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ABSTRACT: In this paper we develop a novel methodology for estimation of risk capital allocation.
The methodology is rooted in the theory of risk measures. We work within a general,
but tractable class of law-invariant coherent risk measures, with a particular focus on
expected shortfall. We introduce the concept of fair capital allocations and provide
explicit formulae for fair capital allocations in case when the constituents of the risky
portfolio are jointly normally distributed. The main focus of the paper is on the problem
of approximating fair portfolio allocations in the case of not fully known law of the
portfolio constituents. We define and study the concepts of fair allocation estimators
and asymptotically fair allocation estimators. A substantial part of our study is devoted
to the problem of estimating fair risk allocations for expected shortfall. We study
this problem under normality as well as in a nonparametric setup. We derive several
estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we
propose two backtesting methodologies that are oriented at assessing the performance
of the allocation estimation procedure. The paper closes with a substantial numerical
study of the subject.

KEYWORDS: capital allocation, fair capital allocation, asymptotic fairness, expected shortfall,
risk measures, Euler principle, value-at-risk, tail-value-at-risk, backtesting capital
allocation.

1 Introduction

The measurement and the management of risk is without doubt of highest importance in the
financial and the insurance industries. Arguably, the theory and applications of risk measures are
most useful for this purpose. For early applications in the insurance context see [Bith70, Ger74],
and for a historical perspective in the financial context see [Guil6]. The seminal article [ADEH99]
placed risk measurements on an axiomatic foundation paving the way to coherent risk measures
which have been treated in numerous works since then. We refer to [Del00, FS11, MFE15] for an
in-depth treatment of the topic.
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The application of risk measures to portfolio management naturally leads to the problem of
allocating portions of the risk capital to the constituents of the portfolio, i.e. to the risk allocation
problem. There are a number of different approaches to risk capital allocation, depending on the one
hand on the class of the used risk measures, and on the other hand on the used allocation principles.
The Euler principle, often used in risk management practice, is one example, see e.g. [Tas04, Tas07].
For coherent risk measures, the Euler principle coincides with the axiomatic approach proposed
in [Kal05]. For the more general case of convex risk measures we refer to [Tsa09, MFE15] and
references therein.

Risk measures as we consider them here are mathematical tools which require as inputs probabil-
ity distributions of the underlying risk factors. In practical applications one is typically confronted
with the fact that these probability distributions are not fully specified. For example, let X repre-
sent a P&L, which is a function of some underlying risk factors, and let p be the risk measure used
to measure the riskiness of X, so that the desired quantity to compute is the risk p(X). Since the
probability laws of the risk factors are not fully specified, then one needs to approximate p(X), per-
haps by estimating this quantity exploiting historical data. As a consequence, the risk allocations,
which are usually computed in terms of risk measures, need to be approximated, in particular by
estimation.

The problem of estimation of risk has, to a great extent, been neglected in the literature. In
the recent paper [PS18] a new statistical methodology for efficient estimation of risk capital p(X)
was proposed. The methodology introduced in that paper is based on the key concept, which
the authors call unbiased estimation of risk also introduced in [PS18], and is based on economic
principle.! Inspired by the ideas from [PS18], in this paper we develop a novel methodology for
estimation of capital risk allocation.> We work within a general, but tractable class of coherent risk
measures, the so-called weighted value-at-risk measures introduced in [Che06], with focus on the
expected shortfall risk measure, which is broadly accepted in the risk management practice.

The first key concept introduced in this paper is the fair capital risk allocation, which builds
upon the robust representation of coherent risk measures. We provide explicit formulae for fair
capital allocations in case when the constituents of the portfolio are jointly normally distributed.
The major focus of the paper is on the problem of approximating fair portfolio allocations when
the law of the portfolio constituents is not fully known. Motivated by the concept of the fair capital
allocation, we define and study the concepts of fair allocation estimators and asymptotically fair
allocation estimators. A substantial portion of our study is devoted to the problem of estimating
the risk allocation under expected shortfall and normality. In addition we consider a nonparametric
approach to this problem. We derive several estimators, and prove their fairness and/or asymptotic
fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assess-
ing the performance of the allocation estimation procedure. Finally, we perform relevant numerical
studies. The results of the numerical studies that we have conducted so far are encouraging for
practical use of the estimation and backtesting of the capital allocation.

This work is a first step towards developing formal methodologies for estimating and backtesting
of fair capital allocation. As such, it has potential to open new theoretical and practical research
avenues.

!The concept of unbiased estimation of risk must not be confused with the classical concept of unbiased estimator.
2In this paper we will occasionally write capital allocation or risk allocation in place of capital risk allocation.
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2 The fair allocation principle

Let (Q,.%#,P) be an atomless probability space, and let E be the expectation under P. In what
follows, all needed integrability and regularity assumptions are taken for granted.

We consider a random vector X = (X7, ..., Xy) whose components are interpreted as discounted
future profits and losses (P&Ls). The marginal random variable X; (margin — for short) might
correspond to the ith clearing member of a central clearing counterparty (CCP), to the ith position
in the portfolio, to the ith trader portfolio in a trading desk, or to the ith desk in the financial
institution portfolio. In the following, we will refer to X as portfolio and to X; as the ith portfolio
margin or the ith portfolio constituent.

Let L' := L'(Q, F,P) and let p : L' — RU {400} be a normalized monetary risk measure: p
is monotone, i.e. p(U) < p(V) for U >V, p is cash-additive, i.e. p(U + ¢) = p(U) — c for all ¢ € R,
and p is normalized, i.e. p(0) = 0.

The riskiness of the portfolio X is measured by applying the risk measure p to the aggregated
portfolio P&L denoted by

d
i=1

We call the quantity p(S) the aggregated risk, or total risk, of the portfolio X.

Our objective is to study the issue of allocating the aggregated risk of the portfolio to the
individual constituents of the portfolio. Specifically, we intend to find a vector a = (ay, ..., aq) € RY,
called a risk allocation, such that the following balance condition holds

d
p(S) = Zai. (2.1)
i=1

The component a; is interpreted as the risk contribution of X; to the aggregated risk, and therefore
X, + a; is interpreted as the ¢th secured margin of portfolio X. Correspondingly, we call X + a the
secured portfolio, and S + Z?:l a; the secured aggregated position.

