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Abstract: We introduce a dynamic model of the default waterfall of derivatives CCPs and propose
a risk sensitive method for sizing the initial margin (IM), and the default fund (DF)
and its allocation among clearing members. Using a Markovian structure model of joint
credit migrations, our evaluation of DF takes into account the joint credit quality of
clearing members as they evolve over time. Another important aspect of the proposed
methodology is the use of the time consistent dynamic risk measures for computation
of IM and DF. We carry out a comprehensive numerical study, where, in particular,
we analyze the advantages of the proposed methodology and its comparison with the
currently prevailing methods used in industry.
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1 Introduction

Following the aftermath of the financial crisis of 2008, starting with 2009 G-20 clearing
mandate, regulators across the globe required that standardized Over The Counter (OTC)
derivative contracts are cleared by the Central Clearing Parties (CCPs). In US the reforms
have been implemented through Dodd–Frank Wall Street Reform and Consumer Protec-
tion Act [Law10] (see also [Boa14]), and in Europe through European Market Infrastruc-
ture Regulation (EMIR) [EMI12]. As such, the entire landscape of financial markets has
been changing, and CCPs are now recognized, by practitioners and regulators, to be a vital
and critical element of the financial systems. It is well recognized that understanding how
CCPs and their structure will influence the financial markets and stability of the financial
system represents one of the key challenges faced today by the market participants. In a
nutshell, the CCPs are intended to mitigate the counterparty risk, increase transparency,
facilitate regulatory access to the necessary data, protect against market abuse, and avoid
contagion if one of the (large) financial institution defaults; for more details on how CCPs
can increase the safety and integrity of financial markets see for instance [EUR14].
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A CCP brings market together, and acts as a buyer for every seller, and a seller for
every buyer. Every OTC contract1 between two counterparties is replaced (through the
novation process) by two contracts between CCP and each counterparty, such that one
contract offsets the other. If one counterparty defaults, then the other is protected by the
default management procedure and resources of CCP, as described bellow. This means
that CCP is exposed to the risk that one of the counterparties will default. Hence, the
CCP becomes an important systemic element of the modern financial industry, and it is
critically important that the CCP manages appropriately the risk.

The literature regarding various aspects of CCPs activities, in particular the risk man-
agement methodologies, has been rapidly growing in the recent years. We refer the reader
to some recent studies, e.g., [AC17, Arn17, BV17, CCS17, Che17, CLLW17, Den17, YP17,
GG16], and the references therein.

The main goal of this paper is to develop a new methodology for computing some of
the ingredients of the CCP’s default waterfall, in a dynamic framework, and to test it via
a numerical study. In particular, we propose a novel, risk sensitive method for computing
the total default fund of CCP. Risk sensitivity amounts to accounting for credit migrations
of the clearing members and the stochastic dependence between these migrations, which
is modeled in terms of Markov structures. Another important aspect of the proposed
methodology is the use of the time consistent dynamic risk measures.

The major objective of the numerical study is to compute the Default Fund (DF)/Initial
Margin (IM) ratio for various model configurations. For this purpose, we consider a stylised
example of a CCP consisting of 8 clearing members, each holding a portfolio of Credit
Default Swap (CDS) contracts. The obtained numerical results indicate that our approach
may offer a significant improvement over the existing methods of computing the elements
of the default waterfall currently employed by CCPs. In particular, our findings show
that the DF/IM ratio does not vary with the number of members or the size of the po-
sitions holding by the members. This indicates that our model scales appropriately the
sizes of both the DF and IM with the increasing number of CMs. On the contrary, the
Cover 1/Cover 2 methodology (cf. [US 16]) for computing DF does not scale appropriately
the size of DF with the increasing number of CMs.

The paper is organized as follows. In Section 2 we briefly recall the mechanics of a
CCP risk management and the structure of the risk waterfall. Section 3 is dedicated to a
dynamic model of a CCP operation. We devote a separate subsection to each layer of the
default waterfall, which, in particular, includes the analysis of the proposed methods and
their comparison with the existing ones. There is no ambiguity on defining the variation
margin, which is just mark-to-market of the member’s portfolio. In Section 3.2 we define
the cashflow on which the IM is computed, and we use a dynamic convex risk measure to
determine the IM. The (prefunded) DF is studied in Section 3.3. We start by identifying
the net exposure of the Clearing Members (CMs), and the computation of the total DF,
where we again make use of a dynamic convex risk measure. In Section 3.3.1 we investigate
the allocation of the total DF among the CMs, and we propose a method rooted in the
theory of capital allocation based on risk contributions, that uses the extreme measures

1For example, the Credit Default Swap (CDS) are cleared by CME and ICE Clear, Interest Rate Swap
(IRS) are cleared by LCH.Clearnet and CME.
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from the robust robust representation of risk measures. Finally, in Section 4 we care out
a comprehensive numerical study, where, in particular, we describe the modeling aspects
of the cleared products, the dependence structure of the defaults times of the CMs, as
well as the advantages of the proposed methodology and its comparison with the currently
prevailing methods used in industry. We deferred to appendix some technical aspects of
the paper: Appendix A contains relevant material on Conditional Average Value at Risk
(AV@R), Appendix B is devoted to Markovian structures, and in Appendix C we briefly
present the models we use for modeling portfolios of CDSs contracts.

2 CCP Default Waterfall

A CCP is an independent entity, that complies with regulatory requirements, and clears
certain standardized financial contracts. The general guidelines and principles for regula-
tory capital are given by Basel Committee on Banking Supervision (BCBS), and in US the
CCPs are regulated and supervised by governmental entities such as FED, SEC, CFTC.
A financial institution that wants to clear/trade through a CCP must be a CM of CCP.
The number of members of a CCP varies: ICE Clear US has 28 members, OCC has 100+
etc.

We will briefly outline the structure of a typical CCP; for more details on mechanics
of CCPs see for instance the monographs [Gre14, Mur13]. The members of the CCP clear
through the CCP a portfolio of assets (usually of the same class). To remain financially
solvent the CCPs charges each member various ‘margins’, and the default management
procedure of a CCP is done through so called default waterfall or loss waterfall to cover
the losses due to the default of the CMs.

Each member maintains a margin account with the CCP, that is replenished, typically
on daily basis, through Variation Margin (VM), which is the Mark-to-Market (MtM)
value of the open positions. Thus, the daily changes of the MtM of the member’s portfolio
is transferred to the CCP. In practice, only the changes beyond a given threshold are
transferred, but in this study we will omit this technicality.

Additionally, the CCP charges each member an IM, that aims to cover the risk exposure
of the CCP arising from potential future market fluctuations of the member’s portfolio
over some risk horizon or margin period of risk (typically 5-10 days). The IM is also
usually called on daily basis.

On top of that, each CM contributes to the prefunded Default Fund that acts as
a form of mutualised loss sharing. It is also called clearing deposits or guaranty fund
contributions. For brevity we will call it simply the DF. The DF is usually called on
monthly basis.

As an incentive to implement proper risk management, the CCP pledges part of its
equity (about 20-25%) to be used to cover losses above the IM and DF of the defaulted
CMs, and sometimes additional capital if the total DF (of all CMs) was already used.
Traditionally this is called CCP equity contribution or skin-in-the-game.

If all the above margins and layers of defence are insufficient, the CCP may call for
additional capital contribution from the survived CMs, called Unfunded Default Fund
(uDF).
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Below, we give a schematic of the default waterfall. Each consecutive layer of the
waterfall is used, if losses exceed the sum of funds from the previous layers:

IM of the defaulted member(s)
⇓

(pre-funded) DF contribution of the defaulted member(s)
⇓

CCP equity, or skin-in-the-game
⇓

(pre-funded) DF of the surviving members
⇓

Unfunded DF from the surviving members
and/or some additional capital from CCP

If the losses of CCP are still beyond the above waterfall layers, the CCP enters into recovery
mode, by taking some extraordinary measures to cover the losses. Finally, if none of the
above measures can bypass the overall losses, the CCP becomes insolvent and defaults, by
getting through resolution plan. As already mentioned, the capital structure of the CCPs,
and the design of the default waterfall have to meet the regulatory requirements.

3 A Dynamic Model of the Default Waterfall

In this section we provide an extension of the static model of CCP that was put forth in
[Gha15] to dynamic, discrete time setting.

3.1 Generalities

We consider a CCP consisting of I CMs, with I > 1. Our study regards a generic
CCP without making any specific assumptions or postulates on the nature of the cleared
portfolios. For simplicity, it is assumed that the constituent portfolios of CMs do not
change, unless defaults happen, and that no new clearing members are added. Hence,
the number of CMs may only decrease due to their defaults. Nevertheless, our model can
easily be adopted to the general case, when new CMs may be added to the composition
of the CCP.

