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Abstract: The main goal of this paper is to study the parameter estimation problem, using the
Bayesian methodology, for the drift coefficient of some linear (parabolic) SPDEs driven
by a multiplicative noise of special structure. We take the spectral approach by assuming
that one path of the first N Fourier modes of the solution is continuously observed over
a finite time interval. First, we show that the model is regular and fits into classical
local asymptotic normality framework, and thus the MLE and the Bayesian estimators
are weakly consistent, asymptotically normal, efficient, and asymptotically equivalent
in the class of loss functions with polynomial growth. Secondly, and mainly, we prove a
Bernstein-Von Mises type result, that strengthens the existing results in the literature,
and that also allows to investigate the Bayesian type estimators with respect to a larger
class of priors and loss functions than that covered by classical asymptotic theory. In
particular, we prove strong consistency and asymptotic normality of Bayesian estimators
in the class of loss functions of at most exponential growth. Finally, we present some
numerical examples that illustrate the obtained theoretical results.

Keywords: statistical inference for SPDEs, Bayesian statistics, Bernstein-Von Mises, parabolic
SPDE, multiplicative noise, stochastic evolution equations, identification problems for
SPDEs
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1 Introduction

The analytical theory for Stochastic Partial Differential Equations (SPDEs) has been extensively
studied over the past few decades. It is well recognized that SPDEs can be used as an important
modeling tool in various applied disciplines such as fluid mechanics, oceanography, temperature
anomalies, finance, economics, biological and ecological systems; cf. [Cho07, LR17, LR18]. On
the other hand, the literature on statistical inference for SPDEs is, relatively speaking, limited.
We refer to the recent survey [Cia18] for an overview of the literature and existing methodologies
on statistical inference for parabolic SPDEs. Most of the existing results are obtained within the
so-called spectral approach, when it is assumed that one path of N Fourier modes of the solution is
observed continuously over a finite interval of time, in which case usually the statistical problems
are addressed via maximum likelihood estimators (MLEs). Asymptotic properties of the estimators
are studied in the large number of Fourier modes regime, N → ∞, while time horizon is fixed. In
particular, there are only few works related to Bayesian statistics for infinite dimensional evolution
equations [Bis02, Bis99, PR00]. As usual, studying SPDEs driven by multiplicative noise is more
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involved, and the parameter estimation problems for such equations are not an exception; the
literature on this topic is also limited [CL09, Cia10, PT07, CH17, BT17].

The main goal of this paper is twofold: to study the parameter estimation problem for the
drift coefficient of linear SPDEs driven by a multiplicative noise (of special structure) and by
applying the Bayesian estimation procedure. Similar to the existing literature, we are assuming the
spectral approach, and the main objective is to derive Bayesian type estimators and to study their
asymptotic properties as N → ∞. Besides contributing to these two important and undeveloped
topics, the obtained results will prepare the foundation for studying similar problems for more
complex (nonlinear) equations. We consider a multiplicative noise of special structure, which is
customary considered in the SPDE applied literature. For example, such type of multiplicative noise
appears in modeling and studying the dynamics of geophysical fluids [GHZ09, GHZ08], studying
the stochastic primitive equations [GHKVZ14] or stochastically forced shell model of turbulent flow
[FGHV16], etc. Needless to say, this particular noise structure can be potentially used as modeling
feature in SPDEs where the noise is not derived from the first principles, but rather added to
capture the imperfections in model and/or measurements. This work is the first attempt to study
parameter estimation problems for SPDEs driven by this multiplicative noise. The case of large
time asymptotics is omitted here, since it is easily reduced to the corresponding statistical problem
for finite dimensional stochastic differential equations, which is a well developed field. It is worth
mentioning that the asymptotic properties of MLEs for these equations are trivially obtained, and
we mention them here only briefly since they are used in derivation of convergence of proposed
Bayesian estimators.

The main contributions of this paper can be summarized as follows:

� We derive and study the asymptotic properties of MLE and Bayesian type estimators for the
drift coefficient of a stochastic evolution system driven by a multiplicative (space-time) noise.

� We show that the considered statistical model is regular, and uniformly asymptotically nor-
mal, in the sense of [IK81], and fits the classical local asymptotic normality (LAN) paradigm.
In particular, under suitable assumptions, the MLE and the Bayesian estimators are weakly
consistent, asymptotically normal, efficient, and asymptotically equivalent in the class of loss
functions with polynomial growth.

� We prove a Bernstein-Von Mises type result, that strengthens the existing results in the
literature, and that also allows to investigate the Bayesian type estimators with respect to a
larger class of priors and loss functions than that covered by classical asymptotic theory.

� We prove strong consistency and asymptotic normality of Bayesian estimators in the class of
loss functions of at most exponential growth.

The obtained results and developed techniques, besides their stand along merits, could be poten-
tially useful for investigating some related problems, such as asymptotic properties of estimators
in the simultaneous large times and large number of Fourier modes regime, discrete sampling, etc.

The paper is organized as follows. In Section 2 we setup the problem and provide sufficient
conditions on model parameters for the well-posedness of the solution of the underlying SPDEs.
Also here, we specify the statistical model, and show that the model is regular (in statistical sense)
and uniformly asymptotically normal. Section 3 is devoted to MLE and its asymptotic proper-
ties. Using LAN approach we show that MLE is weakly consistent, asymptotically normal, and
asymptotically efficient; see Theorem 3.2. In addition, we also establish the strong consistency and
asymptotic normality of MLE by exploiting the specific structure of the estimators. The Bayesian
estimators are investigated in Section 4. We start with the derivation of the Bayesian estimators
and briefly cite their properties within the existing general inference theory; see Theorem 4.3. Next,
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we proceed to one of the key results of this paper, Theorem 4.4, a Bernstein-Von Mises type result.
Relevant asymptotic properties of the Bayesian estimators are proved in Sections 4.2 and 4.3. Using
simulation technique we apply the obtained theoretical results to a stochastic heat equation; see
Section 5. Some auxiliary results are deferred to Appendix A. Finally, in Appendix B we provide
some reasoning on the form of the posterior density used in our framework.

2 Preliminaries and setup of the problem

Let (Ω,F , {Ft}t≥0,P) be a stochastic basis satisfying the usual assumptions, on which we consider
a sequence of independent standard Brownian motions {wk}k∈N. Assume that H is a separable
Hilbert space, with the corresponding inner product (·, ·)H . Let A be a positive definite self-adjoint
operator in H that has only point spectrum, denoted by {µk}k∈N, with the corresponding eigen-
vectors {hk}k∈N. We make the standing assumption that {hk}k∈N forms a complete orthonormal
system in H, and µk →∞. We will denote by {Hγ , γ ∈ R} the scale of Hilbert spaces generated by
the operator A, i.e., Hγ is equal to the closure of the collection of all finite linear combinations of
{hk}k∈N with respect to the norm ‖ · ‖γ := ‖Aγ · ‖H , with Aγv :=

∑
k∈N µ

γ
kvkhk for v =

∑
k∈N vkhk.

We will also denote by [·, ·] the dual pair between H1/2 and H−1/2 relative to the inner product
(·, ·)H .

We consider the following stochastic evolution equation{
du(t) + θAu(t) dt = σ

∑∞
k=1 uk(t)hkqk dwk(t),

u(0) = u0 ∈ H,
(2.1)

where uk(t) := (u(t), hk)H , t ≥ 0, are the Fourier modes of the solution u with respect to {hk}k∈N,
θ, σ ∈ R+ := (0,∞), and {qk}k∈N is a sequence in R+.

The well-posedness of equation (2.1) can be established either directly or by using some standard
results from the general theory of linear SPDEs (see for instance [LR17, Section 4.4]).

Theorem 2.1. Let T > 0, u0 ∈ L2(Ω;H), and assume that there exist N0 ∈ N and c > 0 such that

2θ − σ2 q
2
k

µk
≥ c, for all k ≥ N0. (2.2)

Then, equation (2.1) admits a unique solution u ∈ L2(Ω; (C(0, T );H)) ∩ L2(Ω× (0, T );H
1
2 ), and

E
(

sup
t∈(0,T )

‖u(t)‖2H +

∫ T

0
‖u(t)‖21/2 dt

)
≤ C‖u0‖2H ,

for some constant C.

Proof. In view of [LR17, Theorem 4.4.3], it is enough to show that the following parabolicity
condition holds true,

−2θ[Av, v] +

∞∑
k=1

σ2q2
kv

2
k + cA‖v‖21

2

≤M‖v‖2H , v ∈ H
1
2 , (2.3)

for some positive constant cA and M . Note that, [Av, v] = ‖v‖21
2

=
∑∞

k=1 µkv
2
k, and thus, the left

hand side of (2.3) writes

∞∑
k=1

(
−(2θ + cA)µk + σ2q2

k

)
v2
k = −

∞∑
k=1

µk

(
2θ − σ2 q

2
k

µk
− cA

)
v2
k.
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We put cA = c, and by taking into account (2.2), as well as the fact that µk →∞, the condition (2.3)
follows at once.

Remark 2.2. It is worth mentioning two simple examples of system’s parameters that satisfy (2.2):

(E1) there exist ε > 0, and C > 0, such that q2
k ≤ Cµ

1−ε
k , for sufficiently large k.

(E2) 2θ − σ2 > 0, and q2
k ≤ µk, for sufficiently large k.

Although the equation (2.1) is driven by a multiplicative noise, due to the special structure of
the noise, it is a diagonalizable SPDE, namely the Fourier modes of the solution satisfy an infinite
dimensional system of decoupled equations

duk(t) + θµkuk(t) dt = σqkuk(t) dwk(t), t ∈ [0, T ], k ∈ N, (2.4)

with initial condition uk(0) = (u0, hk)H . Hence, we have that

uk(t) = uk(0) exp

(
−
(
θµk +

1

2
σ2q2

k

)
t+ σqkwk(t)

)
, t ∈ [0, T ], k ∈ N. (2.5)

Without loss of generality we will assume that uk(0) 6= 0, for all k ∈ N. We note that, one could
use directly the above form of uk’s to prove the well-posedness of (2.1).

2.1 Statistical model and its basic properties

We will take the continuous-time observation framework by assuming that the solution u, as an
object in H, or in a finite dimensional projection of H, is observed continuously in time for all
t ∈ [0, T ], and for some fixed horizon T . We assume that σ, and qk, k ∈ N, are known constants,
since generally speaking under the continuous-time sampling scheme, using quadratic variation
arguments, these parameters can be found exactly. We will be interested in estimating the unknown
parameter θ ∈ R+, with θ0 being the true value of this parameter of interest. In what follows we
will denote by uθ the solution to (2.1) that corresponds to the parameter θ, and correspondingly,
we put uθk := (uθ, hk)H , k ∈ N. If no confusion arises, we will continue to write u and uk instead of

uθ0 and uθ0k .
We will also assume that qk 6= 0 for all k ∈ N. If qk = 0 for some k ∈ N, then θ can be found

exactly, and the considered statistical problem becomes trivial.
In this study, we will assume that one path of the first N Fourier modes (u1(t), . . . , uN (t))

is observed continuously over a fixed time interval [0, T ], for some T > 0. We will focus on the
asymptotic properties in large number of Fourier modes, N →∞, while T is fixed. The large time
asymptotics T → ∞, with N fixed, reduces to existing results for finite dimensional systems of
stochastic differential equations, which is well understood. The mixed case with both N,T → ∞
is left for further studies.