Stated as such, the risk allocation problem is ill-posed. Indeed, any collection of numbers
ai,...,aq satisfying the balance condition (2.1) constitutes a risk allocation. In order to deal
with a meaningful risk allocation problem we need to impose additional conditions, that reflect
some additional and desired features of the portfolio allocation. With this in mind, we impose an
additional condition on a, which we will call the fairness condition.

Towards this end, we require more structure on the risk measure p. We additionally assume
that the monetary risk measure p is finite, law-invariant, comonotonic and coherent; see [Kus01] for
details. In view of [Shal3, Theorem 2(iii)] we conclude that p is a weighted value-at-risk measure, so
that it admits representation (1.1) in [Che06] for a fixed probability measure v on [0, 1]. Specifically,
for a continuously distributed random variable Y,

p(Y)=p, (V) := /[0 , ESo(Y)v(de), Y €L, (2.2)

where ES, is the Expected Shortfall (ES) risk measure (sometimes also called tail value-at-risk or
conditional value-at-risk) for reference level « € [0, 1]. Moreover, p admits a robust-type represen-
tation of the form

p(Y') = sup Eq[-Y], (2.3)
QeD
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where D is a determining family of probability measures absolutely continuous with respect to PP.
As shown in [Che06, Theorem 6.3], for any Y € L! there exists a unique minimal extreme measure
Qy € D such that3

p(Y) = Eqg, [-Y). (2.4)

Sometimes, we refer to Qy as the worst-case scenario measure (for position V). We denote by Zy
the associated Radon-Nikodym derivative dQy /dP. In particular, as shown in [Che06] (cf. formula
(6.2) there), if Y has a continuous distribution then we have

Zy =g(Y), and p(Y)=E[-g(Y)Y], (2.5)

for some Borel function g. For example if p = ES,, is the expected shortfall at level «, then we have

1
Zy = EH{Y<qy(a)}a (2.6)

where gy () is the a—quantile of Y.

In what follows, for simplicity, we write Eg instead of Eg,. The value Eg [X; + a;] represents the
average performance of the secured margin X; + a; under the extremal measure Qg. The following
fairness condition selects risk allocations which are comparable under the extremal measure of the
aggregated portfolio P&L.

Definition 2.1. The capital allocation a = (a1, ...,aq) is called fair, if

ES[Xi—Fai]:Es[Xj—i-ajL ,7=1,...,d. (2.7)

The economic intuition behind this definition is as follows: the worst-case-scenario Qg is, in our
setting, the determing scenario of the capital allocation for the portfolio through p(S) = Eg[—S5]
resulting from Equation (2.4). A fair capital allocation is meant to create secured positions X; +a;,
1 <4 < d, so that the averages of all secured positions with respect to the worst-case-scenario Qg
are all equal.

Since p is a monetary risk measure, the extremal measures for S and S + ¢, ¢ € R, coincide.
Thus, for any fair capital allocation a satisfying the balance condition in (2.1) we have

d d d

0= p<Z(XZ~ + ai)> = —Eg [Z(Xi + ai)] =-) Es[X;+ai, (2.8)
i=1 i=1 i=1

and consequently the risk allocations are given by

a; = —Es[XZ] = —E[ZSXi], 1= 1, ce ,d. (29)

In view of (2.5), we also have that

ai=-E[g(D X¢)Xi], i=1,....d. (2.10)

The concept of fairness introduced above aligns well with what has been done in some of the
existing literature. In particular, the above notion of fairness implies fairness in the semse of

3Note that the set of extreme measures, i.e. the set of measures that satisfy (2.4), might contain more than
one element. The term minimal corresponds to the minimal element with respect to the convex stochastic order;
see [Che06] for details.
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fuzzy games introduced in [Del00]. Indeed, this follows from Theorems 17 and 18 therein taking
representation (2.3) into account. The fair allocation principle of Definition 2.1 has been applied
in [BCF18] in the context of allocation of the total default fund among the clearing members of a
CCP.

The following example illustrates the concept of fair allocation.

Example 2.2 (Mean risk allocation). Consider expectation for measuring risk, i.e. p(Y) = E[-Y],
in which case D = {P}. Then, clearly, for any X = (Xi,...,Xy), the capital allocation a =
(a1,...,aq) given as

is fair.

2.1 Risk allocation under normality

As an example where explicit formulae can be obtained, we study the case of normally distributed
profits and losses. In this regard, let us assume that the vector X is normally distributed under
P with mean g and covariance matrix ¥ and fix 7 € {1,...,d}. Then, (X;,S) is bivariate normal,
and the conditional expectation E[X;|S] takes the form

E[X;|S] = BiS + u,

with 3; = %)((g)s), and a; = p; — B Z?Zl ;. Since this conditional expectation is the L? =

L?(2, F,P) orthogonal projection of X; on the linear space spanned by S we obtain
Xi=pBiS + oi + €,

where S and ¢; are independent under P, and E[¢;] = 0. For any weighted value-at-risk measure p,
Equation (2.9) implies that a fair capital allocation is given by

ai = —Eg[X;] = —a; — BiEs[S] + Egle;]
= —a; + Bip(S) + E[Zse]
= —a; + Bip(S) + E[g(S)ei] = —a; + Bip(S) + E[g(5)]|E[ei]
(S),

= —a; + Bip(S (211)

where we have used (2.5) in the fourth equality, independence of S and ¢; under P in the fifth
equality, and the fact that €; has zero mean under P, in the last equality. As expected, the total
allocated risk is divided among constituents using the regression slope allocations which is typically
referred to as the covariance principle, see [MFE15, Section 8.5].