As said, we work in the discrete time framework. Accordingly, we denote by δf >
0 the fundamental unit of time; typically, δf is one business day, and sometimes even
smaller. Thus, in what follows all considered time instances will be implicitly assumed to
be multiples of δf . We will make use of the notations T := {0, δf , 2δf , . . . , T − δf , T}, and
tk := kδf , k = 0, 1, . . . , where T denotes the time horizon relevant to CCP.

Our model is risk-sensitive. By this we mean that the model accounts for possible
credit migrations of the CMs. We postulate, that changes, or migrations, in credit ratings
of the CMs, in particular their defaults, can only occur at times in T . We will denote by
τi the default time of the CMi. In addition, our model allows for the default of the CCP.
This aspect of the model will be analyzed in detail in a future work.
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Conforming to the general practice of CCP operations, we suppose that the IMs and
the VMs are computed, and called, according to discrete tenor T f := {0, δf , 2δf , . . . , T −
δf}, and that the DF calls are made according to their respective tenor t ∈ T F :=
{T0, T1, T2, . . . , T −∆f}, where Tj := j∆f , j = 0, 1, . . . with ∆f denoting a time interval,
which is multiple of δf , and usually of order of weeks. The (potential) uDF calls are done,
if needed, according to a shifted tenor T δ := {t1 + δ, t2 + δ, . . . , T δ} for some T δ ≤ T.

We fix a filtered probability space (Ω,F ,F, P ), where the filtration F = (Ft, t ∈ T )
models the information flow available to the CCP. We will denote by E the expectation
under probability P . The probability measure P is interpreted as the statistical (or the
actuarial) probability measure.

We make a standing assumption that, for each i, the default time τi is a stopping time
with respect to F.

All random processes considered here are defined on (Ω,F ,F, P ). In particular, the
processes are adapted to F.

We denote by V i
t the nominal portfolio value at time t ∈ T of the member i ∈ I, where

by nominal we mean the MtM portfolio values, given that the members do not default
prior or at t ∈ T f . In addition, we denote by β the discount factor used by the CCP.

Throughout, we view all the cash flows from the perspective of the CCP, and thus we
adopt the convention that a positive cash flow indicates an inflow of funds to the CCP
from the member(s), and a negative cash flow is a payment by CCP to the member(s). In
particular, since CCP runs a matched order book we must have that∑

i∈I
V i
t = 0.

The dividend process associated with the ith CM portfolio is denoted by Di, and thus
the dividend payment at time tk by the member i to the CCP is equal to Di

tk
.

The dynamics of credit migrations of all the CMs are modeled in terms of a multivariate
Markov chain, and are subject to marginal constraints; we refer to Appendix B for details.

We now turn to modeling the relevant margins.

3.2 Variation Margin and Initial Margin

There is no ambiguity about the definition of the VM. It is just the MtM of the member’s
portfolio, so that the VM of the ith member at time tk is given by

VMi
tk

= V i
tk−1

. (3.1)

The rest of this section will be devoted to the IM. Currently, the IM is usually computed
as Value at Risk (V@R) or as Expected Shortfall (ES), at some confidence level, applied
to the exposure.

Given the dynamic setup adopted in this paper, we propose to use a general dynamic
risk measure [BCP17, AP11] to compute the IM through time.
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Let us denote by Xi
tk

the cash flow (adjusted for time value of money at time tk),

based on which the IMi
tk

is computed:

Xi
tk

= β−1
tk
βtk+δV

i
tk+δ + β−1

tk

tk+δ∑
u=tk

βuD
i
u −VMi

tk
. (3.2)

According to our convention, a positive value of Xi
tk

is the net exposure of the CPP
towards the member i. Accordingly, we propose to compute the IM called from the ith
member at time tk as

IMi
tk

= ρtk(−(Xi
tk

)+), (3.3)

where ρ is a dynamic time-consistent monetary risk measure (a function that is local,
monotone decreasing, cash-additive, and time consistent; see Remark 3.1.(i) for more
details).

Computation of IMi
tk

requires use of two different probability measures. When com-
puting the value V i

tk+δ of the mark-to-market we need to use a risk neutral (or pricing)

probability measure, say P ∗. Specifically, V i
tk+δ is computed as conditional expectation

under measure P ∗ of a future (occurring after time tk + δ) discounted relevant cash flows.
The conditioning is done with respect to the sigma field Ftk+δ. On the other hand, the
risk measure ρtk is based on the statistical measure P and on the information carried by
Ftk .

Remark 3.1. Several comments are in order.

(i) Throughout, we take the risk management point of view at the cash flows and the
computation of the corresponding risk. Accordingly, for us, a dynamic risk measure is a
monotone decreasing, local, normalized and cash-additive function. We refer the reader to
e.g. [BCP17, AP11] for a comprehensive survey of the theory of dynamic risk measures.

We want to stress that, in contrast to the convention adopted in the counterparty risk
literature, in our setting the risk of a negative cash flow is a positive quantity, and a positive
cash flow has no risk (or negative risk). For example, if ρtk(−(Xi

tk
)+) is computed as

classical dynamic V@Rα, then ρtk(−(Xi
tk

)+) is the lower α-quantile of −(Xi
tk

)+ computed
under measure P and conditioned on Ftk . This explains the negative sign in (3.3).

(ii) From the risk evaluation point of view, the CCP’s “risk” associated with the cash flow
Xi
tk

is equal to ρtk(−Xi
tk

), which could be in principle negative (the CCP should make a
payment) and lead to inconsistency since CCPs do not pay any IM to the members. This
is the reason of taking positive part of the exposure in (3.3).

(iii) An alternative proposal for computation of the IM called from the ith member at
time tk might be

IMi
tk

=
(
ρtk(−Xi

tk
)
)+
. (3.4)

Note that the IMi computed via (3.3) is greater than that computed via (3.4). Indeed,
Xi
tk
≤ (Xi

tk
)+, and thus −Xi

tk
≥ −(Xi

tk
)+, and consequently ρtk(−Xi

tk
) ≤ ρtk(−(Xi

tk
)+).

Since −(Xi
tk

)+ ≤ 0, we get that ρ(−(Xi
tk

)+) ≥ 0, and by taking positive part of both parts
in the inequality above we deduce that

(ρtk(−Xi
tk

))+ ≤ ρtk(−(Xi
tk

)+).
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Thus, IMi computed via (3.3) is more conservative, as expected, since CCP does not care
about the gains of its members, but only about its losses.

(iv) Both (3.3) and (3.4), in principle can be zero, which means that a CM does not post
any IM to the CCP - which, practically, is a strange situation. However, under normal
market conditions, the distribution of Xi

tk
will have both positive and negative parts, with

lower quantiles (say 10%) being negative. In this case, for a large class of risk measures,
such as V@R and Expected Shortfall, the IM computed by (3.3) and (3.4) will be equal
and will coincide with ρtk(−Xi

tk
). However, for other risk measures, such as Entropic Risk

Measure2, this may not be the case.

A detailed analysis of how the choice of the risk measure ρ impacts the default waterfall
will be performed in Section 4.

3.3 Prefunded Default Fund

In the current market practice, the prefunded DF (or simply DF) usually is computed
following the Cover1/Cover2 principle, which stipulates that the DF should cover CCP
losses in case when one or two CMs with largest exposure to the CCP default. In our
opinion, and, in fact, in the opinion of practitioners and regulators, this is not the ap-
propriate principle. One of the reasons for this is that, typically, the computed DF levels
cover the losses induced from the potential defaults of two largest CMs do not guarantee
the complete coverage of these losses, meaning that potential losses exceeding the DF
occur with positive probability. Another possible reason, we think, is that in the current
practice of CCP computation of the DF is done assuming that the default times of the
CMs are independent. Moreover, usually it is assumed that the credit worthiness of all
members is the same. These drawbacks are addressed in the proposed model. We refer to
Section 4 for the analysis of how our model performs vis-a-vis these drawbacks.

We start by introducing the liquidation or auction value of the CMi’s portfolio. If the
CMi defaults at time τi = tk, then the outstanding CMi’s portfolio is either liquidated or
auctioned over the period of time δ. We denote by V̂ i

tk+δ the value of this outstanding
portfolio that is recovered by time tk + δ. Consequently, we define the net exposure at
time Tk of the CCP to the default of the CMi net the IM and VM as

EPiTk = β−1
Tk

Tk+1∑
tm=Tk+δf

(
βtm+δ[V

i
tm+δ − V̂ i

tm+δ] +

tm+δ∑
u=tm

βuD
i
u

− βtm [VMi
tm + IMi

tm ]
)+

1τi=tm . (3.5)

Without much loss of generality, we assume that for each Tk the random variable EPiTk is
bounded (this can always be achieved by capping the exposures by a large constant).