We begin by placing the considered statistical model within classical asymptotic theory of
statistical estimation. Let C([0, T ];RN ) denote the space of all RN -valued continuous functions
on [0, T ]. The cylindrical (Borel) σ-field on C([0, T ];RN ) is denoted by B(C([0, T ];RN )). For
every θ ∈ R+, let PθN be the probability measure on (C([0, T ];RN ),B(C([0, T ];RN )) induced by the
projected solution U θN := {(uθ1(t), . . . , uθN (t)), t ∈ [0, T ]}. As before, we simply write UN and PN
instead of U θ0N and Pθ0N . The measures PθN and PN are equivalent, and the Likelihood Ratio, or the
Radon-Nikodym derivative, is given by (cf. [LS00, Section 7.6.4])

dPθN
dPN

(UN ) = exp

(
θ0 − θ
σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
+

(
θ2

0 − θ2
)
T

2σ2

N∑
k=1

µ2
kq
−2
k

)
. (2.6)
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The Fisher information at θ0 is then given by

IN = IN (θ0) := E

((
∂

∂θ
ln

dPθN
dPN

(UN )

∣∣∣∣
θ=θ0

)2
)

=
T

σ2

N∑
k=1

µ2
kq
−2
k , (2.7)

which is, in particular, independent of θ0.

Next we will show that the statistical model E := {C([0, T ];RN ),B(C([0, T ];RN )),PθN , θ ∈ R+}
is regular; cf. [IK81, Section I.7].

Theorem 2.3. The statistical model E is regular in R+.

Proof. We will follow [IK81, Section I.7], and show that

(a) dPθN/dPN (UN ) is a continuous function of θ ∈ R+, P-almost surely;

(b) {PθN , θ ∈ R+} has finite Fisher information for each θ ∈ R+;

(c) The function ψ(UN , θ) := ∂
√

dPθN/dPN (UN )/∂θ is continuous in L2(Ω;P).

In view of (2.6) and (2.7), {PθN , θ ∈ R+} clearly satisfies properties (a) and (b). To prove (c), by

(2.6) we first note that
√

dPθN/dPN (UN ) is continuously differentiable with respect to θ in R+, for

every ω ∈ Ω, and

ψ(UN , θ) =

(
− 1

2σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
− 1

2σ2

N∑
k=1

µ2
kq
−2
k

)√
dPθN
dPN

(UN )

is continuous with respect to θ in R+ for every ω ∈ Ω. Moreover, for any θ, θ′ ∈ R+ with |θ−θ′| ≤ 1,(
ψ(UN , θ)− ψ(UN , θ

′)
)2 ≤ 2

(
ψ2(UN , θ) + ψ2(UN , θ

′)
)

≤
(
− 1

σ2

N∑
k=1

µk
q2
k

∫ T

0

duk(t)

uk(t)
− 1

σ2

N∑
k=1

µ2
k

q2
k

)2

exp

(
θ + 1

σ2

N∑
k=1

µk
q2
k

∣∣∣∣∫ T

0

duk(t)

uk(t)

∣∣∣∣− θ2
0T

2σ2

N∑
k=1

µ2
k

q2
k

)
,

which is integrable with respect to P in view of (2.4). Therefore, by the dominated convergence
theorem,

lim
θ′→θ

E
((
ψ(UN , θ)− ψ(UN , θ

′)
)2)

= 0,

which completes the proof of property (c), and thus concludes the proof of the theorem.

It turns out that the statistical model E , being regular, fits also nicely in the general framework
of Local Asymptotic Normality (LAN). As next result shows, E is actually uniformly asymptotically
normal ; cf. [IK81, Definition II.2.2]). This fundamental property will allow to show that maximum
likelihood estimator and Bayesian estimators for θ are not only consistent and asymptotically
normal, but also asymptotically efficient and asymptotically equivalent. See Section 3, Section 4
and discussions therein on these theoretical aspects, as well as the comparison between them and
those developed and proposed in this paper without using LAN framework.

Theorem 2.4. The family {PθN , θ ∈ R+} is uniformly asymptotically normal.
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Proof. For reader’s convenience, we first match the notations in [IK81, Definition II.2.2] with those
from our model: the perturbation variable εN will be 1/N , and ϕ(εN , t) = 1/

√
IN . For any

sequences {ϑN}N∈N ⊂ R+ and {ηN}N∈N ⊂ R such that ηN → η ∈ R, as N → ∞, and that
θN := ϑN + ηN/

√
IN ∈ R+ for all N ∈ N, by (2.6) and (2.7) we have

dPθNN
dPϑNN

(
UϑNN

)
= exp

(
ϑN − θN

σ2

N∑
k=1

µkq
−2
k

∫ T

0

duϑk(t)

uϑk(t)
+

(
ϑ2
N − θ2

N

)
T

2σ2

N∑
k=1

µkq
−2
k

)

= exp

(
−ηN
σ2
√
IN

N∑
k=1

µkq
−2
k

∫ T

0

duϑNk (t)

uϑNk (t)
−
η2
N

2
− ϑNηN

√
IN

)

= exp

(
−ηN

(
1

σ2
√
IN

N∑
k=1

µkq
−2
k

∫ T

0

duϑNk (t)

uϑNk (t)
+ ϑN

√
IN

)
− η2

2
+

(
η2

2
−
η2
N

2

))
.

Clearly η2/2 − η2
N/2 → 0, as N → ∞. It remains to show that ηNξN converges in distribution to

some centered normal distribution, as N →∞, where

ξN := − 1

σ2
√
IN

N∑
k=1

µkq
−2
k

∫ T

0

duθk(t)

uθk(t)
+ θ
√
IN = − 1

σ
√
IN

N∑
k=1

ukq
−1
k wk(T ). (2.8)

Clearly, ξN
D
= N (0, 1) under P, and therefore, by Slutsky’s theorem, ηNξN

D−→ N (0, η2) under P,
as N →∞, which completes the proof.

3 Maximum Likelihood Estimator

In this section, we will investigate the asymptotic properties of the maximum likelihood estimator
for the unknown parameter θ. The obtained results, albeit simple, are important on their own, and
we will also use them later to study the Bayesian estimators in Section 4.

By maximizing the likelihood ratio in (2.6) with respect to θ, we obtain the following estimator
for θ

θ̂N := −
∑N

k=1 µkq
−2
k

∫ T
0

duk(t)
uk(t)

T
∑N

k=1 µ
2
kq
−2
k

. (3.1)

Using (2.4), by Itô’s formula, the estimator θ̂N can also be written as

θ̂N := −
∑N

k=1 µk
(
q−2
k log(uk(T )/uk(0)) + 1

2σ
2T
)

T
∑N

k=1 µ
2
kq
−2
k

, (3.2)

which can be useful for practical purposes.
Since θ ∈ R+, formally, the MLE for θ is given by

θ̂MLE
N := 1{θ̂N∈R+}θ̂N . (3.3)

Before we start the analysis on the asymptotic properties of the MLE, let us first introduce the
following classes of loss functions, which will be used in the statement of asymptotic efficiency of
MLE, as well as in the later discussions on Bayesian estimators.

Definition 3.1. Let W be the set of Borel measurable loss functions ` : R→ [0,∞) such that
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(i) ` is symmetric on R and is non-decreasing on [0,∞);

(ii) `(0) = 0 and ` is continuous at x = 0, but is not identically 0.

Denote by We,2 the set of functions ` ∈ W whose growth as |x| → ∞ is bounded by one of the
functions ec|x|

r
with c ∈ R+ and r ∈ (0, 2), i.e. loss functions with ‘exponential’ growth. The set of

functions ` ∈W which possess a polynomial majorant as |x| → ∞ will be denoted by Wp.
We will denote by W′ the class of loss functions ` that are non-negative, Borel-measurable, and

locally bounded function on R, with `(0) = 0, such that

`(x1) ≤ `(x2), for any x1, x2 ∈ R with |x1| ≤ |x2|. (3.4)

Clearly, W ⊂W′.

The following result is a consequence of [IK81, Theorem III.1.1, Theorem III.1.2, Corollary
III.1.1], which summaries the uniform weak consistency, the uniform asymptotic normality, and
the asymptotic efficiency of θ̂MLE

N .

Theorem 3.2. Let B ⊂ R+ be any compact set. Then, the following asymptotic properties of θ̂MLE
N

hold true.

(a) θ̂MLE
N is weakly consistent, uniformly in θ0 ∈ B. That is, for any ε > 0,

lim
N→∞

sup
θ0∈B

P
(∣∣θ̂MLE

N − θ0

∣∣ > ε
)

= 0,

(b) θ̂MLE
N is asymptotically normal with parameter (θ0, I

−1
N ), uniformly in θ0 ∈ B, where IN is

given by (2.7). That is, uniformly in θ0 ∈ B,√
IN
(
θ̂MLE
N − θ0

) D−→ N (0, 1), N →∞.

(c) For any ε > 0,

lim
N→∞

sup
θ0∈B

P
(∣∣∣√IN(θ̂MLE

N − θ0

)
− ξN

∣∣∣ > ε
)

= 0,

where ξN is defined as in (2.8).

(d) For any $ ∈ Wp, θ̂
MLE
N is asymptoticly efficient in B for the loss function $N (x) :=

$(
√
INx). That is, for any θ0 ∈ B,

lim
δ→0+

lim inf
N→∞

sup
|θ−θ0|<δ

E
(
$N

(
θ̂MLE
N − θ

))
= E($(ξ)),

where ξ
D
= N (0, 1) under P.

Proof. We only need to check the conditions (N1)−(N4) in [IK81, Section III.1]. The condition
(N1) follows from Theorem 2.4, while the condition (N2) is trivial since ϕ(ε, t) = 1/

√
IN in our

case. To verify the condition (N3), for any θ0 ∈ B and η, ζ ∈ R such that ηN := θ0 + η/
√
IN ∈ R+

and ζN := θ0 + ζ/
√
IN ∈ R+, by (2.6) and (2.8) we have

E

√dPηNN
dPN

(UN )−

√
dPζNN
dPN

(UN )

2 = E
((

e−ηξN (θ0)/2−η2/4 − e−ζξN (θ0)/2−ζ2/4
)2
)
.
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Similar to the proof of Theorem 2.4, we note that ξN (θ0)
D
= N (0, 1) under P, and thus

(η − ζ)−2 E

√dPηNN
dPN

(UN )−

√
dPζNN
dPN

(UN )

2 =
2− 2e−(η−ζ)2/8

(η − ζ)2
≤ 16.

Therefore, the condition (N3) is valid with β = m = 2 and any positive constants B, R, and α.
Similarly, for any θ0 ∈ B, n,N ∈ N, and η ∈ R with ηN := θ0 + η/

√
IN ∈ R+,

|η|n E

√dPηNN
dPN

(UN )

 = |η|n E
(
e−ηξN (θ0)/2−η2/4

)
≤ sup

η∈R+

|η|ne−η2/8 <∞.

which verifies the validity of the condition (N4). The proof is complete.