Expected shortfall. To be more specific, we consider as an important example the expected
shortfall (ES). In this regard, let p = ES, denote ES under P for the level « € (0,1). Then, for a
continuously distributed real valued random variable Y we have

ESa(Y) =E[-Y | Y < gy ()], (2.12)

where gy (@) is a-quantile of Y. Thus, since S is normally distributed, (2.12) yields

d
BSa($) == pi+ é\/Var(S) 6(@(a)), (2.13)
=1
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where ¢ and ® are the density and the cumulative distribution function of the standard normal
distribution; see [MFE15, Example 2.14]. Putting together (2.11) and (2.13) we see that the capital
allocation for ES is given as

COV(Xi, S )
ay/Var(S)
It is not difficult to see that the conditions of Proposition 2.1 in [Tas07] hold, so that this allocation
is unique.

a; = —p; + H(@ a)), i=1,2,....d. (2.14)

3 Fair allocation estimators

In practice, the probability distribution under P of X, the portfolio’s P&L, is not fully specified.
Since, in view of (2.5) and (2.10), we have

d d d
p(S):—E[g(kZ:le)kZ:le}, and ai:—E[g(;Xk)Xi], i=1,....d, (3.1

then, in almost all practically relevant applications, neither the aggregated risk p(S) nor the fair
risk allocation a are known, and thus need to be estimated. Hence, appropriate estimation proce-
dures have to be developed, in particular estimation procedures based on the historical data about
realizations of the portfolio. This will involve estimating, in some way, the probability distribution
of X under P.

In the following, we set the relevant statistical framework and propose efficient procedures to
deal with this estimation issue. We refer to X as to the population. Historical information about
X is given in terms of a random sample of size n drawn from X, which we denote by X!,..., X",
so that X' ..., X" are independent. Our aim is to estimate the aggregated risk p(S) using the

information contained in the sample. Towards this end we let
X" = {X) = (X],...,X}), j=1,...,n},
represent the random sample, and let us denote its realization by
x" = {ad = («],...,2)), =1,...,n}, (3.2)

where :16{C corresponds to the j-th observed (realized) value of the portfolio’s kth margin.

The formal statistical setup for this situation is as follows: consider a family of probability
measures P = (P9)9€@ on (2,.%), where © denotes the parameter space. To avoid unnecessary
technical difficulties, we assume that all measures in P are equivalent. Furthermore, we assume
that for any 6 € © the random sample X',..., X" is i.i.d. under P?. Moreover, we assume that
P = P% for some (unknown) parameter fy € ©. We will denote by p? and, respectively E?, the risk
measure p, and respectively the expectation, under the probability measure P?. Similarly to the
notation Qy and Zy, corresponding to the reference measure P, we will use notation Q% and Z@
with regard to the reference measure P?.

Given the random sample X", the allocation a is estimated using an allocation estimator An =
(A7, ..., /lg) defined as

A" =, (X™), (3.3)

for some measurable function 7, : R*" — R,
Next, we define a property that should be satisfied by any reasonable allocation estimator.
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Definition 3.1. An allocation estimator A™ is called fair if, for all 6 € ©,

kY| Z9

SyAn(Xi‘FA?)] =0, i=1,....d, (3.4)

(% . 70
where ZS,A" = ZS—&—Z‘f:l A

We emphasize that A™ is a random variable, and Zg in is the Radon-Nikodym derivative cor-

responding to S + S A7,

Intuitively, the above definition means that an allocation estimator is fair if it mimics the
balanced fairness condition (2.9) for all relevant scenarios (given by probability distributions P?, 6 €
©). In particular, the aggregated risk estimator obtained from a fair allocation estimator A by
summation turns out to be unbiased in the sense of [PS18, Definition 4.1], namely, for any § € ©
we get

d d
o (S +y A?) =S E [Zg’m (X, + A?)] ~0. (3.5)
i=1 i=1

Equality (3.5) guarantees that the secured aggregated portfolio position S + 2?21 A; is accept-
able in the sense that it bears no risk, while Equality (3.4) ensures that the average performance
of the secured marginal positions under the worst-case scenario measure for the secured portfolio
S are the same and that the joint position is secured. In particular, for d = 1, the definitions of
fairness and unbiasedness coincide.

It should be noted that (3.5) means that a fair allocation estimator charges an adequate amount
of capital to secure the portfolio. This is a consequence of (3.4), which means that a fair allocation
estimator applies an adequate amount of capital charge to each position constituent.

We end this section with a simple example to illustrate the concept of fairness.

Example 3.2. Consider the mean risk allocation given in Example 2.2. This leads to the family
of risk measures p?(-) = —E’[-], § € ©. Then, the risk allocation estimator

R 1o~ s .
M;l:_nzgxg, fori=1,2,...,d,
j:

is a fair allocation estimator. Indeed, note that here, for each 6 € O, the extremal measure coincides
with the original probability measure P?, i.e. Zg xn = 1 Thus, for i € {1,2,...d} we obtain

N 1 <& )
E?| 2 (Xi+ 1) | =B | X - = 3" x| =0
j=1

3.1 Estimating capital allocation under expected shortfall and normality

Following Section 2.1, we study the case where the d-dimensional random vector X is normally
distributed under every P?, and we assume that the risk is measured by the expected shortfall ESi,
at a fixed level a € (0,1). In what follows, for the random sample X", we will use the notation
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57 = ZleXij,j: 1,...,n, and we set?

fii= 130 X,
fis =5 2515 = S i
0% = 71y i1 (87 — fig)?,
Covx,s i= 7y Doy (X7 — 1) (ST — fus),

to denote the sample mean of the ith constituent, the sample mean of the portfolio, the sam-
ple variance of the portfolio, and the sample covariance of the ith constituent and the portfolio,
respectively.

