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Abstract. We provide a new way to compute and evaluate Gaussian radial basis function interpolants in a stable way
with a special focus on small values of the shape parameter, i.e., for “flat” kernels. This work is motivated by the fundamental
ideas proposed earlier by Bengt Fornberg and his co-workers. However, following Mercer’s theorem, an L2(Rd, ρ)-orthonormal
expansion of the Gaussian kernel allows us to come up with an algorithm that is simpler than the one proposed by Fornberg,
Larsson and Flyer and that is applicable in arbitrary space dimensions d. In addition to obtaining an accurate approximation of
the RBF interpolant (using many terms in the series expansion of the kernel) we also propose and investigate a highly accurate
least-squares approximation based on early truncation of the kernel expansion.

Key words. Radial basis functions, Gaussian kernel, stable evaluation, Mercer’s theorem, eigenfunction expansion, QR
decomposition.

AMS subject classifications. 65D05, 65D15, 65F35, 41A63, 34L10

1. Introduction. It is well-known that the standard or direct approach to interpolation at locations
{x1, . . . ,xN} ⊂ R

d with Gaussian kernels

K(x, z) = e−ε2‖x−z‖2

, x, z ∈ R
d, (1.1)

leads to a notoriously ill-conditioned interpolation matrix K = [K(xi,xj)]
N
i,j=1 whenever ε, the so-called

shape parameter of the Gaussian, is small, i.e., when the set {e−ε2‖·−xj‖2

, j = 1, . . . , N} becomes numerically
linearly dependent on R

d. This leads to severe numerical instabilities and limits the practical use of Gaussians
— even though it is well known that one can approximate a function from the native reproducing kernel
Hilbert space associated with the Gaussian kernel with spectral approximation rates (see, e.g., [7, 30]). The
fact that most people are content with working in the “wrong” basis therefore has sparked many discussions,
including the so-called uncertainty or trade-off principle [5, 22]. This uncertainty principle is tied directly to
the use of the standard (“wrong”) basis, and we demonstrate here that it can be circumvented by choosing
a better — orthonormal — basis.

The idea of using a “better basis” for radial basis function (RBF) interpolation is not a new one. It
was successfully employed in [1] to obtain well-conditioned (and therefore numerically stable) interpolation
matrices for polyharmonic splines in the context of a domain decomposition method. The technique used
there — reverting to a homogeneous modification of the positive definite reproducing kernel associated
with the conditionally positive definite polyharmonic spline kernel — was totally different from the one we
pursue here. Our basis comes from a series expansion of the positive definite kernel and is rooted in the
pioneering work of [20] and [26]. Combining series expansions of the kernel with a QR decomposition of
the interpolation matrix to obtain a so-called RBF-QR algorithm was first proposed in [13] for interpolation
with zonal kernels on the unit sphere S

2 and in [12] for interpolation with Gaussian kernels using products
of Chebyshev polynomials and spherical harmonics. These latter two papers motivated the results presented
here.

The main novelties presented in our work lie in establishing the general connection between the RBF-QR
algorithm and Mercer or Hilbert-Schmidt series expansions of a positive definite kernel K defined on Ω×Ω
of the form

K(x, z) =

∞∑
n=1

λnϕn(x)ϕn(z), x, z ∈ Ω,

with appropriate positive scalars λn and functions ϕn. Here Ω can be a rather general set. Having such
an expansion allows us to formulate interpolation and approximation algorithms that can be implemented
stably without too much trouble in any space dimension (see Section 3.2 for more details). While this new
interpretation opens the door to finding stable evaluation algorithms for many different kernels (by providing
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their eigenfunction expansions), we will focus in the following on Ω ⊆ R
d and the Gaussian kernel (1.1). We

also consider an alternate highly accurate least-squares approximation algorithm for scattered data fitting
with Gaussian kernels that in this form seems to be new to the literature even though general least-squares
theory clearly suggests such an approach. This latter least-squares technique can again be transferred to any
kernel whose eigenfunction expansion is available. For the Gaussian kernel, both of our algorithms extend
in a natural way to anisotropic Gaussian kernels.

In the following we will discuss the expansion we use for the Gaussian kernel, review the idea of the
RBF-QR algorithm and discuss a number of details that are crucial for the implementation of our algorithms.
Everything is supported with numerical experiments of Gaussian RBF interpolation and approximation of
scattered data in space dimensions ranging from d = 1 to d = 5.