Given the particular form of the estimator θ̂N , one can establish its strong consistency and
asymptotic normality. Indeed, by (2.4), (3.1) can be conveniently written as

θ̂N = θ0 −
σ

T

∑N
k=1 µkq

−1
k wk(T )∑N

k=1 µ
2
kq
−2
k

= θ0 −
σ

T

∑N
k=1 ak
bN

, (3.5)

where ak := µnq
−1
n wn(T ) and bn :=

∑n
k=1 µ

2
kq
−2
k , n ∈ N. Clearly, bN ↗ ∞ as N → ∞. Moreover,

in view of Lemma A.2, we have that

∞∑
k=1

Var(ak)

b2k
<∞.

By the Law of Large Numbers, Theorem A.1,
∑N

k=1 ak/bN → 0 as N →∞, and thus by (3.5), we
obtain that

lim
N→∞

θ̂N = θ0, P− a.s., (3.6)

namely θ̂N is a strongly consistent estimator of θ0. Together with (3.3), we also have that

lim
N→∞

θ̂MLE
N = θ0, P− a.s.,

that is θ̂MLE
N is a strongly consist estimator of θ0. In addition, by (2.7), (2.8), and (3.5), under P,√

IN
(
θ̂N − θ0

)
= ξN

D
= N (0, 1), for any N ∈ N and θ0 ∈ R+. (3.7)

Finally, we conclude this section by showing that the estimator θ̂N is also asymptotically efficient
in the class of loss functions with polynomial growth.

Proposition 3.3. The properties (a)−(d) in Theorem 3.2 hold true with θ̂MLE
N replaced by θ̂N .

Proof. The properties (a)−(c) for θ̂N follow trivially from (3.7). The property (d) for θ̂N follows
from (3.7) and [IK81, Theorem III.1.3].
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4 Bayesian Estimators

In this section, we propose two Bayesian type estimators for θ with respect to scaled and unscaled
loss functions, respectively, and we will investigate their asymptotic behavior. First, by similarity
to the MLE estimator from previous section and following [IK81, Section III.2], we will study the
asymptotic properties of the Bayesian estimator with respect to a scaled loss function `N (·) :=
`(
√
IN ·), where ` has a polynomial majorant. However, most of this section will be devoted

to results beyond and independent of the classical asymptotic theory. As custom for Bayesian
statistics (cf. [BKPR71] and [Bis02]), we prove a Bernstein-Von Mises theorem for the posterior
density in which both the prior density and the test function have at most exponential growth rates.
Consequently, this allows to study the asymptotic properties of Bayesian estimators with respect
to any loss function ` that has an exponential majorant (in contrast to classical theory that allows
only polynomial growth). Moreover, we show that the MLE and the proposed Bayesian estimators
are asymptotically equivalent.

We begin with the definition of considered prior densities on R+.

Definition 4.1. Let Q be the set of all non-negative and non-trivial functions on R+. Denote by
Qe,2 the set of functions % ∈ Q which are continuous and positive on R+ and whose growth as
θ → ∞ is bounded by one of the functions ec θ

r
with c ∈ R+ and r ∈ (0, 2). The set of functions

% ∈ Q which are continuous and positive on R+ and possess a polynomial majorant as θ →∞ will
be denoted by Qp.

Let % ∈ Q. We define the posterior density as

p(θ |UN ) :=

dPθN
dPN

(UN )%(θ)∫
R+

dPηN
dPN

(UN )%(η) dη

, θ ∈ R+. (4.1)

Informally, as standard in Bayesian inference, we took1 ‘posterior ∝ likelihood × prior.’ For a more
formal discussion of the rational behind (4.1) we refer to Appendix B.

Together with (2.6), (2.7), and (3.1), we deduce that

p(θ |UN ) =

exp

(
θ0 − θ
σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
+

(
θ2

0 − θ2
)
T

2σ2

N∑
k=1

µ2
kq
−2
k

)
%(θ)

∫
R+

exp

(
θ0 − η
σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
+

(
θ2

0 − η2
)
T

2σ2

N∑
k=1

µ2
kq
−2
k

)
%(η) dη

=

exp

(
− θ

σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
− θ2T

2σ2

N∑
k=1

µ2
kq
−2
k

)
%(θ)

∫
R+

exp

(
− η

σ2

N∑
k=1

µkq
−2
k

∫ T

0

duk(t)

uk(t)
− η2T

2σ2

N∑
k=1

µ2
kq
−2
k

)
%(η) dη

=
e−IN (θ−θ̂N )2/2 %(θ)∫

R+

e−IN (η−θ̂N )2/2 %(η) dη

. (4.2)

1As usual in statistics, the symbol ∝ will be used to denote equality between two quantities up to a normalized
constant.
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Remark 4.2. Clearly both Qe,2 and Qp are large classes of functions. One class of (conjugate) priors
worth mentioning is the truncated normal N (µ0, σ

2
0;R+) supported on R+. Let the prior % be the

density of the truncated normal N (µ0, σ
2
0;R+), namely %(θ) ∝ φ((θ − µ0)/σ0), θ0 > 0, where φ is

the density of a standard Gaussian random variable. By (4.2), for any θ ∈ R+, we have that

p(θ |UN ) ∝ exp

(
−
(
θ − θ̂N

)2
2I−1
N

− (θ − µ0)2

2σ2
0

)
∝ exp

−
(
θ −

(
σ2

0 θ̂N + I−1
N µ0

)/(
σ2

0 + I−1
N

))2

2σ2
0I
−1
N

/(
σ2

0 + I−1
N

)
 ,

namely p(θ |UN ) is a truncated normal N ((σ2
0 θ̂N + I−1

N µ0)/(σ2
0 + I−1

N ), (σ2
0I
−1
N )/(σ2

0 + I−1
N );R+).

Of course, one can take uninformative prior %(θ) ∝ 1. Although such prior has no probabilistic
meaning, the corresponding posterior is well-defined and preserves all convergence results listed
below.

We now introduce two Bayesian type estimators, one with respect to a loss function ` ∈ W′

and one with respect to its scaled version. A Bayesian estimator with respect to ` ∈W′ is defined
as

β̂N := arg min
β∈R+

∫
R+

`(η − β) p(η |UN ) dη, (4.3)

given that the minimum is strict and attainable. In line with [IK81, Section III.2], we define a
Bayesian estimator with respect to `N (x) := `(

√
INx), where ` ∈W, as

β̃N := arg min
β∈R+

∫
R+

`
(√

IN (η − β)
)
p(η |UN ) dη, (4.4)

given that the minimum is strict and attainable.
Before proceeding with asymptotic properties of these estimators, several comments pinpointing

the intuition behind these definitions are in order.

(a) Let UΘ
N be the RN -valued process obtained by substituting θ with Θ in U θN , where Θ :

(Ω,F ,P)→ (R+,B(R+) admits a proper prior density % and is independent of the Brownian
motions {wk, k ∈ N}. Recall that the Bayesian risk of an estimator θN ∈ σ(UΘ

N ) with respect
to a loss function ` is defined as

r
(
θN ; `

)
:= E

(
`
(
θN −Θ

))
= E

(
E
(
`
(
θN −Θ

)∣∣∣UΘ
N

))
= E

(∫
R
`
(
θN − η

)
p(η |UΘ

N ) dη

)
,

where the last equality follows from (B.2). Hence, β̂N is the minimizer of the Bayesian risk
r( · ; `), while β̃N is the minimizer of the Bayesian risk r( · ; `N ).

(b) The definition of the Bayesian estimator β̂N is standard, in which the loss function does not
depend on the sample size N , and is therefore more accessible for computational purposes.
On the other hand, as argued in [IK81], using a scaled loss function in defining a Bayesian
estimator is more appropriate for analyzing some asymptotic properties of the estimator.
Indeed, recall that (cf. [IK81, Definition I.9.1]) a sequence of estimators {θN}N∈N of θ0 is
called asymptotically efficient2 in R+ with respect to a sequence of loss function {$N}N∈N
if, for any open set O ⊂ R+ and any estimator θ̃N of θ0,

lim
N→∞

(
inf
θ̃N

sup
θ0∈O

E
(
$N

(
θ̃N − θ0

))
− sup
θ0∈O

E
(
$N

(
θN − θ0

)))
= 0.

2The asymptotic efficiency studied in part (d) of Theorems 3.2 and 4.3 is a special case under the framework of
local asymptotic normality.
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As mentioned in [IK81, Section I.9], the loss function $N should depend on N (and typically
$N (x) = $(

√
INx)) in order to capture more subtle difference between estimators. Hence,

it is natural to scale the loss function in the definition of β̃N in the same way as $N when
investigating the asymptotic efficiency of β̃N .

(c) When `(x) = |x|α for some α > 0, β̃N coincides with β̂N . Moreover, when ` ∈Wp, β̃N and

β̂N are expected to have the same asymptotic behavior as N → ∞. Clearly, this may not
be the case if ` ∈We,2, or more generally ` ∈W′, yet another reason to distinguish the two
proposed estimators.

The following theorem summarizes the asymptotic properties of β̃N with %, and ` having poly-
nomial growth, which is a direct consequence of [IK81, Theorem III.2.1, Theorem III.2.2].

Theorem 4.3. Let B ⊂ R+ be any compact set, % ∈ Qp, and ` ∈ Wp. Then, the following

asymptotic properties hold for β̃N .

(a) β̃N is weakly consistent, uniformly in θ0 ∈ B. That is, for any ε > 0,

lim
N→∞

sup
θ0∈B

P
(∣∣β̃N − θ0

∣∣ > ε
)

= 0,

(b) β̃N is asymptotically normal with parameter (θ0, I
−1
N ), uniformly in θ0 ∈ B, where IN is given

by (2.7). That is, uniformly in θ0 ∈ B,√
IN
(
β̃N − θ0

) D−→ N (0, 1), N →∞.

(c) For any ε > 0,

lim
N→∞

sup
θ0∈B

P
(∣∣∣√IN(β̃N − θ0

)
− ξN

∣∣∣ > ε
)

= 0,

where ξN is defined as in (2.8).

(d) For any $ ∈ Wp, β̃N is asymptotically efficient in B for the loss function $N (x) :=
$(
√
INx). That is, for any θ0 ∈ B,

lim
δ→0+

lim inf
N→∞

sup
|θ−θ0|<δ

E
(
$N

(
β̃N − θ

))
= E($(ξ)),

where ξ
D
= N (0, 1) under P.

Proof. It is sufficient to check the conditions (N1)−(N4) in [IK81, Section III.1], which has been
verified in the proof of Theorem 3.2.

With the help of the Bernstein-Von Mises theorem from next section, we will be able to inves-
tigate the asymptotic properties of both β̃N and β̂N with a set of priors and loss functions having
exponential growth rates, as shown in Sections 4.2 and 4.3 below, respectively.



12 Cheng, Cialenco, and Gong

4.1 The Bernstein-Von Mises Theorem

We recall that, generally speaking, the Bernstein-von Mises type theorem states that the posterior
distribution of the normalized distance between the randomized parameter Θ and θ̂N (given as in
(3.1)) is asymptotically normal. This type of result implies that the posterior distribution measure
approaches the Dirac measure as the number of observations increases; see Remark 4.5 below
for more details. Moreover, it also serves as an essential tool in derivation of some asymptotic
properties of Bayesian estimators. To develop the Bernstein-Von Mises theorem regarding the
posterior density, we adopt the techniques from [BKPR71] (see also [PR00] and [Bis02]), where we
slightly weaken one of the conditions compared to some previous versions of Bernstein-Von Mises
theorem (see condition (C2) in Theorem 4.4), which is also easier to verify.