Motivated by the Representation (2.11) we define the allocation estimator B= (B’l, cee Bd) as

Bi:=—d&;+ B R(S), i=1,...,d, (3.6)

where BZ = U%C/c;f X;,5 and &; = fi; — Bi,&S are the estimators of the slope and intercept regression
S

coefficient from the L? orthogonal projection of the ith margin of X onto S, and where R(S ) is an
unbiased risk estimator (in the sense of [PS18]) for the Expected Shortfall of the secured position
S. It has been shown in [PS18, Example 5.4] that R(S) under normality can be represented as

~

R(S) = —fis + 65bn, (3.7)

where b, € R is deterministic, and depends only on the sample size n, and risk level « € (0, 1).
Consequently, the estimator becomes

- Covx, s

Bi = —jii + ———"=bn, i=1,....d
os
Before we show that B satisfies the fairness property, we show an important conditional un-
biasedness property of the estimators 5; and &;, in the usual statistical sense. Towards this end,

fori=1,2,...,d, we use

BY = Cov?(X;,8) - (Var?(S))71,
d
of =E(X;) - B! Y B (Xy),
k=1

to denote the true regression coefficients of the L?-orthogonal projection of ith margin of X onto

S under P?, for # € ©; see Section 2.1. Note that, in view of our assumption that for any 6 € ©

the random sample X', ..., X" is i.i.d. under PY, we get 51-9 = COVO(XZ-],S]) . (Vaura(SJ))_1 and
; g . .

of =EY(X7) - B> BV (X)), for j=1,...,n.

Proposition 3.3. For any 0 € © it holds that
B Bilfis,os) =67 and  E|&iljs,os| =af,  i=1....d (3.8)

Proof. Recall from Section 2.1 that under normality, for j € {1,...,n}, i € {1,...,d}, and 6 € 0,
we have 4 ' '
X =af + 8057 +€f (3.9)

7 )

4To ease the notation, we will drop the superscript n in the following. So, we will write ji; rather than fi?, etc.
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0 - . . . ; .
77 is a zero mean Gaussian random variable independent of S7. As a simple consequence of

(3.9) we obtain that eg’o is independent of pg and og under P? for all § € ©. Then, by definition,

where €

B e . 05] = 4| S0 = (87— ) | s 0] (3.10)
j=1

L i
= L’ [HZXZS] —Mz‘MSWS,Us]-
j=1

Inserting (3.9), and using that n~* Z?:1(S‘j)2 = 6% + (%, we obtain

(3.10) = 3 E [n > (af + 8187+ I0)ST — juifus | MS,US}
j=1

I~ g
ol o- 0(-2 | -2 0 S
= 5E [@iﬂs+5i(05+us)+n E 165 S]—Miusfus,vs]
J:
n

[ ~ . ~ 1 0 I R A R R
= ;,%Ee alfis + B (6% + %) + HZEQ [e]787 |57, us, 55 _,Uz‘,US|,USaUS]
L jzl
- 1 n
. . . ; 0 i o~ A e a4
= g,lgEe a?us+ﬁf(a§+u§)+525‘]1@9[eg |57, fus, 65 _MiMS|NSaUS]
L j:1
- 1 n
. . . ; 07 Ao~ i~
= %Ee Oé?uerﬂf(U%JrM%)JrEZSJEQ[SZ ] —uiuslusvas]
L j:1

= 7B (ol jus + B) (6% + 15) — ufis | s, &s} = B! + &5 E° [a? + Bl fus — fui | fus, 55] .

~2
S

We use again (3.9) and obtain
1 & ) 1<~
=y Xl =al + 535 4o, (3.11)
j=1 j=1

with n? = > i 6{,0 satisfying E?[n? | s, 65] = 0, so that
E’[fii| is, 6] = of + Bl fis, (3.12)

and hence (3.10) = 3¢ yielding our first claim. With this result and using (3.11), we obtain
E’ [ | fis, 65] = B [ﬂi — Bifis | fus, 55}
=B |1 — Bjis | s, 05| = of

which concludes the proof of (3.8). O

Proposition 3.3 shows that we can estimate the portfolio risk expressed through fis and &g
without impacting the statistical unbiasedness property of the regression coefficients; cf. Equation
(3.7). Consequently, the risk allocation estimation procedure could be split into two independent
steps. First, we estimate the aggregated portfolio risk, and then we estimate the proper allocation

of the risk within portfolio constituents. Now, we use this property to show that the allocation
estimator given in (3.6) satisfies the fairness property.
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Theorem 3.4. Assume that the allocation estimator B = (B, ..., By) is given by (3.6) with R as
n (3.7). Then, the capital allocation B is fair.

Proof. First, we note that for any § € © the Radon-Nikodym density Zg 5 is o(S+ Zle By)-

measurable; see [Che06, Proposition 6.2] and recall that B; = —&; + B;R. Moreover, since
d ) 5'2
Zﬁz AQZCOVX.“S— 6_‘29 =1
i=1 78— S

we obtain that

d d
Y=Y fu—js- Zﬁz fis — s = 0.
i=1 i=1

Consequently, as expected,

d
> Bi=R (3.13)
=1

and Equation (3.7) yields that ZgB is o(fig,0g,5)-measurable. With a view towards (3.4), we
compute ’

E |:Zg’B g i| = Ee [Z‘g”éEe[é‘l ‘ ﬂs: &Sa S]i|
_ R [ZgéEe[dimg,c}s]} o [ZgB }
by Proposition 3.3. Analogously,
00 A _mo[-0 76
E [ZS’B@-] —E [ZS’B@}
and we obtain
0,0 AN o [0 A AP
B 28, (Xi+ Bi)| =B |28 5 (X — i+ BiR))|
_ w6 [0 0 07
—E {ZS’B <XZ- —af 4 g R)] . (3.14)

Next, using (3.5) and (3.13) yield that

d
_ 170 0 . _ 0 0 »
0=E [ZS’B(SJFZBz)} —E [ZS’B(SJFR)} (3.15)
i=1
This result, together with representation (3.9) for j = n 4 1 (recall that X"*! = X) imply that

(3.14) = E? [Zgé (Xi —af - 555)} o [ZgB } E°[ 20 ] [f] =0, (3.16)

where we used the fact that (¢?,S) is bivariate normal with uncorrelated margins, so that €? is
independent of S, and consequently from Ze . This concludes the proof. O
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4 Asymptotic fairness

We now introduce the definition of fairness for a sequence of estimators, (An)nel\h and we define
the notion of asymptotic fairness.

