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Abstract: We consider a parameter estimation problem for one dimensional stochastic heat equa-
tions, when data is sampled discretely in time or spatial component. We establish some
general results on derivation of consistent and asymptotically normal estimators based
on computation of the p-variations of stochastic processes and their smooth pertur-
bations. We apply these results to the considered SPDEs, by using some convenient
representations of the solutions. For some equations such results were ready available,
while for other classes of SPDEs we derived the needed representations along with their
statistical asymptotical properties. We prove that the real valued parameter next to
the Laplacian, and the constant parameter in front of the noise (the volatility) can
be consistently estimated by observing the solution at a fixed time and on a discrete
spatial grid, or at a fixed space point and at discrete time instances of a finite interval,
assuming that the mesh-size goes to zero.
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1 Introduction

Consider the following (parabolic) Stochastic Partial Differential Equations (SPDEs)

du(t) = (θA1 +A0)u(t) dt+ σ(Mu(t) + g(t)) dW (t) , (1.1)

where A0,A1,M are some (linear or nonlinear) operators acting in suitable Hilbert spaces, g is an
adapted vector-valued function, W is a cylindrical Brownian motion, and θ and σ are unknown
parameters (to be estimated) belonging to a subset of real line. Implicitly we will assume that (1.1)
is parabolic and admits a unique solution, although usually this has to be established on a case by
case basis.

Major part of the existing literature on statistical inference for SPDEs (estimating θ and σ)
lies within the spectral approach, where it is assumed that one path of the first N Fourier modes
of the solution is observed continuously over a finite interval of time. In this case, the coefficient
σ can be determine explicitly and exactly, similar to the case of finite dimensional diffusions,
by employing quadratic variation type arguments, and due to the fact that a path is observed
continuously in time. A general method of estimating θ is to construct Maximum Likelihood
Estimators (MLEs) based on the information revealed by the first N Fourier modes, and prove that
these estimators satisfy the desired statistical properties, such as consistency, asymptotic normality,
and efficiency, as N increases. We refer the reader to the recent monograph [LR17, Chapter 6] for a
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comprehensive survey of this method applied to diagonalizable SPDEs. For MLE based estimators
applied to nonlinear SPDEs see for instance [CGH11]. For other type of estimators, assuming the
same observation scheme, see [CGH16]. Beyond spectral approach, the literature on parameter
estimation for SPDEs is limited, and only few papers are devoted to discretely sampled SPDEs
[PR97, Mar03, PvsT07]. Of course, one way to deal with discretely sampled data, is to discretize or
approximate the MLEs using the available discrete data, and show that the statistical properties are
preserved. On the other hand, if we assume that the solution itself is observed at some space-time
grid points, one needs to approximate additionally the Fourier modes. To best of our knowledge,
a rigourous asymptotic analysis of this idea is still to be done. Finally, it needs to be mentioned,
that by its very nature, the Fourier decomposition has to be performed with the respect to the
basis formed by the eigenfunctions of the operator A1. Usually, A1 is a differential operator, and
thus essentially one has to deal with bounded domains.

The main goal of this notes is to study the parameter estimation problem for simple parabolic
SPDEs, when data is sampled discretely. Namely, we consider the stochastic heat equation, one
dimensional, driven by an additive or multiplicative space-time noise, either on bounded domain or
whole space, and when the solution u is observed at some discrete space-time points. As such, we
do not rely on spectral approach, but rather use some suitable representations of the solution to
derive the corresponding estimators. The key idea of the proposed method relies on an intuitively
simple observation: the p-variation of a stochastic process is invariant with respect to smooth
perturbations. Hence, if the p-variation of a process X can be computed by an explicit formula, and
the parameter of interest enters non-trivially into this formula, one can derive consistent estimators
of this parameter (similar to estimating the volatility through quadratic variation). However,
since the p-variation of the perturbed process X + Y remains the same, given that Y is smooth
enough, then the same estimator remains consistent assuming that X + Y is observed. Analogous
arguments remain valid for asymptotic normality property. See Section 2.1 for the formal result
and some simple applications to parameter estimation problems. Thus, it remains to find suitable
representations of the solution u as a sum of two processes. In Section 3, we start with the heat
equation on the whole real line, and driven by an additive noise. It turns out that for any fixed
instance of time t > 0, the solution as a function of x ∈ R can be represented as a scaled two-sided
Brownian motion plus a smooth process. Similarly, if we fix a spacial point, then the solution is a
smoothly perturbed scaled fractional Brownian motion. We refer to [Kho14, Section 3] for details
on these representations. With these at hand, using the p-variation idea described above, both θ
and σ can be estimated in either time or space sampling regime. Hence, to construct a consistent,
and asymptotically normal estimator for θ or σ it is enough to observe the solution at one time
instant and discretely on a spacial grid of a finite interval, with mesh diameters going to zero. By
the same token, it is sufficient to observe the solution just at one spacial point, and over a time-grid
interval. We focus our study on these two sampling schemes. It should be mentioned that similar
estimators, and same sampling schemes were studied in [PvsT07], where the authors considered
the heat equation on R driven by a multiplicative noise. The methods of proof in [PvsT07] are
different from ours. For the sake of completeness we present some relevant results in Section 5.
In Section 4 we investigate the case of bounded domain and additive noise. There are no ready
available results on the representations of the solution, and we first establish the corresponding
result when time is fixed, which can be easily done via Karhunen–Loève expansion. The case of
sampling the solution in time at a fixed spacial point for bounded domains is more delicate. We
prove that the solution can be represented as a sum of a smooth process and a zero-mean Gaussian
process with known finite fourth variation. Moreover, using some elements of Malliavin calculus, as
well as a version of the cental limit theorem from [NOL08], we establish a central limit type theorem
for the fourth variation of the solution. Consequently, we derive weakly consistent estimators for
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θ and σ, and prove their asymptotic normality. The results on the representation of the solution
are of independent interest, and could be used beyond statistical inference problems. It would be
fair to note that a similar methodology of using Malliavin calculus technics to establish cental limit
theorem can be found in [Cor12], albeit applied to similar processes but with a simpler covariance
structure. To streamline the presentation, most of the proofs and some auxiliary technical results
are moved to Appendix.

Finally, we want to mention that there are many natural questions that are left open, such
as: considering more general sampling schemes, by sampling simultaneously in time and space;
investigate equations in higher dimensions and of more complicated structure; equations on bounded
domains and driven by multiplicative noise; nonlinear equations, etc. Some of these questions will
be addressed by the authors in the future works.

2 Setup of the problem

Let (Ω,F , {Ft}t≥0,P) be a stochastic basis satisfying the usual assumptions, and let G be either a
bounded smooth domain in R or the whole real line R. We consider the following stochastic partial
differential equation on H = L2(G)

du(t, x) = θuxx(t, x) dt+ σg(u) dW (t, x), x ∈ G, t > 0,

u(0, x) = u0(x) ∈ L2(G), (2.1)

u(t, ·)|∂D = 0, t > 0,

where W is an H-valued (cylindrical) Brownian motion, g : R → R, and θ, σ are some positive
constants. Under some fairly general assumptions on the structure of the noise W , the function g
and the parameters θ and σ, the solution to (2.1) exists and is unique [Cho07, LR17].