Let Λ :=
√
IN (Θ− θ̂N ), representing the normalized difference between the randomized param-

eter Θ and θ̂N . By (4.2), the corresponding posterior density is then given by

p̃(λ |UN ) = p

(
λ√
IN

+ θ̂N

∣∣∣∣UN)dθ

dλ
= C−1

N %

(
λ√
IN

+ θ̂N

)
e−λ

2/2, λ ∈ (−
√
IN θ̂N ,∞), (4.5)

where

CN :=
√
IN

∫ ∞
0

exp

(
− IN

2

(
η − θ̂N

)2)
%(η) dη =

∫ ∞
−
√
IN θ̂N

%

(
λ√
IN

+ θ̂N

)
e−λ

2/2 dλ. (4.6)

For notational convenience, we will extend the domains of % and p̃ to R, with %(θ) = 0 for θ ∈
(−∞, 0] and p̃(λ|UN ) = 0 for λ ∈ (−∞,−

√
IN θ̂N ]. By (4.5), the definition (4.4) of β̃N can be

written as

β̃N = arg min
β∈R+

∫
R
`
(
λ+

√
IN
(
θ̂N − β

))
p̃(λ |UN ) dλ. (4.7)

We are now in the position of presenting the Bernstein-von Mises theorem.

Theorem 4.4. Let % ∈ Q be positive and continuous in a neighborhood of θ0, and let f be a
non-negative, Borel-measurable function on R. Suppose that % and f satisfy the following two
conditions:

(C1) there exists α ∈ (0, 1) so that ∫
R
f(x) e−αx

2/2 dx <∞;

(C2) for any δ > 0,

lim
N→∞

∫
{|λ|>

√
IN δ}

f(λ) %

(
θ̂N +

λ√
IN

)
e−λ

2/2 dλ = 0, P− a.s..

Then,

lim
N→∞

∫
R
f(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣ dλ = 0, P− a.s.. (4.8)
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Remark 4.5. The above theorem implies that, for P−a.s.ω, the posterior distribution measure of Θ
converges weakly to the Dirac measure centered at θ0, as the number of Fourier modes increases.
Indeed, let g be any continuous and bounded function on R. Without loss of generality, assume
that g is non-negative (otherwise, consider g+ and g− separately). By (4.5), for any ω ∈ Ω,∫

R
g(θ) p(θ |UN )(ω) dθ =

∫
R
g

(
λ√
IN

+ θ̂N (ω)

)
p̃(λ |UN )(ω) dλ.

For each given ω ∈ Ω, we put fω(λ) := g(λ/
√
IN + θ̂N (ω)), λ ∈ R. In light of the boundedness of

g, fω satisfies conditions (C1) and (C2) above, for any given ω. From the proof of Theorem 4.4
(see (4.15) below), equality (4.8) holds for fω at any ω. Together with the strong consistency of θ̂N
(recalling (3.6)), for P−a.s. ω ∈ Ω, we deduce that

lim
N→∞

∫
R
g(θ) p(θ |UN )(ω) dθ = lim

N→∞

∫
R
g

(
λ√
IN

+ θ̂N (ω)

)
p̃(λ |UN )(ω) dλ

= lim
N→∞

∫
R
fω(λ) p̃(λ |UN )(ω) dλ

= lim
N→∞

1√
2π

∫
R
fω(λ) e−λ

2/2 dλ

= lim
N→∞

1√
2π

∫
R
g

(
λ√
IN

+ θ̂N (ω)

)
e−λ

2/2 dλ = g(θ0),

where we used the dominated convergence theorem in the last equality.

Remark 4.6. Let % ∈ Q, and let f be a non-negative, Borel-measurable function on R. Assume
that there exists c1, c2 > 0 and r ∈ (0, 2) such that

%(θ) ≤ c1e
c2θr , for all θ ∈ R+; f(x) ≤ c1e

c2|x|r , for all x ∈ R. (4.9)

Clearly such f satisfies condition (C1) in Theorem 4.4. Moreover, % and f also satisfy condition
(C2) in Theorem 4.4. Indeed, by the strong consistency of θ̂N , for P−a.s. ω ∈ Ω and N ∈ N large
enough (depending on ω), we have that

0 ≤
∫
{|λ|>

√
IN δ}

f(λ) %

(
θ̂N +

λ√
IN

)
e−λ

2/2 dλ

≤ c2
1

∫
{|λ|>

√
IN δ}

exp

(
c2|λ|r + c2

(
θ0 + 1 +

|λ|√
IN

)r
− λ2

2

)
1{θ̂N+λ/

√
IN>0} dλ

≤ c2
1 sup
N∈N, λ∈R

(
exp

((
θ0 + 1 +

|λ|√
IN

)r
− λ2

4

))
·
∫
{|λ|>

√
IN δ}

exp

(
c2|λ|r −

λ2

4

)
dλ→ 0, (4.10)

as N →∞. In particular, all conditions in Theorem 4.4 are valid when % ∈ Qe,2 and f ∈We,2.

The proof of Theorem 4.4 is based on the following technical lemma.

Lemma 4.7. Under the conditions of Theorem 4.4,

(a) there exist δ0 > 0 such that

lim
N→∞

∫
{|λ|≤δ0

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ = 0, P− a.s.;
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(b) for any δ > 0,

lim
N→∞

∫
{|λ|>δ

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ = 0, P− a.s..

Proof. Pick δ0 ∈ (0, θ0/2) such that % is continuous on [θ0 − 2δ0, θ0 + 2δ0]. Recall that the Fisher
information IN is unbounded, and thus, for any C > 0, there exists N ∈ N so that δ0

√
IN > C.

We decompose the integral from part (a) as follows∫
{|λ|≤δ0

√
IN}

= 1{|θ̂N−θ0|>δ0}

∫
{|λ|≤δ0

√
IN}

+1{|θ̂N−θ0|≤δ0}

∫
{|λ|≤C}

+1{|θ̂N−θ0|≤δ0}

∫
{C<|λ|≤δ0

√
IN}

.

(4.11)

By the strong consistency of θ̂N , |θ̂N (ω) − θ0| ≤ δ0, P−a.s., for sufficiently large N (that may
depend on ω). Hence

lim
N→∞

1{|θ̂N−θ0|>δ0}

∫
{|λ|≤δ0

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ = 0, P− a.s.. (4.12)

Moreover, by the strong consistency of θ̂N and the continuity of % on [θ0 − 2δ0, θ0 + 2δ0], for any
λ ∈ [−C,C],

lim
N→∞

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ = 0, P− a.s..

Hence, by condition (C1) and the dominated convergence theorem,

lim
N→∞

1{|θ̂N−θ0|≤δ0}

∫
{|λ|≤C}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ = 0, P− a.s.. (4.13)

Finally, by (C1) and the boundedness of % on [θ0 − 2δ0, θ0 + 2δ0],

1{|θ̂N−θ0|≤δ0}

∫
C<|λ|≤δ0

√
IN

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ

≤ 2M

∫
{|λ|>C}

f(λ) e−αλ
2/2 e−(1−α)λ2/2 dλ ≤ 2M e−(1−α)C2/2

∫
R
f(λ) e−αλ

2/2 dλ, (4.14)

where M := supθ∈[θ0−2δ0,θ0+2δ0] %(θ). Combining (4.11)−(4.14), and since C > 0 is arbitrarily
chosen, we complete the proof of part (a).

As for part (b), note that for any δ > 0,∫
{|λ|>δ

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ

≤
∫
{|λ|>δ

√
IN}

f(λ) %

(
λ√
IN

+ θ̂N

)
e−λ

2/2 dλ+ %(θ0)e−(1−α)δ2IN

∫
{|λ|>δ

√
IN}

f(λ) e−αλ
2/2 dλ,

and in view of (C1) and (C2), (b) follows at once. The proof is now complete.
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Proof of Theorem 4.4. Since the constant function f ≡ 1 satisfies (C1) and (C2), by Lemma 4.7,

lim
N→∞

∫
R
e−λ

2/2

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ dλ = 0, P− a.s.,

which, together with (4.6), implies that

lim
N→∞

CN := lim
N→∞

∫
R
%

(
λ√
IN

+ θ̂N

)
e−λ

2/2 dλ = %(θ0)

∫
R
e−λ

2/2 dλ =
√

2π%(θ0), P− a.s..

Therefore, by (4.5), as N →∞,∫
R
f(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ ≤ C−1
N

∫
R
f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ

+

∣∣∣∣C−1
N %(θ0)− 1√

2π

∣∣∣∣ ∫
R
f(λ) e−λ

2/2 dλ→ 0, P− a.s., (4.15)

which completes the proof of the theorem. �

In order to investigate the uniform asymptotic properties of β̃N , we need the following uniform
version of Bernstein-Von Mises Theorem.

Theorem 4.8. Let % ∈ Q be continuous and positive on R+, and let f be a non-negative, Borel-
measurable function on R. Assume that % and f satisfy (4.9). Then, for any compact set B ⊂ R+

and any ε > 0,

lim
N→∞

sup
θ0∈B

P
(∫

R
f(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ > ε

)
= 0.

The following technical lemma is a key ingredient for the proof of Theorem 4.8.

Lemma 4.9. Under the conditions of Theorem 4.8, for any compact set B ⊂ R+,

(a) there exists δ0 > 0, such that for any ε > 0,

lim
N→∞

sup
θ0∈B

P

(∫
{|λ|≤δ0

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ > ε

)
= 0;

(b) for any δ > 0 and ε > 0,

lim
N→∞

sup
θ0∈B

P

(∫
{|λ|>δ

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ > ε

)
= 0.