Definition 4.1. A sequence of allocation estimators (An)neg\l will be called fair at n € N, if A" is
fair. If fairness holds for all n € N, we call the sequence (A"),en fair. The sequence (A"),en is
called asymptotically fair if

0,0
E Zs,An

(XZ-+A?)]7H—°°>O, i=1,2,....d, and § € ©. (4.1)
In view of Theorem 3.4 it is clear that the sequence of capital allocation estimators (B™),en
defined in (3.6), for varying n, is a fair sequence.®
In the rest of the section we assume that the risk allocation is done using ES with reference
level a.

4.1 Asymptotic fairness of capital allocation estimators under normality

Using (2.14), we now define a sequence cn = (C’?,...,C‘g),n € N, of “plug-in type” capital

allocation estimators as -

A . Covy,.s _

Cl = —fii + ——2¢(d7 (). (4.2)
adg

The sequence (C™),en is not fair, in general, but it is asymptotically fair, as proven below.

A~

Proposition 4.2. The sequence (C™)nen 18 asymptotically fair.

Proof. Set F™ := —jis + &g‘ﬁ@%m)) and note that C’f =a + B;"”F”, 1=1,2,...,d.

Proceeding analogously to the proof of Theorem 3.4, with B replaced by C™ and with R replaced
by F™, we see that in order to prove proposition it is enough to show that for any 8 € © we have

R’ [Zg o (S v F")] 7, (4.3)

Now, note that

0 0 n 7
and, in the terminology of [PS18], F™ is the standard Gaussian expected shortfall plug-in estimator
for S. Consequently, noting that for d = 1 the definition of asymptotic fairness coincides with the
definition of asymptotic unbiasedness given in [PS18, Definition 6.1}, and using [PS18, Proposition
6.4] we conclude the proof. O

4.2 Asymptotic fairness of non-parametric capital allocation estimators

We assume throughout this section that the population X, and hence the aggregated portfolio S,
are continuous random variables under any 6 € ©. Given that the ES is used to determine the

Recall that the superscript n is omitted in (3.6) for the ease of notation.
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risk allocation, and taking (2.6) and (2.9) into account, we consider two natural non-parametric
expected shortfall capital allocation estimators

K
iy > k=1 Xi Ligr varn <oy

D= — a0 4 4.4

1 na b 1’ ] b ) ( )

. S Xk n

Dpi— SESLT SSVORESOE g (4.5)
i1l {Sk+V@R" <0}

where V@RZ .= —S(nal+1) with SU) denoting the jth order statistics, and | z| denoting the largest
integer less or equal than z.

Proposition 4.3. The sequences (Dn)neN and (D™)nen are asymptotically fair.

We will show only that 15? is asymptotically fair. The proof for DZ‘ follows by similar arguments.
Before we prove Proposition 4.3, let us introduce supplementary notation and a lemma that will be
useful for the proof. For any 6 € © we use a’ = (af,...,a’) to denote the true expected shortfall
allocation for X under 6 and so we have (cf. (2.6))

Zg,ae = lﬂ )
o {S+Zz 1 l_qSJrEZd X Z(oc)}

ie1 Q5 ¢ under Py. Similarly, we have

where ¢’ 513 , (@) denotes the true a-quantile of § + 3¢

111

1
AN | :
S,D o {S—FZ? D”<qs+zd Dn(a)}
i=1

Lemma 4.4. For any 6 € © we get Z9 . Lo, 70 as n — oo.

SDn S@)

Proof. Let us fix 6 € ©. For brevity we use notation r := Zle a? and R, := Z‘Zzl DP. First we
note that one can show that
R, —r, n—oo. (4.6)

For a fixed € € (1,0), we get

P [1Zg pn — Z8 0l > €| =T [|Zg 0 — 28, 10| #0
=P’ [{S + R < alin, (@)} N {S +7 > gdir(a)}] (4.7)

+P [{S+ R > ahip, (@} 0 {S+r < b (@}].  (48)

We want to show that (4.7) and (4.8) go to zero as n — oo. For brevity, we show the proof only
for (4.7); the proof for (4.8) is analogous. For any ez > 0 we get

(4'7) - PG [{qurT(a) <S+r< qg’+r—(r—Rn)(a) + (’I” - Rn)}}
<P’ [{gher(0) < S+ 7 < iy (@) +Ir = Ral}]

<P [{lr = Rl 2 @} + P [{dhy (@) < S+7 < (ppl@) +al] . (49)
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Using (4.6), and recalling that convergence in probability implies convergence in distribution which
in turn implies convergence of quantiles (in continuity points) for n — oo we get

P’ [{lr = Ra| 2 e}] = 0 and  ¢%,, (g, (@) = a5 .(a). (4.10)
Combining (4.9) with (4.10), noting that the choice of e was arbitrary, and that S is continuous,
we conclude the proof. O
Now, we are ready to prove Proposition 4.3.
Proof of Proposition 4.3. Let us fix § € © and i € {1,...,d}. We want to show that
R’ [Zg,’bn (X; + D?)] 50, n— oo
Noting that
E? (25 5, (Xi + DP)| = B[ Z0(Xi + DI)| +E? | 2, o (X + D}
where Zﬁ = Zg’ Pn Zgyag, we need to prove that
E? [Zﬁ(Xi + ﬁ?)} =0, n— oo, (4.11)
and
R’ [Zg’ag (X, + D?)] 50, n— oo (4.12)

We start with the proof of (4.11). Noting that for any n € N we have |Z?| < L and

we get

n
Z Lygrivarn<oy = [na) +1,

k=1

B9 [z8xi + D] | < B 128100 + 157

(B 22 oy Xl B L gy 7))

IN

1
a
1
a

<

Rlm 2~

<

Now, noting that 1{\Zg|;é0} = Il{|Zg

EG

-

g
(

RIETOR

REAZIES

|<3a

|20 |0y Xl | +

1

i lna| +1

1

* lna| +1

n

|lna +1

_ n
6 k
E _1{\22\7&0} Z | Xi ’ﬂ{suv@Rggo}])
k=1
- n
% k
E |11z 0y D 1 X ’D
k=1

g -]1{’22#0}|X}|D . (4.13)

and using Lemma 4.4 we get

P’ []Zz] 750] —0, n—oo.

