∣∣ Ft
]

(ii) The pre-default ex-dividend price of a counterparty risk-free CDS contract fol-

lows the dynamics given as

dS̃t =

(
(rt + lt) S̃t −

(
7∑
i=1

litδ̂
i
t − κ

))
dt+G−1(t)

(
Btdmt − S̃tdµ

)
+G−2(t)

(
S̃td 〈µ〉t −Btd 〈µ,m〉t

)
,
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for t ∈ [0, T ], where

mt = E

[∫ T

0

B−1
u G (u)

(
7∑
i=1

liuδ̂
i
u − κ

)
du

∣∣∣∣∣ Ft
]
.

Proof. The argument below follows the one in the proof of Proposition 1.2 in [BJR08].

In view of (2.15) we may write S̃Ct as

S̃Ct = BtG
−1(t)Ut,

where

Ut = mC
t −

∫ t

0

B−1
u G (u)

(
7∑
i=1

liuδ
i

u − κ

)
du.

Since G = µ− v, then applying Itô’s formula one obtains

d
(
G−1(t)Ut

)
= G−1(t)dmC

t −B−1
t

(
7∑
i=1

litδ
i

t − κ

)
dt

+ Ut
(
G−3(t)d 〈µ〉t −G

−2(t) (dµt − dvt)
)

−G−2(t)d
〈
µ,mC

〉
t
.

Consequently,

dS̃Ct = BtG
−1(t)dmC

t −

(
7∑
i=1

litδ
i

t − κ

)
dt

+BtUt
(
G−3(t)d 〈µ〉t −G

−2(t) (dµt − ltG(t)dt)
)

−BtG
−2(t)d

〈
µ,mC

〉
+ rtBtG

−1(t)Utdt

=

(
(rt + lt) S̃

C
t −

(
7∑
i=1

litδ
i

t − κ

))
dt+G−1(t)

(
Btdm

C
t − S̃tdµ

)
+G−2(t)

(
S̃td 〈µ〉t −Btd

〈
µ,mC

〉
t

)
,

which verifies the result stated in (i).

Starting from (2.16), and using computations analogous to the ones done in

(i), one can derive the result stated in (ii).
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Using the lemma above, we derive the dynamics of the CVA process as follows.

Proposition 2.3.1. The bilateral CVA process satisfies,

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)dnt −G−1(t)CVAtdµt +G−2(t)CVAtd 〈µ〉t

− (1−Ht)G
−2(t)Bt

(
d 〈µ,m〉t − d

〈
µ,mC

〉
t

)
,

for all t ∈ [0, T ] where CVAT∧τ = 0 and

nt = E

[∫ T

0

B−1
u G (u)

(
7∑
i=1

liuξ
i
u

)
du

∣∣∣∣∣ Ft
]
, t ∈ [0, T ],

with

ξ1
t = 0,

ξ2
t = (1−R1)(St − Ct)+,

ξ3
t = −(1−R2)(St − Ct)−,

ξ4
t = (1−R1)(St − Ct)+ − (1−R2)(St − Ct)−,

ξ5
t = (1−R1)(δ1

t − Ct)+,

ξ6
t = −(1−R2)(δ1

t − Ct)−,

ξ7
t = (1−R1)(δ1

t − Ct)+ − (1−R2)(δ1
t − Ct)−.

Proof. Applying the integration by parts formula we get that

dCVAt = (1−Ht)(dS̃t − dS̃Ct )− (S̃t − S̃Ct )dHt.
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This together with Lemma 2.3.5 implies

dCVAt = −
(
St− − SCt−

)
dMt + (1−Ht)

(
rt
(
St − SCt

)
−

7∑
i=1

lit

(
δ̂it − δ

i

t

))
dt (2.17)

+ (1−Ht)BtG
−1(t)

(
dmt − dmC

t

)
− (1−Ht)G

−1(t)
(
St − SCt

)
dµt

+ (1−Ht)G
−2(t)

(
St − SCt

)
d 〈µ〉t

− (1−Ht)G
−2(t)Bt

(
d 〈µ,m〉t − d

〈
µ,mC

〉
t

)
,

which proves the result.

2.3.1 Dynamics of CVA when the immersion property holds. Here we adapt

the results derived above to the case when the immersion property holds between

filtrations F and G, that is the case when every F-martingale is a G-martingale under

Q. In this case, the continuous martingale µ in the Doob-Meyer decomposition of

G vanishes, so that the survival process G is a non-increasing process represented as

G = −v. Frequently, the immersion property is referred to as Hypothesis (H). For

an excellent discussion of the immersion property we refer to [JLC09].

Assumption 2.3.1. Hypothesis (H) holds between the filtrations F and G under Q.

In view of the results (and the notation) from Proposition 2.3.1 we obtain the

following result.

Corollary 2.3.2. 2.3.1 Assume that Assumption 2.3.1 is satisfied. Then,

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)dnt,

for all t ∈ [0, T ] where CVAT∧τ = 0.
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Remark 2.3.2. If we assume that the filtration F is generated by a Brownian motion,

then, in view of the Brownian martingale representation theorem, there exists an F-

predictable process ζ such that dnt = ζtdWt, and

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)ζtdWt,

for all t ∈ [0, T ] where CVAT∧τ = 0.

We have the following important result regarding the cumulative CVA dynam-

ics.

Lemma 2.3.6. Dynamics of the ĈVA are found as follows,

dĈVAt = (1−Ht)(dS̃t − dS̃Ct ) + (Zt − ĈVAt−)dHt,

for all t ∈ [0, T ] where ĈVAT∧τ = 0 and

Zt =
7∑
i=1

ξit.

Proof. We have,

dĈVAt = (1−Ht−)(dŜt − dŜCt )

= (1−Ht)(dSt − dSCt ) + (∆Ŝτ −∆ŜCτ )dHt

= (1−Ht)(dSt − dSCt ) + (Zτ − ĈVAτ−)dHt

= (1−Ht)(dSt − dSCt ) + (Zt − ĈVAt)dHt

= (1−Ht)(dSt − dSCt ) + (Zt − CVAt−)dHt

where

Zt =
7∑
i=1

ξit

for all t ∈ [0, T ].
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Corollary 2.3.3. We have

dĈVAt = rtĈVAtdt+
7∑
i=1

(
ξit − CVAt−

)
dM i

t + (1−Ht)BtG
−1 (t) dnt,

where

nt = E

[∫ T

0

B−1
u G (u)

(
7∑
i=1

liuξ
i
u

)
du

∣∣∣∣∣ Ft
]

and

ξ1
t = 0,

ξ2
t = (1−R1)(St − Ct)+,

ξ3
t = −(1−R2)(St − Ct)−,

ξ4
t = (1−R1)(St − Ct)+ − (1−R2)(St − Ct)−,

ξ5
t = (1−R1)(δ1

t − Ct)+,

ξ6
t = −(1−R2)(δ1

t − Ct)−,

ξ7
t = (1−R1)(δ1

t − Ct)+ − (1−R2)(δ1
t − Ct)−,

for all t ∈ [0, T ].

Proof. Substituting the terms dS̃t and dS̃Ct found in Lemma 2.3.5, we get,

dĈVAt = (1−Ht)rt(S̃t − S̃Ct )dt

+ (1−Ht)lt(S̃t − S̃Ct )dt− (1−Ht)
7∑
i=1

lit(δ̂
i
t − δ

i

t)dt

+ (
7∑
i=1

(δ̂it − δ
i

t)− ĈVAt−)dHt + (1−Ht)BtG
−1(t)dnt,

which is equal to,

dĈVAt = rtĈVAtdt− CVAt−dMt

+
7∑
i=1

ξitdM
i
t + (1−Ht)BtG

−1(t)dnt.
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Remark 2.3.3. It has been shown in (cf. [BCJZ11], page 10) that in a specific case

of a Markovian copula model of unilateral counterparty risk and assuming that the

filtration F is generated by a Brownian motion with r = 0, the dynamics of ĈVA

reduce to the form found in Corollary 2.3.3 with R2 = 1 and τ2 =∞.

2.3.2 Fair Spread Value Adjustment. CDS contracts are quoted in terms of

their spreads5, which do not take the counterparty risk into account. Therefore,

computing and monitoring the counterparty risk embedded in the CDS spreads is of

great importance for financial institutions. In this section, we introduce the Spread

Value Adjustment (SVA) as the difference between the counterparty risk-free and the

counterparty risky CDS spreads. The SVA provides a more practical way to quantify

the counterparty risk, and also it is a very useful indicator for the trading decisions

in practice (cf. [Gre09]).

Let us fix t ∈ [0, T ], and let us denote by κt the market spread of the counter-

party risk-free CDS contract at time t; that is, κt is that level of spread which makes

the pre-default values of the two legs of a counterparty risk-free CDS contract equal

to each other at time t,

S̃t (κt) = 0. (2.18)

It is convenient to write the above equation in the form that is common in practice:

PLt − κtRDV 01t = 0, (2.19)

where PL and RDV 01 are processes representing (pre-default) values of the protec-

5As we mentioned in Remark 2.2.6, CDS contracts can be quoted in terms of
upfront payments. However, it is always possible to convert the upfront payments to
running spreads.
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tion leg and the risky annuity 6 , respectively, so that

PLt =
Bt

G3 (t)
E

[∫
]t,T ]

B−1
u G3 (u) δ1

u

( ∑
i=1,5,6,7

liu

)
du

∣∣∣∣∣ Ft
]
, (2.20)

and

RDV 01t =
Bt

G3(t)
E
[∫

]t,T ]

B−1
u G3 (u) du

∣∣∣∣ Ft ] , (2.21)

where

G3(t) = Q (τ3 > t | Ft) .

Therefore, we get,

κt =
E
[∫

]t,T ]
B−1
u G3 (u) δ1

u

(∑
i=1,5,6,7 l

i
u

)
du
∣∣∣ Ft ]

E
[∫

]t,T∧τ3]
B−1
u G3 (u) du

∣∣∣ Ft] . (2.22)

We denote by κCt the spread which makes the values of the two pre-first-default

legs of a counterparty risky CDS contract equal to each other at every t ∈ [0, T ] as

S̃Ct
(
κCt
)

= PLCt − κCt RDV 01Ct = 0. (2.23)

Likewise, we use the spread κC0 initiated at time t = 0 in order to compute the

fair price of a counterparty risky CDS contract at any time t ∈ [0, T ]. Using Lemma

3.1, κCt admits the following representation for every t ∈ [0, T ],

κCt =
PLCt

RDV 01Ct
,

where

6We note that formula (2.20) provides a representation of PLt, which is conve-
nient for our purposes. The traditional representation of PLt, typically used in the
context of counterparty risk free CDS contracts is

PLt =
Bt

G3 (t)
E
[∫

]t,T ]

B−1
u G3 (u) δ1

uλ
3
udu

∣∣∣∣ Ft ] ,
where λ3 is the F-intensity of τ3.
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PLCt =
Bt

G (t)
E

[∫ T

t

B−1
u G (u)

(
7∑
i=1

liuδ
i

u

)
du

∣∣∣∣∣ Ft
]

(2.24)

and

RDV 01Ct =
Bt

G (t)
E
[∫

]t,T ]

B−1
u G (u) du

∣∣∣∣ Ft ] . (2.25)

We may now introduce the definition of the spread value adjustment.

Definition 2.3.1. The SVA of a counterparty risky CDS contract maturing at time

T is defined as,

SVAt = κt − κCt

for every t ∈ [0, T ].

We have the following useful representation.

Proposition 2.3.2. The SVA of a CDS contract maturing at time T can be repre-

sented as

SVAt =
C̃VAt

BtG−1(t)E
[∫

]t,T ]
B−1
u G (u) du

∣∣∣ Ft ]
for all t ∈ [0, T ], where the pre-first-default bilateral Credit Valuation Adjustment

process C̃VA is given as

C̃VAt = S̃t − S̃Ct , (2.26)

for every t ∈ [0, T ].

Proof. Let us rewrite PLC as

PLCt = PLCt − κtRDV 01Ct + κtRDV 01Ct

by a simple modification. Now, using (2.5) and (2.23), we conclude that

PLCt = S̃Ct (κt) + κtRDV 01Ct = S̃t(κt)− C̃VAt + κtRDV 01Ct .
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Since S̃t(κt) = 0, then κCt has the following form,

κCt =
−C̃VAt + κtRDV 01Ct

RDV 01Ct
,

which is

κCt = − C̃VAt

RDV 01Ct
+ κt.

Observe that the SVA can be computed using the CVA via the representa-

tion above. This is particularly important, since in practice the CVA is a commonly

computed quantity; therefore, SVA can be found without any additional effort. Fur-

thermore, this result is model-free, which means that it is valid under any particular

model.

2.3.2.1 SVA Dynamics. Applying Itô formula one obtains the dynamics of the

fair spread process and of the counterparty risk adjusted spread process as

dκt =
1

R̃DV 01t

(
B−1
t G1 (t)

(
κt − δ1

t l
1
t

)
dt+

κt

R̃DV 01t
d
〈
η2
〉
t

(2.27)

− 1

R̃DV 01t
d
〈
η1, η2

〉
t

)
+

1

R̃DV 01t

(
dη1

t − κtdη2
t

)
, t ∈ [0, T ],

where

R̃DV 01t := E
[∫

]t,T ]

B−1
u G3 (u) du

∣∣∣∣ Ft ] ,
with

η1
t := E

[∫
]0,T ]

B−1
u G3 (u) δ1

ul
1
udu

∣∣∣∣ Ft ] ,
and

η2
t = E

[∫
]0,T ]

B−1
u G3 (u) du

∣∣∣∣ Ft ] = R̃DV 01t +

∫
]0,t]

B−1
u G3 (u) du.
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Moreover,

dκCt =
1

R̃DV 01
C

t

B−1
t G(t)

(
κCt −

7∑
i=1

δ̃itl
i
t

)
dt+

κCt

R̃DV 01
C

t

d
〈
ζ2
〉
t

(2.28)

− 1

R̃DV 01
C

t

d
〈
ζ1, ζ2

〉
t

+
1

R̃DV 01
C

t

(
dζ1

t − κCt dζ2
t

)
,

where

R̃DV 01t = E
[∫

]t,T ]

B−1
u G3 (u) du

∣∣∣∣ Ft ] ,
with

ζ1
t = E

[∫
]0,T ]

B−1
u G (u)

(
7∑
i=1

liuδ
i

u

)
du

∣∣∣∣∣ Ft
]
,

and

ζ2
t = E

[∫
]0,T ]

B−1
u G (u) du

∣∣∣∣ Ft ] = R̃DV 01
C

t +

∫
]0,t]

B−1
u G (u) du.

Combining the above results, we find the dynamics of the SVA process:

d SVAt = dκt − dκCt , t ∈ [0, T ].

Dynamics of the SVA are of great importance for observing the behavior of

the difference between the fair spread and the counterparty risk adjusted spread.

Counterparty risk dynamics can be assessed in a more intuitive manner by computing

the SVA dynamics.

2.4 Multivariate Markovian Default Model In this section, we propose an

underlying stochastic model following the lines of [BCJZ11]. Towards this end we

define a Markovian model of multivariate default times with factor processes X =

(X1, X2, X3) which will have the following key features:

• The pair (X,H) is Markov in its natural filtration,

• Each pair (X i, H i) is a Markov process,
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• At every instant, either each counterparty defaults individually or simultane-

ously with other counterparties.

Note that the second property grants quick valuation of the CDS and inde-

pendent calibration of each model marginal (X i, H i), whereas the third property will

allow us to account for dependence between defaults. We present here some numerical

results as an application of the above theory. The default intensities are assumed to

be of the affine form

li
(
t,X i

t

)
= ai +X i

t ,

where ai is a constant and X i is a homogenous CIR process generated by,

dX i
t = ζi

(
µi −X i

t

)
dt− σi

√
X i
tdW

i
t ,

for i = 1, 2, 3. Each collection of the parameters (ζi, µi, σi) may take values corre-

sponding to a low, a medium or a high regime which are given as follows.

Table 2.1. CIR parameters for different risk profiles

Credit Risk Level ζ µ σ X0

Low 0.9 0.001 0.01 0.001

Medium 0.8 0.02 0.1 0.02

High 0.5 0.05 0.2 0.05

Moreover, following the methodology in [BCJZ11], we specify the marginal

default intensity processes as follows

q1
t = l2t + l4t + l5t + l7t , q2

t = l3t + l4t + l6t + l7t , q3
t = l1t + l5t + l6t + l7t ,

where the related survival probabilities are found as

Q (τi > t) = E
[
e−

∫ t
0 q

i
udu
]

and Q (τ > t) = E
[
e−

∫ t
0 ludu

]
.
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For a detailed discussion including implementation and the calibration of the model,

we refer to [BCJZ11] and [ABCJ11].

2.4.1 Results. Our aim here is to assess by means of numerical experiments the

impact of collateralization on the counterparty risk exposure. We present numeri-

cal results for different collateralization regimes distinguished by different threshold

values. The numerical experiments below have been done using the parametrization

given in [BCJZ11], the recovery rates are fixed to 40%, the risk-free rate r is taken

as 0 and the maturity is set to T = 5 years.

Table 2.2 shows the values of CVA0 and SVA0 for different threshold regimes.

Threshold values in Cases A–F are chosen as a fraction of the notional (cf. [Pyk09]).

In practice, institutions pick their collateral threshold levels before initiating the con-

tracts. Therefore, it is very important to see how much the predetermined threshold

levels actually reduce the overall exposure, as well as the CVA values.

Computations are done assuming that (see Table 2.1) the underlying entity,

the counterparty, and the investor has high risk levels. Simulated fair spread without

counterparty risk is found as 153bps. Case A represents the uncollateralized regime

where there is no collateral exchanged (this is done by setting the thresholds infinity),

whereas other Case F corresponds to the full collateralization where the thresholds

are set to 0. In each case, computations are done by setting MTA to zero and

assuming there is no margin period. One can observe that decreasing threshold value

dramatically decreases the initial CVA and therefore the SVA values.

In Figure 2.2, we present the EPE and ENE curves for each case A to F, and

we also plot the mean collateral values. Computations are carried out by running 104

Monte Carlo simulations. It is apparent that the behavior of the EPE and ENE

values decrease as a result of increased collateralization. Note that there are peaks in



45

Table 2.2. Collateral thresholds, initial CVA and SVA values

Γcpty Γinv CVA0 SVA0

Case A ∞ -∞ 1.01× 10−4 0.2153

Case B 1.5× 10−3 0.4× 10−3 6.13× 10−5 0.1305

Case C 1× 10−3 0.2× 10−3 4.36× 10−5 0.0931

Case D 0.5× 10−3 0.1× 10−3 2.18× 10−5 0.0464

Case E 0.25× 10−3 0.05× 10−3 1.14× 10−5 0.0243

Case F 0 0 0 0

the collateral value in the very beginning and through the maturity. This effect can

be explained as follows: Observe from Table 2.2 that the investor has lower threshold

than the counterparty in each cases from A to F. As a result, having a lower threshold

value, investor will be posting collateral before the counterparty. Therefore, until the

counterparty’s exposure reaches the threshold, the collateral value remains negative;

meaning that there will be margin calls for the investor before the counterparty.

Figure 2.4 plots the mean of sample CVA paths. Starting from CVA0 we

compute the mean sample paths in each case. The behavior of CVA as a credit hybrid

option, as indicated in Remark 2.2.4, can be clearly observed in the graphs. CVA

values decrease over time as a result of time decay since the expected loss decreases

close to the expiration. The effect of collateralization on the CVA values is apparent

in the graphs. Observe that increased initial threshold values are of great importance

since one can significantly reduce the future CVA values by appropriately setting the

collateral thresholds. Moreover, one can also use dynamic thresholds by linking the

threshold values to the counterparties’ default intensities or credit ratings. In this

way, counterparties will have more control on the future values of the CVA of the

CDS contract and dynamically manage the CVA since the collateral thresholds will

be reacting to the changes in the default intensities or credit ratings.
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Figure 2.1. EPE, ENE and the Collateral curves for Cases A, B, and C
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Figure 2.2. EPE, ENE and the Collateral curves for Cases D, E, and F
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Figure 2.3. Forward CVA curves for Case A, B, and C
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Figure 2.4. Forward CVA curves for Case D, E, and F
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CHAPTER 3

COLLATERALIZED CVA VALUATION WITH RATING TRIGGERS AND
CREDIT MIGRATIONS

3.1 Introduction

Modeling, managing and mitigating counterparty risk is a crucial task for all

financial institutions. One of the most popular mitigation techniques used by the

market participants is including additional termination events (ATE) in OTC trans-

actions. As defined in Section 5(b)(vi) of the ISDA Master Agreement (see [Int02]),

ATEs allow institutions to terminate and close out the derivatives transactions with

a counterparty if a termination event occurs. We consider a particular, and in fact

the most common, termination event: rating triggers.

A rating trigger is defined as a threshold credit rating level, which is agreed

upon the initiation of the contract. If the credit rating of the counterparty or the

investor decreases below the trigger level, before the maturity, the contract is termi-

nated and closed out. Therefore, rating triggers provide additional protection from a

counterparty with a deteriorating credit rating, by allowing the investor to terminate

the contract prior to a default event. Furthermore, since a significant credit deterio-

ration is usually followed by a default event, adding rating triggers serves as a cushion

against such defaults. On the other hand, rating-triggers are also very effective in

mitigating counterparty credit risk.

The counterparty credit risk modeling literature has grown significantly since

the credit crunch in 2008. We refer to Bielecki, Cialenco, and Iyigunler [BCI11],

Assefa, Bielecki, Crepey and Jeanblanc [ABCJ11], Brigo, Capponi, Pallavicini and

Papatheodorou [BCPP11] and also Crepey [Cre12a, Cre12b] for recent general results

in counterparty risk modeling. Nevertheless, the literature on counterparty risk mod-

eling with rating triggers is very limited. In Yi [Yi11], CVA valuation with rating
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triggers is studied for optional and mandatory termination events, and a compound

Poisson model is introduced for modeling rating transitions and default probabilities.

Zhou [Zho10] considers practical problems regarding CVA valuation with additional

termination events under a simple model from a practitioner’s point of view. Re-

cently, Mercurio [Mer11] studied a similar problem and introduced a valuation model

by proposing several generalizing assumptions to simplify the CVA computations con-

sidering the unilateral counterparty risk. However, a comprehensive approach which

involves the joint modeling of rating transitions in a risk-neutral setting and the

dynamic, ratings-dependent collateralization has not been studied in the literature.

In this chapter we consider the problem of collateralized bilateral CVA valua-

tion with rating triggers and credit migrations. We first find the CVA representation

in presence of rating triggers. We show that the value of the underlying OTC contract

needs to be adjusted also for the rating triggers. This new adjustment term is called

the rating valuation adjustment (RVA). We show that RVA represents the expected

loss in case of a default event that is preceded by a trigger event. In the bilateral

case, we see that RVA is decomposed into two components: URVA and DRVA, rep-

resenting the rating valuation adjustments for the counterparty’s and the investor’s

rating triggers. Furthermore, we consider dynamic collateralization using the rating

transitions. In this framework, the collateral thresholds are defined as the function-

als of the current credit ratings of the counterparty and the investor. In practice

such rating-dependent margin agreements are standard and they are described in the

Credit Support Annex (CSA). Moreover, we consider the rehypothecation risk of the

collateral in the presence of independent amounts. These results described above are

model-free. Therefore, we employ a Markovian approach for modeling the joint rating

transitions and the default probabilities of the counterparty and the investor. The

applications of the Markov copulae is previously studied in Bielecki, Crepey, Jean-

blanc, and Rutkowski [BCJR06] in the context of basket credit derivatives. Moreover,
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Bielecki, Vidozzi, and Vidozzi [BVV06, BVV08] applied Markov copulae to the collat-

eralized debt obligations and ratings-triggered corporate step-up bonds. Theoretical

aspects of the Markov copulae can be found in Bielecki, Jakubowski, Vidozzi, and

Vidozzi [BJVV08] and Bielecki, Jakubowski, and Nieweglowski [BJN11]. We finally

illustrate our results with numerical examples. We analyze the impact of early ter-

mination clauses and dynamic collateralization on the bilateral and unilateral CVA,

as well as the DVA and RVA in case of a CDS and an IRS contract.

3.2 Credit Value Adjustment and Collateralization under Rating Triggers

We consider a generic OTC contract between two names: the investor and

the counterparty. In the model we propose in this chapter, the counterparty risk

associated with this contract will be sensitive to the current creditworthiness of the

two parties. We postulate that the creditworthiness of each party is represented by

the same K := {1, 2, . . . , K} rating categories. We postulate that the ratings are

ordered from the best, i.e. 1, to the worst, i.e. K, with the convention that the level

K corresponds to a default.

To model the evolution of the credit worthiness we introduce two right contin-

uous processes X1 and X2 on (Ω,G,Q), with values in K, and we denote by X1 and X2

the associated filtrations: Xi = (X i
t )t≥0 with X i

t = σ(X i
u, u ≤ t) for t ∈ R+, i = 1, 2.7

Processes X1 and X2 represent the evolution of the credit ratings of the counterparty

and the investor. In what follows we shall make additional specific assumptions about

processes X i, i = 1, 2.

We assume that we are given a market filtration F containing the informa-

tion about the relevant market variables (i.e. short rate process), and a filtration F̃

7All filtrations considered in this chapter are assumed to satisfy the usual con-
ditions.
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that contains the information regarding the financial contract underlying our OTC

contract. Accordingly, we define G := F ∨ F̃ ∨ X1 ∨ X2.