As usual, everywhere below, all equalities and inequalities between random variables, unless oth-

erwise noted, will be understood in the P-a.s. sense. The notations
D−→ will be used for convergence

in distribution, while
P−→ or P−lim will stand for convergence in probability.

We assume that θ ∈ Θ ⊂ (0,+∞) and σ ∈ S ⊂ (0,+∞) are the (unknown) parameters of
interest. In this work we focus on two sampling schemes1:

(A) Fixed time and discrete space. For a fixed instant of time t > 0, and given interval [a, b] ⊂ G,
the solution u is observed at points (t, xj), j = 1, . . . ,m, with xj = a + (b − a)j/m, j =
0, 1, . . . ,m.

(B) Fixed space and discrete time. For a fixed x from the interior of G, and given time interval
[c, d] ⊂ (0,+∞), the solution u is observed at points {(ti, x), i = 1, . . . , n}, where ti :=
c+ (d− c)i/n, i = 0, 1, . . . , n.

The main goal of this paper is to derive consistent estimators for the parameters θ and σ under
these sampling schemes, and to study the asymptotic properties of these estimators.

In what follows, we will use the notation Υm(a, b) = {aj | aj = a+ (b− a)j/m, j = 0, 1, . . . ,m}
for the uniform partition of size m of a given interval [a, b] ⊂ R. For a given stochastic process X
on some interval [a, b], and p ≥ 1, we will denote by Vpm(X; [a, b]) the sum

Vpm(X; [a, b]) :=

m∑
j=1

|X(tj)−X(tj−1)|p,

1For simplicity of writing, we assume that the sampling points form a uniform grid. Generally speaking all the
results hold true assuming only that the mesh size of the grid goes to zero.
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where tj ∈ Υm(a, b). Correspondingly,

Vp(X; [a, b]) := lim
m→∞

Vpm(X; [a, b]), P− a.s.,

VpP(X; [a, b]) := P− lim
m→∞

Vpm(X; [a, b]),

will denote the p-variation of X on [a, b], in P-a.s. sense and respectively in probability. If no
confusions arise, we will simply write Vp(X), and Vpm(X) instead of Vp(X; [a, b]) and Vpm(X; [a, b]);
same applies to VpP(X).

2.1 Statistical properties for smoothly perturbed stochastic processes

As already mentioned, the estimators proposed in this work are derived using the p-variation of
some suitable processes. The next result shows that the ‘quadratic variation type arguments’ of
estimating the diffusion coefficient are invariant with respect to smooth perturbations.

Proposition 2.1. Let X(t), Y (t), t ∈ [a, b], be stochastic processes with continuous paths, and
assume that the process Y has C1[a, b] sample paths, and there exists p > 1, such that 0 < Vp(X) <
∞. Then,

Vp(X + Y ; [a, b]) = Vp(X; [a, b]). (2.2)

Similarly, if 0 < VpP(X) <∞, then

VpP(X + Y ; [a, b]) = VpP(X; [a, b]). (2.3)

If in addition, there exist α, σ0 > 0 such that, α+ 1/p < 1,

nα (Vpn(X; [a, b])− Vp(X; [a, b]))
D−−−→

n→∞
N (0, σ2

0), (2.4)

then
nα (Vpn(X + Y ; [a, b])− Vp(X; [a, b]))

D−−−→
n→∞

N (0, σ2
0). (2.5)

Moreover, if Y has C2[a, b] sample paths, and (2.4) holds for p = 2 and α = 1/2, then (2.5) holds
true too, with p = 2, α = 1/2.

The proof is deferred to Appendix B.
This result allows to construct directly consistent and asymptotically normal estimators for

some parameter entering the true law of the perturbed process X + Y , given that the p-variation
Vp(X; [a, b]) of the unperturbed process X depends non-trivially on the parameter of interest, and
this dependence can be computed explicitly.

For example, let B be a two-sided Brownian motion, and Y be a process with a C2(R) version,
and consider the stochastic process

Z(x) =
√
βB(x) + Y (x), x ∈ R,

where β is a positive, unknown parameter. Assume that Z is observed at grid points Υm(a, b), for
some interval [a, b] ⊂ R. In view of (2.2),

V2(Z; [a, b]) = V2(
√
βB; [a, b]) = β(b− a).

Consequently, the estimator

β̂m =
1

b− a

m∑
j=1

(Z(xj)− Z(xj−1))2 ,
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is a consistent estimator of β, namely limm→∞ β̂m = β, P-a.s.. Moreover, it is well known
(cf. [Nou08, AES16]) that

√
m(V2

m(B, [a, b])− (b− a))
D−−−−→

m→∞
N (0, 2(b− a)2),

and thus, by Proposition 2.1, the estimator β̂m is asymptotically normal, with the convergence

√
m(β̂m − β)

D−−−−→
m→∞

N (0, 2β2).

Similarly, let BH be a fractional Brownian Motion (fBM) with Hurst index H = 1
4 , and Y be

a process with continuously differentiable paths in (0,+∞). Assume that η is the parameter of
interest, and suppose that the process

ZH(t) = η1/4BH(t) + Y (t), t > 0.

is sampled at grid points ti ∈ Υn(c, d), i = 0, 1, . . . , n, with [c, d] ⊂ (0,∞). Then,

η̂n =
1

3(d− c)

n∑
i=1

(
ZH(ti)− ZH(ti−1)

)4
,

is a consistent estimator of η, since an fBM with Hurst index H has a finite, non-zero p = 1/H-
variation. The asymptotic normality of V4

n(BH ; [c, d]) is established in Theorem A.1, and Corol-
lary A.2, and hence, by (2.5), η̂n is also asymptotically normal, and satisfying

√
n(η̂n − η)

D−−−→
n→∞

N (0,
1

9
σ̌2η2).

where σ̌2 is an explicit constant given in Corollary A.2.

3 Additive noise, whole space

In this section, we consider the SPDE (2.1) on the whole space G = R, driven by an additive space-
time white noise, and for simplicity we take zero initial data. Namely, we consider the following
evolution equation

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ R, t > 0, (3.1)

u(0, x) = 0, x ∈ R.

The estimators for θ and σ are obtained by using the following representations (cf. [Kho14,
Section 3]) of the solution u of (3.1):

(a) For every fixed t > 0, there exist a two-sided Brownian motion B(x) and a Gaussian process
X(x) with a C∞(R) version, such that

u(t, x) =
σ√
2θ
B(x) +X(x), x ∈ R. (3.2)

(b) For every fixed x ∈ R, there exists a fractional Brownian motion BH(t) with Hurst index
H = 1/4 and a Gaussian process Y (t) that is continuous on R+ and infinitely differentiable on
(0,∞), such that

u(t, x) =
σ

(θπ)1/4
BH(t) + Y (t), t > 0. (3.3)
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It turns out that to estimate one of the parameters θ or σ, while the second one is known, it is
enough to observe the solution u at one time instant, and at discrete space points with the mesh
diameter going to zero. Similarly, it is enough to observe the solution at one fixed spatial point, and
at discrete time points in a finite time interval (past initial time) with vanishing step size. These
results are proved in the next subsections.