Combining this with (4.13), noting that | X;| and |X}| are integrable, and —2—~ — L asn — oo,

we conclude the proof of (4.11).

[na|+1 o
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Next, we prove (4.12). Recalling that a? is a true allocation for X under 6 we get
EY |:Zg,a9 (X; + f)?)} — ¢ [Zgyag (X + af)} + R [Zgae(f)? - a?)} Y [Zg,ae (br — a?)}
Consequently, noting that Zg 40 and ﬁf‘ are independent under Py we get
E? [Zgﬂ@ (X; + ﬁ?)} —E [Zgja@} o [f);‘ - aﬂ

n k .
_ _E9 [Zk:l Xi H{S’“—i—V@RZSO} + af]

> k=11 :
k=1 “{Sk+VQR[ <0}

1 6 & k 0

" lnal + 1IE Z<Xi + ai)l{skw@ng}]

Lk=1

_ n ]E9 [ Xl 0 1 ~

" lnal+1 (X7 +a) s varn<o)
n 0 [/yv1 0

nal + 1IE _(XZ’ +ai) (1{51+v@R3s0} - ]l{sgqg(a)})} :

Note that we used the property E? [(Xil + a?)l{slgqg(a)}} = 0 for the last equality. Now, noting

that V@RZ is a consistent estimator of —qg(a), taking similar steps as in Lemma 4.4 and the proof
n

of (4.11), and noting that Talst 1 as n — oo, we conclude the proof of (4.12). O

5 Backtesting and numerical examples

In this section we will analyze the proposed fair capital allocation methodology via some numerical
examples. It goes without saying that any quantitative methodology used for measuring and
allocating risk relies on an adopted formal model. It also goes without saying that actual results
of risk measurement and/or risk allocation need to be tested for their adequacy. Often, testing
adequacy of the results of risk measurement is done in practice using backtesting, and we will
use this approach in testing the estimation procedures of fair capital allocation introduced in the
previous sections.

Backtesting, applied for risk measurement in the financial context, can be summarized as follows:
given a time series of capital forecasts, one compares these forecasts with the realized losses; the
accumulated performance is the key ingredient of the backtesting. In particular, backtesting value-
at-risk goes back to [Kup95] and recently has gained a lot of practical and theoretical interest; see
[Ziel6, AS14, PS18] for further details on this topic and the related literature. Similar idea can be
applied to backtesting the adequacy of capital allocations.

We focus our attention on assessing the performance of a statistical capital allocation method-
ology when the underlying reference risk measure is expected shortfall at the fixed level « € (0, 1],
used in computing of the values of our estimators. For this purpose we propose two backtesting
frameworks:

e absolute deviation from fairness backtesting;
e risk level shifts adjustments backtesting.

The backtesting framework adopted for assessment of adequacy of estimators of capital allocations,
say A = (Ay,...,Ay), that were created using some capital allocation methodology,® uses as its

5We refer to such methodology as to an Internal Capital Allocation Model (ICAM).
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input the observations of past P&Ls. The key ingredient to both backtesting methods is the
estimation of

ZE"O [290 (X; +A)} (5.1)

and the estimation of
Eoo[zf’o (X; +A)],z‘:1,2,...,d. (5.2)

We assume that the length of the backtesting window is m days. With each day &k = 1,...,m,
we associate the P&Ls X k and allocation estimators Ak, 1 = 1,...,d. The estimators jf can be
obtained in various ways. One way is to proceed in accordance to What was proposed previously in
this paper. Specifically, to produce allocation estimators jif on day k one uses market observations
from the previous n days. We denote these observations as XF" = (XF™", ... XF i=1,...,d).
Based on these observations, and following (3.3), we compute the estimators of the allocatlons as

Ak =, (XFmy,

The realizations of Xf and jf are denoted as xf and ?if , tespectively. We set i := (y!,...,y™),
where y* = (y’f,...,ys), k=1,...,m, and yf = atf +6f, i=1,2,...,d. We also let & :=
2?21 yf, k=1,2,...,m, to denote the realized aggregated secured position on day k, and we set
£:=(€',...,&6m).

In order to proceed we introduce the following functions of 5 € (0, 1],

o Zin e var ©<0)
Gs(A) = — ?

- (5.3)
2 k=1 Lk 4vam, e)<0}

and

k
> ke Yi ﬂ{gk+v@Rﬁ( £)<0}
m 9

{§k+V@R5(€)<0}

Gh(A) = — i=1...,d, (5.4)

with V@RB being the empirical value-at-risk at level 8 € (0,1]. Note that yzs are computed using
as the reference risk measure ES at the fixed risk level a. If no confusion arise, we will write G,
respectively G, instead of G(A), respectively G%(A).

Now, similarly to the derivation of D , we estimate the expectation in (5.1) as —Gy, and we
estimate (5.2) as —G?,.

Deviation from fairness backtesting. If the capital allocation methodology is fair, then the
obtained empirical values G%, i = 1,...,d, should be close to zero, for the fixed reference level
«; the bigger the obtained estimate, the bigger the potential (true) deviation from fairness for the
ith margin. The deviation from fairness backtest assess proximity to zero of G, i = 1,...,d. A
comprehensive study of properties of G%s, such as ‘how far from zero is an acceptable value’ is
beyond the scope of this manuscript. Nevertheless, the following backtesting methodology is one
way to address this question.