Recall that the savings account process B is given as,

Bt := e
∫ t
0 rsds , t ∈ [0, T ] ,

where the F-adapted process r models the short-term interest rate. We postulate that

Q represents a pricing measure corresponding to the discount factor β = B−1.

As mentioned above, both the counterparty and the investor are defaultable,

and the respective default times are given as

τi := inf{t > 0 : X i
t = K} , i = 1, 2.

We shall also consider the first default time τ := τ1 ∧ τ2.

We denote by Ri ∈ [0, 1] a Gτi–measurable random variable, which represents

the recovery rate of party i = 1, 2. The recovery rates represent the fraction of the

mark-to-market value of the underlying contract recovered from the defaulting names,

which appears in the close-out amounts.

Let D represent the counterparty risk-free cumulative dividend process of our

OTC contract over a finite time horizon [0, T ], which is the “clean” version of the

contract that does not account for the counterparty risk.8 We assume that D is of

finite variation.

In accordance with the classical risk neutral valuation we define the counter-

party risk-free ex-dividend price (clean price from now on) process of the contract:

Definition 3.2.1. The ex-dividend price process of a counterparty risk-free contract

8All cash flows are considered from the point of view of the investor.
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is defined as, 9

St = BtE
[ ∫

]t,T ]

B−1
u dDu

∣∣∣Gt ] ,
for all t ∈ [0, T ].

The process S is also called the clean mark-to-market process. Let us also define the

process S∆ := S + ∆D.

We consider collateralized contracts, therefore we define a G-predictable pro-

cess C on [0, T ] representing cumulative collateral amount in the margin account.

Mechanics and the modeling of the collateral process are discussed in Section 3.2.3.

3.2.1 Pricing Bilateral Counterparty Risk. Let us consider the case K =

2, therefore allowing only the default and the pre-default states prevail. This case

corresponds to the model presented in Chapter 2 in the context of CDS contracts, and

also discussed by Bielecki et al. [BCI11, BC11, BCJZ11] and Assefa et al. [ABCJ11].

Recall that, we denote H1
t := 1{τ1≤t} and H2

t := 1{τ2≤t} as the default indicator

processes of τ1 and τ2 respectively. We also define τ := τ1 ∧ τ2 as the first default

time of the counterparty and the investor and let H := 1{τ≤t} be the default indicator

process corresponding to τ . We now have X1
t = 1 +H1

t and X2
t = 1 +H2

t .

Let DC represent the counterparty risky cumulative dividend processes of the

contract that is subject to counterparty default risk. Therefore, given D, we define

the counterparty risky cumulative dividend process DC as follows.

Definition 3.2.2. Counterparty-risky cumulative dividend process has the following

9Required integrability properties are assumed implicitly.
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form

Dt = (1−Ht)Dt +HtDτ− + 1{τ<T}(Cτ1{τ≤t}

+ (R1(S∆
τ − Cτ )+ − (S∆

τ − Cτ )−)1{τ=τ1≤t}

− (R2(S∆
τ − Cτ )− − (S∆

τ − Cτ )+)1{τ=τ2≤t} − (S∆
τ − Cτ )1{τ=τ1=τ2≤t}) ,

for all t ∈ [0, T ].

We proceed with defining the ex-dividend price of a counterparty risky con-

tract,

Definition 3.2.3. The ex-dividend price process of a counterparty risky contract is

given as,

SCt = BtE
[ ∫

]t,T ]

B−1
u dDu

∣∣∣Gt ] ,
for all t ∈ [0, T ].

Having defined a counterparty risk-free and a counterparty risky contract, we

are now interested in the difference between their ex-dividend prices. Recall that,

this difference is called the Credit Valuation Adjustment (CVA). Since we consider

bilateral case, both the investor and the counterparty can default on their contrac-

tual obligations. Therefore, we refer to the CVA as the bilateral credit valuation

adjustment.

Definition 3.2.4. The bilateral credit valuation adjustment is defined as,

CVAt = St − SCt ,

for all t ∈ [0, τ ∧ T ].

Bilateral counterparty valuation adjustment process has the following repre-

sentation.
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Proposition 3.2.1. The credit valuation adjustment process can be represented as

CVAt =BtE
[
1{τ=τ1≤T}B

−1
τ (1−R1)(S∆

τ − Cτ )+
∣∣∣Gt ]

−BtE
[
1{τ=τ2≤T}B

−1
τ (1−R2)(S∆

τ − Cτ )−
∣∣∣Gt ] , (3.1)

for all t ∈ [0, τ ∧ T ].

A proof of this proposition, where the underlying is assumed to be a CDS

contract, is given in Proposition 2.2.1 in Chapter 2, and also in Bielecki et al. [BCI11].

Recall that the bilateral CVA can be decomposed as

UCVAt = BtE[1{τ=τ1≤T}B
−1
τ (1−R1)(S∆

τ − Cτ )+ | Gt ] , (3.2)

DVAt = BtE[1{τ=τ2≤T}B
−1
τ (1−R2)(S∆

τ − Cτ )− | Gt ] ,

for all t ∈ [0, τ ∧ T ]. These components represent the two legs of bilateral CVA,

namely the Unilateral Credit Valuation Adjustment (UCVA) and the Debt Valuation

Adjustment (DVA), representing the expected losses in case of the counterparty’s and

the investor’s defaults, respectively.

3.2.2 Pricing Bilateral Counterparty Risk with Rating Triggers. We now

proceed with introducing the rating trigger times, and the close-out cash flows in

the CVA valuation. We also show how the clean price of our OTC contract can be

adjusted for the counterparty risk and the rating triggers.

3.2.2.1 Trigger Times. As we stated before, the counterparty risk of the OTC

contract we consider is sensitive to the creditworthiness of the investor and the coun-

terparty. Specifically, we consider an OTC contract that is subject to a rating trigger

clause:

If the investor’s or the counterparty’s credit rating deteriorates to or below the
trigger level (except the default level), the contract is terminated and closed out.
Note that there are no mark-to-market losses associated with the trigger events.
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The trigger levels are set as K1 for the counterparty, and K2 for the investor,10

where 1 < K1, K2 ≤ K. Let τRi represent the first time that the i-th party’s credit

rating crosses the his rating trigger, that is

τRi := inf{t > 0 : X i
t ≥ Ki} , i = 1, 2.

The corresponding rating trigger event times11 are defined as

τ̂i
R := inf{t > 0 : X i

t ∈ {Ki, Ki+1, . . . , K − 1}} , i = 1, 2,

and we set

τR := τR1 ∧ τR2 and τ̂R := τ̂1
R ∧ τ̂2

R .

Clearly, τRi = τ̂i
R ∧ τi for i = 1, 2.

We denote by HR
t := 1{τR≤t} and ĤR

t := 1{τ̂R≤t} the rating trigger indicator

processes including and not including the default event, respectively.

3.2.2.2 Cash Flows, Prices and Adjustments. The close-out portion of the

cumulative dividend process of the counterparty risky contract needs to account for

the MtM exchange without incurring any losses at a trigger time other than default.

On the other hand, if a trigger event occurs simultaneously with a default event,

the deal will be settled according to the default event. Consequently, we propose

the following definition of the cumulative dividend process of the counterparty risky

contract,

Definition 3.2.5. The counterparty-risky cumulative dividend process of an OTC

10It is implicitly assumed that X i
0 < Ki for i = 1, 2.

11That is, excluding default.
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contract subject to rating triggers is defined as

DRt = (1−HR
t )Dt +DτR−H

R
t + 1{τR≤T}

(
CτRH

R
t

+
(
R1(S∆

τR − CτR)+ − (S∆
τR − CτR)−

)
[HR, H1]t

−
(
R2(S∆

τR − CτR)− − (S∆
τR − CτR)+

)
[HR, H2]t

−
(
S∆
τR − CτR

)
[[HR, H1] , H2]t +

(
S∆
τR − CτR

)
[HR, ĤR]t

)
,

for all t ∈ [0, T ].

Accordingly, the ex-dividend price processes associated with a counterparty

risky contract with rating triggers is defined as follows.

Definition 3.2.6. The ex-dividend price process SRt of a counterparty risky contract

with rating triggers, maturing at time T , is defined as

SRt = BtE
[ ∫

]t,T ]

B−1
u dDRu

∣∣∣Gt ] ,
for all t ∈ [0, T ].

We now introduce the credit valuation adjustment term when the underlying

contract is subject to rating triggers.

Definition 3.2.7. The bilateral credit valuation adjustment with rating triggers is

defined as,

CVAR
t = St − SRt , (3.3)

for t ∈ [0, τR ∧ T ].

The following representation generalizes the results derived in the previous

chapter and in Bielecki et al. [BCI11].
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Proposition 3.2.2. The bilateral credit valuation adjustment defined in (3.3) can be

represented as

CVAR
t =BtE

[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − CτR)+

∣∣∣Gt ]
−BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − CτR)−

∣∣∣Gt ] , (3.4)

for t ∈ [0, τR ∧ T ].

Proof. Using Definition 3.2.5, we get,

dDt − dDRt = dDt − (1−HR
t )dDt −Dt−dH

R
t +DτR−dH

R
t − 1{τR≤T}CτRdH

R
t

− 1{τR≤T}
(
R1(S∆

τR − CτR)+ − (S∆
τR − CτR)−

)
d[HR, H1]t

+ 1{τR≤T}
(
R2(S∆

τR − CτR)− − (S∆
τR − CτR)+

)
d[HR, H2]t

+ 1{τR≤T}(S
∆
τR − CτR)d[[HR, H1] , H2]t

− 1{τR≤T}(S
∆
τR − CτR)d[HR, ĤR]t .

Integrating both sides leads to,∫
]t,T ]

B−1
u (dDu − dDRu ) =

∫
]t,T ]

B−1
u HR

u dDu −
∫

]t,T ]

B−1
u Du−dH

R
u +

∫
]t,T ]

B−1
u DτR−dH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − CτR)+ − (S∆
τR − CτR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − CτR)− − (S∆
τR − CτR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[[HR, H1] , H2]u

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[HR, ĤR]u −
∫

]t,T ]

1{τR≤T}B
−1
u CτRdH

R
u .

Since, ∫
]t,T ]

B−1
u DτR−dH

R
u −

∫
]t,T ]

B−1
u Du−dH

R
u = 0 ,
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we obtain,∫
]t,T ]

B−1
u (dDu − dDRu ) =

∫
]t,T ]

B−1
u HR

u dDu −
∫

]t,T ]

1{τR≤T}B
−2
u CτRdH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − CτR)+ − (S∆
τR − CτR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − CτR)− − (S∆
τR − CτR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[[HR, H1] , H2]u

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[HR, ĤR]u .

Conditioning on τR, we get

1{t≤τR∧T} E
[ ∫

]t,T ]

B−1
u (dDu − dDRu )

∣∣∣GτR] = 1{t≤τR∧T} E

[∫
]t,T ]

B−1
u HR

u dDu

−
∫

]t,T ]

1{τR≤T}B
−1
u CτRdH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − CτR)+ − (S∆
τR − CτR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − CτR)− − (S∆
τR − CτR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[[HR, H1] , H2]u (3.5)

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − CτR)d[HR, ĤR]u

∣∣∣∣∣GτR
]
.

Notice that, since t ∈ [0, τR ∧ T ], we have∫
]t,T ]

B−1
u HR

u dDu =

∫
]t,τR[

B−1
u HR

u dDu +

∫
[τR,T ]

B−1
u HR

u dDu

=

∫
[τR,T ]

B−1
u HR

u dDu . (3.6)

Therefore,

1{t≤τR∧T}E
[ ∫

]t,T ]

B−1
u HR

u dDu

∣∣∣GτR] = 1{t≤τR∧T}E
[ ∫

[τR,T ]

B−1
u HR

u dDu

∣∣∣GτR]
= 1{t≤τR∧T}1{τR≤T}B

−1
τR

(SτR + ∆DτR) = 1{t≤τR}1{τR≤T}B
−1
τR

(SτR + ∆DτR) . (3.7)
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Taking conditional expectation given Gt and using the tower property in (3.12) reads

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[ ∫

]t,T ]

B−1
u (dDu − dDRu )

∣∣∣Gt ] (3.8)

= 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − CτR)

− (R1(S∆
τR − CτR)+ − (S∆

τR − CτR)−)1{τR=τ1≤T}

+ (R2(S∆
τR − CτR)− − (S∆

τR − CτR)+)1{τR=τ2≤T}

+ (S∆
τR − CτR)1{τR=τ1=τ2≤T} − (S∆

τR − CτR)1{τR=τ̂R≤T}
) ∣∣∣Gt ] .

Since

(S∆
τR − CτR) = (S∆

τR − CτR)+ − (S∆
τR − CτR)− ,

it follows that (3.15) is equivalent to

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − CτR)

− (R1(S∆
τR − CτR)+ + (S∆

τR − CτR)− (S∆
τR − CτR)+)1{τR=τ1≤T}

+ (R2(S∆
τR − CτR)− − (S∆

τR − CτR)− − (S∆
τR − CτR))1{τR=τ2≤T}

+ (S∆
τR − CτR)1{τR=τ1=τ2≤T} − (S∆

τR − CτR)1{τR=τ̂R≤T}
) ∣∣∣Gt ] .

After simplifying the terms above, we obtain

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − CτR)

+ (1−R1)(S∆
τR − CτR)+

1{τR=τ1≤T} − (S∆
τR − CτR)1{τR=τ1≤T}

− (1−R2)(S∆
τR − CτR)−1{τR=τ2≤T} − (S∆

τR − CτR)1{τR=τ2≤T}

+ (S∆
τR − CτR)1{τR=τ1=τ2≤T} − (S∆

τR − CτR)1{τR=τ̂R≤T}
) ∣∣∣Gt ] ,

which is equivalent to

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

[
1{τR≤T}(S

∆
τR − CτR)− 1{τR≤T}(S

∆
τR − CτR)

+ (1−R1)(S∆
τR − CτR)+

1{τR=τ1≤T} − (1−R2)(S∆
τR − CτR)−1{τR=τ2≤T}

] ∣∣∣Gt ] .
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Finally, we find that

St − SRt = BtE
[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − CτR)+

∣∣∣Gt ]
−BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − CτR)−

∣∣∣Gt ] ,
on the set t ∈ [0, τR ∧ T ], which proves our claim.

Note that since there are no losses associated with the trigger events other

than defaults, and since CVA (as well as CVAR) only reflects the expected losses,

these cases do not appear directly in (3.4).

Similar to (3.2), we can define

UCVAR
t := BtE[1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − CτR)+ | Gt ] ,

DVAR
t := BtE[1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − CτR)− | Gt ] ,

for t ∈ [0, τR ∧ T ]. Therefore, the credit valuation adjustment representation found

in (3.4) can be decomposed as CVAR = UCVAR −DVAR.

Remark 3.2.1. Note that although banks report on DVA (or DVAR in our case) in

their earnings reports, it is not included in determining the capital levels. This is also

stated in [Ban11, Paragraph 75] as

Derecognise in the calculation of Common Equity Tier 1, all unrealised gains and
losses that have resulted from changes in the fair value of liabilities that are due
to changes in the banks own credit risk.

Therefore, Basel III framework does not allow the banks to account for DVA

in their regulatory capital calculations (see also [Ban12] for a detailed discussion).

The main reason of this treatment of DVA in Basel III is to not to allow banks to

have the value of their liabilities decrease while their credit risk is increasing.
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The difference between CVA and CVAR indicates the change, either as a re-

duction or as an increase, in the CVA due to rating triggers. Therefore, the coun-

terparties can determine the appropriate rating trigger levels at the initiation of the

contracts. This is very important for the financial institutions; since, as we mentioned

before, rating triggers are commonly used tools to mitigate the CVA. This leads us

to introduce the following concept.

Definition 3.2.8. The Rating Valuation Adjustment (RVA) process, is defined as

RVAt = CVAt − CVAR
t , (3.9)

for all t ∈ [0, τR ∧ T ].

The rating valuation adjustment term defined above has the following repre-

sentation.

Proposition 3.2.3. The RVA process can be represented as

RVAt = BtE[1{τR<τ=τ1≤T}B
−1
τ (1−R1)(S∆

τ − Cτ )+ | Gt ]

−BtE[1{τR<τ=τ2≤T}B
−1
τ (1−R2)(S∆

τ − Cτ )− | Gt ] ,

for all t ∈ [0, τR ∧ T ].

Proof. From (3.1) and (3.4) we obtain

CVAt − CVAR
t = BtE

[
1{τ=τ1≤T}B

−1
τ (1−R1)(S∆

τ − Cτ )+
∣∣∣Gt ]

−BtE
[
1{τ=τ2≤T}B

−1
τ (1−R2)(S∆

τ − Cτ )−
∣∣∣Gt ]

−BtE
[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − CτR)+

∣∣∣Gt ]
+BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − CτR)−

∣∣∣Gt ] ,
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which can be written as,

CVAt − CVAR
t = BtE

[
1{τ=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ1
− Cτ1)+

∣∣∣Gt ]
−BtE

[
1{τ=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ]
−BtE

[
1{τR=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ1
− Cτ1)+

∣∣∣Gt ]
+BtE

[
1{τR=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ] .
Therefore, simplifying the terms above yields

CVAt − CVAR
t = BtE

[
(1{τ=τ1≤T} − 1{τR=τ1≤T})B

−1
τ1

(1−R1)(S∆
τ1
− Cτ1)+

∣∣∣Gt ]
−BtE

[
(1{τ=τ2≤T} − 1{τR=τ2≤T})B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ] ,
which is equivalent to

CVAt − CVAR
t = BtE

[
1{τR<τ=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ1
− Cτ1)+

∣∣∣Gt ]
−BtE

[
1{τR<τ=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ] ,
for t ∈ [0, τR ∧ T ], which proves the result in view of (3.9).

Remark 3.2.2. Note that RVA can be positive or negative. If RVA is positive then

there is a decrease in the bilateral CVA. If RVA is negative then this indicates an

increase in the bilateral CVA due to adding rating triggers. Furthermore, RVA is

always non-negative in case of measuring unilateral counterparty risk (τ2 =∞).

Let us define

URVAt : = BtE[1{τR<τ=τ1≤T}B
−1
τ (1−R1)(S∆

τ − Cτ )+ | Gt ] ,

DRVAt : = BtE[1{τR<τ=τ2≤T}B
−1
τ (1−R2)(S∆

τ − Cτ )− | Gt ] .

for t ∈ [0, τR ∧ T ]. Therefore, RVA has the following decomposition,

RVAt = URVAt −DRVAt ,
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for t ∈ [0, τR ∧ T ]. Here URVA represents the expected loss if the counterparty

defaults first which is preceded by a rating trigger. Similarly, DRVA is the expected

loss in case the investor defaults first after a rating trigger. Therefore, including

rating triggers provision in an OTC contract provides protection from losses due to

default events which happen after a credit downgrade. Accordingly, the value of the

contract is adjusted for this protection, as shown in the following result.

Corollary 3.2.1. We have the following decomposition for the counterparty risky

price process

SRt = St − CVAR
t

= St − CVAt + RVAt

= St − UCVAt + DVAt + RVAt

= St − UCVAt + DVAt + URVAt − DRVAt ,

for t ∈ [0, τR ∧ T ].

The above result is particularly important because it provides an explicit view

of the adjustments we consider in case the underlying contracts have rating triggers.

In practice, each term in the above decomposition is computed separately. Moreover,

each term in the decomposition is treated differently, in the sense that different desks

and departments are responsible for applying the above adjustments. We will see that

it is possible to have further refinements of the above decomposition, by considering

additional risks associated with the counterparty risk.

3.2.3 Dynamic Collateralization. As we mentioned in Section 2.2.1.1 in Chapter

2, in bilateral margin agreements, counterparties are required to post collateral as

soon as the clean price of the contract exceeds thresholds, which are defined in CSA

(see [Int94]). In particular, these thresholds are defined in terms of the credit ratings

of the counterparties. Specifically, the collateral threshold of a counterparty decreases
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as a result of a credit rating downgrade and increases as a result of a credit rating

upgrade. Consequently, a counterparty with higher credit rating will have higher

threshold than a counterparty with a lower credit rating.

It is important to note that there is an adverse relation between the margin

requirements and the credit ratings. A credit downgrade along with higher borrowing

rates and exposures forces the companies to post increasing amounts of collateral to

their counterparties, which can be fatal. For example, the ratings linked collateral

thresholds, coupled with rehypothecation, have been considered to be one of the key

drivers of AIG’s collapse in 2008. Before 2007, as a ‘AAA’ rated company, AIG

had not been required to post any collateral for most of its derivatives transactions.

However, after several downgrades AIG had posted more than $40 billion in collateral

as of November 2008 (see [Int09] for details).

Thus, one of the key issues in modeling of the collateral process12 is the issue of

modeling of the thresholds. In what follows, we shall model the collateral threshold for

the counterparty at time t, say Γ1
t , as Γ1

t = γ1(t,X1
t , St), where γ1 : [0, T ]×K×R→

R+ is a measurable function. Likewise, we shall model the collateral threshold for the

investor at time t, say Γ2
t , as Γ2

t = γ2(t,X2
t , St), where γ2 : [0, T ]×K×R→ R− is a

measurable function.

For a proper modeling of the collateral we need to consider the so called inde-

pendent amounts (i.e. initial margins) posted by the counterparty and the investor

by the constants β1 ∈ R+ and β2 ∈ R−, respectively. We also need to consider the so

called minimum transfer amount (MTA), which is a positive constant denoted by θ

and the margin period of risk, which is again a positive constant denoted by ∆.13

12Since in this chapter we only consider symmetric cash flows (form the point
of view of both the parties), we only need to model a single collateral process.

13We refer to Section 2.2.1.1, and to Bielecki et al. [BCI11] for a detailed dis-
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Let us denote the margin call dates by 0 < t1 < . . . < tn < T as in Sec-

tion 2.2.1.1. On the margin call date ti, if the exposure is above the counterparty’s

current threshold, Γ1
ti

, and if the difference between the current exposure and the col-

lateral amount is greater than the MTA the counterparty posts collateral and updates

the margin account; otherwise, no collateral exchange takes place since the transfer

amount is less than the MTA. Likewise, the investor delivers collateral on the mar-

gin call date ti, if the exposure is below investor’s threshold, Γ2
ti

, and the difference

between the current exposure and the collateral amount is greater than MTA (cf.

[Int05], pages 52–56).

In accordance with the above discussion the collateral process is modeled as

follows:

We set C0 = 0. Then, for i = 1, 2, . . . , n, we define

Ct := 1{Sti+Bti (β1−β2)−Γ1
ti
−Cti>θ}(Sti +Bti(β1 − β2)− Γ1

ti
− Cti)

+ 1{Sti+Bti (β2−β1)−Γ2
ti
−Cti<−θ}(Sti +Bti(β2 − β1)− Γ2

ti
− Cti) + Cti ,

for t ∈ (ti, ti+1], on the set {ti < τR}. Moreover, Ct = CτR on the set {τR ≤ t ≤

τR + ∆}, where ∆ represents the margin period of risk.

Observe that the collateral increments at each margin call date ti < τR can

now be represented as,

∆Cti : = Cti+ − Cti

= 1{Sti+Bti (β1−β2)−Γ1
ti
−Cti>θ}(Sti +Bti(β1 − β2)− Γ1

ti
− Cti)

+ 1{Sti+Bti (β2−β1)−Γ2
ti
−Cti<−θ}(Sti +Bti(β2 − β1)− Γ2

ti
− Cti) .

In Section 3.4 we assume, for simplicity, that the margin period of risk, in-

cussion and definitions.



68

dependent amounts and minimum transfer amount are equal to zero. Thus, the

collateral amount at time t (from the point of view of the investor) is given as

Ct = 1{Sti−Γ1
ti
>Cti}(Sti − Γ1

ti
− Cti) + 1{Sti−Γ2

ti
<Cti}(Sti − Γ2

ti
− Cti) + Cti ,

for t ∈ (ti, ti+1]. Furthermore, we consider the following structure for the collateral

thresholds

γi(t, x, s) = ρi(t, x)s, i = 1, 2,

where ρi : [0, T ]×K → [0, 1] is a measurable function. The functions ρ1 and ρ2 repre-

sent the collateral rates for the counterparty and the investor at time t, respectively.

Essentially, the collateral rates indicate the percentage of exposure at time t.

In practice, the threshold levels are set in CSA documents (available upon

request) for different credit rating levels. However, these levels usually do not follow

a pattern, and they are not formulated as functions of the credit rating levels. Here, we

propose two forms of the collateral threshold levels. We introduce two specifications

of collateral rates:14

• The linear case:

ρil(t, x) :=
K − x
K − 1

for all i = 1, 2. In particular, ρi(t, 1) = 1 and ρi(t,K) = 0.

• The exponential case:

ρie(t, x) :=


e1−x, if x < K

0, if x = K

for all i = 1, 2.

14Recall that the credit ratings of each credit name take values in the set K =
{1, 2, . . . , K}, where K represents the default and where 1 represents the highest
possible rating.
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In the linear case, collateral thresholds change linearly with the credit qualities

of the counterparties. Likewise, in the exponential case, the collateral thresholds

exponentially change with the credit ratings. Therefore, the collateral rates in the

exponential case are always less than the ones in the linear case, which leads to lower

collateral thresholds, and as a result more collateral being kept in the margin account.

In both cases, the amount of collateral to be posted increases with the decreasing

credit ratings. We will use these collateralization schemes for our experiments in the

last section.