3.1 Space sampling at a fixed time instance

Assume that t > 0 is a fixed time instant, and consider the partition Υm(a, b) of the fixed interval
[a, b] ⊂ R. Suppose that the solution u of (3.1) is observed at the grid points {(t, xj) | xj ∈
Υm(a, b), j = 1, . . . ,m}. Consider the following estimators for θ and σ2 respectively

θ̂m,t :=
(b− a)σ2

2
∑m

j=1(u(t, xj)− u(t, xj−1))2
, (3.4)

σ̂2
m,t :=

2θ

b− a

m∑
j=1

(u(t, xj)− u(t, xj−1))2. (3.5)

Clearly, (3.4) assumes that σ is known, while (3.5) assumes that θ is known. The following results
show that these estimators are consistent and asymptotically normal.

Theorem 3.1. Assuming that σ is known, the estimator (3.4) of θ is:

(i) consistent, that is limm→∞ θ̂m,t = θ, P− a.s.,

(ii) asymptotically normal,

√
m(θ̂m,t − θ)

D−−−−→
m→∞

N (0, 2θ2). (3.6)

Proof. Using the representation (3.2), and in view of Proposition 2.1, consistency of θ̂m,t follows at
once. In addition, we also have that

√
m

 m∑
j=1

(u(t, xj)− u(t, xj−1))2 − (b− a)σ2

2θ

 D−−−−→
m→∞

N (0,
(b− a)2σ4

2θ2
).

Consequently, a direct application of Delta-Method yields (3.6), and this concludes the proof.

Similarly, employing again Proposition 2.1, one has the following result.

Theorem 3.2. Assuming that θ is known, the estimator (3.5) is a consistent and asymptotically
normal estimator of σ2, with

√
m(σ̂2

m,t − σ2)
D−−−−→

m→∞
N (0, 2σ4). (3.7)

3.2 Time sampling at a fixed space point

In this section we assume that the solution u of (3.1) is observed at the grid points {(ti, x) : i =
1, . . . , n}, where x ∈ R is a fixed spatial point, and 0 < c < d < ∞. We consider the following
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estimators for θ, and σ2 respectively,

θ̂n,x :=
3(d− c)σ4

π
∑n

i=1(u(ti, x)− u(ti−1, x))4
, (3.8)

σ̂2
n,x :=

√√√√ θπ

3(d− c)

n∑
i=1

(u(ti, x)− u(ti−1, x))4. (3.9)

Similar the previous section, the following results about asymptotic properties of these estima-
tors hold.

Theorem 3.3. Given that σ is known, we have that

lim
n→∞

θ̂n,x = θ, P− a.s.
√
n(θ̂n,x − θ)

D−−−→
n→∞

N (0,
1

9
θ2σ̌2).

Assuming that θ is known, we have that

lim
n→∞

σ̂2
n,x = σ2, P− a.s.

√
n(σ̂2

n,x − σ2)
D−−−→

n→∞
N (0,

1

36
σ4σ̌2).

where σ̌2 is the constant given in (A.2).

The proof is analogous to the proofs of Theorems 3.1 and 3.2 and is omitted here.

4 Additive noise, bounded domain

In this section we consider the stochastic evolution equation (2.1) on bounded domain G = [0, π],
with zero initial data, zero boundary conditions, and driven by a space-time white noise:

du(t, x) = θuxx(t, x) dt+ σ dW (t, x), x ∈ (0, π), t > 0,

u(0, x) = 0, x ∈ (0, π), (4.1)

u(t, 0) = u(t, π) = 0, t > 0,

In this case, the Laplace operator ∆ = ∂xx has only discrete spectrum, with eigenvalues λk =
−k2, k ∈ N, and corresponding eigenfunctions hk(x) =

√
2/π sin(kx), k ∈ N. Moreover, the

functions {hk, k ∈ N} form a complete orthonormal system in L2(G), and the noise term can be
conveniently written as

W (t, x) =
∑
k≥1

wk(t)hk(x),

where wk, k ∈ N, are independent standard Brownian motions. The solution of this equation admits
a Fourier series decomposition,

u(t, x) =
∑
k≥1

uk(t)hk(x), t > 0, x ∈ (0, π),
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where each Fourier mode uk(t) is an Ornstein–Uhlenbeck process of the form

duk(t) = −θk2uk(t) dt+ σ dwk(t), t > 0,

uk(0) = 0.

Equivalently, we have that

uk(t) = σ

∫ t

0
e−θk

2(t−s) dwk(s). (4.2)

Clearly, uk(t) ∼ N (0, (1−e−2θk2t)σ2

2θk2
), and uk, k ∈ N, are independent random variable.

4.1 Space sampling at a fixed time instance

First we will establish the counterpart of the representation (3.2).

Theorem 4.1. For every fixed t > 0, there is a Brownian motion B(x) on [0, π], and a Gaussian
process R(x), x ∈ [0, π] with a C∞(0, π) version, such that

u(t, x) =
σ√
2θ
B(x) +R(x), x ∈ [0, π].

Proof. A similar result, left as an exercise, can be found in [Wal86, Exercise 3.10]. For the sake of
completeness, we sketch the proof here. It is enough to note that the solution u can be represented,
for any t > 0, as

u(t, x) =
σ√
2θ
B(x) +R(x),

where

B(x) = ξ0 +
∑
k≥1

1

k
ξkhk(x), R(x) = − σx√

2θπ
ξ0 +

σ√
2θ

∑
k≥1

ak − 1

k
ξkhk(x),

ξk =

√
2θk2

(1− e−2θk2t)σ2
uk(t), ak =

√
1− e−2θk2t.

Note that ξk are i.i.d. standard Gaussian random variables. It is easy to check that B is a standard
Brownian motion on [0, π], for example by noting that v is the Karhunen–Loève expansion for the
Brownian motion, up to some change of variables. It is also straightforward to show that R is
smooth. This completes the proof.

With this at hand, similar to Theorem 3.1, we have the following result.

Theorem 4.2. Let u be the solution to (4.1), and assume that u is sampled at discrete points
{(t, xj) | xj ∈ Υm(a, b)}, for some fixed t > 0 and a, b ∈ (0, π). Then, assuming σ is known,

θ̂m,t given by (3.4) is a consistent and asymptotically normal estimator for θ, satisfying (3.6).
Respectively, if θ is known, then σ̂2

m,t in (3.5) is a consistent and asymptotically normal estimator
of σ2, satisfying (3.7).
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4.2 Time sampling at a fixed space point

The case of sampling the solution in time at a fixed spatial point for bounded domains is more
delicate, primarily since there is no ready available representation similar to (3.3). In [Wal81] the
author proved that for a similar SPDE at x = 0 the 4-variation (in time) of the solution converges
to a constant. We start by proving that the 4−variation converges to a constant at any fixed space
point x. In addition, we also establish the asymptotic normality property of the 4-variation.