Remark 3.2. (i) Calculation of the liquidation or auction value of CMi’s portfolio, that is,
calculation of the recovery term V̂ i

tk+δ, is an important aspect of computation of the net
exposure. We will briefly mention two possible approaches.

2The Dynamic Entropic Risk measure of a future cash flow X is defined as Ent(−X) = 1
α

logE
[
eαX

]
,

where α ∈ (0, 1).
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A Brazilian CCP, called BM&FBOVESPA, has put effort into developing a method-
ology, named CORE, aimed at optimal liquidation of a multi-asset portfolio and thus
generating an optimal (“close to the marketed”) liquidation value of CMi’s portfolio (cf.
e.g. [VCDF+15]).

On the other hand, guided by common practice adopted in the banking industry
regarding asset recovery valuation, one may propose to compute the liquidation or auction
value of CMi’s portfolio as a fixed fraction of the marketed value V i

tm+δ of this portfolio,

so that, say, V̂ i
tk+δ := RV i

tm+δ, where R is the recovery rate. We will adopt this convention
in our numerical stress tests (assuming also that R is a deterministic constant).

(ii) In the current regulatory practice the net exposure does not account for the liqui-
dation or auction value of CMi’s portfolio to the effect that the regulatory net exposure is
taken to be

EPi,reg
Tk

= β−1
Tk

Tk+1∑
tm=Tk+δf

(
βtm+δV

i
tm+δ − βtm(VMi

tm + IMi
tm)
)+

1τi=tm . (3.6)

This of course is, in general, more conservative evaluation of the net exposure. It really
amounts to postulating a “no–recovery” paradigm.

Similarly to the computation of IM, we propose to use a dynamic time-consistent
monetary risk measure, say η, for computing the total DF. The proper choice of η is an
important issue, and it is discussed in the next section. The total DF, at time Tk, is
defined as

DFTk = ηTk

(
−
∑
i∈I

EPiTk

)
. (3.7)

Note that EPi is a non-negative quantity, and thus DFTk is always non-negative too, given
that η is a normalized risk measure. Similarly as in the case of the initial margin, the risk
measure ηTk is based on statistical measure P and on the information carried by FTk .

3.3.1 DF allocation

Once the size of the DF is established, the CCP has to allocate it among CMs in some fair
way. Usually, in the current practice, the allocation is done proportionally to the initial
margin of each CM. We will propose here an alternative approach.

Towards this end, we first note that from the mathematical point of view DF allocation
is related to the so called capital allocation, and, just as in the case of capital allocation,
one runs into various difficulties. Generally speaking, the capital allocation based on risk
contribution is not an easy issue to deal with. There exists significant research devoted to
this topic, in particular by using risk measures as the main tool; for static risk measures
see for instance [Tas00, Den01, Che07, Del00, Fis03, Kal05, Tas02, ACDP15, BC14], and
for dynamic risk measures see for instance [Che09, KOZ15].

One of the DF allocation principles that has been suggested in the literature, is the
Euler principle (cf. [Tas07, ELW16]). Application of this principle requires that certain
technical conditions are satisfied, which are not satisfied in our model. Also, the Euler
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principle is not popular among practitioners. Here we propose a DF allocation principle,
which we think will be an adequate tool to be used by CCPs.

In order to suggest a DF allocation scheme, we proceed by assuming that η is a dynamic
coherent risk measure [ADE+02]. Then, η admits a robust representation of the form

ηt(X) = ess sup
Q∈Qt

EQ[−X | Ft], (3.8)

where Qt is a set of probability measures absolutely continuous with respect to P , such
that for any Q ∈ Qt, Q = P on Ft, and that satisfies some additional technical properties.
Under some mild assumptions on Qt, the essential infimum in (3.8) is attained, say at Q∗t .
We denote by Z∗t the Radon-Nikodym derivative dQ∗t /dP . Consequently, for t = Tk and
X = −

∑
i∈I EPiTk , we have

ηTk

(
−
∑
i∈I

EPiTk

)
= E[Z∗Tk

∑
i∈I

EPiTk |FTk ],

and so
DFTk =

∑
i∈I

E[Z∗TkEPiTk |FTk ].

We propose to define the individual default fund contributions DFiTk as

DFiTk := E[Z∗TkEPiTk |FTk ]. (3.9)

In particular, this leads to an important consistency property of the proposed DF alloca-
tion ∑

i∈I
DFiTk = DFTk . (3.10)

In addition, the default fund allocation done according to (3.9), enjoys another key
property: it provides the monotonicity of the allocation with respect to the net exposures.
In the extreme case, if EPiTk ≥ EPjTk then DFiTk ≥ DFjTk .

Remark 3.3. It is important to observe that the maximizers Z∗Tk are not necessarily unique.
This, for instance, is the case if the default fund allocation rule is based on the conditional
average value at risk, as discussed in the example below. Consequently, the individual
default fund contributions DFiTk defined as in (3.9) are not unique, in general. This gives
the CCP flexibility in allocating the default fund to individual members.

Example 3.4. A special example of the default fund allocation rule, that we will use in our
numerical studies presented in Section 4, is based on η given as the Conditional Average
Value at Risk (AV@R), also known as the conditional expected shortfall.3 This measure
is attractive both from the mathematical perspective and from the practical perspective.
It is a dynamic coherent risk measure (see e.g. [Che06]), and it is supermartingale time-
consistent (see e.g. [BCP14]).

3If the distribution of a random variable is continuous, then its conditional expected shortfall coincides
with conditional tail conditional expectation.
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As it is shown in the Appendix A, there exists a maximizer Q∗ in (3.8), with the
corresponding Radon-Nikodym density Z∗

Z∗ =
1

α
(1X<q±α (X | Ft)

+ ε1X=q±α (X | Ft)
),

where q±α (X | Ft) is the conditional upper/lower α-quantile of X, and

ε =

0, if P (X = q±α (X | Ft)) = 0
α−P (X<q±α (X | Ft))

P (X=q±α (X | Ft))
, otherwise.

Remark 3.5. It turns out that the proposed allocation scheme with ηt( · ) = AV@Rα( · | Ft)
coincides with the corresponding Euler allocation scheme for conditional AV@R [Tas07].
However, generally speaking these two schemes are different.

3.4 CCP Skin-in-the-Game and Unfounded Default Fund

In order to complete the model for the unfunded default fund we need to describe the way
in which the CCP equity process (or skin-in-the-game) is formed. There is no consensus
regarding rules for formation of this process, and usually it represents a percentage (e.g.
20-25%) of the CCP regulatory capital. This part of the default waterfall is usually small
in comparison to other parts of the waterfall.

For tk ∈ [Tj , Tj+1), we set the effective CCP’s loss at time tk + δ to be given as

ELtk+δ = β−1
tk+δ

(∑
i∈I

(
βtk+δV

i
tk+δ − βtk+δV̂

i
tk+δ − βtkVMi

tk
− βtkIMi

tk

)
1τi=tk

− βtk+δSGtk+δ − βTjDFTj

)+
.

Then, the uDFi for the CMi at time tk + δ, which is essentially the last resort before the
CCP defaults (see the default waterfall diagram), is defined as

uDFitk+δ =
DFiTj1τi>Tj∑
l∈I DFlTj1τl>Tj

ELtk+δ, (3.11)

where by convention 0
0 = 0.

4 Numerical Studies

We present in this section the simulation results for a CCP model consisting of 8 CMs, each
holding a portfolio of 4 single name CDS contracts. Our major objective is to compute the
DF/IM ratio. There are at least two reasons for that. First, the magnitude of this ratio
indicates whether the CCP’s DF risk management practices provide adequate risk reserve.
Typically, in the CCP practice, the DF/IM ratios take values around 0.1, which can serve
as benchmark for testing one aspect of the model performance. The numerical study that
we have done indicates that our model performs satisfactorily in this regard. Secondly, as
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postulated by the regulators, any prudent way of computing DF and IM should keep the
DF/IM ratio invariant with respect to the number of CMs. Our numerical study indicates
that our model performs satisfactorily in this regard as well; we stress tested the DF/IM
ratio for different numbers of CMs and the ratio is pretty much constant.

It needs to be emphasized here that the predominantly used in practice cover one
and cover two (C1 and C2 for short) methodologies for computing the DF suffer from
inadequate scaling of the DF with the changing number of CMs. In fact, the DF computed
according to these methodologies is essentially invariant with regard to the increasing
number of CMs, as long as the CMs are all alike as far as their portfolio composition
is concerned. On the other hand, the IM clearly increases with the number of CMs.
So, the resulting DF/IM ratio decreases with the increasing number of CMs, which is an
unreasonable and highly undesired feature of course. So, replacing the predominant C1/C2
methodologies with a method like ours, may significantly contribute to improvement of
robustness of CCP operations.