Risk level shift backtesting. Instead of measuring the deviation from fairness directly, it is
natural to find the reference risk level 8 € (0,1] that makes G% closest to zero; equivalently, we
want to answer the question by how much one needs to shift the reference risk level o to make the
position acceptable. This approach hinges on duality-based performance measurement introduced
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in [PM18]. Formally, for the estimators of capital allocation A, we define

T(A) :=inf{8 € (0,1] : G(A) <0},
Wi (A) :=inf{ee[0,a] : G'(A) -G __(A) <0},

Wi(A):=inf{e €[0,1—a] : GL(A)-Gi . (A) <0},
where in (5.6) we use the convention inf () = a, and correspondingly, in (5.7) we put inf() =1 — a.
Similar to G%,Gg, we may simple write Y, and Wi. Note that G is a monotone decreasing
function in 3, while G% generally speaking is not monotone. Hence, the quantities W* are defined
as the smallest shift in the reference risk level from «, to the right or to the left, that makes the
ith secured position acceptable. Thus, the closer Y is to the initial reference risk level a the better
is the total risk estimation procedure. Similarly, the closer W+ are to zero, the better is the risk
allocation procedure. One can look at W as the performance index that is dual to the ES family;
see [PM18, Proposition 4.3] for more details.
Finally, by combining the left and right minimal shifts, we define the the minimal shift estimator
as . ' '
1 3 (] (]
Wi(A) = {_Wf’ EWZ<We 19 a4 (5.8)
Wi, W >Wi

Before moving to numerical examples, several comments on backtesting procedure are in order.

(a) It goes without saying that the results produced by the deviation from fairness and the risk
level shift approaches should be compared with each other for consistency and reality check.

(b) It is worth mentioning that the two proposed backtesting methodologies can be applied to any
ICAM, not necessarily those discussed in this paper.

(¢) Our study of the backtesting procedure of the estimation of the risk capital allocation is pre-
liminary. A thorough investigation of the statistical properties of G¢, and W' is deferred to
future studies.

Next we will illustrate the performance of the capital allocation estimators B, C", and D" on
simulated data by applying the two backtestmg procedures described above. For brevity and to
case the notation, we will write B, C™, and D" as B, C, and D, respectively.

For simulations, we consider two cases of probability distributions of the P&Ls vector X - the
Gaussian distribution and the Student’s t-distribution. We also fix the reference level a = 0.05.
All numerical evaluations are performed using R statistical software; the source codes are available
from the authors upon request.

Example 5.1 (Gaussian P&Ls). We assume that the portfolio X of eight (discounted) P&Ls
follows an eight dimensional Gaussian distribution N (u, ), with the (true) mean

= (0.000786, 0.001549, 0.001660, 0.000195, 0.000650, 0.000413, —0.000401, —0.001146),

and the (true) variance-covariance matrix

0.000226  0.000174  0.000104  0.000066  0.000069  0.000019 -0.000077 -0.000135
0.000174  0.000346  0.000135  0.000068  0.000091  0.000022 -0.000082 -0.000195
0.000104  0.000135  0.000257  0.000065  0.000084  0.000034 -0.000093 -0.000111
0.000066  0.000068  0.000065  0.000133  0.000048  0.000025 -0.000058 -0.000064
0.000069  0.000091  0.000084  0.000048  0.000137  0.000034 -0.000065 -0.000081
0.000019  0.000022  0.000034  0.000025 0.000034  0.000061 -0.000022 -0.000031
-0.000077  -0.000082 -0.000093 -0.000058 -0.000065 -0.000022  0.000149  0.000085

| -0.000135 -0.000195 -0.000111 -0.000064 -0.000081 -0.000031  0.000085  0.000202
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For the purpose of obtaining the above mean vector and the variance-covariance matrix we used
values of daily returns of eight stocks from S&P500 index, namely: AAPL, AMZN, BA, DIS,
HD, KO, JPM, and MSFT; these data were taken for the period from January 2015 till December
2018. The first six stocks represent long positions in our portfolio and the last two represent short
positions; this gives the negative entries in p and . The positions in each stock are equally
weighted with nominal (absolute) value $1.

We took the learning period of n = 500 days, and the backtesting period of m = 5,000 days.
Below, we present the results for the Gaussian plug-in estimator C and the non-parametric estimator
D; we omit results for estimators B and D, since, due to large size of the learning period, the results
are almost identical to C' and D, respectively. Additionally, for comparison, we present results for
the true allocations a; these allocations were obtained by plugging-in true mean and covariance
matrix into (2.14).

Risk allocations using a »  Risk allocations using C .~ Risk allocations using D
= =N =y
ind D 0
S 2 2
o fe=l fe=l
3 | 3 g ]
= = s
Aggregated risk using a Aggregated risk using C Aggregated risk using D
0 0 0
21 21 21
= = =
d | C | WW O | MWVW
g | g | g |
(=} (=} (=]
g | g | g |
o o fe=}

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
k k k

Figure 1: Example 5.1. Top row: estimated risk allocations for portfolio constituents at each
backtesting day, k = 1,...,m; the height of each colored horizontal layer represents the risk al-
located to one of the constituents. Bottom row: estimated aggregated risk at each backtesting
day.

The obtained results validate, as expected, the proposed methods. In Figure 1 we present the
values of the risk allocation to each constituent (top row), and the aggregated risk (bottom row).
In this example, the fair risk allocation a computed with the true underlying distribution can be
considered as reference for the backtesting results. The estimated risk allocations using C and D are
close to the reference allocations, and as expected, the results computed using the non-parametric
method D are not as close to the reference results as those obtained using C that explicitly explodes
the Gaussian distribution structure of the data.

Table 1 contains the summary of the estimated backtesting measures G o5, G} g5, W' and Y.
First, we note that the values of G 05(a), G} y5(a) and W*(a) corresponding to backtesting the fair
allocation are, as expected, close to zero. In addition, Y (a) is close to & = 0.05. This indicates that
the proposed backtesting methodologles are adequate The obtained values give the benchmark for
the following results produced by using C and D. We note that indeed, the values of Gy, 055 e 057 we
and T corresponding to C and D are in the same ballpark as for a, indicating that C and D are
suitable risk allocation methodologies.