Proof. The proof follows the same line as that of Lemma 4.7. Pick δ0 ∈ (0, infθ∈B(θ/2)). Since
IN → +∞, for any C > 0, there exists N ∈ N so that δ0

√
IN > C. We decompose the integral

from part (a) as in (4.11). By the uniform weak consistency of θ̂N (property (a) in Corollary 3.3),
we have that

lim
N→∞

sup
θ0∈B

P

(
1{|θ̂N−θ0|>δ0}

∫
{|λ|≤δ0

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
ε

3

)
≤ lim

N→∞
sup
θ0∈B

P
(∣∣θ̂N − θ0

∣∣ > δ0

)
= 0. (4.16)
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Moreover, for any γ ∈ (0, infθ∈B θ), let Mγ := sup{θ∈Bγ} %(θ), where Bγ := {θ ∈ R+ : infη∈B |η −
θ| ≤ γ} is a compact subset of R+. Since C > 0 is arbitrary, an argument similar to those leading
to (4.14) implies that

sup
θ0∈B

P

(
1{|θ̂N−θ|≤δ0}

∫
{C<|λ|≤δ0

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ)

∣∣∣∣ e−λ2/2 dλ >
ε

3

)

≤ sup
θ0∈B

P
(

2M2δ0 e
−(1−α)C2/2

∫
R
f(λ) e−αλ

2/2 dλ >
ε

3

)
= 0. (4.17)

Finally, since % is uniformly continuous on Bδ0 , there exists δ1 ∈ (0, δ0) such that, for any θ, η ∈ Bδ0
with |θ− η| ≤ δ1, |%(θ)−%(η)| ≤ ε/(6CK), where K := sup|λ|≤C f(λ) <∞ in view of (4.9). By the

uniform weak consistency of θ̂N (property (a) in Corollary 3.3), for N ∈ N large enough (so that
C/
√
IN ≤ δ1/2), we deduce that

sup
θ0∈B

P

(
1{|θ̂N−θ0|≤δ0}

∫
{|λ|≤C}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
ε

3

)

≤ sup
θ0∈B

P

(
sup
|λ|≤C

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ > ε

6CK
,
∣∣θ̂N − θ0

∣∣ ≤ δ1

2

)
+ sup
θ0∈B

P
(∣∣θ̂N − θ0

∣∣ > δ1

2

)
= sup

θ0∈B
P
(∣∣θ̂N − θ0

∣∣ > δ1

2

)
→ 0, N →∞. (4.18)

Combining (4.16)−(4.18) completes the proof of part (a).
As for part (b), using similar arguments to those used in establishing (4.10), for any δ > 0 and

δ1 ∈ (0, infθ∈B θ), we have that, as N →∞,

sup
θ∈Bδ1

∫
{|λ|>δ

√
IN}

f(λ) %

(
λ√
IN

+ θ

)
e−λ

2/2 dλ

≤ c2
1 sup
θ∈Bδ1 ,λ∈R,N∈N

(
exp

((
θ +

λ√
IN

)r
− λ2

4

))
·
∫
{|λ|>

√
IN δ}

exp

(
c2|λ|r −

λ2

4

)
dλ→ 0.

This, together with the uniform weak consistency of θ̂N (property (a) in Corollary 3.3), implies
that, for any ε > 0 and δ > 0,

sup
θ0∈B

P

(∫
{|λ|>δ

√
IN}

f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ > ε

)

≤ sup
θ0∈B

P

(∫
{|λ|>δ

√
IN}

f(λ) %

(
λ√
IN

+ θ̂N

)
e−λ

2/2 dλ >
ε

2

)

+ P

(
sup
θ0∈B

%(θ0) ·
∫
{|λ|>δ

√
IN}

f(λ) e−λ
2/2 dλ >

ε

2

)

≤ sup
θ0∈B

P

(∫
{|λ|>δ

√
IN}

f(λ) %

(
λ√
IN

+ θ̂N

)
e−λ

2/2 dλ >
ε

2
, θ̂N ∈ Bδ1

)
+ sup
θ0∈B

P
(
θ̂N /∈ Bδ1

)
≤ P

(
sup
θ∈Bδ1

∫
{|λ|>δ

√
IN}

f(λ) %

(
λ√
IN

+ θ

)
e−λ

2/2 dλ >
ε

2

)
+ sup
θ0∈B

P
(∣∣θ̂N − θ0

∣∣ > δ1

)
→ 0,

as N →∞, which completes the proof of part (b).
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Proof of Theorem 4.8. Since B ⊂ R+ is compact and ρ is positive on R+, L := infθ∈B %(θ) > 0.
For any ε > 0, by (4.5) and (4.6), we have that

sup
θ0∈B

P

(∫
R
f(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ > ε

)

≤ sup
θ0∈B

P
(
C−1
N

∫
R
f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
ε

2

)
+ sup
θ0∈B

P
(∣∣∣∣C−1

N %(θ0)− 1√
2π

∣∣∣∣ ∫
R
f(λ) e−λ

2/2 dλ >
ε

2

)
≤ sup

θ0∈B
P
(∫

R
f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
ε

2
CN , CN ≥

L

2

)
+ 2 sup

θ0∈B

(
CN <

L

2

)
+ sup
θ0∈B

P

(∣∣√2π%(θ0)− CN
∣∣ ∫

R
f(λ) e−λ

2/2 dλ >

√
2πε

2
CN , CN ≥

L

2

)

≤ sup
θ0∈B

P
(∫

R
f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
Lε

4

)
+ 2 sup

θ0∈B

(∣∣CN −√2π%(θ0)
∣∣ > L

2

)
+ sup
θ0∈B

P

(∣∣√2π%(θ0)− CN
∣∣ ∫

R
f(λ) e−λ

2/2 dλ >

√
2πLε

4

)
. (4.19)

By Lemma 4.9, clearly we have

lim
N→∞

sup
θ0∈B

P
(∫

R
f(λ)

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ >
Lε

4

)
= 0. (4.20)

Moreover, for any δ > 0, by (4.6) and Lemma 4.9 (with f ≡ 1) we have, as N →∞, that

sup
θ0∈B

P
(∣∣CN −√2π%(θ0)

∣∣ > δ
)
≤ sup

θ0∈B
P
(∫

R

∣∣∣∣%( λ√
IN

+ θ̂N

)
− %(θ0)

∣∣∣∣ e−λ2/2 dλ > δ

)
→ 0. (4.21)

Combining (4.19)−(4.21) completes the proof of the theorem. �

4.2 Asymptotic Properties of β̃N

With the help of Theorems 4.4 and 4.8, we will now study the asymptotic properties of β̃N with
respect to the set of loss functions ` and prior densities % which have exponential growth rates.

Theorem 4.10. Let % ∈ Qe,2 and ` ∈ We,2. Assume that r 7→
∫
R `(λ + r)e−λ

2/2 dλ has a strict

minimum at r = 0, and that β̃N is well defined with respect to each loss function ` ∈ We,2, for
every N ∈ N. Then,

lim
N→∞

√
IN
(
β̃N − θ̂N

)
= 0, P− a.s.. (4.22)

Moreover, for any compact set B ⊂ R+ and any ε > 0,

lim
N→∞

sup
θ0∈B

P
(√

IN
∣∣β̃N − θ̂N ∣∣ > ε

)
= 0. (4.23)
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Proof. For any r ∈ R, denote by

ψ(r) :=

∫
R
`(λ+ r)

e−λ
2/2

√
2π

dλ,

which has a strict minimum at r = 0. Note that the integral above is finite since ` ∈ We,2. For
any ε > 0 and N ∈ N, we first have that

P
(√

IN
∣∣β̃N − θ̂N ∣∣ > ε

)
≤ P

(
inf

β:
√
IN |β−θ̂N |>ε

∫
R+

`
(√

IN (η − β)
)
p(η |UN ) dη <

∫
R+

`
(√

IN
(
η − θ̂N

))
p(η |UN ) dη

)
= P

(
inf
|r|>ε

∫
R
`(λ+ r) p̃(λ |UN ) dλ <

∫
R
`(λ) p̃(λ |UN ) dλ

)
≤ P

(
inf
|r|>ε

∫
R
`(λ+ r) p̃(λ |UN ) dλ < ψ(0) +

∫
R
`(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣ dλ
)
. (4.24)

Pick δ = δ(ε) ∈ (0, inf |r|>ε ψ(r) − ψ(0)). Since ` is symmetric on R and is non-decreasing on R+,
there exists m = m(ε, δ) > ε and M = M(ε, δ) > m such that∫ m

−m

e−λ
2/2

√
2π

dλ ≥
inf |r|>ε ψ(r)− δ/2
inf |r|>ε ψ(r)− δ/4

, inf
|x|>M−m

`(x) ≥ inf
|r|>ε

ψ(r)− δ

4
. (4.25)

To obtain the existence of M above, assume that for any x ∈ R, `(x) ≤ inf |r|>ε ψ(r)− δ/4, then

inf
|r|>ε

ψ(r) = inf
|r|>ε

∫
R
`(λ+ r)

e−λ
2/2

√
2π

dλ ≤ inf
|r|>ε

ψ(r)− δ

4
,

which is clearly a contradiction. Next, there exists K = K(ε, δ) > M large enough such that,
whenever |r| ∈ (ε,M),∫ K

−K
`(λ+ r)

e−λ
2/2

√
2π

dλ ≥
∫
R
`(λ+ r)

e−λ
2/2

√
2π

dλ− δ ≥ inf
|r|>ε

ψ(r)− δ

2
. (4.26)

Note that for |r| ≥M , (4.25) implies that∫ m

−m
`(λ+ r)

e−λ
2/2

√
2π

dλ ≥
inf |r|>ε ψ(r)− δ/2
inf |r|>ε ψ(r)− δ/4

·
(

inf
|r|>ε

ψ(r)− δ

4

)
= inf
|r|>ε

ψ(r)− δ

2
. (4.27)

Hence, by combining (4.26) and (4.27), we obtain that

inf
|r|>ε

∫ K

−K
`(λ+ r)

e−λ
2/2

√
2π

dλ ≥ inf
|r|≥ε

ψ(r)− δ

2
> ψ(0) +

δ

2
. (4.28)

Moreover, since ` is symmetric on R and is non-decreasing on R+, for any |r| > ε+ 1 + 2K,∫ K

−K
`(λ+ r) p̃(λ |UN ) dλ ≥ sup

|x|≤ε+1+K
`(x) ·

∫ K

−K
p̃(λ |UN ) dλ ≥

∫ K

−K
`(λ+ ε+ 1) p̃(λ |UN ) dλ.
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Hence, we have that

inf
|r|>ε

∫
R
`(λ+ r)p̃(λ |UN )dλ ≥ inf

|r|>ε

∫ K

−K
`(λ+ r)p̃(λ |UN )dλ = inf

|r|∈(ε,ε+1+2K)

∫ K

−K
`(λ+ r)p̃(λ |UN )dλ.

Together with (4.28), we deduce that

inf
|r|>ε

∫
R
`(λ+ r) p̃(λ |UN ) dλ

≥ inf
|r|∈(ε,ε+1+2K)

∫ K

−K
`(λ+ r)

e−λ
2/2

√
2π

dλ− sup
|r|∈(ε,ε+1+2K)

∫ K

−K
`(λ+ r)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ
> ψ(0) +

δ

2
− sup
|x|≤ε+1+3K

`(x) ·
∫
R

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣ dλ. (4.29)

Finally, by combining (4.24) and (4.29), we obtain that for any N ∈ N,

P
(√

IN
∣∣β̃N − θ̂N ∣∣ > ε

)
≤ P

(∫
R

(
`(λ) + sup

|x|≤ε+1+3K
`(x)

)∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣ dλ > δ

2

)
,

and thus

P
(

lim sup
N→∞

{√
IN
∣∣β̃N − θ̂N ∣∣ > ε

})
≤ P

(
lim sup
N→∞

{∫
R

(
`(λ) + C

)∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ > δ

2

})
,

where C = C(ε, δ,K) := sup|x|≤ε+1+3K `(x). The results of the theorem follow immediately from
Theorem 4.4 and 4.8.

Remark 4.11. Theorem 4.10 remains valid when the symmetry of ` in condition (i) of Definition 3.1
is relaxed to the non-increasing monotonicity on (−∞, 0). In this case, one has to split the integral∫
R `(λ+ r) p̃(λ |UN ) dλ into the integrals on [0,∞) and (−∞, 0), and to perform similar estimates

for each integral. We skip the technical details here for the sake of brevity.