3.2.4 Rehypothecation Risk. We now consider the case that the collateral receiver

(counterparty or the investor) can rehypothecate the collateral. Rehypothecation15

refers to the usage of the collateral in the margin account for (risky) investment and

funding purposes. Naturally, it may not be possible to fully recover the collateral

in case of a default, if the counterparties rehypothecate the collateral. Therefore,

rehypothecation risk is defined as the risk of not fully recovering collateral as a result

of rehypothecation. The vital importance of considering rehypothecation risk is also

stated in ISDA’s AIG report (see [Int09]) as follows.

Normally, the lender (i.e., AIG) would invest collateral received in highly liquid
and safe short-term securities such as Treasury bills to earn a modest return.AIG,
however, invested the collateral it received in subprime mortgage backed securi-
ties.As borrowers began returning the securities they had borrowed and demand-
ing repayment of collateral.AIG found it could not sell the mortgage-backed secu-
rities in which it had invested the cash collateral and had to search for alternative
sources of funds.

Let us define a Gτ1-measurable random variable Rh
1 and a Gτ2-measurable ran-

dom variable Rh
2 as the recovery rates of the rehypothecated collateral for the investor

15Origin of the word rehypothecate comes from the Medieval Latin hypothecare
to pledge, from Late Latin hypotheca pledge, from Greek hypotheke, from hypotithenai
to put under, deposit as a pledge
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and the counterparty. Following Brigo et al. [BCPP11], we assume that R1 ≤ Rh
1 and

R2 ≤ Rh
2 , since in case of a default the collateral has priority among other liabilities.

Let us now define the cumulative dividend process associated with the coun-

terparty risky contract with rehypothecation.

Definition 3.2.9. Cumulative dividend process of a counterparty risky contract that

takes rehypothecation risk into account is represented as,

DR,ht = (1−HR
t )Dt +DτR−H

R
t + 1{τR≤T}

(
C̃τRH

R
t

+
(
R1(S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)−

)
[HR, H1]t

−
(
R2(S∆

τR − C̃τR)− − (S∆
τR − C̃τR)+

)
[HR, H2]t

−
(
S∆
τR − C̃τR

)
[[HR, H1] , H2]t +

(
S∆
τR − C̃τR

)
[HR, ĤR]t

)
,

for all t ∈ [0, T ], where

C̃τR = CτR
[
1τR=τ1 6=τ2(R

h
11CRτ >0 + 1C

τR
≤0) + 1τR=τ2 6=τ1(1CτR>0 +Rh

21CτR≤0)

+ 1τR=τ1=τ2(R
h
11CτR>0 +Rh

21CτR≤0) + 1τR=τ̂R

]
.

The definition above can be interpreted as follows. If the counterparty defaults

first and if he also holds the collateral, then he delivers only a fraction, Rh
1 , of the

collateral posted to the margin account. Likewise, if the investor defaults first and if

he holds the collateral, then he delivers only a fraction, Rh
2 , of the collateral posted

to the margin account.

We are now ready to define the ex-dividend price processes associated with a

counterparty risky contract with rating triggers and rehypothecation risk.

Definition 3.2.10. The ex-dividend price process SR,h of a counterparty risky con-

tract maturing at time T, with rating triggers and rehypothecation risk is defined as,

SR,ht = BtE
[ ∫

]t,T ]

B−1
u dDR,hu

∣∣∣Gt ] ,
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for all t ∈ [0, T ].

Next, we give the definition of credit valuation adjustment of a contract with

rating triggers in presence of rehypothecation risk.

Definition 3.2.11. The credit valuation adjustment with rating triggers taking the

rehypothecation risk into account is defined as,

CVAR,h
t = St − SR,ht , (3.10)

for all t ∈ [0, τR ∧ T ].

This form of the counterparty-risky cumulative dividend process leads to the

following representation for the bilateral CVA.

Proposition 3.2.4. The bilateral Credit Valuation Adjustment process with rehypoth-

ecation risk defined in (3.10) can be represented as

CVAR,h
t = BtE

[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − C̃

1
τR)+

∣∣∣Gt ]
−BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − C̃

2
τR)−

∣∣∣Gt ] , (3.11)

for all t ∈ [0, τR ∧ T ], where

C̃1
τR = CτR

[
1τR=τ1 6=τ2(R

h
11CRτ >0 + 1C

τR
≤0) + 1τR=τ1=τ2(R

h
11CτR>0 +Rh

21CτR≤0)
∣∣∣Gt ] ,

and

C̃2
τR = CτR

[
1τR=τ2 6=τ1(1CτR>0 +Rh

21CτR≤0) + 1τR=τ1=τ2(R
h
11CτR>0 +Rh

21CτR≤0)
∣∣∣Gt ].
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Proof. Using Definition 3.2.9, we have

dDt − dDR,ht = dDt − (1−HR
t )dDt −Dt−dH

R
t +DτR−dH

R
t − 1{τR≤T}C̃τRdH

R
t

− 1{τR≤T}
(
R1(S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)−

)
d[HR, H1]t

+ 1{τR≤T}
(
R2(S∆

τR − C̃τR)− − (S∆
τR − C̃τR)+

)
d[HR, H2]t

+ 1{τR≤T}(S
∆
τR − C̃τR)d[[HR, H1] , H2]t

− 1{τR≤T}(S
∆
τR − C̃τR)d[HR, H̃R]t .

Integrating both sides leads to,∫
]t,T ]

B−1
u (dDu − dDR,hu ) =

∫
]t,T ]

B−1
u HR

u dDu −
∫

]t,T ]

B−1
u Du−dH

R
u +

∫
]t,T ]

B−1
u DτR−dH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − C̃τR)− − (S∆
τR − C̃τR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[[HR, H1] , H2]u

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[HR, H̃R]u −
∫

]t,T ]

1{τR≤T}B
−1
u C̃τRdH

R
u .

Since, ∫
]t,T ]

B−1
u DτR−dH

R
u −

∫
]t,T ]

B−1
u Du−dH

R
u = 0 ,

we obtain,∫
]t,T ]

B−1
u (dDu − dDR,hu ) =

∫
]t,T ]

B−1
u HR

u dDu −
∫

]t,T ]

1{τR≤T}B
−2
u C̃τRdH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − C̃τR)− − (S∆
τR − C̃τR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[[HR, H1] , H2]u

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[HR, H̃R]u .
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Conditioning on τR, we get

1{t≤τR∧T} E
[ ∫

]t,T ]

B−1
u (dDu − dDR,hu )

∣∣∣GτR ] = 1{t≤τR∧T} E

[∫
]t,T ]

B−1
u HR

u dDu

−
∫

]t,T ]

1{τR≤T}B
−1
u C̃τRdH

R
u

−
∫

]t,T ]

1{τR≤T}B
−1
u

(
R1(S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)−

)
d[HR, H1]u

+

∫
]t,T ]

1{τR≤T}B
−1
u

(
R2(S∆

τR − C̃τR)− − (S∆
τR − C̃τR)+

)
d[HR, H2]u

+

∫
]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[[HR, H1] , H2]u (3.12)

−
∫

]t,T ]

1{τR≤T}B
−1
u (S∆

τR − C̃τR)d[HR, H̃R]u

∣∣∣∣∣GτR
]
.

Notice that, since t ∈ [0, τR ∧ T ], we have∫
]t,T ]

B−1
u HR

u dDu =

∫
]t,τR[

B−1
u HR

u dDu +

∫
[τR,T ]

B−1
u HR

u dDu

=

∫
[τR,T ]

B−1
u HR

u dDu . (3.13)

Therefore,

1{t≤τR∧T}E
[ ∫

]t,T ]

B−1
u HR

u dDu

∣∣∣GτR ] = 1{t≤τR∧T}E
[ ∫

[τR,T ]

B−1
u HR

u dDu

∣∣∣GτR ]
= 1{t≤τR∧T}1{τR≤T}B

−1
τR

(SτR + ∆DτR) = 1{t≤τR}1{τR≤T}B
−1
τR

(SτR + ∆DτR) . (3.14)

Taking conditional expectation given Gt and using the tower property in (3.12) reads

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[ ∫

]t,T ]

B−1
u (dDu − dDR,hu )

∣∣∣Gt ] (3.15)

= 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − C̃τR)

− (R1(S∆
τR − C̃τR)+ − (S∆

τR − C̃τR)−)1{τR=τ1≤T}

+ (R2(S∆
τR − C̃τR)− − (S∆

τR − C̃τR)+)1{τR=τ2≤T}

+ (S∆
τR − C̃τR)1{τR=τ1=τ2≤T} − (S∆

τR − C̃τR)1{τR=τ̃R≤T}
) ∣∣∣Gt ] .
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Since

(S∆
τR − C̃τR) = (S∆

τR − C̃τR)+ − (S∆
τR − C̃τR)− ,

it follows that (3.15) is equivalent to

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − C̃τR)

− (R1(S∆
τR − C̃τR)+ + (S∆

τR − C̃τR)− (S∆
τR − C̃τR)+)1{τR=τ1≤T}

+ (R2(S∆
τR − C̃τR)− − (S∆

τR − C̃τR)− − (S∆
τR − C̃τR))1{τR=τ2≤T}

+ (S∆
τR − C̃τR)1{τR=τ1=τ2≤T} − (S∆

τR − C̃τR)1{τR=τ̃R≤T}
) ∣∣∣Gt ] .

After simplifying the terms above, we obtain

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

(
1{τR≤T}(S

∆
τR − C̃τR)

+ (1−R1)(S∆
τR − C̃τR)+

1{τR=τ1≤T} − (S∆
τR − C̃τR)1{τR=τ1≤T}

− (1−R2)(S∆
τR − C̃τR)−1{τR=τ2≤T} − (S∆

τR − C̃τR)1{τR=τ2≤T}

+ (S∆
τR − C̃τR)1{τR=τ1=τ2≤T} − (S∆

τR − C̃τR)1{τR=τ̃R≤T}
) ∣∣∣Gt ] ,

which is equivalent to

1{t≤τR∧T}(St − SRt ) = 1{t≤τR∧T}BtE
[
B−1
τR

[
1{τR≤T}(S

∆
τR − C̃τR)− 1{τR≤T}(S

∆
τR − C̃τR)

+ (1−R1)(S∆
τR − C̃τR)+

1{τR=τ1≤T} − (1−R2)(S∆
τR − C̃τR)−1{τR=τ2≤T}

] ∣∣∣Gt ] .
Finally, we find that

St − SRt = BtE
[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − C̃τR)+

∣∣∣Gt ]
−BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − C̃τR)−

∣∣∣Gt ] ,
on the set t ∈ [0, τR ∧ T ], which proves our claim.

Remark 3.2.3. Observe that if we set Rh
1 = 1 and Rh

2 = 1, which means no rehy-

pothecation risk, then we have CVAR,h = CVAR.
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Next, we define the rating valuation adjustment in the presence of rehypoth-

ecation risk.

Definition 3.2.12. The Rating Valuation Adjustment process (RVAh) with rehypoth-

ecation risk is defined as

RVAh
t = CVAt − CVAR,h

t ,

for t ∈ [0, τR ∧ T ].

We have the following representation for RVAR,h.

Lemma 3.2.1. RVAR,h can be represented as

RVAh
t = RVAt

+BtEt
[
1{τR=τ1 6=τ2≤T}B

−1
τ1

(1−R1)[1Cτ1>0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

1Cτ1)
+)]

+ 1{τR=τ1=τ2≤T}B
−1
τ1

(1−R1)[1Cτ1>0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

1Cτ1)
+)

+ 1Cτ1<0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

2Cτ1)
+)]
]

+BtEt
[
1{τR=τ2 6=τ1≤T}B

−1
τ2

(1−R2)[1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τ2
− Cτ2)−)]

+ 1{τR=τ2=τ1≤T}B
−1
τ2

(1−R2)[1Cτ2>0((S∆
τ2
−Rh

1Cτ2)
− − (S∆

τ2
− Cτ2)−)

+ 1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τ2
− Cτ2)−)]

]
,

for t ∈ [0, τR ∧ T ].

Proof. Using (3.1) and (3.11) we obtain

CVAt − CVAR,h
t = BtE

[
1{τ=τ1≤T}B

−1
τ (1−R1)(S∆

τ − Cτ )+
∣∣∣Gt ]

−BtE
[
1{τ=τ2≤T}B

−1
τ (1−R2)(S∆

τ − Cτ )−
∣∣∣Gt ]

−BtE
[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − C̃

1
τR)+

∣∣∣Gt ]
+BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − C̃

2
τR)−

∣∣∣Gt ] ,
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where

C̃1
τR = 1τR=τ1 6=τ2(R

h
1C

+
τR

+ C−
τR

) + 1τR=τ1=τ2(R
h
1C

+
τR

+Rh
2C
−
τR

) ,

and

C̃2
τR = 1τR=τ2 6=τ1(C

+
τR

+Rh
2C
−
τR

) + 1τR=τ1=τ2(R
h
1C

+
τR

+Rh
2C
−
τR

).

Rearranging the terms above yields

CVAt − CVAR,h
t = BtE

[
1{τ=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ!
− Cτ1)+

∣∣∣Gt ] (3.16)

−BtE
[
1{τ=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ]
−BtE

[
1{τR=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ1
− C̃1

τ1
)+
∣∣∣Gt ]

+BtE
[
1{τR=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− C̃2

τ2
)−
∣∣∣Gt ] .

Plugging in the terms C̃1
τ1

and C̃2
τ2

into (3.16), we get

CVAt − CVAR,h
t = BtE

[
1{τ=τ1≤T}B

−1
τ1

(1−R1)(S∆
τ!
− Cτ1)+

∣∣∣Gt ]
−BtE

[
1{τ=τ2≤T}B

−1
τ2

(1−R2)(S∆
τ2
− Cτ2)−

∣∣∣Gt ]
−BtE

[
1{τR=τ1 6=τ2≤T}B

−1
τ1

(1−R1)[1Cτ1>0(S∆
τ1
−Rh

1Cτ1)
+ + 1Cτ1<0(S∆

τ1
− Cτ1)+)]

+ 1{τR=τ1=τ2≤T}B
−1
τ1

(1−R1)[1Cτ1>0(S∆
τ1
−Rh

1Cτ1)
+ + 1Cτ1<0(S∆

τ1
−Rh

2Cτ1)
+)]
∣∣∣Gt ]

+BtE
[
1{τR=τ2 6=τ1≤T}B

−1
τ2

(1−R2)[1Cτ2>0(S∆
τ2
− Cτ2)− + 1Cτ2<0(S∆

τ2
−Rh

2Cτ2)
−]

+ 1{τR=τ2=τ1≤T}B
−1
τ2

(1−R2)[1Cτ2>0(S∆
τ2
−Rh

1Cτ2)
−] + 1Cτ2<0(S∆

τ2
−Rh

2Cτ2)
−
∣∣∣Gt ] .
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It follows from (3.9) that

CVAt − CVAR,h
t = RVAt +BtE

[
1{τR=τ1≤T}B

−1
τR

(1−R1)(S∆
τR − CτR)+

∣∣∣Gt ]
−BtE

[
1{τR=τ2≤T}B

−1
τR

(1−R2)(S∆
τR − CτR)−

∣∣∣Gt ]
−BtE

[
1{τR=τ1 6=τ2≤T}B

−1
τ1

(1−R1)[1Cτ1>0(S∆
τ1
−Rh

1Cτ1)
+ + 1Cτ1<0(S∆

τ1
− Cτ1)+)]

+ 1{τR=τ1=τ2≤T}B
−1
τ1

(1−R1)[1Cτ1>0(S∆
τ1
−Rh

1Cτ1)
+ + 1Cτ1<0(S∆

τ1
−Rh

2Cτ1)
+)]
∣∣∣Gt ]

+BtE
[
1{τR=τ2 6=τ1≤T}B

−1
τ2

(1−R2)[1Cτ2>0(S∆
τ2
− Cτ2)− + 1Cτ2<0(S∆

τ2
−Rh

2Cτ2)
−]

+ 1{τR=τ2=τ1≤T}B
−1
τ2

(1−R2)[1Cτ2>0(S∆
τ2
−Rh

1Cτ2)
−] + 1Cτ2<0(S∆

τ2
−Rh

2Cτ2)
−
∣∣∣Gt ] .

Finally, we find

CVAt − CVAR,h
t = RVAt

+BtE
[
1{τR=τ1 6=τ2≤T}B

−1
τ1

(1−R1)[1Cτ1>0((S∆
τR − CτR)+ − (S∆

τ1
−Rh

1Cτ1)
+)]

+ 1{τR=τ1=τ2≤T}B
−1
τ1

(1−R1)[1Cτ1>0((S∆
τR − CτR)+ − (S∆

τ1
−Rh

1Cτ1)
+)

+ 1Cτ1<0((S∆
τR − CτR)+ − (S∆

τ1
−Rh

2Cτ1)
+)]
∣∣∣Gt ]

+BtE
[
1{τR=τ2 6=τ1≤T}B

−1
τ2

(1−R2)[1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τR − CτR)−)]

+ 1{τR=τ2=τ1≤T}B
−1
τ2

(1−R2)[1Cτ2>0((S∆
τ2
−Rh

1Cτ2)
− − (S∆

τR − CτR)−)]

+ 1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τR − CτR)−)
∣∣∣Gt ] ,

for t ∈ [0, τR ∧ T ].

Remark 3.2.4. Note that RVAh can either be negative or positive. If the difference

is positive, then there is a decrease in the bilateral CVA, however if it is negative then

there is an increase in the bilateral CVA.
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Let us define

URVAh
t : = BtE

[
1{τR=τ1 6=τ2≤T}B

−1
τ1

(1−R1)[1Cτ1>0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

1Cτ1)
+)]

+ 1{τR=τ1=τ2≤T}B
−1
τ1

(1−R1)[1Cτ1>0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

1Cτ1)
+)

+ 1Cτ1<0((S∆
τ1
− Cτ1)+ − (S∆

τ1
−Rh

2Cτ1)
+)]
∣∣∣Gt ] ,

DRVAh
t : = BtE

[
1{τR=τ2 6=τ1≤T}B

−1
τ2

(1−R2)[1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τ2
− Cτ2)−)]

+ 1{τR=τ2=τ1≤T}B
−1
τ2

(1−R2)[1Cτ2>0((S∆
τ2
−Rh

1Cτ2)
− − (S∆

τ2
− Cτ2)−)]

+ 1Cτ2<0((S∆
τ2
−Rh

2Cτ2)
− − (S∆

τ2
− Cτ2)−)

∣∣∣Gt ]
for t ∈ [0, τR ∧ T ]. Therefore, RVAh has the following decomposition,

RVAh
t = RVAt + URVAh

t + DRVAh
t ,

for t ∈ [0, τR ∧ T ].

Here URVAh represents the expected loss if the counterparty defaults first

which is preceded by a rating trigger. Likewise, DRVAh is the expected loss in case

the investor defaults first after a rating trigger. Therefore, including rating triggers

provision in an OTC contract provides protection from losses due to default events

which happen after a credit downgrade. Accordingly, the value of the contract is

adjusted for this protection, as shown in the following result.

Corollary 3.2.2. We have the following decomposition for the counterparty risky

price process

SR,ht = St − CVAR,h
t

= St − CVAt + RVAh
t

= St − UCVAt + DVAt + RVAh
t

= St − UCVAt + DVAt + RVAt + URVAh
t + DRVAh

t ,

for t ∈ [0, τR ∧ T ].
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The above result provides an enhanced form of the decomposition found in

Corollary 3.2.1, by taking the rehypothecation risk along with rating triggers into

account. As we stated earlier, each term in the above decomposition is computed and

treated separately in practice.

3.3 Markovian Approach for Rating-Based Pricing

In this section, we employ Markov copulae for modeling the rating transitions

in our framework. Our approach is based on the studies of Bielecki et al. [BCJR06,

BVV06, BVV08, BJVV08, BJN11].

3.3.1 Markov Copulae for the Multivariate Markov Chains. Let us first

consider two Markov chains X1 and X2 on (Ω,F ,P) with the infinitesimal generators

A1 := [a1
ij] and A2 := [a2

hk], respectively.

In what follows, we work under the following assumption, which is necessary

for the Markovian copulae property.

Assumption 3.3.1. The system of equations,

∑
k∈K

aXih,jk = a1
ij , ∀i, j, h ∈ K, i 6= j, (3.17)

∑
j∈K

aXih,jk = a2
hk , ∀i, h, k ∈ K, h 6= k, (3.18)

has a positive solution.

The proof of the following proposition can be found in [BVV08].

Proposition 3.3.1. If Assumption 3.3.1 is satisfied, then AX = [aXih,jk]i,h,j,k∈K (where

diagonal elements are defined appropriately) satisfies the conditions for a generator

matrix of a bivariate time-homogeneous Markov chain, say X = (Y 1, Y 2), whose

components are Markov chains with the same laws as X1 and X2.
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Hence, the resulting matrix AX = [aXih,jk]i,h,j,k∈K satisfies the conditions for a

generator matrix of a bivariate time-homogeneous Markov chain, whose marginals

are Markov chains with the same distributions as X1 and X2. Therefore, the system

(3.17)–(3.18) serves as a Markov copula between the Markovian margins Y 1, Y 2 and

the bivariate Markov chain X.

Note that the system (3.17)–(3.18) can contain more unknowns than the num-

ber of equations, therefore being underdeteremined. Therefore, as it is proposed by

Bielecki et al. [BVV08], we impose additional constraints on the variables in the

system (3.17)–(3.18). We postulate that

aXih,jk =


0 , if i 6= j, h 6= k, j 6= k

αmin(a1
ij, a

2
hk) , if i 6= j, h 6= k, j = k

(3.19)

where α ∈ [0, 1]. Using the constraints (3.19) the system (3.17)–(3.18) becomes fully

decoupled, and we can obtain the generator of the joint process.

We interpret the constraint (3.19) as follows. Y 1 and Y 2 migrate according

to their marginal laws. Nevertheless, they can have the same values. The intensity

of migrating to the same rating category is measured by the parameter α. If α = 0,

then the components Y 1 and Y 2 of X migrate independently. However, if α = 1, the

tendency of Y 1 and Y 2 migrating to the same categories is at maximum.

3.3.2 Markovian Changes of Measure. Since rating transition matrices indicate

the historical default probabilities, we need to switch to the risk-neutral probabilities.

In practice, the change of measure is done such a way that the resulting risk-neutral

probabilities are consistent with the default probabilities inferred from the quoted

CDS spreads. We need to apply changes of measure, while preserving Markovian

structure of the model X. Therefore, the process X, which is Markovian under the

statistical measure, will remain Markovian under the risk-neutral measure as well.
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Let Y be a Markov process under P with generator A and domain D(A) and

define

M f
t :=

f(Yt)

f(Y0)
e−

∫ t
0
Af(Ys)
f(Ys)

ds .

The following definition is borrowed from [PR02].

Definition 3.3.1. A strictly positive function f ∈ D(A) is a good function if M f
t is

a true (genuine) martingale with mean 1 as EP(M f
t ) = 1.

Let f ∈ D(A) and h be a good function and define

Ahf := h−1A(fh)− fA(h) .

The proof of the following Theorem can be found in [PR02].

Theorem 3.3.1. Let Qh be the probability measure associated to the density process

Mh
t . Then Y is a Markov process under Qh with extended generator (Ah,D(A)).

If Y is a finite state Markov chain, then we have the following result.

Corollary 3.3.1. Let Y be a finite state Markov chain on K with cardinality K and

generator A = aij and let h = (h1, . . . , hK) be a positive vector. Then Y is a Markov

process under Qh with generator Ah = [aijhjh
−1
i ].

Using the above corollary, we can change the measure from the statistical

measure P to a risk-neutral measure Q using a vector h = (h11, h22 . . . , hKK) ∈ RK ,

so that the process X will be a time-homogeneous Markov chain under Q. In this

case, the infinitesimal generator under Q is found as

ÃX = [ãih,jk] ,
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where

ãih,jk :=


aih,jk

hjk
hih

if ih 6= jk ,

−
∑

ih 6=jk aih,jk
hjk
hih

if ih = jk .

In Bielecki et al [BVV08], it is suggested that the vector hij can be chosen as

hij = eα1i+α2j , i, j ∈ K ,

where the parameters α1 and α2 can be estimated through calibration.

3.4 Applications

In this section, we illustrate our results in the context of a CDS and an IRS

contract. We postulate that our CDS and IRS contracts are subject to rating trig-

gers, so that they are terminated in case a trigger event occurs. We compute the

adjustments we discussed previously; namely, CVA, DVA, URVA and DRVA of the

contracts for different rating trigger levels. Moreover, we compare CVAR and CVA

values and find the impact of adding rating triggers on the adjustments.

For the sake of simplicity, we carry out our analysis with K = 4 rating cat-

egories: A, B, C and D. The level A represents the highest rating level, whereas D

corresponds to the default state. We assume that the counterparty initially has rating

B. In what follows, we suppose that the 1-year rating transition matrix is given in

Table 3.1.

Moreover, we assume that the current rating of the investor is A. Investor’s

1-year rating transition matrix is assumed to be given as in Table 3.2.

We assume that the rating transition matrices given above are already risk-

neutral, therefore we set α1 = α2 = 0. We also assume deterministic recovery rates;

R1 = R2 = 0.4 and Rh
1 = Rh

2 = 1.

3.4.1 CVA of an IRS with Rating Triggers. In this section, we compute the
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Table 3.1. Counterparty’s rating transition matrix

A B C D

A 0.9 0.08 0.017 0.003

B 0.05 0.85 0.09 0.01

C 0.01 0.09 0.8 0.1

D 0 0 0 1

Table 3.2. Investor’s rating transition matrix

A B C D

A 0.8 0.1 0.05 0.05

B 0.04 0.9 0.03 0.03

C 0.015 0.1 0.7 0.185

D 0 0 0 1

CVA, DVA, and RVA of a fixed-for-float payer 10-year IRS contract with $1 notional,

in presence of rating triggers as break clauses. We assume that the payments are

done every quarter, and the fixed leg pays the swap rate, while the floating leg pays

the LIBOR rate. We also assume that the swap is initiated at T0 := 0 and we denote

by T1 < T2 < · · · < Tn, the payment dates and S by the fixed rate.