2. A Simple Series Expansion of the Gaussian. It is almost trivial to get an infinite series ex-
pansion for the one-dimensional Gaussian kernel (all this uses is the standard Taylor series expansion of the
exponential function):

e−ε2(x−z)2 = e2ε
2xze−ε2x2

e−ε2z2

=

∞∑
n=0

(2ε2)n

n!
xne−ε2x2

zne−ε2z2

. (2.1)

According to this expansion we might be tempted to define

λn =
(2ε2)n

n!
, ϕn(x) = xne−ε2x2

, n = 0, 1, 2, . . . .

Clearly, the functions ϕn, n = 0, 1, 2, . . ., are linearly independent on R and therefore form an alternate
basis for the reproducing kernel Hilbert space associated with the one-dimensional Gaussian kernel. However,
based on the hypothesis that we want our basis to consist of orthonormal functions, we should check whether
the ϕn satisfy this condition.

We first look at the normalization of the ϕn. The following is easy to get from tables:∫ ∞

−∞
ϕ2
n(x)dx =

∫ ∞

−∞
x2ne−2ε2x2

dx =
Γ
(
n+ 1

2

)
(2ε2)n+

1
2

.

A problem with these functions now arises since the ϕn are not orthogonal in the standard L2 inner product
used here. In general we have ∫ ∞

−∞
ϕn(x)ϕm(x)dx =

∫ ∞

−∞
xn+me−ε2x2

dx �= 0.

For example, the integral for (n,m) = (1, 3) is the same as the (2, 2) integral, and therefore nonzero.

It actually turns out that the functions ϕn defined above are orthogonal, but only if interpreted in spaces
of complex-valued functions (see [27]). This, however, does not seem to be practical. In fact, the authors
of [12] claimed the series (2.1) was not ideal for stable “flat-limit” calculations since it does not provide
an effective separation of the terms that cause the ill-conditioning associated with small ε-values. Most
likely, the poor conditioning of this new basis is due to the fact that for ε → 0 the functions x �→ xne−ε2x2

converge to the standard monomial basis giving rise to the notoriously ill-conditioned Vandermonde matrix.
Therefore, the authors of [12] followed up their initial expansion with a transformation to polar, or more
generally spherical, coordinates so that their expansions end up being in terms of spherical harmonics. In
addition, Chebyshev polynomials (which do represent an orthogonal eigenfunction basis — but only in the
radial direction of the transformed coordinate system) were introduced to improve the numerical stability.

In Section 3.1 we consider an alternate series expansion of the Gaussian kernel that provides us with
functions that are orthonormal over R

d. The crucial ingredient will be the introduction of an appropriate
weight function ρ into the inner product.
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3. Eigenfunction Expansions. Mercer’s theorem [20] (or alternatively Hilbert-Schmidt theory [26])
states that every positive definite kernel K can be represented in terms of the (positive) eigenvalues λn and
(normalized) eigenfunctions ϕn of an associated compact integral operator (see (3.2) for an example), i.e.,

K(x, z) =

∞∑
n=1

λnϕn(x)ϕn(z). (3.1)

To establish a connection between Mercer’s theorem and generalized Fourier series as obtained via the much
better known Sturm-Liouville eigenvalue problem we consider the following ODE and boundary conditions

ϕ′′(x) +
1

λ
ϕ(x) = 0

ϕ(0) = ϕ(1) = 0

as an example. For this problem it is well-known that we have eigenvalues and eigenfunctions

λn =
1

n2π2
, ϕn(x) = sinnπx, n = 1, 2, . . . .

The Green’s function G for this ODE boundary value problem can be expressed as a Fourier sine series (with
parameter z)

G(x, z) = min(x, z)− xz =

{
x(1 − z), x < z

z(1− x), x > z
=

∞∑
n=1

an(z)ϕn(x).

Here the Fourier coefficients are given by

an(z) =
sinnπz

(nπ)2
= λnϕn(z),

so that we can also identify G with K and write

K(x, z) =

∞∑
n=1

λnϕn(x)ϕn(z).

This kernel is positive definite (since the eigenvalues are positive) and satisfies Mercer’s theorem where 1/λn
and ϕn are the eigenvalues and eigenfunctions of the (inverse) integral operator defined by

(TKf)(x) =
∫ 1

0

K(x, z)f(z) dz. (3.2)

The kernel K(x, z) = min(x, z)− xz gives rise to the reproducing kernel Hilbert space

H1
0 (0, 1) =

{
f ∈ H1(0, 1) : f(0) = f(1) = 0

}
whose inner product is

〈f, g〉 =
∫ 1

0

f ′(x)g′(x) dx.