In the process of computing the DF/IM ratio, using our model, we stress test these two
components of the default waterfall. We ignore the other elements of the default waterfall
since, as we believe, they are less relevant for the premise of this paper as stated in the
Introduction.

Regarding the simulation part of our computations, we note that DF is computed
based on IM, which leads to a nested simulation in numerical studies. Because of this
we assume constant default intensities for all CDSs in our portfolios, in which case IM
can be computed explicitly. As a result, we rule out the nested simulation error in DF
computation and we reach a more reliable DFi/IMi ratio.

Although we focus in our numerical study on a stylized model of 8 CMs and portfolios
of CDS contracts, it needs to be stressed that, in principle, the proposed theory can be
applied to any number of CMs and to portfolios of any traded contracts.

As said above, for each CM we consider a portfolio consisting of 4 single name CDS
contracts. We assume that at the times at which IM and DF are computed all the listed
CDS contracts in the portfolios are alive; otherwise they will not be listed. We adopt the
post-Big Bang convention for mechanics of the CDS contracts. We refer to Appendix C
for more details and formulae that we use to compute MtM for CDSs.

Throughout this section, we assume that there are 252 business days in one year, and
we take the fundamental time δf to be one business day, the margin period of risk δ to
be 10 business days, and ∆f to be 30 business days. All relevant spreads, and rates are
given on annualized basis. We fix the recovery rate as R = 0.4, and the CDS spread κ
as 0.01 (100 bps). We maintain 4 (alive) CDS contracts. The constant default intensities
underlying the contracts are listed in the presentation of the numerical results below. For
simplicity, we assume these contracts to be all initiated on June 20, 2015 and to mature
on June 20, 2018. The results we show are computed for Sept 22, 2015.

Let H = (Hij)8×4, where Hij represents the position held by the i-th CM in the j-th
CDS contract, i = 1, . . . , 8, j = 1, . . . , 4, as seen from the CCP perspective. Specifically,
the positive Hij means that the CCP has long position (buys protection) in Hij shares of
the j-th CDS contract relative to the i-th CM; analogously the negative Hij means that
the CCP has short position (sells protection). Since the CCP runs a matched order book,
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we have that
∑

i∈I Hij = 0. We will use the notation H i = (Hi1, . . . ,Hi4) to denote the
positions of CCP with respect to CMi.

4.1 Initial Margin

Even though our model is set in discrete time, we use the simplifying continuous time
convention for computing the mark-to-market value of the j-th CDS contract at time
tk + δ, which we denote by Sjtk+δ, and which is used for computing V i

tk+δ in formula (3.2).
In particular, in the valuation of CDS contracts, the CDS spread is assumed to be paid
continuously; see Section C. On the contrary, when computing CCP’s exposure at time
tk, resulting from the j-th CDS, we consider lump CDS spread (coupon) payment. Thus,
given our assumption of zero interest rates, the CCP exposure at time tk, resulting from
the j-th CDS, is given as Šjtk := Sjtk+δ +

∑tk+δ
u=tk

dju − Sjtk−1, where dju is the dividend
associated with the j-th CDS at time tk. Thus (cf. (3.2)),

Xi
tk

=
4∑
j=1

HjiŠ
j
tk
. (4.1)

In our set up there is either one or none CDS spread payment at dates between tk and
tk + δ. Assuming that the next coupon payment (premium) day is TD > tk, and the last
premium coupon payment occurred on tD ≤ tk, we see that the term

∑tk+δ
u=tk

dju takes the
form {

−κ(TD − tD)1tk<TD≤tk+δ, φj > tk + δ,

−κ(φj − tD)− Sjtk−1, tk < φj ≤ tk + δ,
(4.2)

Accordingly, the exposure Šjtk can be written as

Šjtk =

{
Sjtk+δ − κ(TD − tD)1tk<TD≤tk+δ − Sjtk−1, φj > tk + δ,

R− κ(φj − tD)− Sjtk−1 ≈ R− κ(tk − tD)− Sjtk−1, tk < φj ≤ tk + δ.
(4.3)

Putting pj := P (φj > tk + δ | φj > tk), we obtain

P (Šjtk = Sjtk+δ − κ(TD − tD)1tk<TD≤tk+δ − Sjtk−1 | φ
j > tk) = pj ,

P (Šjtk = R− κ(tk − tD)− Sjtk−1 | φ
j > tk) = P (φj ≤ tk + δ | φj > tk) = 1− pj .

(4.4)

In this study we assume constant intensity of the default times of the reference names
underlying the CDS contracts, in which case the conditional distribution of Xi

tk
given

Ftk can be computed explicitly; see Section C for details. Also note, that Xi
tk

takes only
finitely many values, say {xi1, xi2, . . . , xiN}, for some N ≤ 16, and without loss of generality,
we assume that xin ≥ xin+1, for all n = 1, . . . , N − 1. In this case, the conditional V@Rα

and AV@Rα for a fixed confidence level α are computed as

V@Rα(−(Xi
tk

)+ | Ftk) = (xinα)+,

AV@Rα(−(Xi
tk

)+ | Ftk) =
1

α
((xi1)+pi1 + . . .+ (xinα)+(α−

nα∑
n=1

pin)),
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where pin = P (−(Xi
tk

)+ = −(xin)+ | Ftk), n = 1, . . . , N , and nα = min{k |
∑k

n=1 p
i
n > α}.

Towards this end, we take the default intensities for the four considered CDSs to be
respectively equal to

λ1 = 0.002, λ2 = 0.01, λ3 = 0.015, λ4 = 0.03.

It needs to be stressed that, in what follows, the numerical values of V@Rα(−(Xi
tk

)+ | Ftk)
and AV@Rα(−(Xi

tk
)+ | Ftk) are computed on the event that at time tk all the CDS con-

tracts and all the CMs are still alive.
We start by computing the numerical values of the CCP exposure for holding a long

position in each CDS contract. In Table 1 we present the values of Sjtk assuming that
there is no premium due during the margin period of risk δ.

CDS1 CDS2 CDS3 CDS4

Šjtk | φ
j > tk + δ 0.0004 0.0003 0.0002 -0.00008

pj 0.9999 0.9996 0.9994 0.9988

Šjtk | tk < φj ≤ tk + δ 0.4252 0.4162 0.4107 0.39

1− pj 0.0001 0.0004 0.0006 0.0012

Table 1: Conditional Distribution of Šjtk .

As one may expect the (absolute) value of the exposure from individual CDS contracts
is large if the reference entity defaults, although this happens with small probability. Also
note that a short position (CCP sells protection) in a CDS contract does not contribute
significantly to the CCP’s exposure towards the corresponding member. Hence, short
positions do not net out significantly the exposure from the long position with the same
CM. Consequently, the distribution of Xi

tk
will be skewed, and skewness being determined

by the overall number of long positions of CCP with the CMi. A larger number of
independent CDS contracts in the portfolio will increase the skewness too.

Since the value of the IM depends only on the individual CM position, for the rest of
this section, let us consider three CMs portfolios that will be analyzed separately

H1 = (10, 10,−1,−1), H2 = (10,−100, 5, 5), H3 = (1,−100,−100,−100).

The first and, respectively the second, portfolio, is moderately long, and respectively
short, in aggregate. The third portfolio is extremely short in aggregate. In Table 2-4,
using (4.1), (4.3), (C.1) and (C.3), we present the probability distribution function (pdf)
of the CCP exposure −(Xi

tk
)+ for each of the above portfolios. Note that H1 and H2 have

the same number of long positions, while H2 has significantly larger short position. On
the other hand, H1 and H2 have similar maximal exposure around 8.30. The probability
distribution of the exposures corresponding to H1 and H2 is similar, and thus we will
compute the IM only for H1. Also note that H3 exhibits an almost zero exposure, and
thus the IM will be zero if computed using V@R, and close to zero if one uses AV@R.
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−(X1
tk

)+ −8.41 −8.02 −8.00 −7.61 −4.25

p 3.2× 10−8 3.8× 10−11 1.9× 10−11 2.2× 10−14 7.9× 10−5

−(X1
tk

)+ 4.17 −3.86 -3.84 -3.77 -3.76

p 4.0× 10−4 9.5× 10−8 4.7× 10−8 4.7× 10−7 2.4× 10−7

−(X1
tk

)+ -3.45 -3.36 -0.0065 0

p 5.6× 10−11 2.8× 10−10 0.998 0.0018

Table 2: The pdf of −(X1
tk

)+

−(X2
tk

)+ -8.25 -6.28 -6.20 -4.223

p 5.6× 10−11 4.7× 10−8 9.5× 10−8 7.9× 10−5

−(X2
tk

)+ -4.01 -2.03 -1.95 0

p 7.1× 10−7 6.0× 10−4 1.2× 10−3 0.998

Table 3: The pdf of −(X2
tk

)+

−(X3
tk

)+ −0.39 0

p 7.93× 10−5 0.999921

Table 4: The pdf of −(X3
tk

)+

Next, we will analyze the IM computed using V@R and AV@R for H1. Figure 1, left
panel shows that V@R is not sensitive to usually applied industry risk level α = 0.01 or
α = 0.05. Specifically, V@Rα(−(X1

tk
)+) = 0.0065, for α ∈ [0.00477, 0.998). Thus, the

numerical results indicate that V@R is not an appropriate risk measure for computing the
IM. This observation is consistent with the industry practice of using AV@R instead for
V@R in risk management. The values of AV@R for H1, given in Figure 1 right panel,
indicate that AV@R indeed is better suited for risk management applications at CCPs.