As we noted above, the rating transition matrices of the counterparty and the

investor are given in Tables 3.1 and 3.2, respectively.

The cumulative dividend process of the IRS contract at time Ti is given by

DTi =
i∑

k=1

(L(Tk)− S)δk ,

where L(Ti) is time-Ti LIBOR rate and δk = Tk − Tk−1 for k = 1, 2, . . . , n. We also
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suppose that the instantaneous interest rate r follows

drt = (θ − α rt)dt+ σdWt

where we set r0 = 0.05, θ = 0.1, α = 0.05 and σ = 0.01. We find the corresponding

swap rate as S = 0.0496.

We carry out our analysis for uncollateralized, linearly collateralized and ex-

ponentially collateralized cases for α = 0 and α = 1. In practice, these parameters are

estimated using the current market data. Our results are displayed in Tables 3.3–3.12.

We observe that the initial URVA values decrease with the decreasing counterparty

trigger levels, which we denote by K1. Similarly, the initial DRVA values also decrease

when we decrease the investor’s trigger level, which is denoted by K2. However, the

RVA values, which indicate the total bilateral adjustment due to the additional rating

triggers, do not follow a certain pattern. For example, in Table 3.3, although we de-

crease the trigger levels from K1 = B, K2 = B to K1 = C, K2 = C, the corresponding

RVA values do not necessarily decrease, as opposed to URVA and DRVA values. We

also observe from in Tables 3.5, 3.6, 3.9, 3.10, 3.13 and 3.14 that adding bilateral rat-

ing triggers can actually decrease the initial bilateral CVA values (in absolute terms),

compared to the case with no rating triggers, which is K1 = D or K2 = D. For

instance, in Table 3.5, the reduction in CVAR with no rating triggers is almost four

times greater than the absolute value of CVAR with K1 = D and K2 = B. In other

words, in this case adding rating triggers decreases the absolute value of the bilateral

CVA by nearly 80%. However, in some cases such as K1 = B and K2 = D or K1 = C

and K2 = D, there is an increase in the bilateral CVA. The changes in the CVAR

values due to rating triggers are also visualized in Figures 3.1–3.6. Also, it can be

seen from the Tables 3.4,3.8 and 3.12, where α = 1, that the URVA and DRVA values

are slightly higher compared to the values in Tables 3.3,3.7 and 3.11, where α = 0.

Moreover, we see that the UCVAR values start increasing as we lower the
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counterparty trigger levels. We also observe that the DVAR values also increase with

the decreasing trigger levels for the investor. However, the CVAR values, that is the

bilateral CVA, do not change significantly unless we set K1 = D or K2 = D, which

essentially means elimination of rating triggers.

We note that DRVA values are equal to zero whenever K2 = D. This is

because by setting the investors trigger to level D, we simply do not have any ratings

adjustments for the investor. Likewise, we see that the URVA values are equal to zero

where K1 = D. Naturally, the case K1 = D and K2 = D corresponds to the CVA

computation without any rating triggers.
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Table 3.5. Mitigation in CVA of an IRS, α = 0, No collateralization

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

65.42% 62.98 % 64.80% 65.79% -9.40% 80.25% -8.61% 75.12%
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Figure 3.1. Change in CVA of an IRS, α = 0, No collateralization

Table 3.6. Mitigation in CVA of an IRS (in %), α = 1, No collateralization

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

70.12% 68.98% 69.83% 70.90% -14.67% 86.38% -15.81% 85.76%
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Figure 3.2. Change in CVA of an IRS, α = 1, No collateralization
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Table 3.9. Mitigation in CVA of an IRS (in %), α = 0, Lin. collateral rate: ρil

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

69.05% 46.36% 72.34% 50.37% -10.97% 85.25% -6.43% 59.33%
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Figure 3.3. Change in CVA of an IRS, α = 0, Linear collateral rate: ρil

Table 3.10. Mitigation in CVA of an IRS (in %), α = 1, Lin. collateral rate: ρil

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

75.03% 55.84% 74.68% 59.01% -15.38% 92.95% -16.39% 74.75%
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Figure 3.4. Change in CVA of an IRS, α = 1, Linear collateral rate: ρil



92

T
ab

le
3.

11
.

C
V

A
an

d
R

V
A

of
an

IR
S
,
α

=
0,

E
x
p

on
en

ti
al

co
ll
at

er
al

ra
te

:
ρ
i e

K
1

K
2

U
R

V
A

D
R

V
A

R
V

A
U

C
V

A
R

D
V

A
R

C
V

A
R

B
B

3.
77

84
82
×

10
−

4
2.

47
24

50
×

10
−

3
-2

.0
94

60
2
×

10
−

3
1.

49
68

12
×

10
−

4
1.

24
24

84
×

10
−

3
-1

.0
92

80
3
×

10
−

3

B
C

3.
30

67
53
×

10
−

4
1.

54
36

63
×

10
−

3
-1

.2
12

98
8
×

10
−

3
1.

70
05

68
×

10
−

4
2.

18
78

30
×

10
−

3
-2

.0
17

77
3
×

10
−

3

C
B

2.
25

34
05
×

10
−

4
2.

40
71

75
×

10
−

3
-2

.1
81

83
4
×

10
−

3
3.

35
59

56
×

10
−

4
1.

24
13

34
×

10
−

3
-9

.0
57

38
5
×

10
−

4

C
C

2.
33

10
00
×

10
−

4
1.

57
22

36
×

10
−

3
-1

.3
39

13
6
×

10
−

3
3.

07
49

39
×

10
−

4
2.

21
03

08
×

10
−

3
-1

.9
02

81
4
×

10
−

3

B
D

3.
86

13
26
×

10
−

4
0

3.
86

13
26
×

10
−

4
1.

70
85

59
×

10
−

4
3.

69
66

79
×

10
−

3
-3

.5
25

82
3
×

10
−

3

D
B

0
2.

53
26

24
×

10
−

3
-2

.5
32

62
4
×

10
−

3
5.

83
59

89
×

10
−

4
1.

15
70

57
×

10
−

3
-5

.7
34

58
1
×

10
−

4

C
D

2.
35

56
60
×

10
−

4
0

2.
35

56
60
×

10
−

4
3.

51
82

90
×

10
−

4
3.

65
19

42
×

10
−

3
-3

.3
00

11
3
×

10
−

3

D
C

0
1.

60
58

78
×

10
−

3
-1

.6
05

87
8
×

10
−

3
5.

43
72

58
×

10
−

4
2.

17
90

58
×

10
−

3
-1

.6
35

33
2
×

10
−

3

D
D

0
0

0
5.

41
08

69
×

10
−

4
3.

70
62

15
×

10
−

3
-3

.1
65

12
8
×

10
−

3



93

T
ab

le
3.

12
.

C
V

A
an

d
R

V
A

of
an

IR
S
,
α

=
1,

E
x
p

on
en

ti
al

co
ll
at

er
al

ra
te

:
ρ
i e

K
1

K
2

U
R

V
A

D
R

V
A

R
V

A
U

C
V

A
R

D
V

A
R

C
V

A
R

B
B

5.
42

39
35
×

10
−

4
2.

82
66

16
×

10
−

3
-2

.2
84

22
2
×

10
−

3
2.

09
94

63
×

10
−

4
1.

10
35

11
×

10
−

3
-8

.9
35

64
8
×

10
−

4

B
C

4.
36

64
26
×

10
−

4
1.

79
10

75
×

10
−

3
-1

.3
54

43
2
×

10
−

3
1.

46
90

06
×

10
−

4
1.

93
37

20
×

10
−

3
-1

.7
86

82
0
×

10
−

3

C
B

2.
69

53
80
×

10
−

4
2.

85
03

30
×

10
−

3
-2

.5
80

79
2
×

10
−

3
1.

70
87

25
×

10
−

4
1.

08
07

51
×

10
−

3
-9

.0
98

78
4
×

10
−

4

C
C

3.
42

94
87
×

10
−

4
1.

82
38

86
×

10
−

3
-1

.4
80

93
7
×

10
−

3
3.

41
58

80
×

10
−

4
1.

97
41

19
×

10
−

3
-1

.6
32

53
1
×

10
−

3

B
D

5.
01

40
45
×

10
−

4
0

5.
01

40
45
×

10
−

4
3.

86
28

17
×

10
−

5
3.

95
88

47
×

10
−

3
-3

.9
20

21
9
×

10
−

3

D
B

0
2.

87
84

85
×

10
−

3
-2

.8
78

48
5
×

10
−

3
7.

60
99

33
×

10
−

4
1.

00
38

49
×

10
−

3
-2

.4
28

55
7
×

10
−

4

C
D

2.
64

14
66
×

10
−

4
0

2.
64

14
66
×

10
−

4
6.

11
62

15
×

10
−

5
3.

99
15

69
×

10
−

3
-3

.9
30

40
7
×

10
−

3

D
C

0
1.

83
57

62
×

10
−

3
-1

.8
35

76
2
×

10
−

3
6.

19
78

74
×

10
−

4
1.

75
19

18
×

10
−

3
-1

.1
32

13
1
×

10
−

3

D
D

0
0

0
7.

30
56

37
×

10
−

4
4.

09
54

16
×

10
−

3
-3

.3
64

85
3
×

10
−

3



94

Table 3.13. Mitigation in CVA of an IRS (in %), α = 0, Exp. collateral rate: ρie

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

65.47% 36.25% 71.38% 39.88% -11.40% 81.88% -4.27% 48.33%
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Figure 3.5. Change in CVA of an IRS, α = 0, Exponential collateral rate: ρie

Table 3.14. Mitigation in CVA of an IRS (in %), α = 1, Exp. collateral rate: ρie

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

73.44% 46.90% 72.96% 51.48% -16.50% 92.78% -16.81% 66.35%
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Figure 3.6. Change in CVA of an IRS, α = 1, Exponential collateral rate: ρie
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3.4.2 CVA of a CDS with Rating Triggers. In this section, we compute the

CVA, DVA, and RVA of a CDS contract in presence of rating triggers as break clauses.

Recall that D represents the counterparty risk-free cumulative dividend process of a

contract. We assume that the reference entity is free of any trigger events. We denote

by τ3 the default time of the reference entity and R3 the recovery rate of the reference

entity. We assume that the CDS contract has spread κ, expires at T and has nominal

value of 1. Consequently, the cumulative dividend process of the CDS contract is

given by

Dt = (1−R3)1{τ3≤t} − κ(t ∧ T ∧ τ) ,

for all t ∈ [0, T ]. We also assume that the underlying entity’s 1-year rating transition

matrix is given as in Table 3.15.

Table 3.15. Underlying entity’s rating transition matrix: P 3

A B C D

A 0.95 0.03 0.019 0.001

B 0.04 0.85 0.107 0.003

C 0.01 0.19 0.791 0.009

D 0 0 0 1

Similar to the IRS example, we carry out our analysis for uncollateralized,

linearly collateralized and exponentially collateralized CDS contracts where α = 0

and α = 1. We display our results in Tables 3.16–3.25.

The initial URVA values increase with the increasing counterparty trigger lev-

els, and the initial DRVA values increase with the increasing investor trigger levels.

However, the absolute values of the RVA numbers can increase or decrease with the

changing trigger levels. For example, in Table 3.16, although we decrease the trigger

levels from K1 = B, K2 = B to K1 = C, K2 = C, the corresponding RVA values
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(in absolute terms) do not necessarily decrease, compared to the URVA and DRVA

values.

It can also be observed from in Tables 3.16–3.25 that bilateral rating triggers

can actually decrease the initial bilateral CVA values (in absolute values). For in-

stance, the absolute value of CVAR in Table 3.16 with no rating triggers is almost

three times greater than the absolute value of CVAR with K1 = B and K2 = B.

In addition, the UCVAR values with no rating triggers are also almost three times

greater than the UCVAR values with K1 = B and K2 = B. Similarly, the DVAR val-

ues with no rating triggers are almost four times greater than the UCVAR values with

K1 = B and K2 = B. In other words, as showed in Table 3.16 and Table 3.18, adding

rating triggers decreases the UCVAR value by nearly 60%, DVAR value by nearly

75%, and the absolute value of the bilateral CVAR by nearly 80%. Nevertheless, in

case K1 = B and K2 = D in Table 3.18, there is a slight increase in the bilateral CVA

value. Figures 3.7–3.12 illustrate the changes in the bilateral CVA values for each set

of rating triggers.

Also, it can be seen from the Tables 3.17,3.21 and 3.25, where α = 1, that

the URVA and DRVA values are slightly higher compared to the values in Tables

3.16,3.20 and 3.24, where α = 0.

Moreover, it can be seen from Tables 3.16–3.25 the UCVAR values start in-

creasing as we lower the counterparty trigger levels. Likewise, the DVAR values also

increase with the decreasing trigger levels for the investor. However, the CVAR values

do not change significantly unless we set K1 = D or K2 = D, or eliminate the rating

triggers.

The DRVA values are equal to zero whenever K2 = D, and the URVA values

are equal to zero where K1 = D, since the rating triggers are set to the default levels.
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Table 3.18. Mitigation in CVA of a CDS (in %), α = 0, No collateralization

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

68.58% 71.15% 76.52% 70.01% -0.41% 80.21% 0.87% 78.22%
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Figure 3.7. Change in CVA of a CDS, α = 0, No collateralization

Table 3.19. Mitigation in CVA of a CDS (in %), α = 1, No collateralization

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

68.02% 71.73% 68.65% 72.50% 8.39% 69.65% 6.25% 77.56%
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Figure 3.8. Change in CVA of a CDS, α = 1, No collateralization
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Table 3.22. Mitigation in CVA of a CDS (in %), α = 0, Lin. collateral rate: ρil

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

74.35% 62.23% 80.32% 62.16% -1.93% 83.25% 4.42% 66.64%
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Figure 3.9. Change in CVA of a CDS, α = 0, Linear collateral rate: ρil

Table 3.23. Mitigation in CVA of a CDS (in %), α = 1, Lin. collateral rate: ρil

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

70.31% 58.06% 72% 61.27% 4.03% 72.37% 3% 62.08%
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Figure 3.10. Change in CVA of a CDS, α = 1, Linear collateral rate: ρil
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Table 3.26. Mitigation in CVA of a CDS (in %), α = 0, Exp. collateral rate: ρie

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

72.09% 55.92% 77.42% 52.98% -3.25% 79.58% 4.53% 58.53%
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Figure 3.11. Change in CVA of a CDS, α = 0, Exponential collateral rate: ρie

Table 3.27. Mitigation in CVA of a CDS (in %), α = 1, Exp. collateral rate: ρie

(B,B) (B,C) (C,B) (C,C) (B,D) (D,B) (C,D) (D,C)

73.18% 56.25% 68.31% 53.29% 17.13% 71.55% 19.11% 55.68%
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Figure 3.12. Change in CVA of a CDS, α = 1, Exponential collateral rate: ρie
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CHAPTER 4

PRICING VIA DYNAMIC COHERENT ACCEPTABILITY

INDICES WITH TRANSACTION COSTS

4.1 Introduction

In this chapter, we develop a framework for narrowing the theoretical spread

between ask prices and bid prices of derivative securities in markets with transaction

costs, using dynamic coherent acceptability indices (DCAIs), developed in Bielecki,

Cialenco, and Zhang [BCZ11]. Apart from utilizing the DCAIs, our approach is

related to the literature for studying no-good-deal pricing to narrow the no-arbitrage

pricing interval.

The literature on models for narrowing the no-arbitrage interval is quite im-

mense. One of the widely studied approaches is indifference pricing, which is based

on utility maximization. Specifically, an indifference price is a price at which an agent

receives the same expected utility between trading and not trading. A comprehensive

collection of articles related to indifference pricing can be found in Carmona [Car09].

However, it is known that the indifference pricing approach has limitations: numerical

implementations and explicit calculations for indifference pricing may not be robust,

and the resulting bid and ask prices are not necessarily risk-neutral in practice (see

for instance Staum [Sta07]). Alternatively, Cochrane and Saá-Requejo [CSR00] intro-

duced the no-good-deal pricing methodology. In this approach, the arbitrage bounds

are narrowed by ruling out deals that are too good—cash flows that have high Sharpe

ratios. This strengthens the no-arbitrage argument by assuming that any investor is

willing to accept a good-deal. In subsequent papers by Bernardo and Ledoit [BL00]

and Pinar, Salih, and Camci [PSC10] cash flows are considered good-deals if their cor-

responding Gain-Loss ratio is high. The no-good-deal pricing approach has been used

in other applications and settings by Carr, Geman, and Madan [CGM01], Jaschke and
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Kuchler [JK01], Staum [Sta04], Engwerda, Roorda, and Schumacher [RSE05], Bjork

and Slinko [BS06], Kloppel and Schweitzer [KS07], Arai and Fukasawa [AF11]. The

no-good-deal pricing has also been approached via coherent risk measures in Cherny

and Madan [CM06] and Cherny [Che07b]. A comprehensive survey of the theory of

pricing and hedging in incomplete markets is provided by Staum [Sta07].

No-good-deal pricing has also been studied by several authors besides Cochrane

and Saá-Requejo [CSR00]. In Madan and Pistorious [MPS11], dynamically consistent

bid and ask prices for structured products are derived using nonlinear expectations,

and in Bion-Nadal [BN09] and Cherny [Che07a] dynamic bid and ask prices are found

via dynamic risk measures.

Cherny and Madan [CM10] proposed the conic finance framework for pricing

in incomplete, frictionless markets using static acceptability indices, which are intro-

duced in Cherny and Madan [CM09]. The framework is called conic finance because

the derivative prices they introduce depend on the direction of trade—the resulting

set of cash flows generated by the prices of the derivative is no longer a linear space,

it is instead a convex cone. Nevertheless, as with any static pricing technique, their

prices may lack a dynamic consistency property. This drawback renders the static

approach inadequate for pricing exotic derivatives such as path-dependent deriva-

tives. In a recent study, Rosazza-Gianin and Sgarra [RGS12] apply the concepts of

dynamic acceptability indices and of BSDEs and g-expectations to determine ask and

bid prices of derivatives dynamically in time and to model liquidity risk. Most impor-

tantly, their framework is developed without assuming the scale invariance property

on the acceptability indices, therefore utilizing a more general class of indices than

DCAIs, which are called the quasi-concave acceptability indices.

Our contributions can be summarized as follows. First of all, our framework

allows for the (hedging) cash flows to pay dividends, and have transaction costs. In
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particular, we can apply our no-good-deal pricing approach to the pricing of interest

rate swaps and credit default swaps in markets with transaction costs. It is impor-

tant to stress that our no-good-deal condition is dynamically consistent in time. On

the other hand, we construct the good-deal ask and bid prices of a derivative which

are dynamically consistent, in the sense that they are defined in terms of dynamic

coherent acceptability indices. Furthermore, we prove a representation theorem in

terms of risk-neutral measures and dynamically consistent sequences of sets of prob-

ability measures This allows us to narrow the no-arbitrage pricing interval. Finally,

we propose an application of our framework with the dynamic Gain-Loss ratio, which

is a particular dynamic coherent acceptability index.

4.2 Arbitrage and Good-Deals

Let T := {0, 1, . . . , T}, where T is a fixed time horizon. Moreover, let (Ω,FT ,F =

(Ft)t∈T ,P) be the underlying filtered probability space. We assume that Ω = {ω1, . . . , ωN},

and P is of full support. In what follows, we will denote by L0 := L0(Ω,FT ,F,P) the

set of all F-adapted processes.

We consider a market consisting of a savings account B and of N traded

securities satisfying the following properties:

1. Savings account can be bought and sold via the price process B :=
(
(
∏t

s=0[1 +

rs])
)T
t=0

, where (rt)
T
t=0 is the risk-free rate, which is a nonnegative adapted pro-

cess

2. The securities can be bought by means of the ex-dividend price process Sask :=(
(Sask,1t , . . . , Sask,Nt )

)T
t=0

, and the corresponding (cumulative) dividend process

is denoted by Aask :=
(
(Aask,1t , . . . , Aask,Nt )

)T
t=1

.

3. The securities can be sold in accordance with the ex-dividend price process

Sbid :=
(
(Sbid,1t , . . . , Sbid,Nt )

)T
t=0

, and the corresponding (cumulative) dividend
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process is denoted by Abid :=
(
(Abid,1t , . . . , Abid,Nt )

)T
t=1

.

The processes Sask, Sbid, Aask, Abid are assumed to be adapted. Clearly, all

equalities and inequalities involving the above vector-valued processes are understood

coordinate-wise. As in Chapter 2 and in Chapter 3, we denote by ∆ the backward dif-

ference operator: ∆Yt := Yt−Yt−1. Without loss of generality, we use the convention

that Aask0 = Abid0 = 0.

Remark 4.2.1. Note that for any t = 1, 2, . . . , T and j = 1, 2, . . . , N , the random

variable ∆Aask,jt is interpreted as amount of dividend associated with holding a long

position in security j from time t−1 to time t. Likewise, the random variable ∆Abid,jt is

interpreted as amount of dividend associated with holding a short position in security

j from time t− 1 to time t.

We now make the following standing assumption.

Assumption (A): Sask ≥ Sbid and ∆Aask ≤ ∆Abid.

Note that if this assumption is violated, then market exhibits arbitrage by

simultaneously buying and selling the corresponding security.

4.2.1 Self-Financing Trading Strategies. A trading strategy is a predictable

process φ :=
(
(φ0

t , φ
1
t , . . . , φ

N
t )
)T
t=1

, where φjt is interpreted as the number of units of

security j held from time t − 1 to time t. The processes φ1, . . . , φN correspond to

the holdings in the N securities, and process φ0 corresponds to the holdings in the

savings account B. We take the convention φ0 = (0, . . . , 0).

We define the wealth process associated with a trading strategy as follows.

Definition 4.2.1. The wealth process V (φ) associated with a trading strategy φ is
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defined as

Vt(φ) =



φ0
1 +

∑N
j=1 1{φj1≥0}φ

j
1S

ask,j
0 +

∑N
j=1 1{φj1<0}φ

j
1S

bid,j
0 , if t = 0,

φ0
tBt +

∑N
j=1 1{φjt≥0}φ

j
t(S

bid,j
t + ∆Aask,jt )

+
∑N

j=1 1{φjt<0}φ
j
t(S

ask,j
t + ∆Abid,jt ), if 1 ≤ t ≤ T .

Remark 4.2.2.

(i) Observe that in Definition 4.2.1, V0(φ) is interpreted as the cost of setting up

the portfolio associated with φ. However, at t = 1, . . . , T , the process Vt(φ)

indicates the sum of the liquidation value of the portfolio associated with trading

strategy φ before any time t transactions and the dividends associated with the

strategy φ from t− 1 to t.

(ii) Furthermore, the wealth process V is not linear, i.e. V (φ) + V (ψ) 6= V (φ+ ψ),

and V (αφ) 6= αV (φ) for α ∈ R and some trading strategies φ and ψ. This is

a consequence of the presence of transaction costs and also the main difference

from the frictionless setup.

Let us proceed by defining the self-financing condition in our context.

Definition 4.2.2. A trading strategy φ is self-financing if

Bt∆φ
0
t+1 +

N∑
j=1

Sask,jt 1{∆φjt+1≥0}∆φ
j
t+1 +

N∑
j=1

Sbid,jt 1{∆φjt+1<0}∆φ
j
t+1 (4.1)

=
N∑
j=1

φjt1{φjt≥0}∆A
ask,j
t +

N∑
j=1

φjt1{φjt<0}∆A
bid,j
t

for all t = 1, 2, . . . , T − 1.

Naturally, the self-financing condition implies that no money can flow in or

out of the portfolio.
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We define the discounted wealth processes as V ∗(φ) := B−1V (φ) for all trading

strategies φ. The next lemma gives a useful characterization of the self-financing con-

dition in terms of the discounted wealth process. We refer to Bielecki et al. [BCR12]

for the proof.

Lemma 4.2.1. A trading strategy φ is self-financing if and only if the wealth process

V (φ) satisfies the following equality

V ∗t (φ) = V0(φ) +
N∑
j=1

1{φjt≥0}φ
j
tB
−1
t Sbid,jt +

N∑
j=1

1{φjt<0}φ
j
tB
−1
t Sask,jt

−
N∑
j=1

t∑
u=1

1{∆φju≥0}∆φ
j
uB
−1
u−1S

ask,j
u−1 −

N∑
j=1

t∑
u=1

1{∆φju<0}∆φ
j
uB
−1
u−1S

bid,j
u−1

+
N∑
j=1

t∑
u=1

1{φju≥0}φ
j
uB
−1
u ∆Aask,ju +

N∑
j=1

t∑
u=1

1{φju<0}φ
j
uB
−1
u ∆Abid,ju

for t = 1, 2, . . . , T .

Therefore, the wealth process at time t, associated with a self-financing trading

strategy φ, is equal to the sum of setting up the portfolio associated with φ, the

liquidation value at time t of the portfolio associated with φ, all purchases and sales

before time t, and all dividends associated with φ up to time t.

Remark 4.2.3. We recover classic definitions of the wealth process and self-financing

condition if there are no transactions costs. In case Sask = Sbid and Aask = Abid = 0,

i.e. if the market is frictionless and there are no dividend-paying securities, see

Pliska [Pli97] for the relevant definition. The definition, in case the market is friction-

less and there are dividend-paying securities, which is Sask = Sbid and Aask = Abid,

can be found in Kijima [Kij03].