Proposition 4.3. Let x ∈ (0, π) be a fixed space point. Then, the solution u(t, x) of the equation
(4.1) admits the following decomposition

u(t, x) =
σ

(πθ)1/4
v(t) + S(t), t > 0, (4.3)

where v and S are zero-mean Gaussian processes such that:

(a) S(t) is continuous on [0,+∞), and infinitely differentiable on (0,∞);

(b) v(t) has finite 4−variation (with convergence in probability)

P− lim
n→∞

V4
n(v; [c, d]) = 3(d− c). (4.4)

(c) the 4-variation admits the asymptotic normality property

√
n

(
V4
n(v; [c, d])

nσ4
n

− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4), (4.5)

where

σ2
n =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−(d−c)θk2/n),

σ̄2
2 = 72 + 144 lim

n→∞

n−1∑
j=1

(1− j

n
) | F (j)

σ2
n

| 2, σ̄2
4 = 24 + 48 lim

n→∞

n−1∑
j=1

(1− j

n
) | F (j)

σ2
n

| 4,

and

F (j) =
1√
πθ

∑
k≥1

sin2(kx)

k2

(
2e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n − e−(j−1)(d−c)θk2/n
)
.

Moreover,

√
n

(
πθV4

n (u(·, x); [c, d])

nσ4
nσ

4
− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4). (4.6)

where σ2
n, σ̄

2
2 and σ̄2

4 are given above.

The proof is deferred to the Appendix B. To prove (4.5), we use some techniques from Malliavin
calculus (cf. [NOL08]). The general idea of the proof is in line with the proof of the central limit
theorem in [Cor12] established for a similar but simpler covariance structure.

Next, we present the main results of this subsection on consistency and asymptotic normality
of the estimators (3.8) and (3.9).
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Theorem 4.4. Let u be the solution to (4.1), and assume that u is sampled at discrete points
{(ti, x) | ti ∈ Υn(c, d)}, for some fixed x ∈ (0, π), and 0 < c < d <∞. Then, assuming σ is known,
θ̂n,x given by (3.8) is a weakly consistent estimator for θ, that is

P− lim
n→∞

θ̂n,x = θ. (4.7)

Respectively, if θ is known, then σ̂2
n,x in (3.9) is a weakly consistent estimator of σ2. Moreover,

θ̂n,x and σ̂2
n,x satisfy the following central limit type convergence

√
n

(
θ̂n,x −

(d− c)θ
nσ4

n

)
D−−−→

n→∞
N (0, θ2

(
σ̄2

2 + σ̄2
4

)
), (4.8)

√
n

(
σ̂2
n,x −

√
nσ2

n√
d− c

σ2

)
D−−−→

n→∞
N (0,

1

36
σ4
(
σ̄2

2 + σ̄2
4

)
). (4.9)

Proof. Consistency is a direct consequence of Proposition 4.3.(a)-(b) and (2.3) from Proposition 2.1.
Combining (3.8) and (4.6), we have

√
n

(
3(d− c)θ
θ̂n,xnσ4

n

− 3

)
D−−−→

n→∞
N (0, σ̄2

2 + σ̄2
4).

Due to (4.7), and by Slutsky’s theorem, (4.8) follows at once. Relationship (4.9) is proved similarly.
This completes the proof.

5 Multiplicative noise, whole space

Let us consider the SPDE (2.1), on G = R, and driven by a multiplicative noise:

du(t, x) = θuxx(t, x) dt+ σu(t, x) dW (t, x), x ∈ R, t > 0, (5.1)

u(0, x) = u0, x ∈ R.

The problem of estimating θ and σ for this equation, assuming sampling scheme (A) or (B), have
been essentially studied in [PvsT07]. The estimators are similar to those derived above for the
additive noise, and for sake of completeness, we present them here too.

Assume that the solution u of (5.1) is observed according to sampling scheme (A). Then, given
that σ is known, the estimator

θ̂m,t :=
(b− a)σ2

∑m
j=1 u

2(t, xj)

2m
∑m

j=1(u(t, xj)− u(t, xj−1))2
.

is an weakly consistent estimator of θ. Respectively, if θ is known, then

σ̂2
m,t =

2mθ
∑m

j=1(u(t, xj)− u(t, xj−1))2

(b− a)
∑m

j=1 u
2(t, xj)

.

is an weakly consistent estimator of σ2.
Analogously, let u being observed by sampling scheme (B), and let

θ̂n,x :=
3(d− c)σ4

∑n
i=1 u

4(ti, x)

nπ
∑n

i=1(u(ti, x)− u(ti−1, x))4
,

σ̂2
n,x :=

√
nθπ

∑n
i=1(u(ti, x)− u(ti−1, x))4

3(d− c)
∑n

i=1 u
4(ti, x)

.
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Then, assuming that σ is known (resp. θ is known), then estimator θ̂n,x (resp. θ̂n,x) is an weakly
consistent estimator of θ (resp. σ2).

The asymptotic normality of the estimators in this section remains an open problem.

A Appendix

A.1 Auxiliary technical results

In this section we will provide some technical results used in the paper.

Theorem A.1. Let {Xt, t ≥ 0} be a Gaussian process with the following properties

(i) X0 = 0, and EXt = 0, t ≥ 0.

(ii) Xt+s −Xt ∼ N (0, σ2(s)), where σ(s) is a deterministic function of s.

(iii) There exists a constant γ > 0 such that (Xαt, t ≥ 0)
law
= αγ (Xt, t ≥ 0), for any α > 0.

(iv) For any t ≥ 0,∆t > 0, the sequence Xt+n∆t−Xt+(n−1)∆t, n ∈ N is stationary. In particular,

Yn = Xn−Xn−1

σ(1) , n ∈ N, is a zero mean and stationary Gaussian sequence with unit variance.

(v) Let r be the covariance function of Y , r(n) = EYmYm+n, and assume that for some positive
integer k,

∑
n≥1 r

k(n) <∞.

Then,

1√
n

n∑
j=1

H

(
nγ

σ(1)

(
Xj/n −X(j−1)/n

)
; k

)
D−−−→

n→∞
σ̌N (0, 1), (A.1)

where

σ̌2 =
∞∑
l=k

c2
l l!σ̌

2
l , σ̌2

l = lim
n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|).

Proof. By [BM83, Theorem 1], applied to the sequence Y , we immediately get

1√
n

n∑
j=1

H(Yj ; k)
D−−−→

n→∞
σ̌N (0, 1),

where

σ̌2 =
∞∑
l=k

c2
l l!σ̌

2
l , σ̌2

l = lim
n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|).

Since

(Xj/n −X(j−1)/n, j = 1, 2, . . . , n)
law
=

1

nγ
(Xj −Xj−1, j = 1, 2, . . . , n),

we conclude that (A.1) holds.