Note that IM1 = AV@R0.01(−(X1
tk

)+) = 0.21, which is roughly 1% of 20 - the total no-
tional of long positions in H1. These results agree with industry practice where reasonable
IM is 1-2% of the notional, with α = 0.01 as generally accepted risk level.

4.2 Default Fund

The default fund is computed based on the exposure EPiTk defined in (3.5). We assume
that the default times of the underlying CDS contracts are independent of the CMs credit
migration processes. We compute the DF by Monte Carlo method. The numerical exper-
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Figure 1: IM for H1 computed by V@R and AV@R

iments indicate that to achieve a reasonable accuracy and to balance the computational
cost, it is enough to simulate 100 paths for each φj and 10000 paths for τ i.

Since we assume constant default intensity for the CDS contracts, and thus, the sim-
ulation of φj is reduced to drawing i.i.d. unit exponential random variables Ej , and take
φj = inf{t > 0 : λjt ≥ Ej}.

In this section, we will consider the following two portfolios hold by CCP,

Hb =



1 −1 1 −1
−1 1 −1 1
10 −1 −8 −1
−1 2 −2 1
−10 5 −5 10
−1 −1 −5 7
20 10 18 −48
−18 −15 2 31.


, Hu =



1 1 1 1
10 −1 10 −1
−1 10 −1 10
100 −5 100 −5
−110 −5 −110 −5
−1 −1 −1 −1
−2 −1 −6 −3
3 2 7 4


.

Portfolio Hb is mostly uniform across the CM’s positions and we will call it balanced,
while Hu will be referred as an unbalanced portfolio (with two ‘large’ CMs).

To simulate the default times for all the CMs, we adopt a discrete time homogeneous
(strong) Markovian structure model for credit migrations. This in particular means that
the credit migration processes for all the CMs are time homogeneous Markov chains, and
that the joint migration process is also a time homogeneous Markov chain. See Appendix B
for details on Markovian structures.

We assume 8 credit rating levels {1, 2, . . . , 7, 8}, with 1 being the highest credit rating,
and 8 being the default. Transition to the default level 8 may only occur from levels
{3, . . . , 7}; we call transitions from levels {3, . . . , 6} to the default level 8 the jump to
default. For simplicity we assume that the ratings can only change between neighbor-
ing values, unless the CM jumps to default. Finally, we assume that the marginal (or
individual) migration processes are governed by the same transition matrix for all CMs.
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We consider three types of dependence structure between credit levels of the CMs.

Type I, in which the marginal (individual) migration processes of all members are all
independent of each other.

Type II, in which any member’s jump to default prohibits the other members’ credit
upgrade.

Type III, in which either credit ratings of all members simultaneously migrate in the
same way, or the credit rating of one member migrates and the credit ratings of all the
remaining members stay put.

We consider only two cases for the CMs’ credit ratings at the current time tk: either all
the CMs have the highest credit rating of 1, or all the CMs have the credit rating of 7.
We will denote these two cases as {1} and {7}.

The individual DFis and the total DF are primarily determined by the size of the long
positions, which determine the exposure, regardless of whether the portfolio is balanced
or not. This confirmed by our simulation results. Accordingly, we will only present the
numerical results for the balanced portfolio.

As stated earlier, the main goal of our numerical study is to analyze the ratio DF/IM.
We compute both DF and IM using AV@R, but we chose different risk levels: αIM to
compute IM, and βDF to compute DF.

In particular, we examine the impact that various values of the risk levels αIM and βDF

have on the sizes of the DFis and thus on the size of the total DF. A sample of the results
is presented in Figures 2 and 3. The former one shows the DF/IM ratio for various values
of αIM and βDF and for two different initial configurations of credit ratings, and the latter
one displays the DF/IM curves for the representative value of αIM = 0.01, as the function
of βDF.

0.05 

0.01 

0.001

Type II DF/IM of {7}

0.05 
0.01 

IM α

0.001

0.026
3.14 

21.05

D
F

/IM

DF β

Figure 2: Type II DF/IM Ratio

In Figure 2 we consider only Type II dependence structure, since analogous results
hold for Type I and Type III dependence structure. This observation is further confirmed
in the graphs shown in Figure 3.
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Figure 3: Three Types of DF/IM Ratio for Different β with α = 0.01

Figure 2 nicely illustrates the intuitive feature that there is no monotonicity in the
way that the DF/IM ratio depends on αIM. It also illustrates another intuitive feature
that this ratio decreases in βDF.

In order to interpret the results in Figure 3, we first note that, as expected, there is
a significant difference in DF/IM (and thus in total DF amount) between the two initial
configurations of credit ratings. For βDF = 0.01, and initial state {1} we have type III
DF/IM =0.0026, while for initial state {7}, we have type III DF/IM = 0.5312. In general
the DF/IM ratio for the initial configuration {7} is more than 200 times larger than for
{1}. We also note that the value DF/IM=10%, which is often reported by CCPs, is
roughly achieved for βDF = 0.05 as of initial state {7}. However, this is achieved virtually
for any βDF when starting with {1}; the type I, II and III DF/IM ratio is equal to,
0.0182, 0.0184, 0.0255, respectively, when βDF = 0.001.

Our simulation results also show that, as expected, the DFis increase with the size of
the long positions.

As it has been already mentioned in Section 3, so called cover values are computed
by CCPs. Using our simulated results for the values of DF and DFis, we computed
the empirical probabilities that these default funds cover the exposures. Specifically, we
computed the empirical probability that DF covers the exposure of the CM with the
largest exposure, the empirical probability that DF covers the exposure of two CMs with
the largest exposure, and the empirical probability that DF covers the exposure of all the
CMs. We also computed the empirical probabilities of, what we term – self-covers, that
is the empirical probabilities that the exposure of the CM with the largest exposure is
covered by this member’s individual default fund (Self-Cover 1), and, similarly for Self-
Cover 2. The results are reported in Figures 4. The results are only presented for the
initial configuration of {7}; for the initial configuration of {1} these empirical probabilities
are almost equal to 1.

As is shown in Figure 5, DF/IM ratio does not vary much with the number of members
or the size of the positions holding by the members. This indicates that our model scales
appropriately the sizes of both the DF and IM with the increasing number of CMs. On



18 Bielecki, Cialenco, Feng

Figure 4: Type I and III DF Cover Ratio for Initial State {7}

the contrary, as already said in the beginning of this section, the C1/C2 methodology does
not scale appropriately the size of DF with the increasing number of CMs: essentially, the
C1/C2 approaches significantly underestimates the size of DF.

Figure 5: Type I DF/IM for Different Number of CMs

All in all, our model proves to be very flexible and capable of producing results that
are in agreement the expected features of default waterfall.

A Conditional Average Value at Risk

We take underlying probability space is (Ω,F ,F, P ), as before. Recall that the static
Average Value at Risk (AV@R) at the significance level α ∈ (0, 1] is defined as

AV@Rα(X) :=
1

α

∫ β

0
V@Rβ(X)dβ, (A.1)
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for any X ∈ L1(Ω). Following the general theory of coherent risk measures, AV@R admits
the following robust representation

AV@Rα(X) = sup
Q∈Q

EQ[−X], (A.2)

where Q is the set of probability measures Q absolutely continuous with respect to P , and
such that dQ/dP ≤ 1/α.

Let us consider a σ-algebra G ⊂ F . In what follows we will use the following notations

QG =
{
Q ≺ P

∣∣∣ Q = P on G
}
,

QαG =

{
Q ∈ QG

∣∣∣ dQ
dP
≤ 1

α

}
.

