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1 Introduction

The main goal of this work is to study finite time horizon risk-sensitive Markovian control problems
subject to model uncertainty in a discrete time setup, and to develop a methodology to solve
such problems efficiently. The proposed approach hinges on the following main building concepts:
incorporating model uncertainty through the adaptive robust paradigm introduced in [BCC+19]
and developing efficient numerical solutions for the obtained Bellman equations by adopting the
machine learning techniques proposed in [CL19].

There exists a significant body of work on incorporating model uncertainty (or model mis-
specification) in stochastic control problems, and among some of the well-known and prominent
methods we would mention the robust control approach [GS89, HSTW06, HS08], adaptive control
[KV15, CG91], and Bayesian adaptive control [KV15]. A comprehensive literature review on this
subject is beyond the scope of this paper, and we refer the reader to [BCC+19] and references
therein. In [BCC+19] the authors proposed a novel adaptive robust methodology that solves time-
consistent Markovian control problems in discrete time subject to model uncertainty - the approach
that we take in this study too. The core of this methodology was to combine a recursive learning
mechanism about the unknown model with the underlying Markovian dynamics, and to demon-
strate that the so called adaptive robust Bellman equations produce an optimal adaptive robust
control strategy.

In contrast to [BCC+19], where the considered optimization criterion was of the terminal reward
type, in the present work, we also allow intermediate rewards and we use the discounted risk
sensitive criterion. Accordingly, we derive a new set of adaptive robust Bellman equations, similar
to those used in [BCC+19].
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Risk sensitive criterion has been broadly used both in the control oriented literature, as well as
in the game oriented literature. We refer to, e.g., [BP03, DL14, BR17], and the references therein
for insight into risk sensitive control and risk sensitive games both in discrete time and in continuous
time.

The paper is organized as follows. In Section 2 we formulate the finite time horizon risk-sensitive
Markovian control problem subject to model uncertainty that is studied here. Section 3 is devoted
to the formulation and to study of the robust adaptive control problem that is relevant for the
problem formulated in Section 2. This section presents the main theoretical developments of the
present work. In Section 4 we formulate an illustrative example of our theoretical results that is
rooted in the classical linear-quadratic-exponential control problem (see e.g. [HS95]). Next, using
machine learning methods, in Section 5 we provide numerical solutions of the example presented
in Section 4.

Finally, we want to mention that the important case of an infinite time horizon risk-sensitive
Markovian control problem in discrete time subject to model uncertainty will be studies in a follow-
up work.

2 Risk-sensitive Markovian discounted control problems with model
uncertainty

In this section we state the underlying discounted risk-sensitive stochastic control problems. Let
(Ω,F ) be a measurable space, T ∈ N be a finite time horizon, and let us denote by T :=
{0, 1, 2, . . . , T} and T ′ := {0, 1, 2, . . . , T − 1}. We let Θ ⊂ Rd be a non-empty compact set,
which will play the role of the parameter space throughout. We consider a random process
Z = {Zt, t = 1, 2 . . .} on (Ω,F ) taking values in Rm, and we denote by F = (Ft, t = 0, 2 . . .) its
natural filtration, with F0 = {∅,Ω}. We postulate that this process is observed by the controller,
but the true law of Z is unknown to the controller and assumed to be generated by a probability
measure belonging to a (known) parameterized family of probability distributions on (Ω,F ), say
P(Θ) = {Pθ, θ ∈ Θ}. As usually, EP will denote the expectation under a probability measure P
on (Ω,F ), and, for simplicity, we will write Eθ instead of EPθ . We denote by Pθ∗ the measure
generating the true law of Z, and thus θ∗ ∈ Θ is the unknown true parameter. The sets Θ and
P(Θ) are known to the observer. Clearly, the model uncertainty may occur if Θ 6= {θ∗}, which we
will assume to hold throughout.

We let A ⊂ Rk be a finite set,1 and S : Rn × A × Rm → Rd be a measurable mapping. An
admissible control process ϕ is an F-adapted process, taking values in A, and we will denote by A
the set of all admissible control processes.

We consider an underlying discrete time controlled dynamical system with the state process X
taking values in Rn and control process ϕ taking values in A. Specifically, we let

Xt+1 = S(Xt, ϕt, Zt+1), t ∈ T ′, X0 = x0 ∈ Rn. (2.1)

At each time t = 0, . . . , T − 1, the running reward rt(Xt, ϕt) is delivered, where, for every
a ∈ A, the function rt(·, a) : Rn → R+ is bounded and continuous. Similarly, at the terminal time
t = T the terminal reward rT (XT ) is delivered, where rT : Rn → R+ is a bounded and continuous
function.

1A will represent the set of control values, and we assume it is finite for simplicity, in order to avoid technical
issues regarding the existence of measurable selectors.
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Let β ∈ (0, 1) be a discount factor, and let γ 6= 0 be the risk sensitivity factor. The underlying
discounted, risk-sensitive control problem is:

sup
ϕ∈A

1

γ
ln
(
Eθ∗eγ(

∑T−1
t=0 βtrt(Xt,ϕt)+βT rT (XT ))

)
(2.2)

subject to (2.1). Clearly, since θ∗ is not known to the controller, the above problem can not be
solved as it is stated. The main goal of this paper is formulate and solve the adaptive robust control
problem corresponding to (2.2).

Remark 2.1. (i) The risk-sensitive criterion in (2.2) is in fact an example of application of the
entropic risk measure, say ρθ∗,γ , which is defined as

ρθ∗,γ(ξ) :=
1

γ
lnEθ∗eγξ,

where ξ is a random variable on (Ω,F , Pθ∗) that admits finite moments of all orders.
(ii) It can be verified that

ρθ∗,γ(ξ) = Eθ∗(ξ) +
γ

2
VARθ∗(ξ) +O(γ2).

Thus, in case when γ < 0 the term γ
2VARθ∗(ξ) can be interpreted as the risk-penalizing term. On

the contrary, when γ > 0, the term γ
2VARθ∗(ξ) can be viewed as the risk-favoring term.