For convenience, we additionally present several graphical representations of the backtesting
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X, X X3 X, X5 Xe X7 X S
GI os(a) | -0.00038  0.00017 -0.00054 -0.00039 -0.00021 -0.00048 0.00076 -0.00011 || Goos(a) -0.00118

W(a) -0.013 0.001 -0.002 -0.002 -0.003 -0.012 -0.017 0.001 T (a) 0.047
G6A05(C) -0.00090 -0.00037 -0.00014 -0.00022 0.00043 -0.00058 0.00088  0.00008 || Gpos(C) -0.00081

wi(¢) | -0.009  -0.004 -0.002 -0.002  0.004 -0.016 -0.013  -0.005 T(C)  0.048
Gl os(D) | 0.00032 0.00110 0.00031 0.00014 -0.00003 0.00010 -0.00011 -0.00088 || Go.g5(D)  0.00094

Wi(D) 0.003  0.005  0.002 0005 -0.001  -0.001  0.002  0.008 T(D) 0053

Table 1: Summary of the estimated backtesting measures for Example 5.1.
, Gj(a) and Gg(a) , G5(C) and G(C) ; G5(D) and Gg(D)
= x M/f#/ = & o = U
T R e T

g [N g N B g | e

AR e I S s

-] q» \'“*\\“ 'W’,ﬂ»‘y A\\\\\ '~»“/L/'W 7\\

0 025 0.050 0. 075 0. 100 0. 125 0. 150 0 025 0.050 0. 070 0. 100 0. 125 0. 100 0 025 0.050 0. 075 0 100 0. 125 0. 150
8 8

Figure 2: Example 5.1. The bold red line represents Gg, while all other lines represent G,
i=1,2,...,8.

metrics. In Figure 2 we plot Gz and G,iB as functions of 3, for the three risk allocation methods

a,C,D. All these functions should take zero value around 8 = a = 0.05, which is clearly the
case. We also provide the individual values of G¢, in Figure 3 (top row), and in Figure 3 (bottom
row) we display the graphs of G% (D),i=1,...,8. Finally, Figure 4 is dedicated to risk level shift

backtesting. The top row shows the values of W* for risk allocations estimated using a, C, and D.
The blue dots in the bottom graphs in Figure 4 depict the values of o &= W, all of them being close
to the reference risk value a = 0.05, which again indicates adequacy of risk allocation estimation
procedure D.

Example 5.2 (Student t-distributed P&Ls). Similar to the previous example we consider a port-
folio of eight constituents and with discounted P&L following a t-distribution with five degrees of
freedom. For comparison reasons, the distribution of (X!,..., X®) is modified so that it has the
same mean and variance covariance structure as in Example 5.1.

First, note that there is no available counterpart of a for this setup. Second, as we will show
below, since X does not follow a Gaussian distribution, one should not use C to estimate the risk
allocation, and only D is an appropriate methodology in estimating risk allocation. In Figure 5, we
present the estimated risk allocations computed using C and D, over the entire backtesting period
k=1,...,m. It is apparent that the estimated risk allocation by these two methods are quite
different. Table 2 contains the values of the estimated backtesting metrics, and for the reader’s
convenience G 5 and W' are represented graphically in Figure 6. The values of G 05(@) are of
one order of magnitude further away from zero than G 05(D), indicating that indeed risk allocation
methodology D is more adequate for this experiment. We also note that magnitude of G} ;- (ﬁ) in
this example aligns with the benchmark values from Example 5.1. Similar arguments hold true for
W*and T.
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Figure 3: Example 5.1. Graphical representation of the deviation from fairness backtesting
method. The red dots in the bottom rows represent the values of G} o5 using D.

X, X, X X, X; X X7 X S
Gl os(C) | 0.00209 0.00363  0.00152 0.00127 0.00093 0.00088 -0.00084 -0.00076 || Go.os(C) 0.00872
Wi(C) | 0016  0.025 0.013  0.012 0012  0.021 0.014 0.012 T(C)  0.069
i os(D) [ 0.00074 0.00062 -0.00030 0.00028 0.00049 0.00014  0.00001  0.00013 || Goos(D) 0.00212
Wi{D) | 0004  0.003 -0.000  0.008  0.007  0.001 0.000  -0.001 (D)  0.054

Table 2: Summary of the estimated backtesting measures for Example 5.2.

Example 5.3 (Fairness and asymptotic fairness). In this example we illustrate the fairness and
the asymptotic fairness properties. Again, for the sake of a reference statistic which eases the
presentation, we work under the normality assumption. Moreover, we consider only the first three
constituents from Example 5.1, that is (X', X2, X3), because the other constituents show similar
behavior. The numerical results presented below confirm that allocations a and B are fair. In
addition, these results confirm that the allocations C' and D are asymptotically fair even though
they are not fair in this example.

Figures 7 and 8 deal with the issue of a short learning period, that is a small sample size,
of n = 250. We see that for allocations a and B the Gl o5's and W¥s are getting close to zero
with increasing k, and that T gets close to 0.05 with increasing k, confirming that these are fair
allocations. We also see that G} ,5’s and W’s stay away from zero, and Y stays away from 0.05
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Figure 4: Example 5.1. Graphical representation of the risk level shift backtesting method. The
blue dots in the bottom rows represent the values of W*(D).

Risk allocations using C . Risk allocations using D

Figure 5: Example 5.2. Estimated risk allocations for portfolio constituents at each backtesting
day, k = 1,...,m; the height of each colored horizontal layer represents the risk allocated to one
of the constituents.

with increasing k for allocations C and D, indicating that these are not fair allocations.

Figure 9 illustrates the asymptotic fairness of D™ with n — oo. The left panel shows that
G6.05(D) get closer to zero for large k with increasing n. Similarly for the right panel, with regard
to W*and T.
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Figure 6: Estimated backtesting measures for Example 5.2.
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n = 250.
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Figure 8: Example 5.3. The red bold lines represent the values of T — 0.05, while all other lines
are represent W¢, i = 1,2, 3, as functions of function of backtesting day k, and for a fixed learning
period n = 250.
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Figure 9: Example 5.3. G6.05(f)) as function of k, for different values of learning period n = 250
(top left figure), n = 1000 (left middle figure), and n = 4000 (left bottom figure). The pictures in
the right column contain values of W*(D) and Y(D) as functions of k, and for n = 250,1000 and
4000.
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