While the theory of conditional (coherent) dynamic risk measures is a well-established
field (c.f. [DS05, BCDK16]), we will derive here some specific technical results that are
used in this paper. By analogy to the static case (A.2) (see also [DS05, Example 1]), we
define the conditional AV@R as follows

AV@Rα(X | G ) := ess sup
Q∈QαG

EQ[−X | G ]. (A.3)

We will show, in Theorem A.7 below, that there exists a maximizer in (A.3), and we will
derive its explicit form. For a similar result in the static case see [FS04, Remark 4.48]; see
also [Che09] for a similar approach in a dynamic setup.

We start with some definitions and auxiliary results.
Similar to the unconditional case, a quantile is a conditional inverse function of the

conditional cumulative distribution function FX(s) := P (X ≤ s | G ), with s ∈ L0(G ). For
a general theory of conditional inverse functions we refer to [BCDK16, Section A.2]. In
what follows we will simply say inverse function instead of conditional inverse function.
Note that FX( · ) : L∞(G ) → L∞(G ) is increasing, and right-continuous, an hence G :
L∞(G )→ L∞(G ) is an inverse function of FX if

F−X (G(s)) ≤ s ≤ FX(G(s)), s ∈ L∞(G ), (A.4)

where F−X (s) := P (X < s | G ) is the left-continuous version of F . Note that for any
s1, s2 ∈ L∞(G ), such that s1 < s2, we have

FX(s1) ≤ F−X (s2). (A.5)

Generally speaking, the function FX may have infinitely many inverses, in particular,
this may be the case if the random variable X has discrete components. On the other
hand, if X is a continuous random variable, then the inverse G is unique. Among all
inverse functions of FX we will focus mostly on two of them the left-inverse, and the
right-inverse given respectively by

F−1,−
X (u) := ess inf{s ∈ L0(G ) | FX(s) ≥ u} (A.6)

= ess sup{s ∈ L0(G ) | FX(s) < u}, (A.7)

F−1,+
X (u) := ess inf{s ∈ L0(G ) | FX(s) > u} (A.8)

= ess sup{s ∈ L0(G ) | FX(s) ≤ u}, (A.9)
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for any u ∈ L0(G ). It can be shown (see [BCDK16, Section A.2]) that, F−1,±
X are indeed

inverses of FX . Moreover, for any inverse function G of FX

F−1,−
X ≤ G ≤ F−1,+

X . (A.10)

and F−1,−
X is the left-continuous version ofG, and respectively F−1,+

X is the right-continuous
version of G.

As mentioned above, a conditional α-quantile of a random variableX at the significance
level4 α ∈ (0, 1), is defined as the value G(α), with G being an inverse function of the
conditional cumulative probability function FX . The functions F−1,−

X (α) and F−1,+
X (α) are

called the lower, and respectively, the upper α-quantile of X. To simplify the notations,
we will denote the conditional quantiles by qα(X|G ), the lower quantile by q−α (X|G ), and
the upper quantile by q+

α (X|G ). Sometimes, we will simply write q±α (X), if no confusions
arise. To indicate that the quantile is taken with respect to a measure P we will add the
superscript P , and write qPα .

Lemma A.1. The following representations hold true for the upper and lower conditional
quantiles,

q−α (X | G ) = ess sup{s ∈ L0(G ) | P (X < s|G ) < α}, (A.11)

q+
α (X | G ) = ess sup{s ∈ L0(G ) | P (X < s|G ) ≤ α}. (A.12)

Proof. We will show only (A.12), and (A.11) is proved similarly. Let a and b denote the
right hand side of (A.12) and (A.9) respectively. Then, since P (X < s|G ) ≤ P (X ≤
x|G ) ≤ α, we have that{

s ∈ L0(G ) | P (X < s|G ) < α
}
⊃
{
s ∈ L0(G ) | P (X < s|G ) ≤ α

}
,

and thus a ≥ b. Assume that a > b on a set A0 ∈ G such that P (A0) > 0. Then,
by the definition of ess sup, there exists s1 ∈ L∞(G ), such that b < s1 on A0, and
P (X < s1|G ) ≤ α. Consequently, there exists s0 ∈ L∞(G ) such that b < s0 < s1 on A0.
In view of (A.5), we have that

1A0P (X ≤ s0|G ) ≤ 1A0P (X < s1|G ) ≤ 1A0α.

Hence, 1A0b ≥ 1A0s0, which leads to contradiction.

Remark A.2. It is useful to note that, by (A.4),

0 ≤ P (q−α (X|G ) < X < q+
α (X|G ) | G ) ≤ α− α = 0,

and thus

P
(
q−α (X|G ) < X < q+

α (X|G ) | G
)

= 0, (A.13)

for X ∈ L∞(F ).

4In principle, the significance level can be an G -measurable random variables, however, for the purpose
of this work we take it to be a deterministic constant.
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Lemma A.3. For any a,m ∈ L∞(G ), such that a < 0 and X/a ∈ L∞(F ), we have

aq∓1−α(X/a | G ) = q±α (X | G ), (A.14)

q±α (X −m | G ) = q±α (X | G )−m. (A.15)

Proof. By (A.11), we have that

aq−1−α(X/a | G ) = ess inf
{
as | s ∈ L0(G), P (X ≥ as | G ) > α

}
, (A.16)

from which, using (A.8), the identity (A.14) follows at once. Identity (A.15) is implied
directly from the definition of the conditional upper quantile.

This concludes the proof.

Lemma A.4. Assume that Q ∈ QG , then

i) E[dQ/dP | G ] = 1.

ii) for any Y ∈ L1(F )

EQ[Y | G ] = E

[
Y
dQ

dP

∣∣∣ G ] , (A.17)

and
E[Y | G ] = E[1NY | G ] + EQ[ϕY | G ], (A.18)

where N = {dQ/dP = 0}, ϕ = dP/dQ, with the conventions ϕ = ∞ if dQ/dP = 0,
and 0 · ∞ = 0.

Proof. For simplicity, let us assume that G is generated by a countable partition D.
i) Let D ∈ D. Then, P (D) = Q(D), and thus

E[dQ/dP |D] =
E[dQ/dP · 1D]

P (D)
=
E[dQ/dP · 1D]

Q(D)

=
EQ[dQ/dP · dP/dQ · 1D]

Q(D)
=
EQ[1D]

Q(D)
= 1.

ii) The equality (A.17) follows immediately by i) and the abstract Bayes theorem

EQ[Y | G ] =
1

E
[
dQ
dP | G

]E [Y dQ
dP

∣∣∣ G ] .
For D ∈ D, we have

E[Y | D] =
E[Y 1D]

P (D)
=
E[Y 1D1N ]

P (D)
+
E[Y 1D∩Nc ]

P (D)

= E[Y 1N | D] +

∫
D∩Nc Y ϕdQ

Q(D)

= E[Y 1N | D] +

∫
D Y ϕdQ

Q(D)
,

where in the last equality we used that Q(N) = 0. Thus, (A.18) is proved.
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In what follows we fix a Q ∈ QG , and put N = {dQ/dP = 0}, ϕ := dP/dQ, with the
convention ϕ =∞ on N .

Let us denote by A the set of all F -measurable random variables with values in [0, 1].
We denote by A0 the set of all random variables ψ ∈ A such that there exists c ∈ L0(G ),
c ≥ 0 and

ψ =

{
1, on {ϕ > c}
0, on {ϕ < c}.

(A.19)

Lemma A.5. Let α0 ∈ L0(G), such that α0 ∈ (0, 1), and define

c] := qQ1−α0
(ϕ | G ),

ψ] := 1ϕ>c] + κ1ϕ=c] ,

where

κ :=

{
0, if Q(ϕ = c]|G ) = 0,
α0−Q(ϕ>c]|G )
Q(ϕ=c]|G )

, otherwise.

Then, ψ] ∈ A0 and EQ[ψ] | G ] = α0.

Proof. The equality EQ[ψ] | G ] = α0 follows directly from the definition of ψ]. It remains
to show that κ ∈ [0, 1]. Indeed, since c] is a conditional quantile, by (A.4) we deduce

Q(ϕ = c]|G ) = Fϕ(c])− F−ϕ (c])

≥ Fϕ(c]) + α0 − 1

= α0 −Q(ϕ > c] | G ),

and thus κ ≤ 1. On the other hand, by (A.4), Q(ϕ > c] | G ) = 1−Fϕ(c]) ≤ 1− (1−α0) =
α0, and hence κ ≥ 0. This completes the proof.

Lemma A.6.

a) For any ψ0 ∈ A0, and ψ ∈ A,

EQ[ψ | G ] ≤ EQ[ψ0 | G ] ⇒ E[ψ | G ] ≤ EP [ψ0 | G ]. (A.20)

b) If ψ0 ∈ A satisfies (A.20) for every ψ ∈ A, then ψ0 ∈ A0.