(iii) In the rest of the paper we focus on the case γ > 0. The case γ < 0 can be treated in an
analogous way.

3 The adaptive robust risk sensitive discounted control problem

We follow here the developments presented in [BCC+19]. The key difference is that in this work
we deal with running and terminal costs.

In what follows, we will be making use of a recursive construction of confidence regions for
the unknown parameter θ∗ in our model. We refer to [BCC17] for a general study of recursive
constructions of (approximate) confidence regions for time homogeneous Markov chains. Section 4
provides details of a specific such recursive construction corresponding to the example presented in
that section. Here, we just postulate that the recursive algorithm for building confidence regions
uses a Θ-valued and observed process, say C = (Ct, t ∈ N0), satisfying the following abstract
dynamics

Ct+1 = R(t, Ct, Zt+1), t ∈ N0, C0 = c0 ∈ Θ, (3.1)

where R : N0 × Rd × Rm → Θ is a deterministic measurable function. Note that, given our
assumptions about process Z, the process C is F-adapted. This is one of the key features of our
model. Usually Ct is taken to be a consistent estimator of θ∗.

Now, we fix a confidence level α ∈ (0, 1), and for each time t ∈ N0, we assume that an (1− α)-
confidence region, say Θt ⊂ Rd, for θ∗, can be represented as

Θt = τ(t, Ct), (3.2)

where, for each t ∈ N0, τ(t, ·) : Rd → 2Θ is a deterministic set valued function, where, as usual,
2Θ denotes the set of all subsets of Θ. Note that in view of (3.1) the construction of confidence
regions given in (3.2) is indeed recursive. In our construction of confidence regions, the mapping
τ(t, ·) will be a measurable set valued function, with compact values. It needs to be noted that we
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will only need to compute Θt until time T − 1. In addition, we assume that for any t ∈ T ′, the
mapping τ(t, ·) is upper hemi-continuous (u.h.c.). That is, for any c ∈ Θ, and any open set E such
that τ(t, c) ⊂ E ⊂ Θ, there exists a neighbourhood D of c such that for all c′ ∈ D, τ(t, c′) ⊂ E (cf.
[Bor85, Definition 11.3]).

Remark 3.1. The important property of the recursive confidence regions constructed as indicated
above is that, in many models, limt→∞Θt = {θ∗}, where the convergence is understood Pθ∗ almost
surely, and the limit is in the Hausdorff metric. This is not always the case though in general. In
[BCC17] is shown that the convergence holds in probability, for the model setup studied there.

The sequence Θt, t ∈ T ′ represents learning about θ∗ based on the observation of the history
(Y0, Y1 . . . , Yt), t ∈ T ′, where Yt = (Xt, Ct), t ∈ T , is the augmented state process taking values in
the augmented state space

EY = Rn ×Θ.

We denote by EY the collection of Borel measurable sets in EY .

In view of the above, if the control process ϕ is employed then the process Y has the following
dynamics

Yt+1 = G(t, Yt, ϕt, Zt+1), t ∈ T ′,

where the mapping G : N0 × EY ×A× Rm → EY is defined as

G(t, y, a, z) =
(
S(x, a, z), R(t, c, z)

)
, (3.3)

with y = (x, c) ∈ EY .

We define the corresponding histories

Ht = (Y0, . . . , Yt), t ∈ T ′, (3.4)

so that

Ht ∈ Ht = EY × EY × . . .× EY︸ ︷︷ ︸
t+1 times

. (3.5)

Clearly, for any admissible control process ϕ, the random variable Ht is Ft-measurable. We denote
by

ht = (y0, y1, . . . , yt) = (x0, c0, x1, c1, . . . , xt, ct) (3.6)

a realization of Ht. Note that h0 = y0 = (x0, c0).

A control process ϕ = (ϕt, t ∈ T ′) is called history dependent control process if (with a slight
abuse of notation)

ϕt = ϕt(Ht),

where (on the right hand side) ϕt : Ht → A, is a measurable mapping. Given our above setup,
any history dependent control process is F–adapted, and thus, it is admissible. For any admissible
control process ϕ and for any t ∈ T ′, we denote by ϕt = (ϕk, k = t, . . . , T − 1) the ‘t-tail’ of ϕ.
Accordingly, we denote by At the collection of ‘t-tails’ of ϕ. In particular, ϕ0 = ϕ and A0 = A.
The superscript notation applied to processes should not be confused with power function applied
such as βt.

Let ψt : Ht → Θ be a Borel measurable mapping such that ψt(ht) ∈ τ(t, ct), and let us denote
by ψ = (ψt, t ∈ T ′) the sequence of such mappings, and by ψt the t-tails of the sequence ψ, in
analogy to ϕt. The set of all sequences ψ, and respectively ψt , will be denoted by Ψ and Ψt,
respectively.
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Strategies ϕ and ψ are called Markovian strategies or policies if (with some abuse of notation)

ϕt = ϕt(Yt), ψt = ψt(Yt),

where (on the right hand side) ϕt : EY → A, and is a (Borel) measurable mapping, and ψt : EY →
Θ is a (Borel) measurable mapping satisfying ψt(x, c) ∈ τ(t, c).

In order to simplify all the following argument we limit ourselves to Markovian policies. In
case of Markovian dynamics settings, such as ours, this comes without loss of generality, as there
typically exist optimal Markovian strategies, if optimal strategies exist at all. Accordingly, A and
Ψ are now sets of Markov strategies.

Next, for each (t, y, a, θ) ∈ T ′ × EY ×A×Θ, we define a probability measure on EY , given by

Q(B | t, y, a, θ) = Pθ(Zt+1 ∈ {z : G(t, y, a, z) ∈ B}) = Pθ (G(t, y, a, Zt+1) ∈ B) , B ∈ EY . (3.7)

We assume that for every t ∈ T and every a ∈ A, we have that Q(dy′ | t, y, a, θ) is a Borel
measurable stochastic kernel with respect to (y, θ). This assumption will be strengthened later on.