Proposition 4.12. Under the conditions of Theorem 4.10, the asymptotic properties (a)−(c) stated
in Theorem 4.3 remain true for β̃N . Moreover, β̃N is strongly consistent. If in addition, %(x) =
1R+(x), is the uninformed/uniform prior, then β̃N also satisfies the asymptotic property (d) in
Theorem 4.3.

Proof. Properties (a)−(c) in Theorem 4.3 follow immediately from the properties (a)−(c) in Propo-
sition 3.3 for θ̂N and Theorem 4.10. The strong consistency is a direct consequence of (3.6) and
(4.22).

Next, with ` ∈ We,2 and satisfying the conditions of Theorem 4.10, we take %(x) = 1R+(x).
Due to (4.5) and (4.7), we obtain

β̃N = arg min
β∈R+

∫ ∞
−
√
IN θ̂N

`
(
λ+

√
IN
(
θ̂N − β

))
e−λ

2/2 dλ, (4.30)

We will investigate the asymptotic efficiency of β̃N as stated in Theorem 4.3.(d). We will exclude
any bounded loss function ` which clearly belong to Wp, and thus their asymptotic efficiency is
covered by Theorem 4.3.
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In view of the asymptotic normality of β̃N with parameter (θ0, I
−1
N ) (property (b) above),

uniformly in θ0 ∈ B, and by [IK81, Theorem III.1.3], it is sufficient to show that for any m ∈ N,
there exists N0 = N0(m) ∈ N, such that the family of random variables {|

√
IN (β̃N − θ0)|m, N ≥

N0, θ0 ∈ B} are uniformly integrable under P, for any given compact set B ⊂ R+. In what follows,
we will show that for any m ∈ N and θ0 ∈ B, there exists N0 = N0(m) ∈ N and K = K(m) > 0,
such that for any N ≥ N0 and ω ∈ Ω,∣∣∣√IN(β̃N (ω)− θ0

)∣∣∣m ≤ (∣∣∣√IN(θ̂N (ω)− θ0

)∣∣∣m +K
)
, (4.31)

which clearly implies the uniform integrability in light of (3.7).

Since ` is symmetric on R and non-decreasing on R+, there exists x1 > 0 such that `(x1) > 0,
`(x) ≥ `(x− 2x1) for all x ≥ x1, and `(x) < `(x− 2x1) for all x ∈ [0, x1). For such x1, we can find
x2 ∈ (0, x1) so that `(x2) < `(x1). Then, for any N ∈ N and β ≥ 2x1/

√
IN ,∫ ∞

−
√
IN θ̂N

(
`
(
λ+

√
IN
(
θ̂N − β

))
− `
(
λ+

√
IN θ̂N

))
e−λ

2/2 dλ

=

∫
R+

(
`
(
y −

√
INβ

)
− `(y)

)
e−(y−

√
IN θ̂N )2/2 dy

=

∫ x1

0

(
`
(
y −

√
INβ

)
− `(y)

)
e−(y−

√
IN θ̂N )2/2 dy +

∫ ∞
x1

(
`
(
y −

√
INβ

)
− `(y)

)
e−(y−

√
IN θ̂N )2/2 dy

≥
∫ x2

0

(
`
(
y −

√
INβ

)
− `(y)

)
e−(y−

√
IN θ̂N )2/2 dy −

∫ ∞
x1

`(y) e−(y−
√
IN θ̂N )2/2 dy

≥
(
`
(
x2 − 2x1

)
− `(x2)

) ∫ x2

0
e−(y−

√
IN θ̂N )2/2 dy −

∫ ∞
x1

`(y) e−(y−
√
IN θ̂N )2/2 dy

≥
(
`(x1)− `(x2)

) ∫ x2

0
e−(y−

√
IN θ̂N )2/2 dy −

∫
R+

`(z + x1) e−(z+x1−
√
IN θ̂N )2/2 dz.

Hence, for any N ∈ N, β ≥ 2x1/
√
IN , and ω ∈ Ω so that θ̂N (ω) < 0,∫ ∞

−
√
IN θ̂N (ω)

(
`
(
λ+

√
IN
(
θ̂N (ω)− β

))
− `
(
λ+

√
IN θ̂N (ω)

))
e−λ

2/2 dλ

≥
(
`(x1)− `(x2)

)
x2 e

−(x2−
√
IN θ̂N (ω))2/2 − e−(x1−

√
IN θ̂N (ω))2/2

∫
R+

`(z + x1) e−z
2/2 dz.

Since x1 > x2 > 0, this implies that there exists K1 = K1(x1, x2) > 0 such that, for any ω ∈ Ω
with

√
IN θ̂N (ω) ≤ −K1, the right-hand side of the above inequality is strictly positive. Hence, for

any N ∈ N and β ≥ 2x1/
√
IN , we obtain that

1{
√
IN θ̂N≤−K1}

∫ ∞
−
√
IN θ̂N

`
(
λ+

√
IN
(
θ̂N − β

))
e−λ

2/2 dλ

> 1{
√
IN θ̂N≤−K1}

∫ ∞
−
√
IN θ̂N

`
(
λ+

√
IN θ̂N

)
e−λ

2/2 dλ,

which, together with (4.30), implies that

1{
√
IN θ̂N≤−K1} β̃N ≤ 1{

√
IN θ̂N≤−K1}

2x1√
IN
, for any N ∈ N.
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Since β̃N ≥ 0, we conclude that there exists N1 = N1(x1) ∈ N so that 2x1/
√
IN1 ≤ infθ∈B θ, and

that, for any θ0 ∈ B and N ≥ N1,

1{
√
IN θ̂N≤−K1}

√
IN
∣∣β̃N − θ0

∣∣ ≤ 1{
√
IN θ̂N≤−K1}

√
IN θ0 ≤ 1{

√
IN θ̂N≤−K1}

√
IN
∣∣θ̂N − θ0

∣∣. (4.32)

It remains to prove (4.31), when
√
IN θ̂N > −K1. Since ` ∈ We,2 is unbounded, there exists

K̃2 > K1 large enough such that∫ K̃2

K1

(
`
(
K̃2

)
− `(λ)

)
e−λ

2/2 dλ >

∫
[−K̃2,K̃2]c

`(λ) e−λ
2/2 dλ.

Recalling that ` is symmetric, for any r < −2K̃2 and N ∈ N, we deduce that

1{
√
IN θ̂N≥−K1}

∫ ∞
−
√
IN θ̂N

`(λ+ r) e−λ
2/2 dλ ≥ 1{

√
IN θ̂N≥−K1}

∫ K̃2

(−
√
IN θ̂N )∨(−K̃2)

`(λ+ r) e−λ
2/2 dλ

≥ 1{
√
IN θ̂N≥−K1}`

(
K̃2

) ∫ K̃2

(−
√
IN θ̂N )∨(−K̃2)

e−λ
2/2 dλ

> 1{
√
IN θ̂N≥−K1}

∫ K̃2

(−
√
IN θ̂N )∨(−K̃2)

`(λ) e−λ
2/2 dλ

+ 1{
√
IN θ̂N≥−K1}

∫
[−K̃2,K̃2]c

`(λ) e−λ
2/2 dλ

> 1{
√
IN θ̂N≥−K1}

∫ ∞
−
√
IN θ̂N

`(λ) e−λ
2/2 dλ,

which, combined with (4.30), implies that

1{
√
IN θ̂N≥−K1}

√
IN
(
θ̂N − β̃N

)
≥ 1{

√
IN θ̂N≥−K1}

(
− 2K̃2

)
, for any N ∈ N. (4.33)

Using similar arguments as above, we can show that there exists K2 > K1 large enough, such that

1{
√
IN θ̂N≥−K1}

√
IN
(
θ̂N − β̃N

)
≤ 2K21{

√
IN θ̂N≥−K1}, for any N ∈ N. (4.34)

Finally, by combining (4.33) and (4.34) and letting K = max(2K̃2, 2K2), we obtain that, for any
N ∈ N and θ0 ∈ B,

1{
√
IN θ̂N≥−K1}

√
IN
∣∣β̃N − θ0

∣∣ ≤ 1{
√
IN θ̂N≥−K1}

(√
IN
∣∣θ̂N − θ0

∣∣+K
)
. (4.35)

Combining (4.32) and (4.35) clearly leads to (4.31). The proof is now complete.

Remark 4.13. The symmetry of the loss function ` is again not essential for the validity of Proposi-
tion 4.12, and can be relaxed to the non-increasing monotonicity on (−∞, 0) with a more technical
proof. Moreover, we also conjecture that the asymptotic efficiency for β̃N remains valid with any
prior % ∈ Qe,2, and the detail proof will be given elsewhere.

Finally, while we have extended the choice of loss function ` to the class We,2 with exponential

growth in the definition of β̃N for Theorem 4.10 and Proposition 4.12, we still keep $ ∈Wp in the
definition of asymptotic efficiency for Corollary 4.12. The validity of the asymptotic efficiency for
β̃N with more general $ ∈We,2 is yet to be studied.
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4.3 Asymptotic properties of β̂N

In this section we will study the asymptotic properties of the Bayesian estimator β̂N . While we will
investigate only (strong) consistency, and asymptotic normality of β̂N , we recall that β̂N is defined
for larger class of loss functions W′, in comparison to β̃N from previous section.

When β̂N is well defined for all N ∈ N, the following theorem provides a sufficient condition for
the consistency and asymptotic normality of β̂N .

Theorem 4.14. Assume that the prior density % ∈ Q is positive and continuous in a neighborhood
of θ0, and that β̂N is well-defined with respect to a loss function ` ∈W′, for every N ∈ N. Moreover,
assume that there exists {aN}N∈N ⊂ R+, a test function f as in Theorem 4.4 satisfying conditions
(C1) and (C2), and another loss function ˜̀, such that

(i) aN `

(
λ√
IN

)
≤ f(λ), for any λ ∈ R and N ∈ N;

(ii) lim
N→∞

sup
λ∈B

∣∣∣∣aN `( λ√
IN

)
− ˜̀(λ)

∣∣∣∣ = 0, for any compact set B ⊂ R;

(iii) r 7→
∫
R
˜̀(λ+ r) e−λ

2/2 dλ has a strict minimum at r = 0.

Then,

(a) lim
N→∞

√
IN
(
β̂N − θ̂N

)
= 0, P− a.s.;

(b) lim
N→∞

aN

∫
R+

`
(
θ − β̂N

)
p(θ |UN ) dθ =

∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ, P− a.s..

In particular, β̂N is strongly consistent and asymptotically normal, as N →∞, namely

β̂N → θ0, P− a.s. and
√
IN
(
β̂N − θ0

) D−→ N (0, 1).

Proof. The strong consistency and asymptotic normality of β̂N are immediate consequences of part
(a) together with the strong consistency and asymptotic normality of θ̂N (recalling (3.6) and (3.7)).

The proof of (a) and (b) is split in four steps.

Step 1. We will first show that

lim sup
N→∞

aN

∫
R+

`
(
θ − β̂N

)
p(θ |UN ) dθ ≤

∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ, P− a.s.. (4.36)

By the definition of β̂N ,∫
R+

`
(
θ − β̂N

)
p(θ |UN ) dθ ≤

∫
R+

`
(
θ − θ̂N

)
p(θ |UN ) dθ =

∫
R
`

(
λ√
IN

)
p̃(λ |UN ) dλ.