4.2.2 Arbitrage. Let us start with defining the following sets of self-financing
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trading strategies.

S(t) :=


{φ : φ is s.f., V0(φ) = 0}, t = 0

{φ : φ is s.f., φs = 1{s≥t+1}φs for all s = 1, 2, . . . , T}, t ∈ {1, . . . , T − 1}

Note that in particular Vt(φ) = 0 for any φ ∈ S(t). Moreover, let us define

H0(t) :=
{(

0, . . . , 0,∆V ∗t+1(φ), . . . ,∆V ∗T (φ)
)

: φ ∈ S(t)
}

(4.2)

for t ∈ {0, . . . , T − 1}.

In general, the sets H0(t) are not convex because of the presence of transaction

costs. Therefore, we define the following sets.

L+(t) :=
{

(Zs)
T
s=0 : Zs ∈ L+(Ω,Fs,P), Zs = 1{s≥t+1}Zs, s = 0, . . . , T

}
, (4.3)

H(t) :=
{(

0, . . . , 0,∆(V ∗t+1(φ)− Zt+1), . . . ,∆(V ∗T (φ)− ZT )
)

: φ ∈ S(t), Z ∈ L+(t)
}
,

(4.4)

for t ∈ {0, . . . , T − 1}. We call H(t) as the set of hedging cash flows initiated at time

t.

Using the fact that the set

{V ∗s (φ)−X : φ is s.f., X is Fs −measurable, and X ≥ 0}

is a convex cone (see Bielecki et al. [BCR12]), it can be shown that the set H(t) is

also a convex cone.

We continue with defining an arbitrage opportunity in our setup.

Definition 4.2.3. An arbitrage opportunity at time t ∈ {0, . . . , T −1} for H0(t) is a

cash flow H ∈ H0(t) such that
∑T

s=tHs(ω) ≥ 0 for all ω ∈ Ω, and EP[
∑T

s=tHs | Ft ](ω) >

0 for some ω ∈ Ω.
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The no-arbitrage condition holds true at time t for H0(t) if there does not

exist an arbitrage opportunity at time t for H0(t), where t ∈ {0, . . . , T − 1}.

Remark 4.2.4. An arbitrage opportunity is usually defined through a trading strategy

rather than a cash flow. However, we work with cash flows in our setup and each

hedging cash flow corresponds to a trading strategy.

Definition 4.2.4. For any fixed t ∈ {0, . . . , T −1}, we say that a probability measure

Q is risk-neutral for H0(t) if Q ∼ P, and if EQ[
∑T

s=tHs | Ft ](ω) ≤ 0 for all ω ∈ Ω

and all H ∈ H0(t). The set of all risk-neutral measures for H0(t) will be denoted by

R(H0(t)).

Likewise, we can define the set of risk-neutral probabilities R(H(t)), and

the arbitrage opportunity and no-arbitrage condition for the set H(t), where t ∈

{0, . . . , T − 1}. We see from the following results that we can interchange H0(t) by

H(t) in Definition 4.2.3 and Definition 4.2.4.

Lemma 4.2.2.

(i) For all t ∈ {0, . . . , T − 1}, we have Q ∈ R(H0(t)) if and only if Q ∼ P, and if

EQ[
∑T

s=tHs | Ft ] ≤ 0 for all H ∈ H(t).

(ii) For all t ∈ {0, . . . , T − 1}, we have that R(H(t)) = R(H0(t)).

Proof. First, let us fix t ∈ {0, . . . , T − 1}.

(=⇒) If Q ∈ R(H0(t)), then EQ[
∑T

s=tH
0
s | Ft ] ≤ 0 for all H0 ∈ H0(t). Hence,

EQ[
∑T

s=tH
0
s − ZT | Ft ] ≤ 0 for all H0 ∈ H0(t) and Z ∈ L+(t). Therefore,

EQ[
∑T

s=tHs | Ft ] ≤ 0 for all H ∈ H(t).

(⇐=) Suppose that Q ∼ P, and that EQ[
∑T

s=tHs | Ft ] ≤ 0 for all H ∈ H(t). Then,

EQ[
∑T

s=tH
0
s − ZT | Ft ] ≤ 0 for all H0 ∈ H0(t) and Z ∈ L+(t). Letting ZT = 0

proves that Q ∈ R(H0(t)).
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Lemma 4.2.3. For each t ∈ {0, . . . , T − 1}, the no-arbitrage condition holds true at

time t for H0(t) if and only if for each H ∈ H(t) such that
∑T

s=tHs ≥ 0, we have∑T
s=tHs = 0.

Proof. Let us fix t ∈ {0, . . . , T − 1}.

(=⇒) Assume that H ∈ H(t) is such that
∑T

s=tHs ≥ 0. Then, by definition of H(t),

there exists H0 ∈ H0(t) and Z ∈ L+(t) so that
∑T

s=tHs =
∑T

s=tH
0
s −ZT . This

give us
∑T

s=tH
0
s ≥ ZT . The no-arbitrage condition holds true at time t for

H0(t), so
∑T

s=tH
0
s = 0. Therefore, ZT = 0, which implies

∑T
s=tHs = 0.

(⇐=) Suppose that H0 ∈ H0(t) is such that
∑T

s=tH
0
s ≥ 0. By assumption, for

each H ∈ H(t) such that
∑T

s=tHs ≥ 0, we have
∑T

s=tHs = 0. From the

definition of H(t), this implies that for each Ĥ0 ∈ H0(t), Z ∈ L+(t) such that∑T
s=t Ĥs − ZT ≥ 0, we have

∑T
s=t Ĥ

0
s − Z = 0. Taking Z = 0 and Ĥ0 := H0

gives us
∑T

s=tH
0
s = 0.

Remark 4.2.5. Recall that the sets H0(t) have a natural financial interpretation,

compared to the sets H(t). Nevertheless, using Lemma 4.2.2 and Lemma 4.2.3, we

can make use of either H(t) or H0(t) since R(H(t)) = R(H0(t)). Therefore, Theorem

4.2.1 and Theorem 4.3.1 can be stated and proved in terms of H0(t) as well. It is

more convenient to work with the set H(t), since it is a convex cone. Therefore, we

work with H(t) in the sequel.

In conclusion, let us present and prove the following proposition which char-

acterizes the no-arbitrage condition for H(t) via the set of risk neutral measures

R(H(t)).
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Proposition 4.2.1. If R(H(t)) 6= ∅, then the no-arbitrage condition holds at time

t ∈ {0, . . . , T − 1} for H(t).

Proof. Assume that Q ∈ R(H(t)), and that there exists an arbitrage opportunity H

at time t ∈ {0, . . . , T − 1}. By the definition of an arbitrage opportunity, H ∈ H(t),∑T
s=tHs ≥ 0, and EP[

∑T
s=tHs | Ft ](ω) > 0 for some ω ∈ Ω. Therefore, we have

EQ[
∑T

s=tHs | Ft ](ω) > 0 for some ω ∈ Ω, since Q ∼ P and
∑T

s=tHs ≥ 0, However,

this contradicts that Q ∈ R(H(t)). Hence, the no-arbitrage condition holds true at

time t ∈ {0, . . . , T − 1} for H(t).

We now state definitions related to pricing with the no-arbitrage arguments

defined above.

Definition 4.2.5. Let D ∈ L0 and t ∈ {0, . . . , T − 1}.

(i) The set of extended cash flows associated with an Ft-measurable random vari-

able St and D ∈ L0 is defined as

H̃(t, St) :=
{(

0, . . . , 0, ξtSt, Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T
)

: H ∈ H(t), ξt is an Ft-measurable r.v.
}
,

(ii) The pricing interval associated with a process D ∈ L0 and a set of probability

measures X is defined as

I(t,D;X ) :=
{
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] : Q ∈ X
}
.

A cash flow in H(t, St) is the sum of a position in H(t) and a position of ξt

units in the discounted cash flow (0, . . . , 0, St,−D∗t+1, . . . ,−D∗T ).

I(t,D;X ) is called the no-arbitrage pricing interval if for each St ∈ I(t,D;X )

the no-arbitrage condition is satisfied for H̃(t, St). Similarly, we call St ∈ I(t,D) a no-

arbitrage price if I(t,D) is a no-arbitrage pricing interval. In other words, I(t,D;X )
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is the no-arbitrage pricing interval if for each St ∈ I(t,D;X ) and each H̃ ∈ H̃(t, St)

such that
∑T

s=t H̃s ≥ 0, we have
∑T

s=t H̃s = 0.

We denote by πUt := supQ∈R(H(t)) EQ
[∑T

s=t+1D
∗
s

∣∣Ft ] the upper no-arbitrage

bound and πLt := infQ∈R(H(t)) EQ
[∑T

s+1 D
∗
s

∣∣Ft ] the lower no-arbitrage bound, if I(t,D;X )

is a no-arbitrage pricing interval. Moreover, any St ∈ I(t,D;X ) is called a no-

arbitrage price.

The following result provides a necessary condition for I(t,D;X ) to be a no-

arbitrage pricing interval.

Lemma 4.2.4. Let D ∈ L0 and t ∈ {0, . . . , T − 1}. If R(H(t)) 6= ∅, then I(t,D) is

the no-arbitrage pricing interval.

Proof. Fix D ∈ L0, t ∈ {0, . . . , T − 1} and St ∈ I(t,D;R(H(t))). Let H̃ ∈ H̃(t, St)

be a cash flow such that
∑T

s=t H̃s ≥ 0. By definition of H̃(t, St), we have that

ξtSt +
T∑
s=t

(Hs − ξtD∗s) ≥ 0 (4.5)

for some H ∈ H(t) and some Ft-measurable random variable ξt.

Next, since R(H(t)) 6= ∅ and St ∈ I(t,D;R(H(t))), there exists Q ∈ R(H(t))

such that St = EQ
[∑T

s=tD
∗
s

∣∣Ft ]. As a result, ξtEQ
[∑T

s=tD
∗
s

∣∣Ft ] − ξtSt = 0. In

view of (4.5) we deduce that EQ
[∑T

s=tHs

∣∣Ft ] ≥ 0 holds true. Since Q ∈ R(H(t)),

we have that EQ
[∑T

s=tHs

∣∣Ft ] = 0, which gives us that

ξtSt + EQ
[ T∑
s=t

(Hs − ξtD∗s)
∣∣∣Ft ] = 0.

In virtue of the above result, we conclude that ξtSt +
∑T

s=t(Hs − ξtD∗s) = 0, which

implies that the no-arbitrage condition holds true for H̃(t, St).

4.2.3 Good-Deals. The theory of Dynamic Coherent Acceptability Indices (DCAIs)

was developed in Bielecki et al. [BCZ11] (see Appendix A for the definitions and the
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related results). A DCAI α is associated with a left-continuous, increasing family

of DCRMs (ργ){γ∈(0,∞)}, and consequently with a family of dynamically consistent

sequences of sets of probability measures. We fix a family of DCRMs (ργ){γ∈(0,∞)}, and

denote by Q = ((Qγt )t∈T )γ∈(0,∞) the corresponding family of dynamically consistent

sequences of sets of probability measures.

The following definition is a counterpart of Definition 4.2.3.

Definition 4.2.6. A good-deal for H(t) at time t ∈ {0, . . . , T − 1} and level γ > 0

is a cash flow H ∈ H(t) such that ργt (H)(ω) < 0 for some ω ∈ Ω.

Contrary to the definition of an arbitrage opportunity, a good-deal is defined

through a family of DCRMs and a level γ. Thus, even though a cash flow stream

H ∈ H(t) is a good-deal with respect to a family of DCRMs for a fixed acceptability

level γ, it may not be a good-deal with respect to another family of DCRMs. Note

that if a cash flow is a good-deal for γ0, then it is also a good-deal for any γ′ ≤ γ0,

since ργ is monotone increasing in γ. Therefore, a cash flow stream that is a good-

deal at level γ0 for a fixed family of DCRMs, may not be a good-deal at another level

γ′ > γ0.

Let us proceed with defining the no-good-deal condition.

Definition 4.2.7. The no-good-deal condition (NGD) holds true for H(t) at time

t ∈ {0, . . . , T − 1} and level γ > 0 if ργt (H)(ω) ≥ 0 for all H ∈ H(t) and ω ∈ Ω.

We will make the following technical assumption on Q.

Assumption (B): We assume that, for each γ > 0 and t ∈ T , any probability

measure Q ∈ Qγt is equivalent to P, and the set

Eγt :=

{
dQ
dP

: Q ∈ Qγt
}
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is closed and convex.

Observe that, since Ω is finite and P is of full support, the set Eγt is bounded.

Thus, the set Eγt is compact for all γ > 0 and t ∈ T . We show that a family of

densities E corresponding to the dynamic Gain-Loss Ratio satisfies this assumption,

in Section 4.4.

Finally, let us recall from Bielecki et al. [BCIR12] the following result which

characterizes the NGD condition at time t ∈ {0, . . . , T − 1} and level γ > 0 via

the R(H(t)) ∩ Qγt 6= ∅. Proof of the following theorem can be found in Bielecki et

al. [BCIR12].

Theorem 4.2.1. The NGD condition holds true for H(t) at time t ∈ {0, . . . , T − 1}

and level γ > 0 if and only if R(H(t)) ∩Qγt 6= ∅.

Observe that owing to Proposition 4.2.1 and Theorem 4.2.1 that if no-good-

deal condition holds true then the no-arbitrage condition also holds true, sinceR(H(t))∩

Qγt 6= ∅ implies R(H(t)) 6= ∅.

4.3 Dynamic Ask and Bid Prices via DCAI

In this section we define the dynamic ask and bid prices of a derivative contract

via DCAIs. Moreover we derive a representation for the prices using risk neutral

measures and dynamically consistent sequences of sets of probability measures.

Let us start by defining the set of extended cash flows, which is needed to

derive the dynamic ask and bid prices. Let D ∈ L0 be a cash flow associated to a

derivative contract. For a fixed t ∈ {0, . . . , T − 1}, D ∈ L0, and an Ft-measurable
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random variable Xt, we define the following sets

Ĥ(t) :=
{(

0, . . . , 0, ξtX
∗
t , Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
, (4.6)

H(t) :=
{(

0, . . . , 0,−ξtX∗t , Ht+1 + ξtD
∗
t+1, . . . , HT + ξtD

∗
T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
, (4.7)

where X∗t := B−1
t Xt and D∗ := B−1D. We call the pair (Ĥ(t),H(t)) as the set of

extended cash flows.

An element, i.e. a cash flow stream, in Ĥ(t) consists of a position in the

underlying market H(t) and a nonnegative static position of ξt units in the discounted

cash flow (0, . . . , 0, X∗t ,−D∗t+1, . . . ,−D∗T ). Respectively, a cash flow stream in H(t)

consists of a position in the underlying market H(t) and a nonnegative static position

of ξt units in the discounted cash flow (0, . . . , 0,−X∗t , D∗t+1, . . . , D
∗
T ).

Observe that H(t) ⊂ Ĥ(t)∩H(t). Moreover, H ∈ Ĥ(t) and H ∈ H(t) for any

H ∈ H(t), where ξt = 0 in (4.6) and (4.7).

Analogously to Definition 4.2.4, a probability measure Q is risk-neutral for

Ĥ(t), respectively H(t), if Q ∼ P, and EQ[
∑T

s=tHs | Ft ] ≤ 0 for all H ∈ Ĥ(t),

respectively for all H ∈ H(t). Furthermore, the no-good-deal condition holds true for

Ĥ(t), respectively H(t), at time t ∈ T and level γ > 0, if ργt (H) ≥ 0 for all H ∈ Ĥ(t),

respectively H ∈ H(t). The set of all risk-neutral measures for Ĥ(t) and H(t) is

denoted by R(Ĥ(t)) and R(H(t)), respectively.

Let us proceed with the following lemma.

Lemma 4.3.1. The sets Ĥ(t) and H(t) are convex cones.

Proof. Let us first show that Ĥ(t) is a convex cone. Suppose that t ∈ {0, . . . , T − 1},
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Ĥ1, Ĥ2 ∈ Ĥ(t), and λ1, λ2 ≥ 0. Using the definition of Ĥ(t), for a fixed D ∈ L0 and a

fixed Ft-measurable random variable Xt, there exist H1, H2 ∈ H(t) and nonnegative

Ft-measurable random variables ξ1
t , ξ

2
t such that

Ĥ1 =
(

0, . . . , 0, ξ1
tX
∗
t , H

1
t+1 − ξ1

tD
∗
t+1, . . . , H

1
T − ξ1

tD
∗
T

)
,

Ĥ2 =
(

0, . . . , 0, ξ2
tX
∗
t , H

2
t+1 − ξ2

tD
∗
t+1, . . . , H

2
T − ξ2

tD
∗
T

)
.

Next, we see that

λ1Ĥ
1 + λ2Ĥ

2 =
(

0, . . . , 0, λ1ξ
1
tX
∗
t , λ1H

1
t+1 − λ1ξ

1
tD
∗
t+1, . . . , λ1H

1
T − λ1ξ

1
tD
∗
T

)
+
(

0, . . . , 0, λ2ξ
2
tX
∗
t , λ2H

2
t+1 − λ2ξ

2
tD
∗
t+1, . . . , λ2H

2
T − λ2ξ

2
tD
∗
T

)
=
(

0, . . . , 0, (λ1ξ
1
t + λ2ξ

2
t )X

∗
t , (λ1H

1
t+1 + λ2H

2
t+1)− (λ1ξ

1
t + λ2ξ

2
t )D

∗
t+1,

. . . , (λ1H
1
T + λ2H

2
T )− (λ1ξ

1
t + λ2ξ

2
t )D

∗
T

)
Since H(t) is a convex cone, we have that λ1H

1 +λ2H
2 ∈ H(t). Moreover, λ1ξ

1
t +λ2ξ2

t

is Ft-measurable and nonnegative. It follows that Ĥ(t) is a convex cone.

Let us proceed by proving that H(t) is a convex cone. Let t ∈ {0, . . . , T − 1},

H
1
, H

2 ∈ Ĥ(t), and λ1, λ2 ≥ 0. By the definition of H(t), for a fixed D ∈ L0 and a

fixed Ft-measurable random variable Xt, there exist H1, H2 ∈ H(t) and nonnegative

Ft-measurable random variables ξ1
t , ξ

2
t such that

H
1

=
(

0, . . . , 0,−ξ1
tX
∗
t , H

1
t+1 + ξ1

tD
∗
t+1, . . . , H

1
T + ξ1

tD
∗
T

)
,

H
2

=
(

0, . . . , 0,−ξ2
tX
∗
t , H

2
t+1 + ξ2

tD
∗
t+1, . . . , H

2
T + ξ2

tD
∗
T

)
.

Then, we see that

λ1H
1

+ λ2H
2

=
(

0, . . . , 0,−λ1ξ
1
tX
∗
t , λ1H

1
t+1 + λ1ξ

1
tD
∗
t+1, . . . , λ1H

1
T + λ1ξ

1
tD
∗
T

)
+
(

0, . . . , 0,−λ2ξ
2
tX
∗
t , λ2H

2
t+1 + λ2ξ

2
tD
∗
t+1, . . . , λ2H

2
T + λ2ξ

2
tD
∗
T

)
=
(

0, . . . , 0,−(λ1ξ
1
t + λ2ξ

2
t )X

∗
t , (λ1H

1
t+1 + λ2H

2
t+1) + (λ1ξ

1
t + λ2ξ

2
t )D

∗
t+1,

. . . , (λ1H
1
T + λ2H

2
T ) + (λ1ξ

1
t + λ2ξ

2
t )D

∗
T

)
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Using the same arguments for Ĥ(t), we conclude that H(t) is a convex cone.

Remark 4.3.1. Note that, analogously to Proposition 4.2.1, the no-good-deal condi-

tion holds true for Ĥ(t), respectively H(t), at time t ∈ T and level γ > 0 if and only

if R(Ĥ(t)) ∩ Qγt = ∅, respectively R(H(t)) ∩ Qγt = ∅. Using the fact that Ĥ(t) and

H(t) are convex cones, we can interchange H(t) with Ĥ(t) or H(t) in Proposition

4.2.1.

For the sake of brevity, let us define the mappings δ+
t , δt : L0 → L0 as

δ+
t (D) :=

(
0, . . . , 0, 0, Dt+1, . . . DT

)
, t ∈ {0, . . . , T − 1},

δt(D) :=
(
0, . . . , 0, Dt, 0, . . . , 0

)
, t ∈ T .

We are now ready to introduce the the dynamic good-deal ask and bid prices

corresponding to a given DCAI α.

Definition 4.3.1. The discounted good-deal ask and bid prices of a derivative con-

tract D ∈ L0, at level γ > 0, at time t ∈ {1, . . . , T − 1} are defined as

Πask,γ
t (D)(ω) : = inf{v ∈ R : there exists H ∈ H(t)

such that αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ},

Πbid,γ
t (D)(ω) : = sup{v ∈ R : there exists H ∈ H(t)

such that αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ},

for all ω ∈ Ω.

Remark 4.3.2. Clearly, the good-deal prices defined above depend on the choice of

DCAI α, level γ, and the set of hedging cash flows H(t). Furthermore, the good-

deal ask (bid) price is non-decreasing (non-increasing) in γ, from the monotonicity

property of DCAIs (see property (D3) in Definition A.1). In addition, the good-deal
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ask (bid) price is non-increasing (non-decreasing) in H(t) since

Πask,γ
t (D)(ω) = inf

⋃
H∈H(t)

{v ∈ R : αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ},

Πbid,γ
t (D)(ω) = sup

⋃
H∈H(t)

{v ∈ R : αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ}

for all ω ∈ Ω.

Remark 4.3.3. Note that the choice of the appropriate γ level is of great importance

when finding the good-deal prices an illiquid derivative. Typically, the γ levels are

calibrated from the quoted prices using a given α, and then used to price an illiquid

derivative. Such applications can be found in Cherny and Madan [CM10] and Madan

and Schoutens [MS11a, MS11b].

Remark 4.3.4. We can interpret the ask price, Πask,γ
t (D), as the minimum amount

of cash v such that v plus the resulting hedging error acceptable (with respect to the

acceptability index α) at least at level γ. Respectively, we can interpret the bid price,

Πbid,γ
t (D), as the maximum amount of cash v such that −v plus the resulting hedging

error is α-acceptable at least at level γ.

Remark 4.3.5. Using Theorem A.3, we see that

αt(δt(1v) +H − δ+
t (D∗))(ω) = sup

{
γ ∈ (0,+∞) :

v + inf
Q∈Qγt

EQ[ T∑
s=t+1

Hs −D∗s
∣∣Ft ](ω) ≥ 0

}
for all ω ∈ Ω, t ∈ {1, . . . , T −1}, and D ∈ L0. Since the cash flows D∗ and H ∈ H(t)

are discounted, the prices Πask,γ(D) and Πbid,γ(D) are also discounted.

The following result gives a justification of our definition of ask and bid prices,

in the sense that they are well-defined in Definition 4.3.1.
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Proposition 4.3.1. For any fixed t ∈ {1, . . . , T − 1}, D ∈ L0, and γ > 0, the sets

{v ∈ R : there exists H ∈ H(t) s.t. αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ},

{v ∈ R : there exists H ∈ H(t) s.t. αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ}

are nonempty for all ω ∈ Ω.

Proof. Let us fix t ∈ {1, . . . , T − 1}, D ∈ L0, and γ > 0.

Suppose that

αt(δt(1v) +H − δ+
t (D∗)) < γ

for all v ∈ R and H ∈ H(t). By Theorem A.3, we have that

αt(δt(1v) +H − δ+
t (D∗))(ω) = sup

{
β ∈ (0,+∞) :

v + inf
Q∈Qβt

EQ
[ T∑
s=t+1

Hs −Ds

∣∣∣Ft](ω) ≥ 0
}
< γ

for all v ∈ R and H ∈ H(t). Since α is normalized, there exists D′ ∈ L0 such that

αt(D
′) = +∞. Let us define v∗ as the scalar

v∗ : = sup
ω∈Ω

sup
H∈H(t)

{
sup
Q∈Qβt

EQ
[ T∑
s=t+1

D′s

∣∣∣Ft ](ω)− inf
Q∈Qβt

EQ
[ T∑
s=t+1

Hs −Ds

∣∣∣Ft ](ω)

}
.

Then, we see that

v∗ + EQ
[ T∑
s=t+1

Hs −Ds

∣∣∣Ft ](ω) ≥ EQ
[ T∑
s=t+1

D′s

∣∣∣Ft ](ω),

for all Q ∈ Qγt , ω ∈ Ω, and H ∈ H(t). From the monotonicity property of α, we

obtain

αt(δt(1v
∗) +H − δ+

t (D∗)) ≥ αt(D
′) = +∞,

which contradicts αt(δt(1v) +H − δ+
t (D∗))(ω) < γ for all v ∈ R.

Using the following result, we can interpret the ask prices via bid prices and

bid prices via ask prices.
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Lemma 4.3.2. For any D ∈ L0, γ > 0, and t ∈ {0, . . . , T − 1} we have that

Πask,γ
t (D) = −Πbid,γ

t (−D).

Proof. Using the definitions of Πask,γ
t (D) and Πbid,γ

t (D), we deduce that

Πask,γ
t (D) = inf{v ∈ R : there exists H ∈ H(t) s.t. αt(δt(1v) +H − δ+

t (D∗)) ≥ γ}

= − sup{−v ∈ R : there exists H ∈ H(t) s.t. αt(δt(1v) +H − δ+
t (D∗)) ≥ γ}

= − sup{v ∈ R : there exists H ∈ H(t) s.t. αt(−δt(1v) +H − δ+
t (D∗)) ≥ γ}

= −Πbid,γ
t (−D).