Using Ionescu-Tulcea theorem (cf. [BR11, Appendix B]), for every t = 0, . . . , T − 1, every t-tail

ϕt ∈ At and every state yt ∈ EY , we define the family Qϕ
t,Ψt

yt,t = {Qϕt,ψt

yt,t , ψt ∈ Ψt} of probability

measures on the concatenated canonical space XTs=t+1EY , with

Qϕt,ψt

yt,t (Bt+1 × · · · ×BT ) :=

∫
Bt+1

· · ·
∫
BT

T∏
u=t+1

Q(dyu | u− 1, yu−1, ϕu−1(yu−1), ψu−1(yu−1)). (3.8)

The discounted, risk-sensitive, adaptive robust control problem corresponding2 to (2.2) is:

sup
ϕ0∈A0

inf
Q∈Qϕ

0,Ψ0

y0,0

EQe
γ
∑T
t=0 β

trt(Xt,ϕt(Yt)), (3.9)

where, for simplicity of writing, here and everywhere below, with slight abuse of notations, we set
rT (x, a) = rT (x). In next section we will show that a solution to this problem can be given in terms
of the discounted adaptive robust Bellman equations associated to it.

3.1 Adaptive robust Bellman equation

Towards this end we aim our attention at the following adaptive robust Bellman equations

WT (y) = eγβ
T rT (x), y ∈ EY ,

Wt(y) = max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ
trt(x,a)Q(dy′ | t, y, a, θ), y ∈ EY , t = T − 1, . . . , 0, (3.10)

where we recall that y = (x, c).

Remark 3.2. Clearly, in (3.10), the exponent eγβ
trt(x,a) can be factored out, and Wt can be written

as

Wt(y) = max
a∈A

(
eγβ

trt(x,a) · inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t, y, a, θ)
)
.

Nevertheless, in what follows, we will keep similar factors inside of the integrals, mostly for the
convenience of writing as well as to match the visual appearance of classical Bellman equations.

2Since γ > 0, we omit the factor 1/γ.
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We will study the solvability of this system. We start with Lemma 3.3 below, where, under
some additional technical assumptions, we show that the optimal selectors in (3.10) exist; namely,
for any t ∈ T ′, and any y = (x, c) ∈ EY , there exists a measurable mapping ϕ∗t : EY → A, such
that

Wt(y) = inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ
trt(x,ϕ∗t (y))Q(dy′ | t, y, ϕ∗t (y), θ).

In order to proceed, for the sake of simplicity, we will assume that under measure Pθ, for each t ∈ T ,
the random variable Zt has a density with respect to the Lebesgue measure, say fZ(z; θ), z ∈ Rm.
In this case we have∫

EY

Wt+1(y′)Q(dy′ | t, y, a, θ) =

∫
Rm

Wt+1(G(t, y, a, z))fZ(z; θ) dz,

where G(t, y, a, z) is given in (3.3).

Additionally, we take the standing assumptions:

(i) for any a and z, the function S(·, a, z) is continuous;

(ii) for each z, the function fZ(z; ·) is continuous;

(iii) for each t ∈ T ′, the function R(t, ·, ·) is continuous.

Then, the following result holds true.

Lemma 3.3. The functions Wt, t = T, T − 1, . . . , 0, are lower semi-continuous (l.s.c.), and the
optimal selectors ϕ∗t , t = T − 1, . . . , 0, realizing maxima in (3.10) exist.

Proof. Since rT is continuous and bounded, so is the function WT . Since G(T − 1, ·, a, z) is contin-
uous, then, WT (G(T − 1, ·, a, z)) is continuous. Consequently, recalling again that y = (x, c), for
each a, the function

wT−1(y, a, θ) :=

∫
R
WT (G(T − 1, y, a, z))eγβ

T−1rT−1(x,a)fZ(z; θ) dz

= eγβ
T−1rT−1(x,a)

∫
R
eγβ

T rT (S(x,a,z))fZ(z; θ) dz

is continuous in (y, θ).

Next, we will apply [BS78, Proposition 7.33] by taking (in the notations of [BS78])

X = EY ×A = Rn ×Θ×A, x = (y, a),

Y = Θ, y = θ,

D =
⋃

(y,a)∈EY ×A

{(y, a)} × τ(T − 1, c),

f(x, y) = wT−1(y, a, θ).

Note that in view of the prior assumptions, Y is metrizable and compact. Clearly X is metrizable.
From the above, f is continuous, and thus lower semi-continuous. Since τ(T − 1, ·) is compact-
valued and u.h.c. on EY ×A, then according to [Bor85, Proposition 11.9], the set-valued function
τ(T − 1, ·) is closed, which implies that its graph D is closed [Bor85, Definition 11.5]. Also note
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that the cross section Dx = D(y,a) = {θ ∈ Θ : (y, a, θ) ∈ D} is given by D(y,a)(T − 1) = τ(T − 1, c).
Hence, by [BS78, Proposition 7.33], the function

w̃T−1(y, a) = inf
θ∈τ(T−1,c)

(wT−1(y, a, θ)), (y, a) ∈ EY ×A,

is l.s.c.. Consequently, the function ŵT−1(y, a) = −w̃T−1(y, a) is upper semi-continuous (u.s.c).
Thus, by [BS78, Proposition 7.34], the function−WT−1(y) = −maxa∈Aw̃T−1(y, a) = mina∈AŵT−1(y, a)
is u.s.c., so that WT−1(y) is l.s.c.. Moreover, since A is finite, there exists an optimal selector ϕ∗T−1,
that is WT−1(y) = w̃T−1(y, ϕ∗T−1(y)).