Hence, to prove (4.36), it suffices to show that

lim
N→∞

aN

∫
R
`

(
λ√
IN

)
p̃(λ |UN ) dλ =

∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ, P− a.s.. (4.37)
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Using conditions (i) and (ii), we obtain that ˜̀(λ) ≤ f(λ), for any λ ∈ R. Therefore, by conditions
(i) and (ii), Theorem 4.4, and the dominated convergence theorem, we deduce that

lim
N→∞

∣∣∣∣∣aN
∫
R
`

(
λ√
IN

)
p̃(λ |UN ) dλ−

∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ

∣∣∣∣∣
≤ lim

N→∞

∫
R

∣∣∣∣aN`( λ√
IN

)
− ˜̀(λ)

∣∣∣∣ ∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣ dλ+ lim
N→∞

∫
R
˜̀(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ
+ lim
N→∞

∫
R

∣∣∣∣aN`( λ√
IN

)
− ˜̀(λ)

∣∣∣∣ e−λ2/2

√
2π

dλ

≤ lim
N→∞

3

∫
R
f(λ)

∣∣∣∣p̃(λ |UN )− e−λ
2/2

√
2π

∣∣∣∣dλ+

∫
R

(
lim
N→∞

∣∣∣∣aN`( λ√
IN

)
− ˜̀(λ)

∣∣∣∣) e−λ
2/2

√
2π

dλ

≤ 0 + lim
K→∞

∫ K

−K

(
lim
N→∞

∣∣∣∣aN`( λ√
IN

)
− ˜̀(λ)

∣∣∣∣) e−λ
2/2

√
2π

dλ

≤ lim
K→∞

(
lim
N→∞

sup
λ∈[−K,K]

∣∣∣∣aN`( λ√
IN

)
− ˜̀(λ)

∣∣∣∣
)∫ K

−K

e−λ
2/2

√
2π

dλ = 0,

which completes the proof of (4.37), and therefore, of (4.36).

Step 2. Next, we will show that the sequence of random variables YN :=
√
IN (β̂N − θ̂N ), N ∈ N,

are uniformly bounded, P−a.s.. That is, for P − a.s. ω, there exists K(ω) ∈ (0,∞), such that
|YN (ω)| ≤ K(ω) for all N ∈ N.

For any ω ∈ A := {ω ∈ Ω : lim supN→∞ |YN (ω)| = ∞} and any K ∈ N, there exists an
increasing sequence of integers Nj = Nj(ω,K), j ∈ N, such that Nj ↑ ∞, as j →∞, and |YNj (ω)| ≥
K, for any j ∈ N. Consequently,

∫
R+

`
(
θ − β̂Nj (ω)

)
p
(
θ |UNj

)
(ω) dθ =

∫
R
`

(
λ+ YNj (ω)√

INj

)
p̃
(
λ |UNj

)
(ω) dλ

≥
∫ K

−K
`

(
λ+K√
INj

)
p̃
(
λ |UNj

)
(ω) dλ, (4.38)

where we used (3.4) in the last inequality. On the other hand, since ˜̀ is locally bounded, the
function λ 7→ 1[−K,K](λ)˜̀(λ + K) is bounded on R and thus satisfies conditions (C1) and (C2).
Hence, by Theorem 4.4 and condition (ii), as j →∞,∣∣∣∣∣aNj

∫ K

−K
`

(
λ+K√
INj

)
p̃
(
λ |UNj

)
dλ−

∫ K

−K
˜̀(λ+K)

e−λ
2/2

√
2π

dλ

∣∣∣∣∣
≤
∫ K

−K

∣∣∣∣∣aNj`
(
λ+K√
INj

)
− ˜̀(λ+K)

∣∣∣∣∣ p̃(λ |UNj) dλ+

∫ K

−K
˜̀(λ+K)

∣∣∣∣p̃(λ |UNj)− e−λ
2/2

√
2π

∣∣∣∣ dλ
≤ sup

λ∈[−2K,2K]

∣∣∣∣∣aNj`
(

λ√
INj

)
− ˜̀(λ)

∣∣∣∣∣+

∫ K

−K
˜̀(λ+K)

∣∣∣∣p̃(λ |UNj)− e−λ2/2

√
2π

∣∣∣∣ dλ→ 0, P− a.s.. (4.39)

Let B denote the exceptional subset of Ω in which the limit in (4.39) does not hold, then P(B) = 0.
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Without loss of generality, assume that A \B 6= ∅. By (4.38) and (4.39), for any ω ∈ A \B,

lim sup
j→∞

aNj

∫
R+

`
(
θ − β̂Nj (ω)

)
p
(
θ |UNj

)
(ω) dθ ≥ lim

j→∞

∫ K

−K
`

(
λ+K√
INj

)
p̃
(
λ |UNj

)
(ω) dλ

=

∫ K

−K
˜̀(λ+K)

e−λ
2/2

√
2π

dλ.

Since K ∈ N is arbitrary, by condition (iii) and monotone convergence theorem, we have

lim sup
j→∞

aNj

∫
R+

`
(
θ − β̂Nj (ω)

)
p
(
θ |UNj

)
(ω) dθ ≥ lim

K→∞

∫ K

−K
˜̀(λ+K)

e−λ
2/2

√
2π

dλ >

∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ.

In view of (4.36), we must have P(A \B) = 0 so that P(A) = 0, completing the proof of Step 2.

Step 3. We now prove (a) and (b). By Step 2, for P− a.s. ω, there exists Nj = Nj(ω) ∈ N, j ∈ N,
such that the sequence (YNj (ω))j∈N is convergent, as j → ∞, and we denote its limit by Y ∗(ω).
For any K > 0,

aNj

∫
R+

`
(
θ − β̂Nj (ω)

)
p
(
θ |UNj

)
(ω) dθ = aNj

∫
R
`

(
λ+ YNj (ω)√

INj

)
p̃
(
λ |UNj

)
dλ

≥ aNj
∫ K

−K
`

(
λ+ YNj (ω)√

INj

)
p̃
(
λ |UNj

)
dλ. (4.40)

Moreover, for j ∈ N large enough,∣∣∣∣∣aNj
∫ K

−K
`

(
λ+ YNj (ω)√

INj

)
p̃
(
λ |UNj

)
dλ−

∫ K

−K
˜̀(λ+ Y ∗(ω))

e−λ
2/2

√
2π

dλ

∣∣∣∣∣
≤
∫ K

−K

∣∣∣∣∣aNj`
(
λ+ YNj (ω)√

INj

)
− ˜̀(λ+ YNj (ω)

)∣∣∣∣∣ p̃(λ |UNj)(ω) dλ

+

∫ K

−K
˜̀(λ+YNj (ω)

)∣∣∣∣p̃(λ |UNj)(ω)− e
−λ2/2

√
2π

∣∣∣∣dλ+

∫ K

−K

∣∣∣˜̀(λ+YNj (ω)
)
− ˜̀(λ+Y ∗(ω))

∣∣∣e−λ2/2

√
2π

dλ

≤
∫ K

−K

∣∣∣∣∣aNj`
(
λ+ YNj (ω)√

INj

)
− ˜̀(λ+ YNj (ω)

)∣∣∣∣∣ p̃(λ |UNj)(ω) dλ

+

∫ K

−K

(
˜̀(λ+ Y ∗(ω) + 1)1[0,∞)(λ) + ˜̀(λ+ Y ∗(ω)− 1)1(−∞,0)(λ)

)∣∣∣∣p̃(λ |UNj)(ω)− e−λ
2/2

√
2π

∣∣∣∣dλ
+

∫ K

−K

∣∣∣˜̀(λ+ YNj (ω)
)
− ˜̀(λ+ Y ∗(ω))

∣∣∣ e−λ2/2

√
2π

dλ. (4.41)

By the same argument as in (4.39), the first two integrals in (4.41) vanish as j →∞, for P− a.s. ω.
Moreover, the monotonicity property (3.4) for ˜̀ implies that it is almost surely (with respect to
the Lebesgue measure) continuous on R. Hence, conditions (i) and (ii) (which implies that ˜̀ is
bounded by f), together with the dominated convergence theorem, imply that the last integral in
(4.41) vanishes as j →∞, for P− a.s. ω. Therefore, for P− a.s. ω, we have

lim
j→∞

aNj

∫ K

−K
`

(
λ+ YNj (ω)√

INj

)
p̃
(
λ |UNj

)
dλ =

∫ K

−K
˜̀(λ+ Y ∗(ω))

e−λ
2/2

√
2π

dλ. (4.42)
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Combining (4.40) and (4.42), and noting that K > 0 is arbitrary, we obtain that

lim inf
j→∞

aNj

∫
R+

`
(
θ − β̂Nj

)
p
(
θ |UNj

)
dθ ≥

∫
R
˜̀(λ+ Y ∗(ω))

e−λ
2/2

√
2π

dλ

≥
∫
R
˜̀(λ)

e−λ
2/2

√
2π

dλ, P− a.s., (4.43)

where we have used condition (iii) in the second inequality.

Now assume that P(Y ∗ 6= 0) > 0. Then inequality on (4.43) would be strict in {Y ∗ 6= 0} by
assumption (iii), which is clearly a contradiction to (4.36). Therefore, P(Y ∗ 6= 0) = 0. Combining
(4.36) in Step 1 with (4.43) completes the proof of (b).

To prove (a), it remains to show that every subsequence of (YN )N∈N converges to 0 with proba-
bility one. Indeed, assume the contrary. Applying similar arguments as in Step 3 to this exceptional
subsequence leads to a contradiction to (4.36).

The proof is now complete.

Remark 4.15. Here we present an example of loss function in We,2 that satisfies conditions (i)−(iii)

in Theorem 4.14 above. Let `(x) = exp(|x|r) − 1 with r ∈ (0, 2), and aN = I
r/2
N . Without loss of

generality, we assume IN ≥ 1 for all N ∈ N. Note that

aN`

(
λ√
IN

)
= I

r/2
N

(
e|λ|

rI
−r/2
N − 1

)
≤ |λ|re|λ|rI

−r/2
N ≤ |λ|re|λ|r =: f(λ),

which satisfies conditions (C1) and (C2), due to Remark 4.6. Hence, condition (i) is valid. Moreover,
let ˜̀(x) = |x|r, which clearly satisfies condition (iii). For any K > 0 and λ ∈ [−K,K],∣∣∣∣aN`( λ√

IN

)
− ˜̀(λ)

∣∣∣∣ = I
r/2
N

(
e|λ|

rI
−r/2
N − 1− |λ|rI−r/2N

)
≤ K2rI

−r/2
N eK

rI
−r/2
N → 0,

as N →∞, which shows the validity of condition (ii).

5 Numerical example

In this section, we provide an illustrative numerical example of the asymptotics of the MLE and
the Bayesian estimators derived in the previous sections. Specifically, we consider the following
equation 

du(t, x) + θ0(−uxx(t, x)) dt = σ
∑∞

k=1 uk(t)hk(x)kα dwk(t), t > 0

u(0, x) = π2

4 −
(
x− π

2

)2
, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t > 0,

(5.1)

where hk(x) :=
√

2/π sin(kx), x ∈ [0, π], and α ∈ R. We will fix σ = 1 and T = 1 for the rest of this
section. We note that in this case, A = −∂xx, with its eigenfunctions hk, k ∈ N, and corresponding
eigenvalues µk = k2, k ∈ N. In view of (2.7), the Fisher information IN ∝ N5−2α.