This is in fact a well-known Sobolev space similar to those often used in the theory of finite elements. On the
other hand, reproducing kernel Hilbert spaces are the kind of function spaces positive definite kernels “live
in”. The connection between positive definite kernels and Green’s kernels is discussed in detail in [6, 10, 11].

As is well known from Fourier theory, Fourier series expansions are in many ways “optimal” (orthogo-
nality, best approximation in the mean-square sense, fast decay of eigenvalues, etc.). The same is true for
the kernel eigenfunction expansions guaranteed by Mercer’s theorem and therefore ensures the success of our
approach.
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3.1. An Eigenfunction Expansion for Gaussians in L2(R, ρ). For the remainder of this section
we will concentrate on the one-dimensional situation. The generalization to multiple space dimensions d will
be established in Section 3.2 in a straightforward manner using the product form of the Gaussian kernel.

It turns out that one can derive (see [21, 31]) a Mercer expansion

e−ε2(x−z)2 =

∞∑
n=1

λnϕn(x)ϕn(z)

for the Gaussian kernel (1.1), with the functions ϕn being orthonormal in L2(R, ρ). Here the inner product
that determines how we measure orthogonality of functions in L2(R) is weighted by

ρ(x) =
α√
π
e−α2x2

, α > 0. (3.3)

This formulation ensures that the weight function has unit integral, and that the parameter α acts on the
same scale as the shape parameter ε of the Gaussian kernel. Moreover, both of these parameters act as
length scales for the spatial variable x and use the same units. Since the parameter α determines how the
global domain R is “localized” we can interpret it as a global scale parameter.

In order to match up our choice of parameters with those used in [21], we replace the original parameters
a, b, and c =

√
a2 + 2ab with our own parameters α, β (to be introduced below) and ε in the following way:

a =
α2

2
, b = ε2, c =

α2β2

2
.

Using this setup along with the following auxiliary parameters β, γn and δ defined in terms of α and ε, i.e.,

β =

(
1 +

(
2ε

α

)2
) 1

4

, γn =

√
β

2n−1Γ(n)
, δ2 =

α2

2

(
β2 − 1

)
, (3.4)

the eigenfunctions ϕn of the Gaussian turn out to be

ϕn(x) = γne
−δ2x2

Hn−1(αβx), n = 1, 2, . . . , (3.5a)

where Hn−1 are the classical Hermite polynomials of degree n− 1 defined by their Rodrigues’ formula

Hn−1(x) = (−1)n−1ex
2 dn−1

dxn−1
e−x2

for all x ∈ R, n = 1, 2, . . . ,

so that ∫
R

H2
n−1(x) e

−x2

dx =
√
π 2n−1Γ(n) for n = 1, 2, . . . .

In order to get a perfect match of our formulas with those in [21], the reader needs to take into account
the corrected normalization provided in the errata for [21]. It should also be noted that this formulation is
related to Mehler’s formula and rescaled Hermite functions [28, Problems and Exercises, Item 23]. However,
in our work we do not directly employ Hermite functions (which are known to be the eigenfunctions of the
Schrödinger equation) since our eigenfunctions include an extra exponential factor that can be attributed to
the localization effects mentioned above.

The corresponding eigenvalues for the Gaussian are

λn =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n−1

, n = 1, 2, . . . . (3.5b)

As already mentioned, α is related to the global scale of the problem, while the shape parameter ε is
related to the local scale of the problem. In addition, the parameter δ also reflects the local scale of the
problem. However, while ε gives us the scale of the kernel (which in turn defines the underlying reproducing
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kernel Hilbert space along with a length scale reflected in its norm), the auxiliary parameter δ reflects the
length scale of the eigenfunctions.

In principle, the parameters α and ε (or α and δ) can be chosen freely. However, this choice is not
totally independent if one wants a convergent and stable algorithm (see the discussion in Section 5.3 for
more details). As mentioned in the introduction, the shape parameter ε has important consequences for the
stability and accuracy of Gaussian kernel interpolants. In this paper we will generally be interested in small
values of ε as this is the range of values of the shape parameter that incurs numerical instability, often with
the promise of higher accuracy. It is our goal to circumvent this instability by working with eigenfunctions
instead of the usual translates of the Gaussian kernel.