4.3.1 Dual Representation of Good-Deal Ask and Bid Prices. In this section

we prove a representation theorem for the good-deal ask and bid prices in terms of

a family of dynamically consistent sequences of sets of probability measures and risk

neutral measures.

We now make the following standing assumption, which is necessary for The-

orem 4.3.1.

Assumption (C): The mapping γ 7→ ργ is continuous.

In Proposition 4.4.3, we show that the dynamic Gain-Loss Ratio indeed satis-

fies the following assumption.

The following result states one of the main contributions of this work, which

gives a representation of the prices Πask,γ
t and Πbid,γ

t in terms of the sets R(H(t)) and

Qγt (H(t)).

Theorem 4.3.1. The discounted good-deal ask and bid prices of a derivative contract
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D ∈ L0, at level γ > 0, at time t ∈ {1, . . . , T − 1} satisfy

Πask,γ
t (D) = sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ,
Πbid,γ
t (D) = inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Proof. Let D ∈ L0, γ > 0, and t ∈ {1, . . . , T − 1}. We first show that the theorem

holds true for Πask,γ(D).

Step 1.a

We first show that

Πask,γ
t (D) ≤ sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
First notice that, by Definition 4.3.1 and Theorem A.1, we have

Πask,γ
t (D)(ω) = inf

{
v ∈ R : there exists H ∈ H(t) such that

sup
{
β ∈ (0,∞) : ρβt (δt(1v) +H − δ+

t (D))(ω) ≤ 0
}
≥ γ

}
,

for all ω ∈ Ω. By continuity and monotonicity of the map γ 7→ ργ, we may apply

Lemma B.2 to deduce that

sup
{
β ∈ (0,∞) : ρβt (δt(1v) +H − δ+

t (D))(ω) ≤ 0
}
≥ γ

if and only if ργt (δt(1v) +H − δ+
t (D))(ω) ≤ 0 for all ω ∈ Ω. Hence,

Πask,γ
t (D)(ω) = inf

{
v ∈ R : there exists H ∈ H(t) (4.8)

such that ργt (δt(1v) +H − δ+
t (D))(ω) ≤ 0

}
for all ω ∈ Ω.

Now fix an Ft-measurable random variable Xt, and let P t := {P t
1, P

t
2, . . . , P

t
nt}

be the unique partition that generates Ft. Fix P t
i 6= ∅ and let ωi ∈ P t

i . Then
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1P ti
(ω)Xt(ωi) = 1P ti

(ω)Xt(ω) for all ω ∈ Ω. Using (4.8), we have that Πask,γ
t (D)(ωi) >

X∗t (ωi) if and only if

X∗t (ωi) /∈
{
v ∈ R : there exists H ∈ H(t) s.t. ργt (δt(1v) +H − δ+

t (D∗))(ωi) ≤ 0
}
.

Now, the above condition holds true if and only if

ργt (δt(1X
∗
t (ωi)) +H − δ+

t (D∗))(ωi) > 0, H ∈ H(t) .

Since ργ is adapted, the above inequality holds true if and only if

1P ti
(ω)ργt (δt(1X

∗
t (ωi)) +H − δ+

t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t
i .

By property (A2) in Definition A.2 of ργ, the above holds true if and only if

1P ti
(ω)ργt (δt(11P tiX

∗
t (ωi)) + 1P ti

H − 1P ti
δ+
t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t

i .

Since, 1P ti (ω)Xt(ωi) = 1P ti
(ω)Xt(ω) for all ω ∈ Ω, the above inequality holds true if

and only if

1P ti
(ω)ργt (δt(11P tiX

∗
t ) + 1P ti

H − 1P ti
δ+
t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t

i .

Again, using property (A2) in Definition A.2, the last inequality holds true if and

only if

1P ti
(ω)ργt (δt(1X

∗
t ) +H − δ+

t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t
i .

Since P t
i 6= ∅, the above holds true if and only if

ργt (δt(1X
∗
t ) +H − δ+

t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t
i ,

which ultimately implies

ργt (δt(1X
∗
t ) +H − δ+

t (D∗))(ω) ≥ 0, H ∈ H(t), ω ∈ P t
i .
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Since ωi ∈ Ω is arbitrary, the partition P t
i is also arbitrary. As a result, if

Πask,γ
t (D) > X∗t , then

ργt (δt(1X
∗
t ) +H − δ+

t (D∗)) ≥ 0, H ∈ H(t) .

By property (A6) of ργ, we get

−Xt + ργt (H − δ+
t (D∗)) ≥ 0, H ∈ H(t) .

In virtue of Theorem A.2, the above is equivalent to

−X∗t − inf
Q∈Qγt

EQ
[ T∑
s=t+1

Hs −D∗s
∣∣∣Ft ] ≥ 0, H ∈ H(t).

Hence, for any nonnegative Ft-measurable random variable ξt, we have that

−ξtX∗t − ξt inf
Q∈Qγt

EQ
[ T∑
s=t+1

Hs −D∗s
∣∣∣Ft ] ≥ 0, H ∈ H(t).

Similarly, in view of Theorem A.2 and property (A6), and since ξt is Ft-measurable,

we have that

ργt (δt(1ξtX
∗
t ) + ξtH − ξtδ+

t (D∗)) ≥ 0

for any H ∈ H(t) and any nonnegative Ft-measurable random variable ξt. Since H(t)

is closed under multiplication of nonnegative Ft-measurable random variables, the

inequality above is equivalent to

ργt (ξtδt(1X
∗
t ) +H − ξtδ+

t (D∗)) ≥ 0

for any H ∈ H(t) and any nonnegative Ft-measurable random variable ξt.

Therefore, by the definition of Ĥ(t), we deduce that

ργt (Ĥ) ≥ 0, Ĥ ∈ Ĥ(t),

and hence NGD holds true for Ĥ(t), at time t and level γ. It follows that R(Ĥ(t)) ∩

Qγt 6= ∅ (see Remark 4.3.1). Let Q∗ ∈ R(Ĥ(t)) ∩Qγt .



128

From the definition of R(Ĥ(t)), we have that

EQ∗
[ T∑
u=t+1

(Hu − ξtD∗u)
∣∣∣Ft ]+ ξtX

∗
t ≤ 0 (4.9)

for all H ∈ H(t) and all nonnegative Ft-measurable random variables ξt. Note that

R(H(t)) ⊇ R(Ĥ(t)) since H(t) ⊂ Ĥ(t). Thus, Q∗ ∈ R(H(t))∩Qγt . Because 0 ∈ H(t),

we may let H = 0 in (4.9) to conclude that, if Πask,γ
t (D) > X∗t , then there exists

Q∗ ∈ R(H(t)) ∩Qγt such that

EQ∗
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≥ X∗t .

Now, for any ε > 0, let us define X∗,εt = Πask,γ
t (D) − ε. From the inequality

above, we deduce that there exists Q∗,ε ∈ R(H(t)) ∩Qγt such that

EQ∗,ε
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≥ Πask,γ
t (D)− ε,

which leads to

sup
Q∈R(H(t))∩Qγt

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≥ Πask,γ
t (D)− ε.

Since ε is arbitrary, we have that

Πask,γ
t (D) ≤ sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] . (4.10)

Step 1.b

We proceed by showing that

Πask,γ
t (D) ≥ sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Suppose Q ∈ Qγt ∩R(H(t)). By Theorem A.2,

ργt (H − δ+
t (D∗)) = sup

Q∈Qγt
EQ
[ T∑
s=t+1

D∗s −Hs

∣∣∣Ft ] . (4.11)
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Moreover, we have that

sup
Q∈Qγt

EQ
[ T∑
s=t+1

D∗s −Hs

∣∣∣Ft ] ≥ sup
Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s −Hs

∣∣∣Ft ]
≥ EQ

[ T∑
s=t+1

D∗s −Hs

∣∣∣Ft ]
= EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft ]− EQ
[ T∑
s=t+1

Hs

∣∣∣Ft ]
≥ EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft ] , (4.12)

for allH ∈ H(t) and Q ∈ R(H(t))∩Qγt . The last inequality follows since EQ[
∑T

s=t+1Hs | Ft ] ≤

0. Hence, combining (4.11) and (4.12) and we deduce

ργt (H − δ+
t (D∗)) ≥ EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft ] , H ∈ H(t), Q ∈ Qγt ∩R(H(t)) . (4.13)

Recall that Πask,γ is defined as,

Πask,γ
t (D) = inf{v ∈ R : there exists H ∈ H(t) s.t. αt(δt(1v) +H − δ+

t (D∗)) ≥ γ}.

Also, it is true that

inf{v ∈ R : there exists H ∈ H(t) s.t. αt(δt(1v) +H − δ+
t (D∗)) ≥ γ}

= inf
⋃

H∈H(t)

{v ∈ R : αt(δt(1v) +H − δ+
t (D∗))(ω) ≥ γ}

= inf
H∈H(t)

inf{v ∈ R : αt(δt(1v) +H − δ+
t (D∗)) ≥ γ}.

Therefore,

Πask,γ
t (D)(ω) = inf

H∈H(t)
inf{v ∈ R : αt(δt(1v) +H − δ+

t (D∗))(ω) ≥ γ}

for all ω ∈ Ω. In virtue of Theorem A.1,

Πask,γ
t (D) = inf

H∈H(t)
ργt (H − δ+

t (D∗)) .
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Applying (4.13), we see that

Πask,γ
t (D) ≥ inf

H∈H(t)
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] = EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
for all Q ∈ R(H(t)) ∩Qγt . Hence,

Πask,γ
t (D) ≥ sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] . (4.14)

Step 1.c

In conclusion, having shown that (4.10) and (4.14) holds true, we deduce that

Πask,γ
t (D) = sup

Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Let us now proceed by showing that claim holds true for Πbid,γ

t (D).

Step 2.a

We first show that,

Πbid,γ
t (D) ≥ inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Using Definition 4.3.1 and Theorem A.1, we get

Πbid,γ
t (D)(ω) = sup

{
v ∈ R : there exists H ∈ H(t) such that

sup
{
β ∈ (0,∞) : ρβt (−δt(1v) +H + δ+

t (D))(ω) ≤ 0
}
≥ γ

}
for all ω ∈ Ω. By continuity and monotonicity of the map γ 7→ ργ, we may apply

Lemma B.2 to deduce that

sup
{
β ∈ (0,∞) : ρβt (−δt(1v) +H + δ+

t (D))(ω) ≤ 0
}
≥ γ

if and only if ργt (−δt(1v) +H + δ+
t (D))(ω) ≤ 0 for all ω ∈ Ω. Hence,

Πbid,γ
t (D)(ω) = sup

{
v ∈ R : there exists H ∈ H(t) (4.15)

such that ργt (−δt(1v) +H + δ+
t (D))(ω) ≤ 0

}
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for all ω ∈ Ω.

Now fix an Ft-measurable random variable Xt, and let P t := {P t
1, P

t
2, . . . , P

t
nt}

be the unique partition that generates Ft. Fix P t
i 6= ∅ and let ωi ∈ P t

i . Then

1P ti
(ω)Xt(ωi) = 1P ti

(ω)Xt(ω) for all ω ∈ Ω. By (4.15), we have that Πask,γ
t (D)(ωi) >

X∗t (ωi) if and only if

X∗t (ωi) /∈
{
v ∈ R : there exists H ∈ H(t) s.t. ργt (−δt(1v) +H + δ+

t (D∗))(ωi) ≤ 0
}
.

Now, the above condition holds true if and only if

ργt (−δt(1X∗t (ωi)) +H + δ+
t (D∗))(ωi) > 0, H ∈ H(t) .

Since ργ is adapted, the above inequality holds true if and only if

1P ti
(ω)ργt (−δt(1X∗t (ωi)) +H + δ+

t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t
i .

By property (A2) in Definition A.2 of ργ, the above holds true if and only if

1P ti
(ω)ργt (−δt(11P tiX

∗
t (ωi)) + 1P ti

H + 1P ti
δ+
t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t

i .

Since, 1P ti (ω)Xt(ωi) = 1P ti
(ω)Xt(ω) for all ω ∈ Ω, the above inequality holds true if

and only if

1P ti
(ω)ργt (−δt(11P tiX

∗
t ) + 1P ti

H + 1P ti
δ+
t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t

i .

By property (A2) in Definition A.2, the last inequality holds true if and only if

1P ti
(ω)ργt (−δt(1X∗t ) +H + δ+

t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t
i .

Since P t
i 6= ∅, the above holds true if and only if

ργt (−δt(1X∗t ) +H + δ+
t (D∗))(ω) > 0, H ∈ H(t), ω ∈ P t

i ,

which implies

ργt (−δt(1X∗t ) +H + δ+
t (D∗))(ω) ≥ 0, H ∈ H(t), ω ∈ P t

i .
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Since ωi ∈ Ω is arbitrary, the partition P t
i is also arbitrary. It follows that if

Πbid,γ
t (D) < X∗t , then

ργt (−δt(1X∗t ) +H + δ+
t (D∗)) ≥ 0, H ∈ H(t) .

By property (A6) of ργ, we have that

Xt + ργt (H + δ+
t (D∗)) ≥ 0, H ∈ H(t) .

Due to Theorem A.2, the above is equivalent to

X∗t − inf
Q∈Qγt

EQ
[ T∑
s=t+1

Hs +D∗s

∣∣∣Ft ] ≥ 0.

Hence, for any nonnegative Ft-measurable random variable ξt, we have that

ξtX
∗
t − ξt inf

Q∈Qγt
EQ
[ T∑
s=t+1

Hs +D∗s

∣∣∣Ft ] ≥ 0.

Again, by Theorem A.2 and property (A6), and since ξt is Ft-measurable, we have

that

ργt (−δt(1ξtX∗t ) + ξtH + ξtδ
+
t (D∗)) ≥ 0

for any H ∈ H(t) and any nonnegative Ft-measurable random variable ξt. Since H(t)

is closed under multiplication of nonnegative Ft-measurable random variables, the

inequality above is equivalent to

ργt (−ξtδt(1X∗t ) +H + ξtδ
+
t (D∗)) ≥ 0

for any H ∈ H(t) and any nonnegative Ft-measurable random variable ξt.

Therefore, by the definition of H(t), we have that

ργt (H) ≥ 0, H ∈ H(t),

and hence NGD holds true for H(t), at time t and level γ. Hence, R(H(t))∩Qγt 6= ∅

(see Remark 4.3.1). Let Q∗ ∈ R(H(t))∩Qγt . From the definition of R(H(t)), we have

that

EQ∗
[ T∑
u=t+1

(Hu + ξtD
∗
u)
∣∣∣Ft ]− ξtX∗t ≤ 0 (4.16)
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for all H ∈ H(t) and all nonnegative Ft-measurable random variables ξt. Note that

R(H(t)) ⊇ R(H(t)) since H(t) ⊂ H(t). Thus, Q∗ ∈ R(H(t))∩Qγt . Because 0 ∈ H(t),

we may let H = 0 in (4.9) to conclude that, if Πbid,γ
t (D) < X∗t , then there exists

Q∗ ∈ R(H(t)) ∩Qγt such that

EQ∗
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≤ X∗t .

Next, for an arbitrary ε > 0, let us define X∗,εt = Πbid,γ
t (D) + ε. From the

inequality above, we have that there exists Q∗,ε ∈ R(H(t)) ∩Qγt such that

EQ∗,ε
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≥ Πbid,γ
t (D) + ε,

which leads to

inf
Q∈R(H(t))∩Qγt

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ≤ Πbid,γ
t (D) + ε.

Therefore, since ε is arbitrary, we have

Πbid,γ
t (D) ≥ inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] . (4.17)

Step 2.b

We proceed by showing that

Πbid,γ
t (D) ≤ inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
By Theorem A.2,

ργt (H + δ+
t (D∗)) = − inf

Q∈Qγt
EQ
[ T∑
s=t+1

D∗s +Hs

∣∣∣Ft ] , H ∈ H(t).

Since Qγt ∩R(H(t)) ⊆ Qγt ,

− inf
Q∈Qγt

EQ
[ T∑
s=t+1

D∗s +Hs

∣∣∣Ft ] ≥ − inf
Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s +Hs

∣∣∣Ft ] , H ∈ H(t).
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Since Q ∈ R(H(t)) ∩Qγt , we deduce that

− inf
Q∈Qγt ∩R(H(t))

EQ
[ T∑
s=t+1

D∗s +Hs

∣∣∣Ft ] ≥ −EQ∗
[ T∑
s=t+1

D∗s +Hs

∣∣∣Ft ]

= −EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ]− EQ
[ T∑
s=t+1

Hs

∣∣∣Ft ] .
≥ −EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft ] ,
since EQ[

∑T
s=t+1 Hs | Ft ] ≤ 0. Therefore,

ργt (H + δ+
t (D∗)) ≥ −EQ

[ T∑
s=t+1

D∗s

∣∣∣Ft ] , (4.18)

for all H ∈ H(t) and Q ∈ Qγt ∩R(H(t)).

Recall that Πbid,γ is defined as,

Πbid,γ
t (D) = sup{v ∈ R : there exists H ∈ H(t) s.t. αt(−δt(1v) +H + δ+

t (D∗)) ≥ γ}.

Moreover, we have

sup{v ∈ R : there exists H ∈ H(t) s.t. αt(−δt(1v) +H + δ+
t (D∗)) ≥ γ}

= sup
⋃

H∈H(t)

{v ∈ R : αt(δ
+
t (D∗) +H − δt(1v))(ω) ≥ γ}

= sup
H∈H(t)

sup{v ∈ R : αt(−δt(1v) +H + δ+
t (D∗)) ≥ γ}.

Hence, we find

Πbid,γ
t (D) = sup

H∈H(t)

sup{v ∈ R : αt(−δt(1v) +H + δ+
t (D∗)) ≥ γ}

= sup
H∈H(t)

{− inf{v ∈ R : αt(δt(1v) +H + δ+
t (D∗)) ≥ γ}}.

Now, using Theorem A.1 we get

Πbid,γ
t (D) = sup

H∈H(t)

{−ργt (H + δ+
t (D∗))}.
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Applying (4.18), we obtain

Πbid,γ
t (D) = sup

H∈H(t)

{−ργt (H + δ+
t (D∗))} ≤ sup

H∈H(t)

EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ]

= EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
for all Q ∈ R(H(t)) ∩Qγt . Consequently,

Πbid,γ
t (D) ≤ inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] . (4.19)

Step 2.c

Finally, using (4.17) and (4.19), we conclude that

Πbid,γ
t (D) = inf

Q∈Qγt ∩R(H(t))
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Hence the proof is complete.

We proceed with the following important remarks on Theorem 4.3.1.

Remark 4.3.6. Note that if the NGD does not hold true for H(t), at time t ∈

{1, . . . , T − 1}, at level γ, then

Πask,γ
t (D)(ω) = −∞,

Πbid,γ
t (D)(ω) =∞,

for all ω ∈ Ω and D ∈ L0.

Remark 4.3.7. If the set of hedging cash flows H(t) satisfies the no-arbitrage con-

dition, and H(T − 1) is complete (for any D ∈ L0, there exists H ∈ H(T − 1)

so that HT = DT ), then it follows that R(H(t)) 6= ∅, for t = 1, 2, . . . , T − 2,
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and R(H(T − 1)) = {Q∗}. Since R(H(0)) ⊆ · · · ⊆ R(H(T − 1)), we have that

R(H(t)) = {Q∗} 6= ∅ for t = 0, 1, . . . , T − 2. By Theorems 4.2.1 and 4.3.1, if NGDB

holds then the good-deal ask and bid prices of a derivative contract D ∈ L0, at time

t ∈ T and level γ >, satisfy

Πask,γ
t (D) = Πbid,γ

t (D) = EQ∗
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Notice that, naturally, the good-deal prices no longer depend on the acceptance level

γ.

Remark 4.3.8. If for some t ∈ {1, . . . , T −1}, we have that Qγt 6= ∅ and H(t) = {0},

then we have R(H(t)) = {Q : Q ∼ P}, so Qγt ⊆ R(H(t)). In this case the good-deal

ask and bid prices of a derivative contract D ∈ L0, at time t ∈ T and level γ > 0,

satisfy

Πask,γ
t (D) = sup

Q∈Qγt
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] ,
Πbid,γ
t (D) = inf

Q∈Qγt
EQ
[ T∑
s=t+1

D∗s

∣∣∣Ft ] .
Remark 4.3.9. Let us consider the sets of extended cash flows associated with good-

deal prices Πask,γ
t (D) and Πbid,γ

t (D):

Ĥ(t) =
{(

0, . . . , 0, ξtΠ
ask,γ
t (D), Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
,

H(t) =
{(

0, . . . , 0,−ξtΠbid,γ
t (D), Ht+1 + ξtD

∗
t+1, . . . , HT + ξtD

∗
T

)
: H ∈ H(t), ξt is Ft-measurable, ξt ≥ 0

}
.

If H(t) is frictionless and complete (and therefore linear), and NGD condition holds,

then as in Remark 4.3.7, we have that Π(D) := Πask,γ
t (D) = Πbid,γ

t (D). In this case,
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the set

Ĥ(t) +H(t) =
{(

0, . . . , 0, ξtΠt(D), Ht+1 − ξtD∗t+1, . . . , HT − ξtD∗T
)

: H ∈ H(t), ξt is Ft-measurable
}

is a linear space. Whenever Πask,γ
t (D) > Πbid,γ

t (D), as in our general case, we have

that

Ĥ(t) +H(t) =
{(

0, . . . , 0, ξtΠ
ask,γ
t (D)− φtΠbid,γ

t (D), Ht+1 − (ξt − φt)D∗t+1,

. . . , HT − (ξt − φt)D∗T
)

: H ∈ H(t), ξt, φt is Ft-measurable, ξt, φt ≥ 0
}

is only a convex cone. This is one of the main reasons why we call our approach

dynamic conic finance.

Remark 4.3.10. Recall that, in our framework, upper and lower no-arbitrage price

bounds of a derivative contract D ∈ L0 are defined as

πUt (D) := sup
Q∈R(H(t))

EQ
[ T∑
s=1

D∗s

∣∣∣Ft ] ,
πLt (D) := inf

Q∈R(H(t))
EQ
[ T∑
s=1

D∗s

∣∣∣Ft ] .
Hence, it follows from Theorem 4.2.1 that if NGD is satisfied for some γ > 0 then

πLt (D) ≤ Πbid,γ
t (D) ≤ Πask,γ

t (D) ≤ πUt (D) .

As a consequence, the bid ask price interval, which is found using dynamic coherent

acceptability indices, is narrower than the difference between the no-arbitrage price

bounds.

4.3.2 Good-Deal Forward Ask and Bid Prices. We now define the good-

deal forward ask and bid prices, and also prove a representation theorem similar to

Theorem 4.3.1. Throughout this section, we assume that the risk-free interest rate r

is deterministic.
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Definition 4.3.2. The good-deal ask and bid forward prices, with delivery at time

T , written at time t ∈ {1, . . . , T − 1}, of a derivative contract D ∈ L0, at level γ > 0

are defined as

F ask,γ,T
t (D)(ω) : = inf{f ∈ R : there exists H ∈ H(t)

such that αt(δt(1B
−1
T f) +H − δ+

t (D∗))(ω) ≥ γ}, (4.20)

F bid,γ,T
t (D)(ω) : = sup{f ∈ R : there exists H ∈ H(t)

such that αt(−δt(1B−1
T f) +H + δ+

t (D∗))(ω) ≥ γ} (4.21)

for all ω ∈ Ω.

Notice that the cash flow δt(1B
−1
T f) +H − δ+

t (D∗) represents an exchange of

a cash payment f at time T for a discounted cash flow D that is hedged with H. The

good-deal forward ask price at level γ is the minimum amount of cash f at time T so

that δt(1B
−1
T f) +H − δ+

t (D∗) is acceptable at level γ at time t.

Let us now continue with the representation theorem for the forward ask and

bid prices. This result shows that the classical relationship between the spot and

forward prices is preserved in our framework, for good-deal forward ask and bid

prices.

Theorem 4.3.2. The good-deal ask and bid forward prices of a derivative contract

D ∈ L0, with delivery at time T , written at time t ∈ {1, . . . , T − 1} and level γ > 0,

satisfy

F ask,γ,T
t (D)(ω) = BTΠask,γ

t (D),

F bid,γ,T
t (D)(ω) = BTΠbid,γ

t (D).
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Proof. Since BT is deterministic, Equations (4.20) and (4.21) can written as

F ask,γ,T
t (D)(ω) = BT inf{f ∗ ∈ R : ∃ H ∈ H(t)

such that αt(δT (1f ∗) +H − δ+
t (D∗))(ω) ≥ γ},

F bid,γ,T
t (D)(ω) = BT sup{f ∗ ∈ R : ∃ H ∈ H(t)

such that αt(−δT (1f ∗) +H + δ+
t (D∗))(ω) ≥ γ}.

Using the translation invariance property of α (see (D6) in Definition A.1), we deduce

that

F ask,γ,T
t (D)(ω) = BT inf{f ∗ ∈ R : ∃ H ∈ H(t)

such that αt(δt(1f
∗) +H − δ+

t (D∗))(ω) ≥ γ},

F bid,γ,T
t (D)(ω) = BT sup{f ∗ ∈ R : ∃ H ∈ H(t)

such that αt(−δt(1f ∗) +H + δ+
t (D∗))(ω) ≥ γ},

since

αt(δT (1f ∗) +H − δ+
t (D∗)) = αt(δt(1f

∗) +H − δ+
t (D∗)).

Hence, by Theorem 4.3.1 we conclude that our claim holds.