Proof. a) Let ψ0 ∈ A0 and ψ ∈ A, then, ψ0 − ψ ≥ 0 on N , and (ψ0 − ψ)(ϕ − c) ≥ 0.
Consequently, in view of Lemma A.4.(ii), we have

E
[
ψ0 − ψ

∣∣∣ G ] = E[(ψ0 − ψ)1N | G ] + EQ
[
ϕ(ψ0 − ψ)

∣∣∣ G ]
≥ cEQ

[
ψ0 − ψ

∣∣∣ G ] ≥ 0,

which proves implication (A.20).
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b) Assume that ψ∗ ∈ A is such that for any ψ ∈ A

EQ[ψ | G ] ≤ EQ[ψ∗ | G ] ⇒ E[ψ | G ] ≤ E[ψ∗ | G ]. (A.21)

Let α0 := EQ[ψ∗ | G ]. If α0 = 0 or α0 = 1, the statement is trivial.
For 0 < α0 < 1, we take ψ] ∈ A0 as in Lemma A.5, for which we have

α0 = EQ[ψ∗ | G ] = EQ[ψ] | G ].

By (A.20), we get that E[ψ∗ | G ] ≤ E[ψ] | G ], while by (A.21) we have the opposite
inequality, and thus

E[ψ∗ | G ] = E[ψ] | G ].

Let g := ψ]−ψ∗. Then, g ≥ 0 on N = {ϕ =∞}, and g · (ϕ− c]) ≥ 0 Q-a.s. Consequently,
using (A.18), we conclude

0 = E[g | G ]− c]EQ[g | G ] = E[g · 1N | G ] + EQ[g · (ϕ− c]) | G ]

≥ EQ[g · (ϕ− c]) | G ] ≥ 0.

Thus, ψ∗ = ψ] is Q-a.s. on ϕ 6= c], and hence P -a.s. on ϕ 6= c].
The general case of α0 ∈ [0, 1], follows from the above cases. We skip the details. An

interested reader may contact the authors.

Finally, we present the result about the maximizer in the robust representation (A.3)
of the conditional AV@R.

Theorem A.7. For any X ∈ L∞(F ),

AV@Rα(X | G ) = ess sup
{
E[−XZ | G ]

∣∣∣ Z ∈ F , 0 ≤ Z ≤ 1/α, E(Z | G ) = 1
}
.

(A.22)
Then, a maximizer Z∗ in the right hand side of (A.22) exists, and it is given by

Z∗ =
1

α

(
1X<q±α (X | G ) + ε1X=q±α (X | G )

)
, (A.23)

where

ε =

0, if P (X = q±α (X | G )) = 0
α−P (X<q±α (X | G ))

P (X=q±α (X | G ))
, otherwise.

Consequently, a maximizer Q∗ in the right hand side of (A.3) exists, and it is given by
dQ∗/dP = Z∗.

Proof. If α = 1, then QG = {P} and the statement is obvious. In particular, {Z ∈ F , 0 ≤
Z ≤ 1/α, E(Z|G ) = 1} = {Z ∈ F , Z = 1, P − a.s.}

Next, assume that α ∈ (0, 1). First, we observe that (A.22) follows from (A.3) and
(A.17).

In order to prove (A.23) we first assume that X < 0. We consider the measure P̃ ∼ P ,
such that dP̃ /dP = X/E[X|G ]. Note that since E[X/E[X|G ] | G ] = 1, and P̃ ∈ QG .
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For any Q ∈ QG , in view of (A.17) from Lemma A.4(ii), we have, upon letting Z =
dQ/dP ,

EQ[X | G ] = E[XZ | G ] = E

[
X

E[X | G ]
E[X | G ]Z | G

]
= E[X | G ] · E

[
X

E[X | G ]
Z | G

]
= E[X | G ] · EP̃ [Z | G ] .

Consequently, in view of (A.22), we see that

AV@Rα(X | G ) =
E(−X | G )

α
ess sup

{
EP̃ [Z | G ]

∣∣∣ Z ∈ F , 0 ≤ Z ≤ 1

α
, E(Z|G ) = 1

}
=
E(−X | G )

α
ess sup

{
EP̃ [ψ | G ]

∣∣∣ ψ ∈ F , 0 ≤ ψ ≤ 1, E(ψ|G ) = α
}

=
E(−X | G )

α
ess sup

{
EP̃ [ψ | G ]

∣∣∣ ψ ∈ F , 0 ≤ ψ ≤ 1, E(ψ|G ) ≤ α
}
.

(A.24)

Next, we apply Lemma A.6 and Lemma A.5, and for clarity, we denote the probability
measures Q,P from these lemmas by Q̌ and P̌ , respectively. By taking Q̌ = P , P̌ = P̃ ,
and ψ0 = ψ] with ψ] given in Lemma A.5 with α0 = α, c] = qP,±1−α(ϕ | G ), we have that

EP̌ [ψ | G ] ≤ EP̌ [ψ] | G ],

for any ψ ∈ L0(F ), such that 0 ≤ ψ ≤ 1, and EQ̌[ψ|G ] ≤ EQ̌[ψ]|G ] = α. Thus, the
ess sup in (A.24) is attained at ψ], and consequently we get

AV@Rα(X | G ) =
E(−X | G )

α
EP̃ [ψ] | G ]

=
1

α
E[−Xψ] | G ].

Consequently, ψ]/α = Z∗.
Finally, we will show that theorem holds true for an arbitrary X ∈ L∞(F ). For a

fixed X ∈ L∞(F ), we consider m ∈ R such that X ′ = X −m < 0. Thus, by applying to
X ′ the above result, using (A.15) and cash-additivity of AV@R, and we deduce

AV@Rα(X | G ) = AV@Rα(X −m | G )−m

=
1

α
E[−(X −m)

(
1X−m<q±α (X−m|G ) + κ̂1X−m<q±α (X−m|G )

)
| G ]−m,

where

κ̃ =
α− P (X −m < q±α (X −m|G ))

P (X −m = q±α (X −m)|G )
=
α− P (X < q±α (X|G ))

P (X = q±α (X)|G )
= ε,

on the set P (X = q±α (X)|G ) 6= 0. Consequently,

AV@Rα(X | G ) = E[−XZ∗ | G ] +
m

α
E[1X<q±α (X|G ) + ε1X<q±α (X|G ) | G ]−m

= E[−XZ∗ | G ] +mE[Z∗ | G ]−m = E[−XZ∗ | G ].
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Remark A.8. i) Generally speaking, one can prove that the Theorem A.7 holds true with
q±α being replaced by any conditional α-quantile of X, in which case, in view of (A.13)
ε = 0 if qα 6= q±α .

ii) Clearly, if X is a continuous random variable, then the maximizer Z∗ in Theorem A.7
is unique. Generally speaking, the maximizer Z∗ is not unique. Nevertheless, the value of
AV@Rα(X|G ) is unique, and does not depend on the choice of the maximizer Z∗.

iii) There are several other representations of conditional AV@R. In particular, one can
show that a representation similar to (A.1) holds true for conditional case too. This is out
of scope of this paper, and we will skip such derivations here.

B Discrete Time Markovian Structure Model of Credit Mi-
grations

B.1 Theory

Let (Ω,F , P ) be the underlying (statistical) probability space. We denote by Rit, t ∈ T
the credit ratings process of CMi, i ∈ I. We assume that process Ri is a time homogeneous
Markov chain taking values in the finite state space, say Ri, representing possible credit
ratings of the ith member. Without loss of generality we take Ri = {1, . . . ,Ki}, where
1 corresponds to the highest (the best) credit rating, and where Ki corresponds to the
default state. We assume that the default state Ki is absorbing. The transition matrix
of process Ri is denoted by Pi = [pixi,yi ]xi,yi∈Ri . Thus, pixi,yi = P (Rit1 = yi | Ri0 = xi), for
xi 6= yi. Typically, the matrix Pi can be obtained from the data provided by the rating
agencies; see Section B.2 for details.

Now, let us consider a system of I algebraic equations in unknowns pxy , where x :=

(x1, x2, . . . , xI), y := (y1, y2, . . . , yI) ∈ R := R1 × · · · × RI and x 6= y:

pixi,yi =
∑

yj∈Rj ,j 6=i

px1,...,xi,...,xIy1,...,yi,...,yI
, ∀xj ∈ Rj , j 6= i, ∀xi, yi ∈ Ri, xi 6= yi,

i = 1, 2, . . . , I. (B.1)

Similarly as in [BJN13], where the continuous time case is studied, one can show that
the above system admits at least one solution pxy such that, if we define

pxx = 1−
∑

y∈R,y 6=x
pxy , (B.2)

then the matrix

P := [pxy ]x,y∈R

is a transition matrix of a Markov chain, say R = (X1, . . . , XI), with state space R, and
that each component Xi is also Markov chain with transition matrix Pi.