Proceeding to the next step, note that WT−1(G(T−2, y, a, z))eγβ
T−2rT2 (x,a) is l.s.c. and positive,

hence bounded from below. Therefore, according to [BS78, Proposition 7.31], the function

wT−2(y, a, θ) =

∫
R
WT−1(G(T − 2, y, a, z))eγβ

T−2rT−2(x,a)fZ(z; θ) dz

is l.s.c.. The rest of the proof follows in the analogous way.

Next, we will prove an auxiliary result needed to justify the mathematical operations conducted
in the proof of the main result – Theorem 3.5. Define the functions Ut and U∗t as follows: for ϕt ∈ At
and y ∈ EY ,

Ut(ϕ
t, y) = eγβ

trt(x,ϕt(y)) inf
Q∈Qϕ

t,Ψt

y,t

EQe
γ
∑T
k=t+1 β

krk(Xk,ϕk(Yk)), t ∈ T ′, (3.11)

U∗t (y) = sup
ϕt∈At

Ut(ϕ
t, y), t ∈ T ′, (3.12)

U∗T (y) = eγβ
T rT (x). (3.13)

We now have the following result.

Lemma 3.4. For any t ∈ T ′, and for any ϕt ∈ At, the function Ut(ϕ
t, ·) is lower semi-ananlytic

(l.s.a.) on EY . Moreover, there exists a sequence of universally measurable functions ψ∗k, k =
t, . . . , T − 1 such that

Ut(ϕ
t, y) = eγβ

trt(x,ϕt(y))E
Qϕ

t,ψt,∗
y,t

eγ
∑T
k=t+1 β

krk(Xk,ϕk(Yk)). (3.14)

Proof. According to (3.7), and using the definition of Qϕ
t,Ψt

y,t , we have that

Ut(ϕ
t, y) = inf

ψt∈Ψt

∫
EY

· · ·
∫
EY

eγ
∑T
k=t β

krk(xk,ϕk(yk))Q(dyT |T − 1, yT−1, ϕT−1(yT−1), ψT−1(yT−1))

· · ·Q(dyt+1|t, y, ϕt(y), ψt(y)). (3.15)

For a given policy ϕ ∈ A, define the following functions on EY

VT (y) = eγβ
T rT (x),

Vt(y) = inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,ϕt(y)Vt+1(y′)Q(dy′|t, y, ϕt(y), θ), t ∈ T ′.

We will prove recursively that the functions Vt are l.s.a. in y, and that

Vt(y) = Ut(ϕ
t, y), t = 0, . . . , T − 1. (3.16)
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Clearly, VT is l.s.a. in y.

Next, we will prove that VT−1(y) is l.s.a.. By our assumptions, the stochastic kernel Q(·|T −
1, ·, ·, ·) is Borel measurable on EY given EY ×A×Θ, in the sense of [BS78, Definition 7.2]. Then,
the integral

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ) is l.s.a. on EY ×A×Θ according to [BS78, Proposition
7.48]. Now, we set (in the notations of [BS78])

X = EY ×A, x = (y, a)

Y = Θ, y = θ,

D =
⋃

(y,a)∈EY ×A

{y, a} × τ(T − 1, c),

f(x, y) =

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ).

Note that in view of our assumptions, X and Y are Borel spaces. The set D is closed (see the proof
of Lemma 3.3) and thus analytic. Moreover, Dx = τ(T − 1, c). Hence, by [BS78, Proposition 7.47],
for each a ∈ A the function

inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ)

is l.s.a. in y. Thus, it is l.s.a. in (y, a). Moreover, in view of [BS78, Proposition 7.50], for any
ε > 0, there exists an analytically measurable function ψεT−1(y, a) such that

inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ) =

∫
EY

VT (y′)Q(dy′|T − 1, y, a, ψεT−1(y, a)) + ε.

Therefore, for any fixed (y, a), we obtain a sequence {ψ1/n
T−1(y, a), n ∈ N} such that

lim
n→∞

∫
EY

VT (y′)Q(dy′|T − 1, y, a, ψ
1/n
T−1(y, a)) = inf

θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ).

Due to the assumption that τ(T−1, c) is compact, there exists a convergent subsequence {ψ1/nk
T−1 (y, a), k ∈

N} such that its limit ψ∗T−1(y, a) is universally measurable and satisfies∫
EY

VT (y′)Q(dy′|T − 1, y, a, ψ∗T−1(y, a)) = inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T − 1, y, a, θ).

Clearly, the function eγβ
T−1rT−1(x,a) is l.s.a. in (y, a). Thus, since ϕT−1(y) is a Borel measurable

function, using part (3) in [BS78, Lemma 7.30] we conclude that both eγβ
T−1rT−1(x,ϕT−1(y)) and

infθ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T − 1, y, ϕT−1(y), θ) are l.s.a. in y. Since both these functions are
non-negative then, by part (4) in [BS78, Lemma 7.30], we conclude that VT−1 is l.s.a. in y. The
proof that Vt is l.s.a. in y and ψ∗t exists for t = 0, . . . , T − 2, follows analogously. We also obtain
that ∫

EY

Vt(y
′)Q(dy′|t− 1, y, a, ψ∗t−1(y, a)) = inf

θ∈τ(t−1,c)

∫
EY

Vt(y
′)Q(dy′|t− 1, y, a, θ), (3.17)

for any t = 1, . . . , T − 1.



Uncertain Risk Sensitive 9

It remains to verify (3.16). For t = T − 1, by (3.15), we have

UT−1(ϕT−1, y) = inf
θ∈τ(T−1,c)

∫
EY

eγβ
T−1rT−1(x,ϕT−1(y))VT (y′)Q(dy′|T − 1, y, ϕT−1(y), θ)

= VT−1(y).