Remark 4.3.11. If r is deterministic and the set of hedging cash flows H(t) forms

a market that is frictionless, complete, and arbitrage-free, then R(H(t)) is a single-

ton, say {Q∗}, and so by Theorem 4.3.2 we have that F ask,γ,T
t (D) = F bid,γ,T

t (D) =

BTEQ∗ [
∑T

u=t+1 D
∗
u | Ft ]. This is compatible with the classic result that states that in a

frictionless, complete, and arbitrage-free market the discounted forward price fTt (D)

of a derivative contract D, with delivery at time T , written at time t ∈ {1, . . . , T −1},

is given as

fTt (D) = BTEQ∗[ T∑
u=t+1

D∗u
∣∣Ft ].
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4.4 Pricing with the Dynamic Gain-Loss Ratio

In this section, we first prove some auxiliary results that hold for general

DCAIs. Then, we particularize these results to a very important special case of DCAI,

namely to the dynamic Gain-Loss Ratio (dGLR). Finally, we apply the pricing and

hedging results developed in earlier sections using dGLR to path-dependent options.

In this section, without a loss of generality, we assume that r = 0.

4.4.1 Characterization of DCAIs. In this section, we will prove an auxiliary

result for DCAIs. For basic facts and notions regarding DCAIs, we refer to Appendix

A.

From [BCZ11], we recall that for every normalized and right-continuous DCAI

α there exist family Q = ((Qγt )t∈T )γ∈(0,∞) of dynamically consistent sequences of

sets of probability measures that is increasing (in γ), such that the following robust

representation holds true

αt(D)(ω) = sup
{
γ ∈ (0,∞) : inf

Q∈Qγt
EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0
}
, ω ∈ Ω, t ∈ T , D ∈ L0.

(4.22)

We say that a family Q of dynamically consistent sequences of sets of probability mea-

sures that is increasing (in γ) corresponds to a given normalized and right-continuous

DCAI α if Q satisfies (4.22). Now, we will establish a characterization of families Q

that correspond to a given normalized and right-continuous DCAI α.
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Lemma 4.4.1. Suppose that α is a normalized and right-continuous DCAI. A family

Q corresponds to α if and only if Q ∈ Qα, where 16

Qα :=
{
U : αt(D)(ω) ≥ γ if and only if

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0, ω ∈ Ω, γ ∈ (0,∞), t ∈ T , D ∈ L0
}
.

Proof. Necessity: (⇐=):

Let U ∈ Qα. We fix t ∈ T , D ∈ L0, and ω ∈ Ω. Define the set

Γ(U) :=
{
β ∈ (0,∞) : inf

Q∈Uβt
EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0
}
.

If αt(D)(ω) =∞, then

inf
Q∈Uβt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0, β ∈ (0,∞).

Therefore, Γ(U) = (0,∞), and thus sup Γ(U) =∞. Hence, (4.22) holds true.

If Γ(U) = ∅, then

inf
Q∈Uβt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) < 0, β ∈ (0,∞).

Since U ∈ Qα, it is true that αt(D)(ω) < β for all β ∈ (0,∞). However, α is

nonnegative by definition, thus αt(D)(ω) = 0. By convention, we are taking sup ∅ = 0,

so we also have that sup Γ(U) = 0. Hence, (4.22) holds true.

If αt(D)(ω) = 0, then, since U ∈ Qα, we have that

inf
Q∈Uβt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) < 0, β ∈ (0,∞).

It follows that Γ(U) = ∅, and so (4.22) holds true.

16We will generically denote by U = ((Uγt )t∈T )γ∈(0,∞) a family of dynamically
consistent sequences of sets of probability measures that is increasing (in γ).
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Suppose Γ(U) 6= ∅. Assume that αt(D)(ω) <∞. We first show that αt(D)(ω)

is an upper bound of Γ(U). Observe that if γ ∈ Γ(U), then

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0.

Now, since U ∈ Qα, we have that αt(D)(ω) ≥ γ. So αt(D)(ω) is an upper bound of

Γ(U). If we let β′ := αt(D)(ω), then, because U ∈ Qα, we have that

inf
Q∈Uβ

′
t

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0.

Thus, β′ ∈ Γ(U). It follows that (4.22) holds.

Sufficiency: (=⇒)

Now, suppose U satisfies (4.22), and let γ ∈ (0,∞). If

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0,

then γ ∈ Γ(U). By (4.22), we have that αt(D)(ω) ≥ γ.

Assume αt(D)(ω) ≥ γ. We consider the cases αt(D)(ω) > γ and αt(D)(ω) = γ

separately. If αt(D)(ω) > γ, then, since Uγ is increasing in γ, we have that

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0.

Next, suppose that αt(D)(ω) = γ and

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) < 0.

By Theorem A.1, the mapping

γ 7−→ inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω)

is left-continuous and monotone decreasing. Thus, by left-continuity there exists ε > 0

so that

inf
Q∈Uγ−εt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) < 0,
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and by monotonicity and (4.22), we deduce that αt(D)(ω) ≤ γ− ε. This implies that

ε ≤ 0, which is a contradiction. Hence, we have that

inf
Q∈Uγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0,

which concludes the proof.

4.4.2 Characterization of the dGLR. The Gain-Loss Ratio, first introduced

in [BL00], is a performance measure that is widely used among practitioners. In the

single-period case, the Gain-Loss Ratio is defined as the ratio of the expectation of

returns to the expectation of negative returns:

GLR(X) :=
EP[X]

EP[X−]
if EP[X] > 0,

and zero otherwise17. As shown in [CM09], the Gain-Loss Ratio defined above is a

static coherent acceptability index. Observe that the value of the GLR depends on

the statistical measure P.

In Bielecki et al. [BCZ11], a version of GLR is defined in a dynamical, multi-

period setup, which is called the dynamic Gain Loss Ratio (dGLR). Let us proceed

by recalling the definition of the dGLR.

Definition 4.4.1. The dynamic Gain Loss Ratio (dGLR) for a cash flow D ∈ L0 is

defined as

dGLRt(D)(ω) :=


EP[
∑T

s=tDs | Ft ](ω)

EP[(
∑T

s=tDs)− | Ft ](ω)
, if EP

[∑T
s=tDs

∣∣Ft ](ω) > 0,

0, otherwise,

(4.23)

for all t ∈ T , and ω ∈ Ω. By convention, dGLR(0) =∞.

17Recall that a− denotes the negative part of any real number a, i.e. a− =
max{0,−a}
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It is shown in Bielecki et al. [BCZ11] that the dGLR satisfies conditions (D1)–

(D7), and therefore it is a dynamic coherent acceptability index (see Definition A.1).

Remark 4.4.1. It is worth to remark on the interpretation of the dGLR in the context

of arbitrage, which was first noticed in Bernardo and Ledoit [BL00] for the GLR (static

case). Observe that

T∑
s=t

Hs(ω) ≥ 0 for all ω ∈ Ω and EP
[ T∑
s=t

Hs

∣∣∣Ft ](ω) > 0 for some ω ∈ Ω

is equivalent to

EP
[( T∑

s=t

Hs

)− ∣∣∣Ft ](ω) = 0 for all ω ∈ Ω

and EP
[ T∑
s=t

Hs

∣∣∣Ft ](ω) > 0 for some ω ∈ Ω,

which is equivalent to

dGLRt(H)(ω) =∞ for some ω ∈ Ω.

Hence, as a result of Definition 4.2.3, a cash flow H ∈ H(t) is an arbitrage opportunity

at time t ∈ T if and only if dGLRt(H)(ω) = ∞ for some ω ∈ Ω. Equivalently, the

no-arbitrage condition holds true at time t ∈ T if and only if dGLRt(H) is bounded

for all H ∈ H(t). This equivalence gives an intuitive interpretation of the dGLR in

terms of the no-arbitrage condition.

Let us define the family of sets of probability measures Q̂ := {Q̂γ, γ > 0},

and the family of sets of densities Ê := {Êγ, γ > 0}, where

Q̂γ :=
{
Q : dQ/dP = c(1 + Λ), c > 0, Λ ∈ Lγ, cEP[1 + Λ] = 1

}
, (4.24)

Êγ :=
{
η := dQ/dP : Q ∈ Qγ

}
=
{
η := c(1 + Λ) : c > 0, Λ ∈ Lγ, cEP[1 + Λ] = 1

}
,
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for all γ ∈ (0,∞), where we set

Lγ := {Λ : Λ is an FT -measurable r.v., 0 ≤ Λ ≤ γ}.

Next, we will show that Q̂ is an increasing family of dynamically consistent sets of

probability measures corresponding to the dGLR.

Proposition 4.4.1. The family Q̂ is an increasing family of dynamically consistent

sets of probability measures. In addition, this family corresponds to the dGLR.

Proof. We start by observing that, for each γ > 0, the set Q̂γ is nonempty since,

in particular, we may take Λ = 0 in the definition of Q̂γ. Also, we note that Q̂γ is

increasing in γ.

For the rest of the proof we fix γ > 0. We denote by Υt = {P t
1, P

t
2, . . . , P

t
nt}

the unique partition of Ω at time t that generates Ft. In order to prove our result it

suffices to show that Q̂γ is weakly consistent (see Corollary 4.1.1 in [Zha11]), which

is

1P ti
inf

Q∈Qγ
EQ[X | Ft ] ≤ 1P ti

max
ω∈P ti

{
inf

Q∈Qγ
EQ[X | Ft+1 ](ω)

}
, (4.25)

for every t ∈ {0, . . . , T − 1}, P t
i ∈ Υt, and X ∈ FT . Next, take 0 ≤ Λ ≤ γ and

suppose that

max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft+1

]
(ω)

EP[1 + Λ
∣∣Ft+1 ](ω)

≤ a,

for some a ∈ R. Hence,

EP[(1 + Λ)X
∣∣Ft+1

]
(ω) ≤ aEP[1 + Λ | Ft+1 ](ω),

for all ω ∈ P t
i . Therefore, using the tower property of conditional expectations, we

have that

EP[(1 + Λ)X
∣∣Ft ](ω) ≤ aEP[1 + Λ | Ft ](ω),
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for all ω ∈ P t
i , and, consequently

max
ω∈P ti

EP
t

[
(1 + Λ)X

]
(ω)

EP[1 + Λ | Ft ](ω)
≤ a.

Thus, we showed that for any a ∈ R the following implication holds,

max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft+1

]
(ω)

EP[1 + Λ | Ft+1 ](ω)
≤ a ⇒ max

ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft ](ω)

EP[1 + Λ | Ft](ω)
≤ a,

so that

max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft ](ω)

EP[1 + Λ
∣∣Ft ](ω)

≤ max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft+1

]
(ω)

EP[1 + Λ
∣∣Ft+1 ](ω)

.

Hence, we have

1P ti

EP
[
(1 + Λ)X

∣∣Ft ](ω)

EP[1 + Λ
∣∣Ft ](ω)

≤ 1P ti
max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft ](ω)

EP[1 + Λ
∣∣Ft ](ω)

≤ 1P ti
max
ω∈P ti

EP
[
(1 + Λ)X

∣∣Ft+1

]
(ω)

EP[1 + Λ
∣∣Ft+1 ](ω)

for all ω ∈ Ω. Thus, for Q = c(1 + Λ)P, we have that

1P ti
EQ[X | Ft ](ω) ≤ 1P ti

max
ω∈P ti

EQ[X | Ft+1 ](ω),

for all ω ∈ Ω. Therefore,

1P ti
inf

Q∈Qγ
EQ[X | Ft ] ≤ 1P ti

inf
Q∈Qγ

{
max
ω∈P ti

EQ[X | Ft+1 ](ω)

}
≤ 1P ti

max
ω∈P ti

{
inf

Q∈Qγ
EQ[X | Ft+1 ](ω)

}
,

which proves the weak consistency of Q̂γ.

We now show that the family Q̂ corresponds to the dGLR. By Lemma 4.4.1,

this is equivalent to show that

dGLRt(D)(ω) ≥ γ ⇐⇒ inf
Q∈Q̂γ

EQ[XT
t

∣∣Ft ](ω) ≥ 0, (4.26)

for all ω ∈ Ω, t ∈ T and D ∈ L0, where for convenience we denoted XT
t =

∑t
u=T Du.

In the rest of the proof we fix ω ∈ Ω, t ∈ T and D ∈ L0.
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In order to show (4.26) we first observe that since any η ∈ Eγ is strictly

positive, we may apply the abstract Bayes formula to write

inf
Q∈Q̂γ

EQ[XT
t

∣∣Ft ](ω) ≥ 0 ⇐⇒ inf
η∈Eγ

EP
[
ηXT

t

∣∣Ft ](ω)

EP[η | Ft ](ω)
≥ 0

⇐⇒
EP
[
ηXT

t

∣∣Ft ](ω)

EP[η | Ft ](ω)
≥ 0, η ∈ Eγ

⇐⇒ EP[ηXT
t

∣∣Ft ](ω) ≥ 0, η ∈ Eγ

⇐⇒ inf
η∈Eγ

EP[ηXT
t

∣∣Ft ](ω) ≥ 0. (4.27)

Next, recall that by definition of Eγ we have that

inf
η∈Eγ

EP[ηXT
t

∣∣Ft ](ω) = inf
Λ∈Lγ

EP[(1 + Λ)XT
t

∣∣Ft ](ω). (4.28)

Observing that

EP[(1 + Λ)XT
t

∣∣Ft ](ω) = EP[XT
t + Λ1{XT

t ≤0}X
T
t + Λ1{XT

t >0}X
T
t )
∣∣Ft ](ω)

≥ EP[XT
t + Λ1{XT

t ≤0}X
T
t

∣∣Ft ](ω)

≥ EP[XT
t + γ1{XT

t ≤0}X
T
t

∣∣Ft ](ω)

= EP[(1 + Λ∗)XT
t

∣∣Ft ](ω),

where Λ∗ := γ1{XT
t ≤0} ∈ Lγ.

Consequently, we obtain that

inf
Λ∈Lγ

EP[(1 + Λ)XT
t

∣∣Ft ](ω) = EP[(1 + Λ∗)XT
t

∣∣Ft ](ω).

Thus, in view of (4.28), we get

inf
η∈Eγ

EP[ηXT
t

∣∣Ft ](ω) = EP[XT
t

∣∣Ft ](ω) + γEP[
1{XT

t ≤0}X
T
t )
∣∣Ft ](ω)

= EP[XT
t

∣∣Ft ](ω) + γEP[
1{XT

t ≤0}
((
XT
t

)+ −
(
XT
t

)−) ∣∣Ft ](ω)

= EP[XT
t

∣∣Ft ](ω)− γEP[(XT
t

)− ∣∣Ft ](ω).
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From here and (4.27) we deduce that

inf
Q∈Q̂γ

EQ[XT
t

∣∣Ft ](ω) ≥ 0 ⇐⇒ EP[XT
t

∣∣Ft ](ω) ≥ γEP[(XT
t

)− ∣∣Ft ](ω). (4.29)

To complete the proof of (4.26) we shall consider the following three cases:

EP[XT
t | Ft ](ω) > 0, EP

[
XT
t

∣∣Ft ](ω) < 0, and EP
[
XT
t

∣∣Ft ](ω) = 0.

Case 1: EP[XT
t | Ft ](ω) > 0.

From the definition of the dGLR and from (4.29) we have that

inf
Q∈Q̂γ

EQ[XT
t

∣∣Ft ](ω) ≥ 0 ⇐⇒ EP[XT
t

∣∣Ft ](ω) ≥ γEP[(XT
t

)− ∣∣Ft ](ω) (4.30)

⇐⇒ dGLRt(D)(ω) ≥ γ. (4.31)

Therefore, (4.26) holds true.

Case 2: EP
[
XT
t

∣∣Ft ](ω) < 0.

Since P ∈ Q̂γ, we have that

inf
Q∈Q̂γ

EQ[XT
t | Ft ](ω) ≤ EP[XT

t

∣∣Ft ](ω) < 0.

Also, by the definition of the dGLR, we have that dGLRt(D)(ω) = 0. As a result,

dGLRt(D)(ω) < γ ⇐⇒ inf
Q∈Q̂γ

EQ[XT
t | Ft ](ω) < 0,

and so (4.26) holds true.

Case 3: EP
[
XT
t

∣∣Ft ](ω) = 0.

Case 3a: If EP[(XT
t )− | Ft ](ω) = 0, then EP[(XT

t )+ | Ft ](ω) = 0. Since ω ∈ Ω

is arbitrary, we may conclude that in this case XT
t = 0. Thus dGLRt(D) = ∞ and

infQ∈Q̂γ EQ[XT
t | Ft ] = 0, showing that (4.26) holds true.

Case 3b: Now, assume that γEP[(XT
t )− | Ft ](ω) > EP[XT

t | Ft ](ω) = 0. By

(4.29), it follows that infQ∈Q̂γ EQ[XT
t | Ft ](ω) < 0. Due to the definition of the dGLR,

we thus have that dGLRt(D)(ω) = 0, and so (4.26) holds true in this case as well.
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The proof of the proposition is complete.

The next two propositions will be needed in order to apply dGLR for pricing

and hedging in the sense of Section 4.2. In the first one we show that the family

Ê satisfies Assumption (B). In the second one, we show that, for fixed t ∈ T and

D ∈ L0, the function

γ → inf
Q∈Q̂γ

EQ
[ T∑
s=t

Ds

∣∣∣Ft ] ,
satisfies Assumption (C).

Proposition 4.4.2. For each γ ∈ (0,∞), the set of densities Êγ is closed and convex.

Proof. Fix γ ∈ (0,∞). We first show that Êγ is closed (in RN).18 Let ηk be a sequence

in Êγ converging to some η. By the definition of Êγ, there exist sequences Λk and

ck so that ηk = ck(1 + Λk), ck > 0, ck = 1/EP[1 + Λk], and 0 ≤ Λk(ωj) ≤ γ for

j = 1, . . . , N . For each ωj, we have that Λk(ωj) is bounded by γ, so Λk is bounded.

By the Bolzano-Weierstrass Theorem, there exists a subsequence Λkm such that Λkm

converges to some Λ. This limit must satisfy 0 ≤ Λ(ωj) ≤ γ for j = 1, . . . , N , since a

sequence converges in RN if and only if it converges coordinate-wise. If Λkm converges,

then EP[1 + Λkm ] converges. Since EP[1 + Λkm ] is strictly greater than zero, we have

that 1/EP[1 + Λkm ] converges to c := 1/EP[1 + Λ], which means that ckm converges

to c. Consequently, ηkm converges to c(1 + Λ). It follows that η ∈ Êγ. Hence, Êγ is

closed.

We proceed by showing that Êγ is convex. Let η1, η2 ∈ Êγ and 0 ≤ λ ≤ 1. Let

ci and Λi correspond to ηi, in the sense of definition of Êγ, that is, ηi = ci(1 + Λi),

i = 1, 2.

18Clearly, we may consider Êγ as a subset of RN .
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We need to show that λc1(1 + Λ1) + (1− λ)c2(1 + Λ2) ∈ Êγ. Define

c̃ := λc1 + (1− λ)c2 and Λ̃ :=
λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

.

Since

λc1(1 + Λ1) + (1− λ)c2(1 + Λ2) = c̃(1 + Λ̃),

it suffices to show that 0 ≤ Λ̃ ≤ γ and c̃ = 1/EP[1 + Λ̃]. We first notice that since

0 ≤ Λ1,Λ2 ≤ γ, the scalars c1, c2 satisfy c1, c2 > 0, and since 0 ≤ λ ≤ 1, we have that

0 ≤ λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

≤ γ
λc1 + (1− λ)c2

λc1 + (1− λ)c2

= γ.

Therefore, 0 ≤ Λ̃ ≤ γ. Next, because c1EP[1 + Λ1] = c2EP[1 + Λ2] = 1, it is true that

c̃EP[1 + Λ̃] = (λc1 + (1− λ)c2)EP
[
1 +

λc1Λ1 + (1− λ)c2Λ2

λc1 + (1− λ)c2

]
= λc1 + (1− λ)c2 + λc1EP[1 + Λ1] + (1− λ)c2EP[1 + Λ2]− λc1 − (1− λ)c2

= 1.

As a result, Êγ is convex.

Proposition 4.4.3. For each t ∈ T , D ∈ L0 the function of γ ∈ (0,∞) defined as

ργt (D) := inf
Q∈Q̂γ

EQ
[ T∑
s=t

Ds

∣∣∣Ft ] , (4.32)

is continuous.

Proof. Let ω ∈ Ω. By the abstract Bayes Theorem, we have that

inf
Q∈Q̂γ

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) = inf
η∈Êγ

EP
[
η
∑T

s=tDs

∣∣Ft ](ω)

EP[η | Ft ](ω)

= inf
Λ∈Lγ

EP
[
(1 + Λ)

∑T
s=tDs

∣∣Ft ](ω)

EP[1 + Λ | Ft ](ω)
.
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The function g defined as

g(Λ)(ω) :=
EP
[
(1 + Λ)

∑T
s=tDs

∣∣Ft ](ω)

EP[(1 + Λ) | Ft ](ω)
, 0 ≤ Λ an FT -measurable r.v.

is continuous in Λ. Applying Lemma B.1, we conclude that the proposition holds

true.

Remark 4.4.2. Note that the LHS of (4.32) is the value of a DCRM associated with

Q̂ (see A.2).

4.4.3 Pricing Barrier Options via dGLR. One of the main advantages of our

dynamic framework is that good-deal ask and bid prices, as defined in Definition 4.3.1,

can be computed for path-dependent options in a dynamically consistent manner. In

this section, using a simple model for ask and bid prices of a stock, and choosing

the dGLR as acceptability index, we compute the good-deal ask and bid prices of

European-style Barrier call options in a market with transaction costs. We compare

these good-deal prices with the corresponding upper and lower bounds of the no-

arbitrage pricing interval.

According to Theorem 4.3.1, the good-deal ask and bid prices of a derivative

contract D ∈ L0, at level γ > 0, at time t = 0 satisfy

Πask,γ
0 (D) = sup

Q∈Q̂γ∩R(H(0))

EQ
[ T∑
s=1

Ds

]
,

Πbid,γ
0 (D) = inf

Q∈Q̂γ∩R(H(0))
EQ
[ T∑
s=1

Ds

]
.

Recall that Q̂, defined in (4.24), is a dynamically consistent family of sets of prob-

ability measures that corresponds to the dGLR. Computation of the good-deal ask

and bid prices of the options are carried out using the representations above. Simi-

larly, the no-arbitrage bounds are computed using the following representations (see
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Remark 4.3.10).

πU0 (D) = sup
Q∈R(H(0))

EQ
[ T∑
s=1

Ds

]
,

πL0 (D) = inf
Q∈R(H(0))

EQ
[ T∑
s=1

Ds

]
.

Moreover, we suppose that the bid price of the stock19 is given in Table 4.1.

The ask price process is assumed to satisfy Sask := Sbid(1 + λ), where λ ∈ [0,∞) is

Table 4.1. Bid price paths of the stock

ω t = 0 t = 1 t = 2

ω1 50 80 90

ω2 50 80 70

ω3 50 80 60

ω4 50 40 60

ω5 50 40 30

the transaction costs coefficient (see Bensaid et al. [BLPS92], and Boyle and Vorst

[BV92] for details on proportional transaction costs). Also, we define the mid price

process as Smid := (Sask + Sbid)/2.

Note that Q̂ is defined in terms of the reference measure P. We assume that

P is given as follows

(
P(ω1),P(ω2),P(ω3),P(ω4),P(ω5)

)
= (1/10, 1/8, 1/4, 1/4, 11/40) .

19See Example 4.10 in Pliska [Pli97], page 134.
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Moreover, in this case the filtration F is given by

F0 = {Ω, ∅},

F1 =
{

Ω, ∅, {ω1, ω2, ω3}, {ω4, ω5}
}
,

F2 = 2Ω.

4.4.3.1 Up-and-In Barrier Option. We price an up-and-in barrier option with

barrier level 65 and strike K = 75. Recall that this option pays (SmidT − 75)+ if

Smidt > 65 for some t ∈ {1, 2}, and pays nothing otherwise.

The prices πU , πL, Πask and Πbid for our up-and-in barrier option are given

in Tables 4.2, 4.3, and 4.4, for varying transaction cost coefficients. As the γ values

decrease, we see that the good-deal ask-bid intervals shrink significantly. Further-

more, as the transaction cost coefficient increases, the spread between the πU and πL

increase. This is because it becomes more expensive to hedge the claim. Essentially,

the set of risk-neutral measures R(H(t)) increases in λ. Hence, Πask and Πbid con-

verge to πU and πL, at higher γ values. Observe that in Table 4.2, the prices Πask and

Πbid begin to converge to πU and πL at γ = 0.25, whereas in Table 4.3 they begin to

converge at around γ = 0.5, and in Table 4.4 they begin to converge after γ = 0.75.

4.4.3.2 Up-and-Out Barrier Option. Next, we price an up-and-out barrier option

with barrier level 85 and strike K = 50. This options pays (SmidT − 50)+ if Smidt < 85

for t = 1, 2, and pays 0 otherwise.