The following result is an immediate consequence of Theorem A.1.
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Corollary A.2. Let BH be a fractional Brownian motion with Hurst parameter H = 1/4. Then,

√
n
(
V4
n(BH ; [a, b])− 3(b− a)

) D−−−→
n→∞

(b− a)σ̌N (0, 1),

where

σ̌2 = 72σ̌2
2 + 24σ̌2

4, σ̌2
l = lim

n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|). (A.2)

For reader’s convenience we also present here a result from [NOL08], used in the proof of
Proposition 4.3. For most of this part, we will use the standard notations from [Nua06] and
[NOL08]. We will denote by H(x; k) a polynomial with Hermite rank k, that is, H can be expanded
in the form

H(x; k) =

∞∑
j=k

cjHj(x),

where Hj is the jth Hermite polynomial (with leading coefficient 1), and ck 6= 0. Let H be a
separable Hilbert space. For every n ≥ 1, the notation H⊗n will stand for the nth tensor product
of H, and H�n will denote the nth symmetric tensor product of H, endowed with the modified
norm

√
n!‖ · ‖H⊗n . Suppose that X = {X(h), h ∈ H} is an isonormal Gaussian process on H, on

some fixed probability space, say (Ω,F ,P), and assume that F is generated by X.
For every n ≥ 1, let Hn be the nth Wiener chaos of X, that is, the closed linear subspace of

L2(Ω,F ,P) generated by the random variables {Hn(X(h)), h ∈ H, ‖h‖H = 1}, where Hn is the
nth Hermite polynomial. We denote by H0 the space of constant random variables. The mapping
In(h⊗n) = Hn(X(h)), for n ≥ 1, provides a linear isometry between H�n and Hn. For n = 0, we
have that H0 = R, and take I0 to be the identity map. It is well known that any square intergrable
random variable F ∈ L2(Ω,F ,P) admits the following expansion

F =
∞∑
n=0

In(fn),

where f0 = EF , and the fn ∈ H�n are uniquely determined by F .
Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H�n and g ∈ H�m, for

` = 0, . . . , n ∧m, the contraction of f and g of order ` is the element of H⊗(n+m−2`) defined by

f ⊗` g =
∑
i1,...,i`

〈f, ei1 ⊗ · · · ⊗ ei`〉H⊗l ⊗ 〈g, ei1 ⊗ · · · ⊗ ei`〉H⊗l

Theorem A.3 ([NOL08]). For d ≥ 2, fix d natural numbers 1 ≤ n1 ≤ · · · ≤ nd. Let {Fk}k∈N be a
sequence of random vectors of the form

Fk = (F 1
k , . . . , F

d
k ) = (In1(f1

k ), . . . , Ind(f
d
k )),

where f ik ∈ H�ni and Ini is the Wiener integral of order ni, such that, for every 1 ≤ i, j ≤ d,

lim
k→∞

E
[
F ikF

j
k

]
= δij . (A.3)

The following two2 statements are equivalent.

2The original result [NOL08, Theorem 7] contains six equivalent conditions; we list only those two that we use in
this paper.
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(N1) For all 1 ≤ i ≤ d, 1 ≤ ` ≤ ni − 1, ‖f (i)
k ⊗` f

(i)
k ‖

2
H2⊗(ni−`)

→ 0, as k →∞.

(N2) The sequence {Fk}k∈N, as k → ∞, converges in distribution to a d-dimensional standard
Gaussian vector Nd (0, Id).

We conclude this section with a result used to obtain the exact rates of convergence of some
estimators from Section 4.2.

Lemma A.4. For any x ∈ (0, π) and θ > 0, the following holds true

lim
n→∞

√
n
∑
k≥1

sin2(kx)

k2

(
1− e−θk2/n

)
=

√
πθ

2
. (A.4)

Proof. Note that

sin2(kx) =
1

2
− sin((2k + 1)x)− sin((2k − 1)x)

4 sinx
,

and therefore,

√
n
∑
k≥1

sin2(kx)

k2

(
1− e−θk2/n

)
√
n
∑
k≥1

1

2k2

(
1− e−θk2/n

)
−
√
n
∑
k≥1

sin((2k + 1)x)− sin((2k − 1)x)

4k2 sinx

(
1− e−θk2/n

)
=: L1

n − L2
n.

To prove (A.4), we will show that L1
n →

√
πθ/2, and L2

n → 0.
It is straightforward to check that for any ε > 0, the function (1− e−εx)/x, x > 0, is decreasing.

It is also easy to show that ∫ ∞
0

1− e−z2

z2
dz =

√
π.

Using these, we obtain

L1
n =
√
n
∑
k≥1

∫ k

k−1

1

2k2

(
1− e−θk2/n

)
dz ≤

√
n
∑
k≥1

∫ k

k−1

1

2z2

(
1− e−θz2/n

)
dz (A.5)

=

√
n

2

∫ ∞
0

1

z2

(
1− e−θz2/n

)
dz =

√
n

2

∫ ∞
0

1

y2n/θ

(
1− e−y2

)
dy
√
n/θ

=

√
θ

2

∫ ∞
0

1

y2

(
1− e−y2

)
dy =

√
πθ

2
.

On the other hand,

L1
n =
√
n
∑
k≥1

∫ k+1

k

1

2k2

(
1− e−θk2/n

)
dz ≥

√
n
∑
k≥1

∫ k+1

k

1

2z2

(
1− e−θz2/n

)
dz (A.6)

=

√
n

2

∫ ∞
1

1

z2

(
1− e−θz2/n

)
dz =

√
n

2

∫ ∞
√
θ/n

1

y2n/θ

(
1− e−y2

)
dy
√
n/θ

=

√
θ

2

∫ ∞
√
θ/n

1

y2

(
1− e−y2

)
dy −→

n→∞

√
πθ

2
.
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Combing (A.5) and (A.6), we conclude that L1
n →

√
πθ/2.

Denote by

fk :=
1− e−θk2/n

k2
, k ≥ 1,

and as above, one can show that {fk, k ∈ N} is a decreasing sequence. By simple rearrangement of
terms, we get

Ln2 =
√
n
∑
k≥2

sin((2k − 1)x) (fk−1 − fk)−
√
n sinxf1.

Thus,

|L2
n| ≤

√
n
∑
k≥2

∣∣∣ sin((2k − 1)x)
∣∣∣ (fk−1 − fk) +

√
n sinxf1

≤
√
n
∑
k≥2

(fk−1 − fk) +
√
nf1 ≤ 2

√
nf1 = 2

√
n
(

1− e−θ/n
)

≤ 2
√
n
θ

n
= 2

θ√
n
−→
n→∞

0.

The proof is complete.