We will consider two set of parameters, one for which condition (E1) from Remark 2.2 is satisfied,
and another one that corresponds to condition (E2) from the same remark. All evaluations are
performed using numerical computing environment Matlab, and the source codes are available
from the authors upon request.
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Parameter Set I. We take the true value of the parameter of interest to be θ0 = 0.3, and α < 1;
clearly (E1) is satisfied. When α ↑ 1, the rate of divergence of IN as N →∞, and thus the rates of
convergence of both the MLE and the Bayesian estimators, become smaller, as N → ∞. We will
illustrate this below by considering two different regimes α = 0 and α = 0.999. We also take two
different priors - uninformed and truncated normal.

We simulate N = 20 independent Brownian sample paths {wk(t), t ∈ [0, 1]}, k = 1, . . . , 20, with
time-step of 5×10−5, and compute the corresponding Fourier modes {uk(t), t ∈ [0, 1]}, k = 1, . . . , 20,
using (2.5) and θ0. Then, we compute θ̂N according to (3.1), where the Itô integral is approximated
by a finite sum with time-step of 5 × 10−5. We also computed θ̂N using (3.2), that yielded same
results and they will not be reported here. Moreover, we simulate the posterior density p(θ|UN )
using (4.2), where the integral in the denominator is approximated using the ‘integral’ Matlab
built-in function.

In Figures 1 and 2, we present and compare the posterior density p(θ|UN ) under two different
prior distributions, the uniform uninformative prior on R+, %(x) = 1R+(x) (left panels), and
truncated normal N (1, 0.1;R+) (right panels), for α = 0 and α = 0.999, respectively. Also in
Figures 1 and 2 we mark the MLE for N = 2 (black square on the horizontal axis), and N = 4
(black diamond on the horizontal axis). For both choices of α, the posterior densities under both
priors converge to the Dirac measure concentrated at the MLEs, which is consistent with the
discussion in Remark 4.5. Moreover, under both priors, the posterior densities with α = 0 exhibit
faster convergence rates than those with α = 0.999 as expected.

Figure 1: Parameter Set I. Posterior densities for N = 2, 4, two different priors, and α = 0.

Next, we take the quadratic loss function `(x) = x2, in which case β̃N and β̂N are given by

β̃N = β̂N =

∫
R+

θ p(θ|UN ) dθ.

Also note that such Bayesian estimator can be viewed as the conditional mean estimator. In
Figures 3 and 4, we compare θ̂N with the Bayesian estimator β̂N , using the two considered priors
and for α = 0 and α = 0.999. Again, while θ̂N and the Bayesian estimators converge to the true
parameter θ0 = 0.3, as the number of Fourier modes increases, for both choices of α, the case
of α = 0 tends to have a better convergence rate. Finally, in Figure 5, we display the values

of
√
IN

∣∣∣β̂N − θ̂N ∣∣∣ as function of N , that confirm the asymptotic results of Theorem 4.10 and

Theorem 4.14.
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Figure 2: Parameter Set I. Posterior densities for N = 2, 4, 8, two different priors, and α = 0.999.

Figure 3: Parameter Set I. MLE vs. Bayesian Estimator with α = 0.

Figure 4: Parameter Set I. MLE vs. Bayesian Estimator with α = 0.999.

Parameter Set II. In the second set of parameters, we let θ0 = 0.505 and α = 1, which corresponds
to the case (E2) from Remark 2.2. We consider the same two priors as above. The posterior densities
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Figure 5: Parameter Set I.
√
IN

∣∣∣β̂N − θ̂N ∣∣∣, for two different priors, and α = 0, and α = 0.999.

behave similarly as in Case I. In contrast to Case I, we consider a loss function with exponential
growth, namely, `(x) = exp

(
|x|3/2

)
− 1, and we compute both β̃N and β̂N using `. In Figure 6 we

plot the values of MLE and the two Bayesian estimators as function of N . All estimators perform
well, and similarly. Although we display the results for one path, similar behavior is observed on
other simulated paths of the solution. The values of scaled errors

√
IN |β̃N − θ̂N | and

√
IN |β̂N − θ̂N |

are displayed in Figure 7, again confirming the results of Theorem 4.10 and Theorem 4.14.

Figure 6: Parameter Set II. Value of θ̂N , β̃N , β̂N , for two different priors, and α = 1.

A Auxiliary Results

For the sake of completeness, we recall a version of the strong law of large number, which will be
used in the proof of the strong consistency of MLE. We refer the reader to [Shi96, Theorem IV.3.2]
for its detail proof.

Theorem A.1 (Strong Law of Large Numbers). Let {ξn}n∈N be a sequence of independent random
variables with finite second moments. Let {bn}n∈N be a sequence of non-decreasing real numbers
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Figure 7: Parameter Set II. Scaled errors
√
IN

∣∣∣β̃N − θ̂N ∣∣∣, √IN ∣∣∣β̂N − θ̂N ∣∣∣, for two different priors,

and α = 1

such that limn→∞ bn =∞, and
∑∞

n=1 Var(ξn)/b2n <∞. Then,∑n
k=1 (ξk − E(ξk))

bn
→ 0, P− a.s. , n→∞.

Also here we present a simple technical lemma used in Section 3.

Lemma A.2. If the sequence {an}n∈N ⊂ R satisfies a1 > 0 and ak ≥ 0, k ≥ 2, then

N∑
n=1

an
(
∑n

k=1 ak)
2
< +∞.

Proof. Note the following

N∑
n=1

an
(
∑n

k=1 ak)
2
≤ 1

a2
1

+

N∑
n=2

an

(
∑n−1

k=1 ak)(
∑n

k=1 ak)

=
1

a2
1

+

N∑
n=2

(
1∑n−1

k=1 ak
− 1∑n

k=1 ak

)

=
1

a2
1

+
1

a1
− 1∑N

k=1 ak
,

which finishes the proof.

B Discussions on derivation of the posterior density

In this appendix, we will present a formal derivation of the posterior density (4.1). We make the
following standing assumptions

(i) The random variable Θ is independent of the Brownian motions {wk, k ∈ N} and possesses a
probability density function %;

(ii) σ(Θ) ⊂ F0.
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We let θ stand for the dummy variable of Θ. Recall that U θN denotes the first N Fourier modes
of the solution uθ to (2.1) with parameter θ. Let UΘ

N be the RN -valued process obtained by
substituting θ with Θ in U θN . By condition (i), for any B((RN )[0,T ])⊗B(R+)-measurable functional
f on (RN )[0,T ] × R+ with E(f(UΘ

N ,Θ)) <∞, we have that

E
(
f
(
UΘ
N ,Θ

))
=

∫
R+

E
(
f
(
U θN , θ

))
%(θ) dθ. (B.1)

Next, we will show that, for any B ∈ B(R+),

P
(
Θ ∈ B | UΘ

N

)
=

∫
B
rηN
(
UΘ
N

)
%(η) dη∫

R+

rηN
(
UΘ
N

)
%(η) dη

, (B.2)

where,

rηN

(
U θN

)
:= exp

(
− η

σ2

N∑
k=1

µkq
−2
k

∫ T

0

duθk(t)

uθk(t)
− η2T

2σ2

N∑
k=1

µ2
kq
−2
k

)
,

for any θ, η ∈ R+ For the sake of argument, we assume that rηN (·) is B((RN )[0,T ])-measurable.
Clearly, (B.2) follows immediately from the following equality

E
(
1{Θ∈B}

∫
R+

rηN
(
UΘ
N

)
%(η) dη

∣∣∣∣UΘ
N

)
=

∫
B
rηN
(
UΘ
N

)
%(η) dη. (B.3)

To prove (B.3), for any A ∈ B((RN )[0,T ]), we first deduce from (B.1) that

E
(
1{UΘ

N∈A}
1{Θ∈B}

∫
R+

rηN
(
UΘ
N

)
%(η) dη

)
=

∫
B
E
(
1{UθN∈A}

∫
R+

rηN
(
U θN
)
%(η) dη

)
%(θ) dθ

=

∫
R+

(∫
B
E
(
1{UθN∈A}

rηN
(
U θN
))
%(θ) dθ

)
%(η) dη.

In view of (2.6), we have

dPηN
dPθN

(
U θN

)
=
rηN
(
U θN
)

rθN
(
U θN
) . (B.4)

Hence, by Girsanov theorem,

E
(
1{UΘ

N∈A}
1{Θ∈B}

∫
R+

rηN
(
UΘ
N

)
%(η)dη

)
=

∫
R+

(∫
B
E
(

dPηN
dPθN

(
U θN
)
1{UθN∈A}

rθN
(
U θN
))
%(θ)dθ

)
%(η)dη

=

∫
R+

(∫
B
E
(
1{UηN∈A}

rθN
(
UηN
))
%(θ) dθ

)
%(η) dη. (B.5)

On the other hand,

E
(
1{UΘ

N∈A}

∫
B
rηN
(
UΘ
N

)
%(η) dη

)
=

∫
R+

E
(
1{UθN∈A}

∫
B
rηN
(
U θN
)
%(η) dη

)
%(θ) dθ

=

∫
R+

(∫
B
E
(
1{UθN∈A}

rηN
(
U θN
))
%(η) dη

)
%(θ) dθ. (B.6)

Combining (B.5) and (B.6) leads to (B.3).



Bayesian Estimations for SPDEs 31

References

[Bis99] J. P. N. Bishwal. Bayes and sequential estimation in Hilbert space valued stochastic
differential equations. J. Korean Statist. Soc., 28(1):93–106, 1999.

[Bis02] J. P. N. Bishwal. The Bernstein-von Mises theorem and spectral asymptotics of Bayes
estimators for parabolic SPDEs. J. Aust. Math. Soc., 72(2):287–298, 2002.

[BKPR71] J. Borwanker, G. Kallianpur, and B. L. S. Prakasa Rao. The Bernstein-von Mises
theorem for Markov processes. Ann. Math. Statist., 42:1241–1253, 1971.

[BT17] M. Bibinger and M. Trabs. Volatility estimation for stochastic PDEs using high-
frequency observations. Preprint, arXiv:1710.03519, 2017.

[CH17] I. Cialenco and Y. Huang. A note on parameter estimation for discretely sampled
SPDEs. Preprint, arXiv:1710.01649, 2017.

[Cho07] P. Chow. Stochastic partial differential equations. Chapman & Hall/CRC Applied
Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL,
2007.

[Cia10] I. Cialenco. Parameter estimation for SPDEs with multiplicative fractional noise.
Stoch. Dyn., 10(4):561–576, 2010.

[Cia18] I. Cialenco. Statistical inference for SPDEs: an overview. Statistical Inference for
Stochastic Processes, 21(2):309–329, 2018.

[CL09] I. Cialenco and S. V. Lototsky. Parameter estimation in diagonalizable bilinear
stochastic parabolic equations. Stat. Inference Stoch. Process., 12(3):203–219, 2009.

[FGHV16] S. Friedlander, N. Glatt-Holtz, and V. Vicol. Inviscid limits for a stochastically forced
shell model of turbulent flow. Ann. Inst. Henri Poincaré Probab. Stat., 52(3):1217–
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