Therefore, UT−1(ϕT−1, ·) is l.s.a.. Assume that for t = 1, . . . , T − 1, Ut(ϕ
t, y) = Vt(y), and it is

l.s.a.. Then, for any yt−1 ∈ EY , with the notation ψt−1 = (ψt−1, ψ
t), we get

Ut−1(ϕt−1, yt−1)

= inf
(ψt−1,ψt)∈Ψt−1

∫
EY

· · ·
∫
EY

eγ
∑T−1
k=t−1 β

krk(xk,ϕk(yk))+γβT rT (xT )

T∏
k=t

Q(dyk|k − 1, yk−1, ϕk−1(yk−1), ψk−1(yk−1))

≥ inf
(ψt−1,ψt)∈Ψt−1

∫
EY

eγβ
t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)Q(dyt|t− 1, yt−1, ϕt−1(yt−1), ψt−1(yt−1))

= inf
θ∈τ(t−1,c)

∫
EY

eγβ
t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)Q(dyt|t− 1, yt−1, ϕt−1(yt−1), ψt−1(yt−1))

=Vt−1(yt−1).

Next, fix ε > 0, and let ψt,ε denote an ε-optimal selectors sequence starting at time t, namely∫
EY

· · ·
∫
EY

eγ
∑T
k=t β

krk(xk,ϕk(yk))
T∏

k=t+1

Q(dyk|k − 1, yk−1, ϕk−1(yk−1), ψt,εk−1(yk−1))

≤Ut(ϕt, yt) + ε.

Consequently, for any yt−1 ∈ EY ,

Ut−1(ϕt−1, yt−1) = inf
(ψt−1,ψt)∈Ψt−1

∫
EY

· · ·
∫
EY

eγ
∑T
k=t−1 β

krk(xk,ϕk(yk))

T∏
k=t

Q(dyk|k − 1, yk−1, ϕk−1(yk−1), ψk−1(yk−1))

≤ inf
ψt−1∈τ(t−1,c)

∫
EY

· · ·
∫
EY

eγ
∑T
k=t−1 β

krk(xk,ϕk(yk))

T∏
k=t+1

Q(dyk|k − 1, yk−1, ϕk−1(yk−1), ψt,εk−1(yk−1)) · · ·Q(dyt|t− 1, yt−1, ϕt−1(yt−1), ψt−1(yt−1))

≤ inf
ϕt−1∈τ(t−1,c)

∫
EY

Ut(ϕ
t, yt)Q(dyt|t− 1, yt−1, ϕt−1(yt−1), ψt−1(yt−1)) + ε

= inf
ϕt−1∈τ(t−1,c)

∫
EY

Vt(yt)Q(dyt|t− 1, yt−1, ϕt−1(yt−1), ψt−1(yt−1)) + ε

= Vt−1(yt−1) + ε.

Since ε is arbitrary, (3.16) is justified. In particular, Ut(ϕ
t, ·) is l.s.a. for any t ∈ T ′. Finally, in

view of (3.17), the equality (3.14) follows immediately. This concludes the proof.
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Now we are in the position to prove the main result in this paper.

Theorem 3.5. For t = 0, . . . , T , we have that

U∗t ≡Wt. (3.18)

Moreover, the policy ϕ∗ derived in Lemma 3.3 is adaptive robust-optimal, that is

U∗t (y) = Ut(ϕ
t,∗, y), t = 0, . . . , T − 1. (3.19)

Proof. We proceed similarly as in the proof of [Iye05, Theorem 2.1], and via backward induction
in t = T, T − 1, . . . , 1, 0.

For t = T , clearly, U∗T (y) = WT (y) = eγβ
T rT (x) for all y ∈ EY . For t = T − 1 we have, for

y ∈ EY ,

U∗T−1(y) = sup
ϕT−1=ϕT−1∈AT−1

inf
θ∈τ(T−1,c)

∫
EY

eγβ
T−1rT−1(x,ϕT−1(y))WT (y′)Q(dy′ | T − 1, yT−1, ϕT−1(y), θ)

= max
a∈A

inf
θ∈τ(T−1,c)

∫
EY

eγβ
T−1rT−1(x,a)WT (y′)Q(dy′ | T − 1, y, a, θ)

= WT−1(y).

From the above, using Lemma 3.3, we obtain that U∗T−1 is l.s.c. and bounded.
For t = T − 2, . . . , 1, 0, assume that U∗t+1 is l.s.c. and bounded. Recalling the notation ϕt =

(ϕt, ϕ
t+1), we thus have, y ∈ EY ,

U∗t (y) = sup
(ϕt,ϕt+1)∈At

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,ϕt(y))Ut+1(ϕt+1, y′)Q(dy′ | t, y, ϕt(y), θ)

≤ sup
(ϕt,ϕt+1)∈At

inf
θ∈τ(ct,t)

∫
EY

eγβ
trt(x,ϕt(y))U∗t+1(y′)Q(dy′ | t, y, ϕt(y), θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,a)U∗t+1(y′)Q(dy | t, yt, a, θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(y,a)Wt+1(y′)Q(dy′ | t, y, a, θ)

= Wt(y).

Now, fix ε > 0, and let ϕt+1,ε denote an ε-optimal control strategy starting at time t+ 1, that is

Ut+1(ϕt+1,ε, y) ≥ U∗t+1(y)− ε, y ∈ Ey.

Then, for y ∈ EY , we have

U∗t (y) = sup
(ϕt,ϕt+1)∈At

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,ϕt(y))Ut+1(ϕt+1, y′)Q(dy′ | t, y, ϕt(y), θ)

≥ sup
(ϕt,ϕt+1)∈At

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,ϕt(y))Ut+1(ϕt+1,ε, y′)Q(dy′ | t, y, ϕt(y), θ)

≥ max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ
trt(x,a)U∗t+1(y′)Q(dy′ | t, y, a, θ)− ε

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t, y, a, θ)− ε

= Wt(y)− ε.
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Since ε was arbitrary, the proof of (3.18) is done. In particular, we have that for any t ∈ T , the
function U∗t (·) is l.s.c. as well as bounded.