B Proofs

Proof of Proposition 2.1

First we prove (2.2). It should be noted that a similar result is proved in [CNW06, Corollary 2].
For completeness, we outline out proof too. All ‘p-variations’ below are on the fixed interval [a, b],
and as agreed above, we will omit writing their dependence on [a, b]. By Minkowski’s inequality,
we have that

| (Vpn(X))1/p − (Vpn(Y ))1/p | ≤ (Vpn(X + Y ))1/p ≤ (Vpn(X))1/p + (Vpn(Y ))1/p . (B.1)

Since Y has C1[a, b] sample paths, we have limn→∞ Vpn(Y ) = 0. Hence, passing to the limit in
(B.1), the identity (2.2) follows. As far as (2.3), note that in view of (B.1), for any ε > 0,{∣∣(Vpn(X + Y ))1/p − (VpP(X))1/p

∣∣ ≥ ε}
=
{

(Vpn(X + Y ))1/p ≥
(
VpP(X)

)1/p
+ ε
}
∪
{

(Vpn(X + Y ))1/p ≤
(
VpP(X)

)1/p − ε}
⊂
{

(Vpn(X))1/p + (Vpn(Y ))1/p ≥
(
VpP(X)

)1/p
+ ε
}

∪
{∣∣∣(Vpn(X))1/p − (Vpn(Y ))1/p

∣∣∣ ≤ (VpP(X)
)1/p − ε}

⊂
{∣∣∣(Vpn(X))1/p + (Vpn(Y ))1/p −

(
VpP(X)

)1/p∣∣∣ ≥ ε}
∪
{∣∣∣(Vpn(X))1/p − (Vpn(Y ))1/p −

(
VpP(X)

)1/p∣∣∣ ≥ ε}
=
{∣∣∣(Vpn(X))1/p −

(
VpP(X)

)1/p∣∣∣ ≥ ε/2} ∪ {(Vpn(Y ))1/p ≥ ε/2
}

(B.2)
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Due to continuity of x1/p, based on our initial assumptions, we have that P− limn→∞ (Vpn(X))
1/p

=(
VpP(X)

)1/p
, and P− limn→∞ (Vpn(Y ))

1/p
= 0. Thus, by (B.2), we get at once that

P− lim
n→∞

(Vpn(X + Y ))1/p =
(
VpP(X)

)1/p
,

which consequently implies (2.3).
In view of Slutsky’s Theorem, to prove (2.5), it is enough to show that

lim
n→∞

nα (Vpn(X + Y )− Vpn(X)) = 0.

By (B.1) and by mean-value theorem, we have

Vpn(X + Y ) ≤
(

(Vpn(X))1/p + (Vpn(Y ))1/p
)p

= Vpn(X) + p
(

(Vpn(X))1/p + η1,n (Vpn(Y ))1/p
)p−1

(Vpn(Y ))1/p , (B.3)

for some η1,n ∈ [0, 1]. Since Y has C1[a, b] sample paths, denoting M = supa≤t≤b | Y ′(t) | , and
again by mean-value theorem, we get

Vpn(Y ) =

n∑
j=1

|Y (tj)− Y (tj−1)|p =

n∑
j=1

|(tj − tj−1)Y ′(ζj)|p ≤ n(M/n)p. (B.4)

Therefore, by (B.3), and since α+ 1/p < 1, we conclude that

nα (Vpn(X + Y )− Vpn(X)) ≤ p
(

(Vpn(X))1/p + η1 (Vpn(Y ))1/p
)p−1

nα+1/p−1M −→
n→∞

0.

Similarly, we have that

nα (Vpn(X + Y )− Vpn(X)) ≥ −p
(

(Vpn(X))1/p − η2 (Vpn(Y ))1/p
)p−1

nα+1/p−1M −→
n→∞

0,

and therefore, (2.5) is proved.
Now suppose that Y has C2[a, b] sample paths, and assume that (2.4) holds true for p = 2, α =

1/2. To show that (2.5) also holds true, it is enough to prove that

lim
n→∞

n1/2
(
V2
n(X + Y )− V2

n(X)
)

= 0. (B.5)

Note that,

V2
n(X + Y )− V2

n(X) = 2

n∑
j=1

(X(tj)−X(tj−1)) (Y (tj)− Y (tj−1)) + V2
n(Y ).

Using (B.4), we have n1/2V2
n(Y ) ≤ n3/2(M/n)2 → 0.

By mean value theorem,

n1/2
n∑
j=1

(X(tj)−X(tj−1)) (Y (tj)− Y (tj−1)) = n−1/2(b− a)

n∑
i=1

(X(tj)−X(tj−1))
(
Y ′(ζj)− Y ′(tj−1)

)

+ n−1/2(b− a)
n∑
i=1

(X(tj)−X(tj−1))Y ′(tj−1)

=: K1 +K2.
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Applying Cauchy-Schwartz inequality, we get

|K1| ≤ n−3/2(b− a)2
n∑
i=1

∣∣∣ (X(tj)−X(tj−1)) max
a≤t≤b

| Y ′′(t) |
∣∣∣

≤ n−1(b− a)2 max
a≤t≤b

| Y ′′(t) |
√
V2
n(X) −→

n→∞
0.

We rewrite K2 as

K2 = n−1/2(b− a)

X(b)Y ′(b)−X(a)Y ′(a)−
n∑
j=1

X(tj)
(
Y ′(tj)− Y ′(tj−1)

) .

Since, limn→∞
∑n

j=1X(tj) (Y ′(tj)− Y ′(tj−1)) =
∫ b
a X(t)dY ′(t) =

∫ b
a X(t)Y ′′(t)dt, we have at once

that

lim
n→∞

K2 = lim
n→∞

n−1/2(b− a)

(
X(b)Y ′(b)−X(a)Y ′(a)−

∫ b

a
X(t)Y ′′(t)dt

)
= 0.

Combining the above, (B.5) is proved.

This concludes the proof.

Proof of Proposition 4.3

Assume that x ∈ (0, π) is fixed. We start by constructing the Gaussian processes S, v. Let {ηk, k ∈
N} be a sequence of i.i.d. standard normal random variables, independent of {uk, k ∈ N}, and let

Sk(t) :=
σ√
2θk

e−θk
2tηk, k ∈ N, t ≥ 0,

S(t) :=
∞∑
k=1

Sk(t)hk(x), t ≥ 0.

Consequently, we put

vk(t) :=
(θπ)1/4

σ
(uk(t)− Sk(t)) , k ∈ N, t ≥ 0,

v(t) :=
∑
k≥1

vk(t)hk(x), t ≥ 0, x ∈ (0, π).

Clearly, S and v are zero-mean Gaussian processes that satisfying (4.3).

(a) It is straightforward to check that S is continuous on [0,+∞)] and infinitely differentiable on
(0,∞). Moreover,

E |Sk(t+ ε)− Sk(t)|2 =
σ2

2θk2
e−2θk2t

(
1− e−θk2ε

)2
, k ∈ N, t ≥ 0. (B.6)

(b) By direct computations, using (4.2), one can show that

E |uk(t+ ε)− uk(t)|2 =
σ2

2θk2
(1− e−θk2ε)

(
2− (1− e−θk2ε)e−2θk2t

)
, (B.7)
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for t ≥ 0, ε > 0, k ∈ N. Combining (B.6), (B.7) and the independence between Sk and uk, we
deduce that

E |vk(t+ ε)− vk(t)|2 =

√
π√
θk2

(1− e−θk2ε), k ∈ N, t ≥ 0.