Note that for ε → 0, i.e., for “flat” Gaussians, and fixed α we always have β → 1 and δ → 0. We
see that in this case the eigenfunctions ϕn converge to the normalized Hermite polynomials H̃n−1(x) =

1√
2n−1Γ(n)

Hn−1(αx), and the eigenvalues behave like
(

ε2

α2

)n−1

. This shows that the main source of ill-

conditioning of the Gaussian basis is associated with the eigenvalues, and the RBF-QR strategy suggested
in [12, 13] can be employed as explained in Section 4.

These observations also provide another simple explanation as to why the “flat limit” of a Gaussian
interpolant is a polynomial (see, e.g., [2, 4, 14, 17, 18, 19, 24]).

Looking at (3.5b), one can observe that the eigenvalues λn → 0 exponentially fast as n → ∞ since the
inequality ε2 < α2 + δ2 + ε2 is always true. This idea was used in [7, 8] to establish dimension-independent
convergence rates for approximation with Gaussian kernels.

3.2. Multivariate Eigenfunction Expansion. As mentioned above, the multivariate case is easily
obtained using the tensor product form of the Gaussian kernel, i.e., for d-variate functions we have

K(x, z) = exp
(
−ε21(x1 − z1)

2 − ...− ε2d(xd − zd)
2
)

=
∑
n∈Nd

λnϕn(x)ϕn(z),

where

λn =

d∏
j=1

λnj =

d∏
j=1

√
α2
j

α2
j + δ2j + ε2j

(
ε2j

α2
j + δ2j + ε2j

)nj−1

, (3.6a)

ϕn(x) =

d∏
j=1

ϕnj (xj) =

d∏
j=1

γnj exp
(
−δ2jx2j

)
Hnj−1(αjβjxj), (3.6b)

and x = (x1, . . . , xd) ∈ R
d. Note that this formulation allows us to take different shape parameters εj and

different integral weights αj for different space dimensions (i.e., K may be an anisotropic kernel), or we can
take them all equal, i.e., αj = α and εj = ε, j = 1, . . . , d (and then K is isotropic or radial). For the purposes
of this work, we restrict ourselves to using the same αj and εj in all dimensions, but in future work we plan
to investigate the use of individual αj and εj for each dimension.

4. A Stable Evaluation Algorithm. As already mentioned earlier, the starting point in [12] was an
expansion of the form (2.1), which was deemed ineffective in overcoming the ill-conditioning associated with
the use of the standard Gaussian kernel basis. If we instead use an eigenfunction expansion as discussed
in the previous section, then the source of ill-conditioning can be separated from the eigenfunctions (which
are orthogonal by definition) and transferred to the eigenvalues. Moreover, for a smooth kernel such as the
Gaussian, the eigenvalues decay very quickly so that we should now be able to directly follow the QR-based
strategy suggested for the spherical setting in [13].

4.1. The RBF-QR Algorithm. In particular, we now use the Gaussian kernel (1.1) along with its
eigenvalues and eigenfunctions (3.6) as discussed above. To keep the notation simple, we assume that the
eigenvalues and their associated eigenfunctions have been sorted linearly so that we can enumerate them
with integer subscripts instead of the multi-index notation used in (3.6). This matter is not a trivial one and
needs to be dealt with carefully in the implementation (see some comments in Section 4.2.2). The QR-based
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algorithm of [12] corresponds to the following: using the eigen-decomposition of the kernel function K, we
can rewrite the kernel matrix K appearing in the linear system for the interpolation problem as

K =

⎛⎜⎝ K(x1,x1) . . . K(x1,xN )
...

...
K(xN ,x1) . . . K(xN ,xN)

⎞⎟⎠

=

⎛⎜⎝ ϕ1(x1) . . . ϕM (x1) . . .
...

...
ϕ1(xN ) . . . ϕM (xN ) . . .

⎞⎟⎠
⎛⎜⎜⎜⎜⎝

λ1
. . .

λM
. . .

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ϕ1(x1) . . . ϕ1(xN )
...

...
ϕM (x1) . . . ϕM (xN )

...
...

⎞⎟⎟⎟⎟⎠ .