It remains to justify the validity of equality (3.19). We will proceed again by (backward)
induction in t. For t = T − 1, using (3.18), we have that

U∗T−1(y) = WT−1(y) = eγβ
T−1rT−1(x,ϕ∗T−1(y)) inf

θ∈τ(t,c)

∫
EY

eγβ
T rT (x′)Q(dy′ | T − 1, y, ϕ∗T−1(y), θ)

= eγβ
T−1rT−1(x,ϕ∗T−1(y)) inf

Q∈Qϕ
T−1,∗,ΨT−1

y,T−1

(
EQe

γβT rT (XT )
)

= UT−1(ϕT−1,∗, y).

Moreover, by Lemma 3.4, we get that

U∗T−1(y) = UT−1(ϕT−1,∗, y) = E
Qϕ

T−1,∗,ψT−1,∗
y,T−1

eγβ
T−1rT−1(x,ϕ∗T−1(y))+γβT rT (XT ).

For t = T − 2, using again (3.18), Lemma 3.3, and Lemma 3.4, we have

U∗T−2(y) = WT−2(y) = eγβ
T−2rT−2(x,ϕ∗T−2(y))

∫
EY

WT−1(y′)Q(dy′ | T − 2, y, ϕ∗T−2(y), ψ∗T−2(y, ϕ∗T−2(y)))

= eγβ
T−2rT−2(x,ϕ∗T−2(y))

∫
EY

UT−1(ϕT−1,∗, y′)Q(dy′ | T − 2, y, ϕ∗T−2(y), ψ∗T−2(y, ϕ∗T−2(y)))

= eγβ
T−2rT−2(x,ϕ∗T−2(y)) ×

∫
EY

(
E
Qϕ

T−1,∗,ψT−1,∗
y′,T−1

eγβ
T−1rT−1(x′),ϕ∗T−1(y′))+γβT rT (XT )

)
Q(dy′ | T − 2, y, ϕ∗T−2(y), ψ∗T−2(y, ϕ∗T−2(y)))

= E
Qϕ

T−2,∗,ψT−2,∗
y,T−2

eγβ
T−2rT−2(x,ϕ∗T−2(y))+γβT−1rT−1(x′),ϕ∗T−1(y′))+γβT rT (XT ).

Hence, we have that U∗T−2(y) is attained at ϕT−2,∗, and therefore U∗T−2(y) = UT−2(ϕT−2,∗, y). The
rest of the proof of (3.19) proceeds in an analogous way. The proof is complete.

4 Exponential Discounted Tamed Quadratic Criterion Example

In this section, we consider a linear quadratic control problem under model uncertainty as a nu-
merical demonstration of the adaptive robust method. To this end, we consider the 2-dimensional
controlled process

Xt+1 = B1Xt +B2ϕt + Zt+1,

where B1 and B2 are two 2× 2 matrices and Zt+1 is a 2-dimensional normal random variable with
mean 0 and convariance matrix

Σ∗ =

(
σ∗,21 σ∗,212

σ∗,212 σ∗,22

)
,

where σ∗,21 , σ∗,212 , and σ∗,22 are unknown. Given observations Z1, . . . , Zt, we consider an unbiased

estimator, say Σ̂t =

(
σ̂2

1,t σ̂2
12,t

σ̂2
12,t σ̂2

2,t

)
, of the covariance matrix Σ∗, given as

Σ̂t =
1

t+ 1

t∑
i=1

ZiZ
>
i ,
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which can be updated recursively as

Σ̂t =
t(t+ 1)Σ̂t−1 + tZtZ

>
t

(t+ 1)2
.

With slight abuse of notations, we denote by Σ, Σ∗, and Σ̂t the column vectors

Σ> = (σ2
1, σ

2
12, σ

2
2)

Σ∗,> = (σ∗,21 , σ∗,212 , σ
∗,2
2 )

Σ̂>t = (σ̂2
1,t, σ̂

2
12,t, σ̂

2
2,t).

The corresponding parameter set is defined as

Θ :=
{

Σ> = (Σ1,Σ12,Σ2) ∈ R3 : 0 ≤ Σ1, Σ2 ≤ Σ, Σ2
12 ≤ Σ1Σ2

}
,

where Σ is some fixed positive constant. Note that the set Θ is a compact subset of R3.

Putting the above together and considering the augmented state process Yt = (Xt, Σ̂t), t ∈ T ,
and some finite control set A ⊂ R2, we get that the function S defined in (2.1) is given by

S(x, a, z) = B1x+B2a+ z, x, z ∈ R2, a ∈ A,

and the function R(t, c, z) showing in (3.1) satisfies that

R(t, c, z) = (c̄1, c̄2, c̄3)>,

(
c̄1 c̄3

c̄3 c̄2

)
=

(t+ 1)(t+ 2)

(
c1 c3

c3 c2

)
+ (t+ 1)zz>

(t+ 2)2
,

where z ∈ R2, t ∈ T ′, c = (c1, c2, c3). Then, function G defined in (3.3) is specified accordingly.

It is well-known that
√
t+ 1(Σ̂t − Σ∗) converges weakly to 0-mean normal dsitribution with

covariance matrix

MΣ =

 2σ∗,41 2σ∗,21 σ∗,212 2σ∗,412

2σ∗,21 σ∗,212 σ∗,21 σ∗,22 + σ∗,412 2σ∗,212 σ
∗,2
2

2σ∗,412 2σ∗,212 σ
∗,2
2 2σ∗,42

 .

We replace every entry in MΣ with the corresponding estimator at time t ∈ T ′ and denote by M̂t(Σ̂t)

the resulting matrix. With probability one, the matrix M̂t(Σ̂t) is positive-definite. Therefore, we
get the confidence region for σ∗,21 , σ∗,212 , and σ∗,22 as

τ(t, c) =
{

Σ ∈ Θ : (t+ 1)(Σ− c)>M̂−1
t (c)(Σ− c) ≤ κ

}
,

where κ is the 1−α quantile of χ2 distribution with 3 degrees of freedom for some confidence level
0 < α < 1.