Consequently, we have that

E |v(t+ ε)− v(t)|2 =
∑
k≥1

E |vk(t+ ε)− vk(t)|2 h2
k(x) =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−θk2ε).

We will prove (4.4) by showing that

lim
n→∞

E
(
V4
n(v; [c, d])

)
= 3(d− c), (B.8)

lim
n→∞

Var
(
V4
n(v; [c, d])

)
= 0. (B.9)

Denote by

σ2
n := E |v(tj)− v(tj−1)|2 =

2√
πθ

∑
k≥1

sin2(kx)

k2
(1− e−(d−c)θk2/n), n ∈ N.

In view of Lemma A.4,

lim
n→∞

√
nσ2

n =
√
d− c. (B.10)

Since v is a zero-mean Gaussian process, we have

E |v(tj)− v(tj−1)|4 = 3
(
E |v(tj)− v(tj−1)|2

)2
= 3σ4

n,

therefore

lim
n→∞

E
(
V4
n(v; [c, d])

)
= lim

n→∞

n∑
j=1

E |v(tj)− v(tj−1)|4 = lim
n→∞

3nσ4
n = 3(d− c),

and hence (B.8) is proved. Next, note that

Var
(
V4
n(v; [c, d])

)
= E

(
V4
n(v; [c, d])− E

(
V4
n(v; [c, d])

))2
=

n∑
j=1

E
(
|v(tj , x)− v(tj−1, x)|4 − 3σ4

n

)2

+ 2
∑
i<j

E
(
|v(ti, x)− v(ti−1, x)|4 − 3σ4

n

)(
|v(tj , x)− v(tj−1, x)|4 − 3σ4

n

)
=: J1 + J2.

According to (B.10), we deduce that

J1 =
n∑
j=1

E
(
|v(tj , x)− v(tj−1, x)|8

)
− 9nσ8

n = 96nσ8
n −→n→∞ 0. (B.11)
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As far as J2, for j ≥ 1, we put

F (j) := E (v(ti, x)− v(ti−1, x)) (v(ti+j , x)− v(ti+j−1, x))

=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
2e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n − e−(j−1)(d−c)θk2/n
)

= Gj −Gj−1,

where

Gj :=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n
)
, j ≥ 0,

and also put F (0) := σ2
n. Since F (j) < 0, we have that Gj < Gj−1. Using the property of joint

normal distributions, we continue

J2 = 2
∑
i<j

E
(
|v(ti, x)− v(ti−1, x)|4 − 3σ4

n

)(
|v(tj , x)− v(tj−1, x)|4 − 3σ4

n

)
= 2

∑
i<j

(
24F 4(j − i) + 72F 2(j − i)σ4

n

)
.

From here, since |F (j − i)| ≤ σ2
n, we deduce that

J2 ≤ 2
∑
i<j

(
24|F (j − i)|σ6

n + 72|F (j − i)|σ6
n

)
= 192

∑
i<j

|F (j − i)|σ6
n

= 192σ6
n

n−1∑
j=1

(n− j) (Gj−1 −Gj) .

Note that
∑n−1

j=1 (n− j) (Gj−1 −Gj) = nG0 −
∑n−1

j=0 Gj , and since

n−1∑
j=0

Gj =
n−1∑
j=0

1√
πθ

∑
k≥1

sin2(kx)

k2

(
e−j(d−c)θk

2/n − e−(j+1)(d−c)θk2/n
)

=
1√
πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2

)
=

1

2
σ2

1,

and G0 = 1
2σ

2
n, we conclude that

J2 ≤ 192σ6
n

n 1√
πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2/n

)
− 1√

πθ

∑
k≥1

sin2(kx)

k2

(
1− e−(d−c)θk2

)
= 192σ6

n

(
n

2
σ2
n −

1

2
σ2

1

)
n→∞−→ 0. (B.12)

according to (B.10). Combining (B.11) and (B.12), (B.9) is proved. Consequently, by (B.8) and
(B.9), we also have that V4

n(v; [c, d]) converges to 3(d− c), both in L2 and in probability.

(c) We will apply Theorem A.3, by showing that (A.3) and along with condition (N1) are satisfied.
We begin by establishing the following estimates

r∑
j=−l
|F (|j|)|m ≤ 2σ2m

n , (B.13)
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for any m ≥ 1, `, r ∈ N. Since m ≥ 1,

r∑
j=1

|F (j)|m =
r∑
j=1

|F (j)|m−1 |F (j)| ≤
r∑
j=1

σ2(m−1)
n |F (j)|

=

r∑
j=1

σ2(m−1)
n (Gj−1 −Gj) = σ2(m−1)

n (G0 −Gr−1)

≤ σ2(m−1)
n G0 =

1

2
σ2m
n ,

where we used the fact that Gj ≥ 0 and G0 = 1
2σ

2
n. Therefore,

r∑
j=−l
|F (|j|)|m = (σ2

n)m +
r∑
j=1

|F (j)|m +
l∑

j=1

|F (j)|m

≤ σ2m
n +

1

2
σ2m
n +

1

2
σ2m
n = 2σ2m

n .

With slight abuse of notations, just in this proof, we denote by ∆vnj := v(tj , x)− v(tj−1, x). Let H
be the closed subspace of L2(Ω,F ,P) generated by the random variables

∆vnj
σn

, 1 ≤ j ≤ n; j, n ∈ N.
Then, ∣∣∣∣∆vnjσn

∣∣∣∣4 − 3 =

(∣∣∣∣∆vnjσn
∣∣∣∣4 − 6

∣∣∣∣∆vnjσn
∣∣∣∣2 + 3

)
+ 6

(∣∣∣∣∆vnjσn
∣∣∣∣2 − 1

)

= H4

(
∆vnj
σn

)
+ 6H2

(
∆vnj
σn

)
= I4

[(
∆vnj
σn

)⊗4
]

+ 6I2

[(
∆vnj
σn

)⊗2
]
.