Of course we can not conduct computation on an infinite matrix, so we need to choose a truncation value
M after which we neglect the remaining terms in the series. Since the eigenvalues λn → 0 as n → ∞ we
have a necessary condition to encourage such a truncation. A particular choice of M will be discussed in
Section 4.2.2, but assuming that an M has been chosen, the system changes to the much more manageable

K =

⎛⎜⎝ϕ1(x1) . . . ϕM (x1)
...

...
ϕ1(xN ) . . . ϕM (xN )

⎞⎟⎠
︸ ︷︷ ︸

=Φ

⎛⎜⎝λ1 . . .

λM

⎞⎟⎠
︸ ︷︷ ︸

=Λ

⎛⎜⎝ ϕ1(x1) . . . ϕ1(xN )
...

...
ϕM (x1) . . . ϕM (xN )

⎞⎟⎠
︸ ︷︷ ︸

=ΦT

,

or simply

K = ΦΛΦT . (4.1)

Although our specific choice of M is postponed until later, it is important to note that since it is our
immediate goal to avoid the ill-conditioning associated with radial basis interpolation as ε → 0, we require
M ≥ N . This is in accordance with the work of Fornberg, and seeks to ensure that all of the eigenfunctions
ϕn, n = 1, . . . ,M , used above are obtained to machine precision. This also justifies — for all practical
computations — our continued use of an equality sign for the matrix factorization of K.

We are interested in obtaining a new basis in which the interpolation can be conducted without the
condition issues associated with the matrix K, while still remaining in the same space spanned by the
Gaussian kernel function K. Thus an invertible matrix X−1 is needed such that KX−1 is better conditioned
than K. Of course, the simple choice would be X−1 = K−1, but if that were available to machine precision
this problem would be trivial.

The structure of the matrix Φ provides one possible avenue since its nth column contains only values
of the nth eigenfunction at all the data sites x1, . . . ,xN . This provides the opportunity to conduct a QR
decomposition of Φ without mixing eigenfunctions of different orders. For M > N , the matrix Φ is “short
and fat”, meaning that the QR decomposition takes the form⎛⎜⎝ϕ1(x1) . . . ϕN (x1) | ϕN+1(x1) . . . ϕM (x1)

...
... |

...
...

ϕ1(xN ) . . . ϕN (xN ) | ϕN+1(xN ) . . . ϕM (xN )

⎞⎟⎠ = QR = Q

⎛⎝ |
R1 | R2

|

⎞⎠ ,

where the R1 block is a square matrix of size N and R2 is N × (M −N).

Substituting this decomposition for ΦT in (4.1) we see that

K = ΦΛRTQT .

By imposing the same block structure on Λ that was imposed on R we can rewrite this full system in blocks
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as

K = Φ

(
Λ1

Λ2

)(
RT
1

RT
2

)
QT

= Φ

(
Λ1R

T
1

Λ2R
T
2

)
QT

= Φ

(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
Λ1R

T
1 Q

T . (4.2)

The final form of this representation is significant because of the structure of the Λ2R
T
2 R

−T
1 Λ−1

1 term. In
Section 3.1 we noticed that the eigenvalues λn → 0 as n → ∞ (and especially quickly if ε2 is small relative
to α2 + δ2). This means that the eigenvalues in Λ2 are smaller than those in Λ1 and thus none of the entries
in RT

2 R
−T
1 are magnified when we form Λ2R

T
2 R

−T
1 Λ−1

1 .

Since we can perform the multiplications by the diagonal matrices Λ2 and Λ−1
1 analytically we avoid the

ill-conditioning that would otherwise be associated with underflow (the values in Λ2 are as small as ε2M−2)
or overflow (the values in Λ−1

1 are as large as ε−2N−2).

Let us now return to the original goal of determining a new basis that allows us to conduct the inter-
polation in a safe and stable manner. Since we have now concluded that as ε → 0 the Λ2R

T
2 R

−T
1 Λ−1

1 term
poses no problems, we are left to consider the Λ1R

T
1 Q

T term. This matrix will be nonsingular if ΦT has
full row rank because Λ1 is diagonal with nonzero (in exact arithmetic) values and R1 is upper triangular
and will have the same rank as ΦT . The orthogonality of the eigenfunctions ϕn, n = 1, . . . ,M , ensures the
nonsingularity of R1 and thus a good choice for the matrix X is given by

X = Λ1R
T
1 Q

T . (4.3)

We are now interested in the new system defined by

Ψ = KX−1

=

[
Φ

(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
Λ1R

T
1 Q

T

] [
Λ1R

T
1 Q

T
]−1

= Φ

(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
. (4.4)

Here we used (4.3) and the decomposition (4.2) of K. We can interpret the columns of Ψ as being created
by new basis functions which can be thought of as the first N eigenfunctions plus a correction involving a
linear combination of the next M −N eigenfunctions:

Ψ =

⎛⎜⎝ϕ1(x1) . . . ϕN (x1) | ϕN+1(x1) . . . ϕM (x1)
...