We further take functions rT (x) = min{b1,max{b2, x>K1x}} and rt(x, a) = min{b1,max{b2, x>K1x+
a>K2a}}, t ∈ T ′, where x, a ∈ R2, b1 > 0, b2 < 0, and K1 and K2 are two fixed 2-by-2 matrices
with negative trace.

For this example, all conditions of the adaptive robust framework of Section 2 are easy to verify,
except for the u.h.c. property of set-valued function τ(t, ·), which we establish in the following
lemma.
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Lemma 4.1. For any t ∈ T ′, the set valued function τ(t, ·) is upper hemi-continuous.

Proof. Fix any t ∈ T ′ and c0 ∈ Θ. According to our earlier discussion, the matrix M̂t(c0) is

positive-definite. Hence, its inverse admits the Cholesky decomposition M̂−1
t (c0) = Lt(c0)L>t (c0).

Consider the change of coordinate system via the linear transformation Lc = L>t (c0)c, and we name
it system-L. Let E ⊂ Θ be open and such that τ(t, c0) ⊂ E. Note that Lτ(t, c0) is a closed ball
centered at Lc0 in the system-L. Also, the mapping L is continuous and one-to-one, hence LE
is an open set and Lτ(t, c0) ⊂ LE. Then, we have that there exists an open ball Br(Lc0) in the
system-L centered at Lc0 with radius r such that Lτ(t, c0) ⊂ Br(Lc0) ⊂ LE.

Any ellipsoid centered at c′ in the original coordinate system has representation (c− c′)>F (c−
c′) = 1 which can be written as (L>t c − L>t c′)L−1F (L>)−1(L>c − L>c′) = 1. Hence, it is still an
ellipsoid in the L-system after transformation. To this end, we define on Θ a function h(c) :=
‖Lc− Lc0‖+ max{ri(c), i = 1, 2, 3}, where ‖ · ‖ is the Euclidean norm in the system-L, and ri(c),
i = 1, 2, 3, are the lengths of the three semi axes of the ellipsoid Lτ(t, c). It is clear that ri(c),
i = 1, 2, 3 are continuous functions.

Next, it is straightforward to check that f is a non-constant continuous function. Therefore,
we consider the set D := {c ∈ Θ : h(c) < r} and see that it is an open set in Θ and non-empty as
c0 ∈ D. Moreover, for any c ∈ D, we get that the ellipsoid Lτ(t, c) ⊂ Br(Lc0). Hence, τ(t, c) ⊂ E,
and we conclude that τ(t, ·) is u.h.c..

Thus, according to Theorem 3.5, the dynamic risk sensitive optimization problem under model
uncertainty can be reduced to the Bellman equations given in (3.10):

WT (y) = eγβ
T rT (x), (4.1)

Wt(y) = sup
a∈A

inf
θ∈τ(t,c)

∫
R2

Wt+1(G(t, y, a, z))eγβ
t(rt(x,a))fZ(z; θ)dz, (4.2)

y = (x, c1, c2, c3) ∈ EY , t = T − 1, . . . , 0,

where fZ(·; θ) is the density function for two dimensional normal random variable with mean 0 and
covariance parameter θ. In the next section, using (4.1)-(4.2), we will compute numerically Wt by
a machine learning based method. Note that the dimension of the state space EY is five in the
present case, for which the traditional grid-based numerical method becomes extremely inefficient.
Hence, we employ the new approach introduced in [CL19] to overcome the challenges met in our
high dimensional robust stochastic control problem.

5 Machine Learning Algorithm and Numerical Results

In this section, we describe our machine learning based method and present the numerical results for
our example. Similarly to [CL19], we discretize the state space the relevant state space in the spirit
of the regression Monte Carlo method and adaptive design by creating a random (non-gridded)
mesh for the process Y = (X,C). Note that the component X depends on the control process,
hence at each time t we randomly select from the set A a value of ϕt, and we randomly generate
a value of Zt+1, so to simulate the value of Xt+1. Next, for each t, we construct the convex hull
of simulated Yt and uniformly generate in-sample points from the convex hull to obtain a random
mesh of Yt. Then, we solve the equations (4.1)–(4.2), and compute the optimal trading strategies
at all mesh points.

The key idea of our machine learning based method is to utilize a non-parametric value function
approximation strategy called Gaussian process surrogate. For the purpose of solving the Bellman
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equations (4.1)–(4.2), we build GP regression model for the value function Wt+1(·) so that we can
evaluate ∫

R2

Wt+1(G(t, y, a, z))eγα
t(rt(x,a))fZ(z; θ)dz.

We also construct GP regression model for the optimal control ϕ∗. It permits us to apply the
optimal strategy to out-of-sample paths without actual optimization, which allows for a significant
reduction of the computational cost.

As the GP surrogate for the value function Wt we consider a regression model W̃t(y) such that

for any y1, . . . , yN ∈ EY , with yi 6= yj for i 6= j, the random variables W̃t(y
1), . . . , W̃t(y

N ) are
jointly normally distributed. Then, given training data (yi,Wt(Y

i)), i = 1, . . . , N , for any y ∈ EY ,

the predicted value W̃t(y), providing an estimate (approximation) of Wt(y) is given by

W̃ (y) =
(
k(y, y1), . . . , k(y, yN )

)
[K + ε2I]−1

(
Wt(y

1), . . . ,Wt(y
N )
)T
,

where ε is a tuning parameter, I is the N × N identity matrix and the matrix K is defined as
Ki,j = k(yi, yj), i, j = 1, . . . , N . The function k is the kernel function for the GP model, and in

this work we choose the kernel as the Matern-5/2. Fitting the GP surrogate W̃t means to estimate
the hyperparameters inside k through the training data (yi,Wt(y

i)), i = 1, . . . , N for which we
take ε = 10−5. The GP surrogates for ϕ∗ is obtained in an analogous way.