In Tables 4.5, 4.6 and 4.7, we present the no-arbitrage bounds and good-deal

prices of our up-and-out barrier option for different λ values. It is easy to see that the

good-deal ask-bid intervals shrink with the decreasing γ values. Since hedging the

claim becomes more expensive as the transaction cost coefficient increases, we observe

that the no-arbitrage price interval widens as λ increases. To be more specific, this



154

Table 4.2. Prices of an Up-and-In Call Option with λ = 0

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.499842 2.287694 2.287306 1.875158

0.001 – 2.289438 2.285563 –

0.005 – 2.297186 2.277848 –

0.01 – 2.306857 2.268276 –

0.05 – 2.383699 2.194508 –

0.1 – 2.478454 2.108781 –

0.25 – 2.499841 1.887571 –

0.5 – 2.499841 1.875158 –

0.75 – 2.499841 1.875158 –

1 – 2.499842 1.875158 –

1.25 – 2.499842 1.875158 –
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Figure 4.1. Liquidity Surface of an Up-and-In Call Option

is because the set of risk-neutral measures R(H(t)) is increasing in λ. Therefore, the

more we increase the λ values, the higher γ values it takes for the good-deal ask and
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Table 4.3. Prices of an Up-and-In Call Option with λ = 0.005

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.652910 2.322009 2.321616 1.825199

0.001 – 2.323780 2.319846 –

0.005 – 2.331644 2.312015 –

0.01 – 2.341460 2.302301 –

0.05 – 2.419455 2.227425 –

0.1 – 2.515630 2.140413 –

0.25 – 2.652909 1.915884 –

0.5 – 2.652909 1.825199 –

0.75 – 2.652910 1.825199 –

1 – 2.652910 1.825199 –

1.25 – 2.652910 1.825199 –

bid prices converge to πU and πL. In Table 4.5, convergence of Πask and Πbid to πU

and πL happens at γ = 0.75, whereas in Table 4.6 it converges around γ = 1, and in

Table 4.7 it converges after γ = 1.25.

4.4.3.3 Down-and-Out Barrier Option. In this section, we price a down-and-out

barrier option with barrier level 45 and strike K = 65. This option pays (SmidT −65)+

if Smidt > 45 for t = 1, 2, and pays 0 otherwise.

Tables 4.8, 4.9 and 4.10 present the upper and lower no-arbitrage bounds and

good-deal prices of our down-and-out barrier option for λ = 0.005 and λ = 0.01.

Notice that the good-deal ask-bid intervals in the tables shrink with the increasing γ

values. We find that as the transaction cost coefficient λ increases, the no-arbitrage

price interval widens, since hedging the claim is more costly for higher λ values. In
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Table 4.4. Prices of an Up-and-In Call Option with λ = 0.01

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.811831 2.356325 2.355925 1.692162

0.001 – 2.358122 2.354130 –

0.005 – 2.366101 2.346183 –

0.01 – 2.376063 2.336325 –

0.05 – 2.455210 2.260343 –

0.1 – 2.552807 2.172044 –

0.25 – 2.811830 1.944198 –

0.5 – 2.811830 1.692163 –

0.75 – 2.811831 1.692163 –

1 – 2.811831 1.692162 –

1.25 – 2.811831 1.692162 –

0
0.2

0.4
0.6

0.8
1

1.2

0
0.002

0.004
0.006

0.008
0.01

0

0.5

1

1.5

2

2.5

3

γ: Acceptability Levelλ: TC Coefficient

B
id

−A
sk

 S
pr

ea
d

Figure 4.2. Liquidity Surface of an Up-and-Out Call Option

fact, the set of risk-neutral measures R(H(t)) is increasing in λ. Consequently, good-

deal ask and bid prices converge to the upper and lower no-arbitrage bounds at higher
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Table 4.5. Prices of Up-and-Out Call Option with λ = 0

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.499578 1.400126 1.399874 0.833755

0.001 – 1.401263 1.398738 –

0.005 – 1.406314 1.393711 –

0.01 – 1.412623 1.387478 –

0.05 – 1.462869 1.339553 –

0.1 – 1.525130 1.284109 –

0.25 – 1.708359 1.142274 –

0.5 – 2.002384 0.964686 –

0.75 – 2.283052 0.834886 –

1 – 2.499578 0.833755 –

1.25 – 2.499578 0.833755 –

γ values, as λ increases, . For instance, in Table 4.8, Πask and Πbid converge to πU

and πL at γ = 0.1, whereas in Table 4.9 it converges around γ = 0.25, and in Table

4.10 it converges after γ = 0.5.
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Table 4.6. Prices of Up-and-Out Call Option with λ = 0.005

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.687791 1.415815 1.415560 0.799956

0.001 – 1.416965 1.414411 –

0.005 – 1.422073 1.409328 –

0.01 – 1.428452 1.403025 –

0.05 – 1.479260 1.354563 –

0.1 – 1.542220 1.298498 –

0.25 – 1.727502 1.155074 –

0.5 – 2.024821 0.975495 –

0.75 – 2.308634 0.844242 –

1 – 2.579841 0.799957 –

1.25 – 2.687791 0.799956 –
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Figure 4.3. Liquidity Surface of an Down-and-Out Call Option
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Table 4.7. Prices of Up-and-Out Call Option with λ = 0.01

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 2.882492 1.431504 1.431246 0.750716

0.001 – 1.432667 1.430084 –

0.005 – 1.437831 1.424945 –

0.01 – 1.444281 1.418572 –

0.05 – 1.495652 1.369573 –

0.1 – 1.559309 1.312887 –

0.25 – 1.746644 1.167874 –

0.5 – 2.047259 0.986305 –

0.75 – 2.334217 0.853597 –

1 – 2.608428 0.752365 –

1.25 – 2.870724 0.750717 –

Table 4.8. Prices of Down-and-Out Call Option with λ = 0

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 4.166561 4.025324 4.024676 3.750105

0.001 – 4.028239 4.021762 –

0.005 – 4.041185 4.008864 –

0.01 – 4.057338 3.992857 –

0.05 – 4.166559 3.869262 –

0.1 – 4.166561 3.750107 –

0.25 – 4.166561 3.750106 –

0.5 – 4.166561 3.750106 –

0.75 – 4.166561 3.750105 –

1 – 4.166561 3.750105 –

1.25 – 4.166561 3.750105 –
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Table 4.9. Prices of Down-and-Out Call Option with λ = 0.005

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 4.395436 4.067077 4.066423 3.610007

0.001 – 4.070023 4.063479 –

0.005 – 4.083103 4.050447 –

0.01 – 4.099424 4.034274 –

0.05 – 4.228856 3.909397 –

0.1 – 4.387862 3.763767 –

0.25 – 4.395434 3.610009 –

0.5 – 4.395435 3.610007 –

0.75 – 4.395436 3.610007 –

1 – 4.395436 3.610007 –

1.25 – 4.395436 3.610007 –

Table 4.10. Prices of Down-and-Out Call Option with λ = 0.01

γ πU0 Πask,γ
0 Πbid,γ

0 πL0

0.0001 4.631900 4.108831 4.108169 3.472015

0.001 – 4.111807 4.105195 –

0.005 – 4.125021 4.092030 –

0.01 – 4.141509 4.075691 –

0.05 – 4.272270 3.949531 –

0.1 – 4.432908 3.802406 –

0.25 – 4.631897 3.472017 –

0.5 – 4.631898 3.472016 –

0.75 – 4.631898 3.472016 –

1 – 4.631900 3.472015 –

1.25 – 4.631900 3.472015 –
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this work, we studied problems in valuation and mitigation of counterparty

risk modeling and pricing derivatives using dynamic coherent acceptability indices.

As a conclusion, we address several open research problems and our plans for future

work.

We considered the modeling of counterparty risk in the presence of bilateral

margin agreements in Chapter 2. We defined an appropriate collateral process which

takes various margin agreement parameters into account. The dynamics of the coun-

terparty risk adjustment, CVA, have been found for the bilateral case. This achieve-

ment helps us to better understand and monitor the behavior of the bilateral CVA

as well as the unilateral CVA and the DVA.

We observed the impact of collateral agreements on counterparty risk adjust-

ments as well as the credit exposures such as the EPE and the ENE. We formulated

the fair spread value adjustment, which we named as SVA, that indicates the addi-

tional spread value to incorporate the counterparty risk into the fair spread value.

Moreover, we derive the dynamics of the fair spread and the counterparty risky spread

and therefore the spread value adjustment, SVA. Finally, we presented our numerical

results using a Markovian model of counterparty credit risk.

In Chapter 3, we considered the problem of collateralized CVA valuation in

the presence of rating triggers in credit migrations environment. Resulting adjust-

ment value is found as a consequence, which is then named as RVA. Moreover, we

incorporated the rehypothecation risk of the collateral in our setup. We utilized the

Markov copulae for modeling the rating transition probabilities, and applied to an

IRS and to a CDS contract.
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A natural extension of our results in Chapter 2 and in Chapter 3 is to incorpo-

rate the asymmetric funding costs, in a multi-curve environment, into the valuation

of counterparty risk. Indeed, in virtue of this consideration, a new adjustment term,

which is called Funding Valuation Adjustment (FVA), will take place in the CVA

and the counterparty risky price computation. Within this proposed framework, the

problem of dynamic hedging of counterparty risk as well as the efficient computation

of the sensitivities of the CVA will need to be given increased scrutiny because of the

asymmetry in the borrowing and lending rates.

On the other hand, one of the key drivers of the credit crisis in 2008, as

well as the European sovereign-debt crisis in 2011 and 2012, has been the systemic

risk; since the defaults of the major financial institutions often trigger the collapse of

many other market participants as a result of contagion. In this regard, modeling,

mitigating and hedging the counterparty credit risk by taking the systemic risks as

well as the contagion effects into account is a very crucial problem. Incorporating the

systemic risk into our framework remains as a future study.

In Chapter 4, we studied the problem of developing the representations of the

ask and bid prices of derivatives using the theory of DCAIs in a risk-neutral setup.

Our framework is constructed in discrete and finite time space, and also in finite

probability space. Therefore, a major future work is the generalization of the theory of

DCAIs to a general probability space and to a continuous time space. This will allow

us to work in a more realistic setup, in the sense that it will be possible to calibrate our

model to the real quoted market ask and bid prices. Moreover, developing dynamic

versions of static acceptability indices such as AIMAX, AIMIN, AIMAXMIN and

AIMINMAX is a crucial future work. As a result of this development, as well as the

application of the appropriate distortion functions in dynamic setup, the ask and bid

price representations will have closed-form solutions as in Cherny and Madan [CM10].
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Furthermore, extending our framework to the case where we no longer have the

scale invariance property (see (D4) in Definition A.1) is another important research

direction. This extension, along with the generalization of DCAIs to a dynamic

quasi-concave case and incorporating the theory of BSDEs in the duality results, will

lead to a more realistic pricing framework, since the restrictiveness of scale invariance

property has already been gained attention (see Rosazza-Gianin and Sgarra [RGS12]).
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APPENDIX A

DYNAMIC COHERENT ACCEPTABILITY INDICES



165

In this section, we present some important definitions and results from the

theory of Dynamic Coherent Acceptability Indices. For a more detailed discussion we

refer to Bielecki, Cialenco, and Zhang [BCZ11].

Let us first recall the definition of a dynamic coherent acceptability index.

Definition A.1. A dynamic coherent acceptability index (DCAI) is a function α :

T × L0 × Ω→ [0,∞] that satisfies the following properties:

(D1) Adaptiveness. For any t ∈ T and D ∈ L0, αt(D) is Ft-measurable;

(D2) Independence of the past. For any t ∈ T and D,D′ ∈ L0, if there exists

A ∈ Ft such that 1ADs = 1AD
′
s for all s ≥ t, then 1Aαt(D) = 1Aαt(D

′);

(D3) Monotonicity. For any t ∈ T and D,D′ ∈ L0, if Ds(ω) ≥ D′s(ω) for all s ≥ t

and ω ∈ Ω, then αt(D) ≥ αt(D
′) for all ω ∈ Ω;

(D4) Scale invariance. αt(λD) = αt(D) for all λ > 0, D ∈ L0, t ∈ T , and ω ∈ Ω;

(D5) Quasi-concavity. If αt(D) ≥ x and αt(D
′) ≥ x for some t ∈ T , ω ∈ Ω,

D,D′ ∈ L0, and x ∈ (0,∞], then αt(λD + (1− λ)D′) ≥ x for all λ ∈ [0, 1];

(D6) Translation invariance. αt(D + m1{t}) = αt(D + m1{s}) for every t ∈ T ,

D ∈ L0, ω ∈ Ω, s ≥ t and every Ft-measurable random variable m;

(D7) Dynamic consistency. For any t ∈ [0, . . . , T − 1] and D,D′ ∈ L0, if Dt(ω) ≥

0 ≥ D′t(ω) for all ω ∈ Ω, and there exists a non-negative Ft-measurable random

variable m such that αt+1(D) ≥ m(ω) ≥ αt+1(D′) for all ω ∈ Ω, then αt(D) ≥

m(ω) ≥ αt(D
′) for all ω ∈ Ω.

We now proceed by defining of a dynamic coherent risk measure.

Definition A.2. Dynamic coherent risk measure (DCRM) is a function ρ : {0, . . . , T}×

L0 × Ω→ R that satisfies the following properties:
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(A1) Adaptiveness. ρt(D) is Ft-measurable for all t ∈ T and D ∈ L0;

(A2) Independence of the past. If 1ADs = 1AD
′
s for some t ∈ T , D,D′ ∈ L0,

and A ∈ Ft and for all s ≥ t, then 1Aρt(D) = 1Aρt(D
′);

(A3) Monotonicity. If Ds(ω) ≥ D′s(ω) for some t ∈ T and D,D′ ∈ L0, and for all

s ≥ t and ω ∈ Ω, then ρt(D) ≤ ρt(D
′) for all ω ∈ Ω;

(A4) Homogeneity. ρt(λD) = λρt(D) for all λ > 0, D ∈ L0, t ∈ T , and ω ∈ Ω;

(A5) Subadditivity. ρt(D + D′) ≤ ρt(D) + ρt(D
′) for all t ∈ T , D,D′ ∈ L0, and

ω ∈ Ω;

(A6) Translation invariance. ρt(D+m1{s}) = ρt(D)−m for every t ∈ T , D ∈ L0,

Ft-measurable random variable m, and all s ≥ t;

(A7) Dynamic consistency.

1A(min
ω∈A

ρt+1(D)−Dt) ≤ 1Aρt(D) ≤ 1A(max
ω∈A

ρt+1(D)−Dt) ,

for every t ∈ {0, 1, . . . , T − 1}, D ∈ L0 and A ∈ Ft.

Let us continue with an important result that provides the representation of

a DCAI in terms of a family of DCRMs, and the representation of DCRM in terms

of a DCAI.

Theorem A.1.

(i) If α is a normalized, right-continuous, dynamic coherent acceptability index,

then there exists a left-continuous and increasing family of dynamic coherent

risk measures (ργ)γ∈(0,∞), such that

αt(D)(ω) = sup{γ ∈ (0,∞) : ργt (D)(ω) ≤ 0}, ω ∈ Ω, t ∈ T , D ∈ L0.

(A.1)
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(ii) If (ργ)γ∈(0,∞) is a left-continuous and increasing family of dynamic coherent risk

measures, then there exists a right-continuous and normalized dynamic coherent

acceptability index α such that,

ργt (D)(ω) = inf{c ∈ R : αt(D + δt(1c))(ω) ≥ γ}, ω ∈ Ω, t ∈ T , D ∈ L0.

We assume inf ∅ =∞ and sup ∅ = 0.

The proof this theorem can be found in [BCZ11].

We now state the definitions of a dynamically consistent sequence of sets of

probability measures and an increasing family of sequences of sets of probability

measures.

Definition A.3.

(i) A sequence of sets of probability measures (Qt)Tt=0 absolutely continuous with

respect to P is called dynamically consistent with respect to the filtration (Ft)Tt=0

if the sequence is of full-support and the following inequality holds true

1E min
ω∈E

{
inf

Q∈Qt+1

EQ[X | Ft+1 ](ω)
}
≤ 1E inf

Q∈Qt
EQ[X | Ft ]

≤ 1E max
ω∈E

{
inf

Q∈Qt+1

EQ[X | Ft+1 ](ω)
}

for all t ∈ {0, 1, . . . , T − 1}, E ∈ Ft, and FT -measurable random variables X.

(ii) A family of sequences of sets of probability measures ((Qγt )Tt=0)γ∈(0,∞) is called

increasing if Qγt ⊇ Q
β
t , for all γ ≥ β > 0 and t ∈ T .

Next, we present a representation theorem for dynamic coherent risk mea-

sures in terms of dynamically consistent set of probabilities. The proof the following

theorem can be found in [BCZ11].
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Theorem A.2 (Robust Representation Theorem for DCRM). For γ > 0, a function

ργ : {0, 1, . . . , T} × L0 × Ω → R is a dynamic coherent risk measure if and only if

there exists a dynamically consistent family of sets of probabilities (Qγt )Tt=0 such that,

ργt (D) = − inf
Q∈Qγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ] , t ∈ T , D ∈ L0. (A.2)

This result, along with the results from Theorem A.1, which states the duality

between DCAIs and DCRMs, leads to a representation theorem for dynamic coherent

acceptability indices.

A direct consequence of Theorem A.1 and Theorem A.2 is the following result.

Theorem A.3.

(i) Assume that ((Qγt )Tt=0)γ∈(0,∞) is an increasing family of dynamically consistent

sequences of sets of probability measures. Then, the function α : {0, 1, . . . , T}×

L0 × Ω→ [0,∞] defined as follows,

αt(D)(ω) = sup
{
γ ∈ (0,∞) :

inf
Q∈Qγt

EQ
[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0
}
, ω ∈ Ω, t ∈ T , D ∈ L0,

is a normalized and right-continuous dynamic coherent acceptability index.

(ii) If α is a normalized and right-continuous dynamic coherent acceptability in-

dex, then there exists a family of dynamically consistent sequences of sets of

probability measures ((Qγt )Tt=0)γ∈(0,∞) such that

αt(D)(ω) = sup
{
γ ∈ (0,∞) :

inf
Q∈Qγt

EQ[ T∑
s=t

Ds

∣∣∣Ft ](ω) ≥ 0
}
, ω ∈ Ω, t ∈ T , D ∈ L0.

Here we adopt the usual convention that inf ∅ =∞ and sup ∅ = 0.

The proof this theorem can also be found in [BCZ11].
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APPENDIX B

TECHNICAL RESULTS



170

In this section we present some technical results, which are used throughout

the thesis. We begin by proving two results on continuous functions.

Lemma B.1. If g : R → R is continuous, then the function f : (0,∞) → R defined

by f(γ) := inf0≤y≤γ g(y) is continuous.

Proof. Since g is continuous, f(γ) = min0≤y≤γ g(y). We first show that

lim
γ→γ+0

min
γ0≤y≤γ

g(y) = lim
γ→γ−0

min
γ0≤y≤γ

g(y) = g(γ0).

Suppose ε > 0 and γ0 ≤ γ. Since g is continuous, for all ε′ > 0, there exists δ > 0

such that |γ − γ0| < δ implies |g(γ)− g(γ0)| < ε′. We notice that

|g(γ0)− min
γ0≤y≤γ

g(y)| = g(γ0)− min
γ0≤y≤γ

g(y)

= min
γ0≤y≤γ

{g(γ0)− g(y)}

≤ min
γ0≤y≤γ

{|g(γ0)− g(y)|}

= min
γ0≤y≤γ

{|g(γ0)− g(γ) + g(γ)− g(y)|}

≤ min
γ0≤y≤γ

{|g(γ0)− g(γ)|+ |g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ min
γ0≤y≤γ

{|g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ |g(γ)− g(γ0)|

= 2|g(γ0)− g(γ)| < 2ε′.

Taking ε = 2ε′ shows that limγ→γ+0
minγ0≤y≤γ g(y) = g(γ0).

We now show that limγ→γ−0
minγ≤y≤γ0 g(y) = g(γ0) Again, suppose ε > 0 and

γ ≤ γ0. Since g is continuous, for any ε′ > 0 there exists δ > 0 such that |γ − γ0| < δ

implies |g(γ)− g(γ0)| < ε′. Notice that
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|g(γ0)− min
γ≤y≤γ0

g(y)| = g(γ0)− min
γ≤y≤γ0

g(y)

= min
γ≤y≤γ0

{g(γ0)− g(y)}

≤ min
γ≤y≤γ0

{|g(γ0)− g(y)|}

= min
γ≤y≤γ0

{|g(γ0)− g(γ) + g(γ)− g(y)|}

≤ min
γ≤y≤γ0

{|g(γ0)− g(γ)|+ |g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ min
γ≤y≤γ0

{|g(γ)− g(y)|}

≤ |g(γ0)− g(γ)|+ |g(γ)− g(γ0)|

= 2|g(γ0)− g(γ)| < 2ε′.

Taking ε = 2ε′ shows that limγ→γ−0
minγ0≤y≤γ g(y) = g(γ0).

We now show that f is continuous. We need to show that

lim
γ→γ+0

f(γ) = lim
γ→γ−0

f(γ) = f(γ0).

Since f is non-increasing and bounded, the limit exists. Let 0 < γ0 ≤ γ <∞. Since

min(·, ·) : R× R→ R is a continuous function it follows that

f(γ0)− lim
γ→γ+0

f(γ) = min
0≤y≤γ0

g(y)− lim
γ→γ+0

min
0≤y≤γ

g(y)

= min
0≤y≤γ0

g(y)− lim
γ→γ+0

min

(
min

0≤y≤γ0
g(y), min

γ0≤y≤γ
g(y)

)

= min
0≤y≤γ0

g(y)−min

(
min

0≤y≤γ0
g(y), lim

γ→γ+0
min

γ0≤y≤γ
g(y)

)

= min
0≤y≤γ0

g(y)−min

(
min

0≤y≤γ0
g(y), g(γ0)

)
= 0.
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It follows that f is right-continuous.

Now let 0 < γ ≤ γ0 <∞. Likewise,

f(γ0)− lim
γ→γ−0

f(γ) = min
0≤y≤γ0

g(y)− lim
γ→γ−0

min
0≤y≤γ

g(y)

= lim
γ→γ−0

min
0≤y≤γ0

g(y)− lim
γ→γ−0

min
0≤y≤γ

g(y)

= lim
γ→γ−0

min

(
min

0≤y≤γ
g(y), min

γ≤y≤γ0
g(y)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), lim
γ→γ−0

min
γ≤y≤γ0

g(y)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), g(γ0)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

From the continuity of g, we see that

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), g(γ0)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= min

(
lim
γ→γ−0

min
0≤y≤γ

g(y), lim
γ→γ−0

g(γ)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= lim
γ→γ−0

min

(
min

0≤y≤γ
g(y), g(γ)

)
− lim

γ→γ−0
min

0≤y≤γ
g(y)

= 0

Thus, f is left-continuous, so we conclude that f is continuous.

The following lemma is an auxiliary result needed for Theorem 4.3.1.

Lemma B.2. For any monotone increasing, continuous function f : (0,∞)→ R, we

have that

f(γ) ≤ 0 if and only if sup{β ∈ (0,∞) : f(β) ≤ 0} ≥ γ,

for any γ > 0.
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Proof. Let us define the set Γ := {β ∈ (0,∞) : f(β) ≤ 0}. Assume that f(γ) ≤ 0 for

some γ > 0. Then, γ ∈ Γ, and therefore sup Γ ≥ γ.

Conversely. Suppose that sup Γ ≥ γ and define β∗ := sup Γ. If sup Γ = ∞,

then f(x) ≤ 0, for all x > 0, and in particular for x = γ. Now assume that β∗ ∈

(0,∞). We first argue by contradiction that β∗ ∈ Γ. If β∗ /∈ Γ, then f(β∗) > 0. Now,

since f is continuous, there exists ε′ > 0 so that 0 < f(β∗ − ε′). By the definition

of the supremum of a set, we have that, for all ε > 0, there exists βε ∈ Γ so that

β∗ − ε < βε. Therefore, because f is monotonically increasing, f(β∗ − ε) ≤ f(βε).

Hence, 0 < f(β∗−ε′) ≤ f(βε), which contradicts βε ∈ Γ. We proceed by showing that

f(γ) ≤ 0. Since γ ≤ β∗ and f is monotonically increasing, we have that f(γ) ≤ f(β∗).

However, β∗ ∈ Γ, so f(γ) ≤ f(β∗) ≤ 0.

We now recall a well-known characterization of compact sets. For a proof, see

Lemma I.5.6 in Dunford and Schwartz [DS58].

Lemma B.3. A subset of a topological space is compact if and only if every family

of closed sets with the finite intersection property has a nonempty intersection.

The following theorem is an application of Hahn-Banach theorem, regarding

the separation of hyperplanes.

Theorem B.1. If Z and C are disjoint closed convex subsets of RN , and if Z is

compact, then there exists a constant ε with ε > 0, and a continuous linear functional

ϕ ∈ RN , so that

ϕ(c) ≤ 0 < ε < ϕ(z)

for all z ∈ Z and c ∈ C.

Proof. By Theorem V.2.10 in Dunford and Schwartz [DS58], there exists constants a
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and ε′ with ε′ > 0, and a continuous linear functional ϕ ∈ RN , so that

ϕ(x) ≤ a− ε′ < a ≤ ϕ(z) (B.1)

for all z ∈ Z and x ∈ C. We now argue that ϕ(x) ≤ 0 for all x ∈ C. Suppose there

exists a0 > 0 and x0 ∈ C so that ϕ(x0) = a0. Since C is a cone, we have that λx0 ∈ C

for all λ > 0. Thus,

sup
x∈C

ϕ(x) ≥ sup
λ>0

ϕ(λx0) = sup
λ>0

λa0 = +∞,

which contradicts (B.1), and hence ϕ(x) ≤ 0, x ∈ C. From here, and since ϕ is linear

and 0 ∈ C, it follows that supx∈C ϕ(x) = 0. Thus, a− ε′ ≥ 0, and hence a > 0. Taking

ε = a concludes the proof.
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