Therefore,

√
n

(
V4
n(v; [c, d])

nσ4
n

− 3

)
= I4

 1√
n

n∑
j=1

(
∆vnj
σn

)⊗4
+ I2

 6√
n

n∑
j=1

(
∆vnj
σn

)⊗2
 (B.14)

Let

f (2)
n :=

6√
n

n∑
j=1

(
∆vnj
σn

)⊗2

, f (4)
n :=

1√
n

n∑
j=1

(
∆vnj
σn

)⊗4

, (B.15)

and consider the sequence of two dimensional random vectors Fn :=
(
I2(f

(2)
n ), I4(f

(4)
n )
)
, n ∈ N, to

which we will apply Theorem A.3. Using the properties of Wiener integral, we obtain that

lim
n→∞

E
(
I2(f (2)

n )I4(f (4)
n )
)

= 0,

and hence (A.3) is satisfied.
Next, we move to verification of condition (N1), which in this case becomes

lim
n→∞

‖f (m)
n ⊗r f (m)

n ‖2
H2⊗(m−r) = 0. (B.16)

for m = 2, 4, and 1 ≤ r ≤ m− 1.
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Using the linearity of the inner products and the properties of the tensor products of Hilbert
spaces, we obtain

E
(
I2(f (2)

n )
)2

= 2〈f (2)
n , f (2)

n 〉H⊗2 =
72

n

〈 n∑
j=1

(
∆vnj
σn

)⊗2

,
n∑
j=1

(
∆vnj
σn

)⊗2 〉
H⊗2

=
72

n

n∑
i,j=1

〈(∆vni
σn

)⊗2

,

(
∆vnj
σn

)⊗2 〉
H⊗2

=
72

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉2

H

=
72

n

n∑
i,j=1

[
E
(

∆vni
σn
·

∆vnj
σn

)]2

=
72

n

n∑
i,j=1

|F (|j − i|)|2

σ4
n

=
72

nσ4
n

 n∑
j=1

|F (0)|2 + 2
∑
i<j

|F (j − i)|2
 =

72

nσ4
n

nσ4
n + 2

n−1∑
j=1

(n− j)|F (j)|2


= 72 +
144

σ4
n

n−1∑
j=1

(1− j

n
)|F (j)|2 = 72 + 144

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 .
In view of (B.13), we have that

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 ≤ ∞∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 <∞,
and thus

σ̄2
2 := lim

n→∞
E
(
I2(f (2)

n )
)2

= 72 + 144 lim
n→∞

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣2 <∞.
Similarly,

E
(
I4(f (4)

n )
)2

= 24
〈
f (4)
n , f (4)

n

〉
H⊗4

=
24

n

〈 n∑
j=1

(
∆vnj
σn

)⊗4

,

n∑
j=1

(
∆vnj
σn

)⊗4 〉
H⊗4

=
24

n

n∑
i,j=1

〈(∆vni
σn

)⊗4

,

(
∆vnj
σn

)⊗4 〉
H⊗4

=
24

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉4

H

=
24

n

n∑
i,j=1

[
E
(

∆vni
σn
·

∆vnj
σn

)]4

=
24

n

n∑
i,j=1

|F (|j − i|)|4

σ8
n

≤ 24 + 48
n−1∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 ≤ 24 + 48
∞∑
j=1

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 < ∞,
and consequently,

σ̄2
4 := lim

n→∞
E
(
I4(f (4)

n )
)2

= 24 + 48 lim
n→∞

n−1∑
j=1

(1− j

n
)

∣∣∣∣F (j)

σ2
n

∣∣∣∣4 <∞.
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Let a2 = 6, a4 = 1. Then,

‖f (m)
n ⊗r f (m)

n ‖2
H2⊗(m−r) = ‖ am√

n

n∑
j=1

(
∆vnj
σn

)⊗m
⊗r

am√
n

n∑
j=1

(
∆vnj
σn

)⊗m
‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

(
∆vni
σn

)⊗m
⊗r
(

∆vnj
σn

)⊗m
‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

〈∆vni
σn

,
∆vnj
σn

〉r
H

(
∆vni
σn

)⊗(m−r)
⊗
(

∆vnj
σn

)⊗(m−r)
‖2
H⊗2(m−r)

= ‖a
2
m

n

n∑
i,j=1

|F (|j − i|)|r

σ2r
n

(
∆vni
σn

)⊗(m−r)
⊗
(

∆vnj
σn

)⊗(m−r)
‖2
H⊗2(m−r)

=
a4
m

n2σ4m
n

n∑
i,j,i′,j′=1

|F (|j − i|)|r|F (|j′ − i′|)|r|F (|i′ − i|)|m−r|F (|j′ − j|)|m−r

≤ a4
m

n2σ4m
n

n∑
i,j,i′,j′=1

∣∣F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)
∣∣σ4m−8

n

=
a4
m

n2σ8
n

n∑
i,j,i′,j′=1

∣∣F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)
∣∣

= O1 + 2O2,

where

O1 :=
a4
m

n2σ8
n

n∑
i′,j′=1

n∑
i=1

∣∣∣ F (0)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i|)
∣∣∣ ,

O2 :=
a4
m

n2σ8
n

n∑
i′,j′=1

∑
i<j

∣∣∣ F (|j − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − j|)
∣∣∣ .

First note that, by direct computations and using (B.13), we have

O1 =
a4
m

n2σ6
n

n∑
i′,j′=1

n∑
i=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)F (|j′ − i|)
∣∣∣

≤ a4
m

n2σ6
n

n∑
i′,j′=1

n∑
i=1

| F (|j′ − i′|) | F (|i′ − i|)2 + F (|j′ − i|)2

2

≤ a4
m

n2σ6
n

n∑
i′,j′=1

| F (|j′ − i′|) | 2σ4
n + 2σ4

n

2
≤ 2a4

m

n2σ2
n

n∑
i′,j′=1

| F (|j′ − i′|) |

≤ 2a4
m

n2σ2
n

 n∑
j=1

|F (0)|+ 2
∑
i<j

| F (j − i) |


≤ 2a4

m

n
+

4a4
m

n2σ2
n

n−1∑
j=1

(n− j) | F (j) | =
2a4

m

n
+

4a4
m

n

n−1∑
j=1

(1− j

n
) | F (j)

σ2
n

|

−→
n→∞

0.
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Similarly,

O2 =
a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (|i+ k − i|)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i− k|)
∣∣∣

=
a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (k)F (|j′ − i′|)F (|i′ − i|)F (|j′ − i− k|)
∣∣∣

≤ a4
m

n2σ8
n

n∑
i′,j′=1

n−1∑
i=1

n−i∑
k=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)
∣∣∣ F (k)2 + F (|j′ − i− k|)2

2

≤ 2a4
m

n2σ4
n

n∑
i′,j′=1

n−1∑
i=1

∣∣∣ F (|j′ − i′|)F (|i′ − i|)
∣∣∣ ≤ 4a4

m

n2σ2
n

n∑
i′,j′=1

∣∣∣ F (|j′ − i′|)
∣∣∣

−→
n→∞

0.

Thus, (B.16) holds true. Therefore, (N2) from Theorem A.3 holds true, namely, we have that

Fn
D−−−→

n→∞
N
(

0,

(
σ̄2

2 0
0 σ̄2

4

))
. (B.17)

Consequently, (4.5) follows from (B.14),(B.15) and (B.17). Finally, (4.5) implies (4.6), by using
that

√
n

(
πθV4

n (u(·, x); [c, d])

nσ4
nσ

4
− V4

n(v; [c, d])

nσ4
n

)
→ 0, in L2 and in probability. (B.18)

The proof of (B.18) follows by similar arguments as in proof of Proposition 2.1 and we omit it here.
The proof is complete.
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