Given the mesh points {yit, i = 1, . . . , Nt, t ∈ T ′}, the overall algorithm proceeds as follows:
Part A: Time backward recursion for t = T − 1, . . . , 0.

1. Assume that Wt+1(yit+1), and ϕ∗t+1(yit+1) = (ϕ1,∗
t+1(yit+1), ϕ2,∗

t+1(yit+1)), i = 1, . . . , Nt, are nu-

merically approximated as W t+1(yit+1), ϕ1,∗
t+1(yit+1) and ϕ2,∗

t+1(yit+1), i = 1, . . . , Nt, respectively.

Also suppose that the corresponding GP surrogates W̃t+1, ϕ̃1,∗
t+1, and ϕ̃2,∗

t+1 are fitted through

training data (yit+1,W t+1(yit+1)), (yit+1, ϕ
1,∗
t+1(yit+1)), and (yit+1, ϕ

2,∗
t+1(yit+1)), i = 1, . . . , Nt, re-

spectively.

2. For time t, any a ∈ A, θ ∈ τ(t, c) and each yit, i = 1, . . . , Nt, use one-step Monte Carlo
simulation to estimate the integral

wt(y, a, θ) =

∫
R2

Wt+1(G(t, y, a, z))eγα
t(rt(x,a))fZ(z; θ)dz.

For that, if Z1
t+1, . . . , Z

M
t+1 is a sample of Zt+1 drawn from the normal distribution corre-

sponding to parameter θ, where M > 0 is a positive integer, then estimate the above integral
as

w̃t(y, a, θ) =
1

M

M∑
i=1

W̃t+1(G(t, y, a, Zit+1))eγα
t(rt(x,a)).

3. For each yit, i = 1, . . . , Nt, and any a ∈ A, compute

wt(y
i
t, a) = inf

θ∈τ(t,c)
w̃t(y

i
t, a, θ).

4. Compute
W t(y

i
t) = max

a∈A
wt(y

i
t, a),

and obtain a maximizer ϕ∗t (y
i
t) = (ϕ1,∗

t (yit), ϕ
2,∗
t (yit)), i = 1, . . . , Nt.
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5. Fit a GP regression model for Vt( · ) using the results from Step 4 above. Fit GP models for
ϕ1,∗
t ( · ) and ϕ2,∗

t ( · ) as well; these are needed for obtaining values of the optimal strategies for
out-of-sample paths in Part B of the algorithm.

6. Goto 1: Start the next recursion for t− 1.

Part B: Forward simulation to evaluate the performance of the GP surrogates ϕ1,∗
t ( · ) and ϕ2,∗

t ( · ),
t = 0, . . . , T − 1, over the out-of-sample paths.

1. Draw K > 0 samples of i.i.d. Z∗,i1 , . . . , Z∗,iT , i = 1, . . . ,K, from the normal distribution
corresponding to the assumed true parameter θ∗.

2. All paths will start from the initial state y0. The state along each path i is updated according
to G(t, yit, ϕ̃

∗
t (y

i
t), Z

∗,i
t+1), where ϕ̃∗t = (ϕ̃1,∗

t , ϕ̃2,∗
t ) is the GP surrogate fitted in Part A. Also,

compute the running reward rt(x
i
t, ϕ̃
∗
t (y

i
t)).

3. Obtain the terminal reward rT (xiT ), generated by ϕ̃∗ along the path corresponding to the

sample of Z∗,i1 , . . . , Z∗,iT , i = 1, . . . , K, and compute

W ar :=
1

γ
ln

(
1

K

K∑
i=1

eγ(
∑T−1
t=0 βtrt(xit,ϕ̃

∗
t (yit))+β

T rT (xiT ))

)
(5.1)

as an estimate of the performance of the optimal adaptive robust risk sensitive strategy ϕ∗.

For comparison, we also analyze the optimial risk sensitive strategies of the adaptive and strong
robust control methods. In (4.2), if we take τ(t, c) = {c} for any t, then we obtain the adaptive
risk sensitive strategy. On the other hand, by taking τ(t, c) = Θ for any t and c, we get the strong
robust strategy. We will compute W ad and W sr the risk sensitive criteria of adaptive and strong
robust, respectively, in analogy to (5.1).

Next, we apply the machine learning algorithm described above by solving (4.1)–(4.2) for a
specific set of parameters. In particular, we take: T = 10 with one period of time corresponding to
one-tenth of a year; the discount factor being equal to 0.3 or equivalently β = 0.3; the initial state
X>0 = (2, 2); the confidence level α = 0.1; in Part A of our algorithm the number of one-step Monte
Carlo simulations is M = 100; the number of forward simluations in Part B is taken K = 2000; the
control set A is approximated by the compact set [−1, 1]2; the relevant matrices are

B1 = B2 =

(
0.5 −0.1
−0.1 0.5

)
, K1 =

(
0.7 −0.2
−0.2 0.7

)
, K2 =

(
−200 100
100 −200

)
.

The assumed true covariance matrix for Zt, t ∈ T , as well as initital guess are

Σ∗ =

(
0.009 0.006
0.006 0.016

)
, Σ̂0 =

(
0.00625 0.004
0.004 0.02025

)
,

respectively. The parameter set is chosen as Θ = τ(0, c0), where c>0 = (0.00625, 0.004, 0.02025).
For all three control approaches, we compute W ar, W ad, and W sr, respectively, for the risk sensitive
parameters γ = 0.2 and γ = 1.5.

Finally, we report on the computed values of the optimality criterion corresponding to three
different methods: adaptive robust (AR), adaptive (AD) and strong robust (SR).



16 Bielecki, Chen, Cialenco

W ar W ad W sr

γ = 0.2 -319.81 -323.19 -329.53

γ = 1.5 -427.76 -427.97 -442.97

Table 1: Risk sensitive criteria for AR, AD, and SR.
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