The process R describes the joint evolution of credit ratings of all CMs of the CCP, and
has the property that its components are Markovian and with the same transition laws as
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the individual credit migration processes R1, . . . , RI . If the distribution of (X1
0 , . . . , X

I
0 ) is

the same as distribution of (R1
0, . . . , R

I
0) then, in the terminology of [BJN16], the process

R is known as the strong Markovian structure for the processes R1, . . . , RI .
In summary, the process R is a time homogenous Markovian model for joint evolution

of credit ratings of all CMs of the CCP, subject to the marginal constraints that laws of
the components of R match the laws of the individual credit migrations of the CMs.

Remark B.1. If we insist on continuous time simulation then the equations above change to
the of I algebraic equations in unknowns λxy , where x := (x1, x2, . . . , xI), y := (y1, y2, . . . , yI) ∈
R := R1 × · · · × RI and x 6= y:

λixi,yi =
∑

yj∈Rj ,j 6=i

λx1,...,xi,...,xIy1,...,yi,...,yI
, ∀xj ∈ Rj , j 6= i, ∀xi, yi ∈ Ri, xi 6= yi,

i = 1, 2, . . . , I, (B.3)

where λis represent marginal generators.
As in [BJN13], where the continuous time case is studied, one can show that the above

system admits at least one solution λxy such that, if we define

λxx = −
∑

y∈R,y 6=x
λxy , (B.4)

then the matrix
Λ := [λxy ]x,y∈R

is the generator matrix of a Markov chain, say R = (X1, . . . , XI), with state space R, and
that each component Xi is also Markov chain with generator matrix λi.

Remark B.2. These systems may be changed to time inhomogeneous systems.

B.1.1 How to solve the above systems

Brute force solution of the above systems is impossible. With 8 members and with 7 rating
categories for each member, the state space of the Markov chain R contains 78 elements.
So the corresponding transition matrix (or the generator matrix in the continuous time)
is a 78 × 78 matrix.

So, the proposed way to proceed is as follows: In case of the discrete time

1. For n = 0, solve the system

piXi(0),yi
=

∑
yj∈Rj ,j 6=i

pX1(0),...,Xi(0),...,XI(0)
y1,...,yi,...,yI

, ∀yi ∈ N(Xi(0)), pX1(0),...,Xi(0),...,XI(0)
y1,...,yi,...,yI

∈ [0, 1],

i = 1, 2, . . . , I, (B.5)

where N(Xi(0)) is the set of (at most two) closest ratings to Xi(0); for yi /∈ N(Xi(0))

set p
X1(0),...,Xi(0),...,XI(0)
y1,...,yi,...,yI = 0. Define

p
X(0)
X(0) = 1−

∑
y∈R,y 6=X(0)

pX(0)
y , (B.6)
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and simulate the first transition X(0) → X(1) according to p
X1(0),...,Xi(0),...,XI(0)
y1,...,yi,...,yI

computed above.

2. For n = 1, solve the system

piXi(1),yi
=

∑
yj∈Rj ,j 6=i

pX1(1),...,Xi(1),...,XI(1)
y1,...,yi,...,yI

, ∀yi ∈ N(Xi(1)), pX1(1),...,Xi(1),...,XI(1)
y1,...,yi,...,yI

∈ [0, 1]

i = 1, 2, . . . , I, (B.7)

where N(Xi(1)) is the set of (at most two) closest ratings to Xi(1); for yi /∈ N(Xi(1))

set p
X1(1),...,Xi(1),...,XI(1)
y1,...,yi,...,yI = 0. Define

p
X(1)
X(1) = 1−

∑
y∈R,y 6=X(1)

pX(1)
y , (B.8)

and simulate the second transition X(1) → X(2) according to p
X1(1),...,Xi(1),...,XI(1)
y1,...,yi,...,yI

computed above.

3. And so on for n ≥ 2.

Remark B.3. In the continuous time set-up proceed analogously, with obvious modifica-
tions.

B.2 Estimation of Pis

Denote by Pi,y the matrix of one year transition probabilities for credit ratings for CMi.
Rating agencies typically provide one year transition probabilities for credit ratings for
various obligors, and thus we will assume that Pi,y are known or observed from market
data. Let m be an integer such that mδf = one year; e.g. if the fundamental unit of time
is one day, we take m = 252. The calibration of the transition matrix Pi is done by solving
for Pi the following matrix equation (

Pi
)m

= Pi,y, (B.9)

subject to the constraint that Pi is a stochastic matrix.

C CDS modeling

In April of 2009 the market for credit default swap (CDS) contracts went through some
fundamental changes with regard to the contract conventions. The changes were dubbed
as “Big Bang”, and they resulted in standardizing the CDS market and supporting the
central clearing of CDS contracts.

Before the Big Bang, CDS contracts used to be quoted in terms of a fair spread, which
made the present mark to market MtM of the CDS contract5 null for both parties in
the contract – the protection seller and protection buyer. After the “Big Bang ”, all CDS

5 That was taken as the difference between the values of the two legs of the contract.
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spreads (coupons) have been standardized as either 100 or 500 basis points (bps), resulting
in an exchange of upfront payment so to make the value of the contract at initiation equal
to zero. Moreover, under the new convention, the CDS contracts can only terminate on
March 20, June 20, September 20 and December 20 in a given year.

Currently, according to the CCP industry standards the marking to market means
computing the present upfront payment. Thus, the MtM of a CDS contract is equal to
the marked to market upfront payment. We adopt this convention here.

We will now briefly describe the way in which we compute the upfront payment.
Towards this end we denote by λ be the (constant) intensity of the default time φ of
the reference name underlying a CDS contract. In addition we denote the CDS spread
(coupon) as κ, and the constant recovery rate as R. For simplicity, we assume that the
discount factor β is one. Given all this, the only relevant flow of information regarding
the given CDS contract is the is the natural filtration generated by the default indicator
process Ht = 1φ≤t, t ≥ 0. We denote this filtration as H = (Ht, t ≥ 0).

Then the upfront payment at time t ≥ 0, say St, based on the notional value of the
contract equal to 1, is computed as follows:

St = E[R1t<φ≤T − (T ∧ φ− t)κ|Ht], (C.1)

= 1φ>tS̃t, (C.2)

where the so called pre-default up-front payment S̃t is

S̃t = (e−λ(T−t) − 1)
κ− λR
λ

. (C.3)
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Glossary

tk := kδf , k = 0, 1, . . ...

Di dividend payment associated with the portfolio of the CMi.

I number of CMs in CCP.

Ri Credit ratings process of CMi.

T δ latest possible time for calling uDF.

Tj := j∆f , j = 0, 1, . . ..

V it nominal (MTM) portfolio value at time t of the CMi.

Xi
tk cash flow based on which the IMi

tk is computed.

∆f time between DF calls.

AV@R Average Value at Risk.

β discount factor.

Ri := {1, . . . ,Ki}. The state space of the credit ratings process Ri.

δf fundamental unit of time. Also, time between IM and VM calls.

η dynamic risk measure used for compuations of total pre-funded DF.

Pi Transition matrix of process Ri.

Pi,y One year transition matrix for credit ratings of CMi.

T F := {T0, T1, . . . , T − δf}. DF call times.

T δ := {t1 + δ, t2 + δ, . . .}. Unfunded DF calls (if needed) times.

T f := {t0, t1, . . . , T − δf}. IM and VM call times.

T := {0, δf , 2δf , . . . , T − δf , T}.
ρ dynamic risk measure used for compuations of IM.

τi default time of the CMi.

DFi the DF contribution of the CMi.

uDFi Unfunded Default Fund of CMi.

CMi the ith clearing member.

EPi net exposure of the CCP to the default of CMi.

EPi,reg regulatory net exposure of the CCP to the default of CMi.

IMi
tk initial margin of the CMi at time tk.

SG CCP equity or skin-in-the-game.

VMi
tk variation margin of the i member at time tk.

V@R Value at Risk.

V̂ i the recovered value of the the portfolio of the CMi by means of liquidation or auctioning.

BCBS Basel Committee on Banking Supervision.

CCP Central Clearing Party.

CDS Credit Default Swap.

CM Clearing Member.

DF Default Fund.

EMIR European Market Infrastructure Regulation.
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ES Expected Shortfall.

IM Initial Margin.

IRS Interest Rate Swap.

MtM Mark-to-Market.

OTC Over The Counter.

uDF Unfunded Default Fund.

VM Variation Margin.
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