... |
...

...
ϕ1(xN ) . . . ϕN (xN ) | ϕN+1(xN ) . . . ϕM (xN )

⎞⎟⎠(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)

=

⎛⎝ |
Φ1 | Φ2

|

⎞⎠(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
= Φ1 + Φ2

[
Λ2R

T
2 R

−T
1 Λ−1

1

]
. (4.5)

In order to see the actual basis functions we consider the vector Ψ(x) defined as

Ψ(x)T =
(
ψ1(x) . . . ψN (x)

)
=

(
ϕ1(x) . . . ϕM (x)

)(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
.
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This representation is in the same fashion that the standard kernel basis could be written as

k(x)T =
(
K(x,x1) . . . K(x,xN )

)
=

(
ϕ1(x) . . . ϕM (x)

)
ΛΦT (4.6)

=
(
ϕ1(x) . . . ϕM (x)

)( IN
Λ2R

T
2 R

−T
1 Λ−1

1

)
Λ1R

T
1 Q

T ,

only now the ill-conditioning related to Λ1 has been removed from the basis.
The approach described in this section should be applicable whenever one knows the eigenfunction (or

other orthonormal basis) expansion of a positive definite kernel. One such example is provided by the ap-
proach taken in [13] for stable radial basis function approximation on the sphere, where the connection
between the (zonal) kernels being employed on the sphere and spherical harmonics, which are the eigenfunc-
tions of the Laplace-Beltrami operator on the sphere, has traditionally been a much closer one (see, e.g.,
[9]).

4.2. Implementation Details. The interpolation problem described in Section 1 can be written in
matrix notation as

Kc = y, (4.7)

where K is the N×N kernel matrix, y = (y1, . . . , yN)T is input data denoting the function values to be fitted
at the points x1, . . . ,xN , and c is the unknown vector of coefficients. In the new basis Ψ = (ψ1, . . . , ψN )T

the system is still of size N ×N and can be written in the form

Ψb = y,

where the matrix Ψ was defined in (4.4), y is as above, and b is a new vector of coefficients. Once we have
solved for these coefficients, the Gaussian kernel interpolant s can be evaluated at an arbitrary point x ∈ R

d

via

s(x) = Ψ(x)Tb.

Using (4.4), the linear solve itself takes the form

Φ

(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
b = y, (4.8)

where, as before

Φ = Q

⎛⎝ R1 R2

⎞⎠ =

⎛⎝ Φ1 Φ2

⎞⎠ ,

and

Λ =

(
Λ1

Λ2

)
with the first block Λ1 of size N ×N .

4.2.1. Some linear algebra details. At this point, the system (4.8) could be solved by conducting
the matrix-matrix multiplication and working with the resulting N ×N matrix:[

Φ1 + Φ2

[
Λ2R

T
2 R

−T
1 Λ−1

1

]]
b = y.

Doing so, however, would disregard the QR decomposition that was already computed. Instead, we can use
the fact that Φ = QR in (4.8) to rewrite the system as

Q
(
R1 R2

)(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
b = y

⇐⇒ QR1

(
IN R−1

1 R2

)(
IN

Λ2R
T
2 R

−T
1 Λ−1

1

)
b = y

⇐⇒ QR1

[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]
b = y .
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This is especially nice because the term R−1
1 R2 is just the transpose of RT

2 R
−T
1 and thus its value can be

stored during earlier work and the cost of O(N2(M −N)) can be saved.
Now the linear solve can be broken into two parts, where

QR1b̂ = y, (4.9a)[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]
b = b̂. (4.9b)

Solving (4.9a) is almost trivial, since Q is orthonormal and R1 is upper triangular. Solving (4.9b) can be
done cleverly depending on the value of M :

• If M is chosen such that M < 2N , then the linear system can be treated as a low rank update to
the identity and the inverse can be applied with the Sherman-Morrison formula. Total cost would
be O

(
(N2(M −N))

)
.

• If M ≥ 2N , the cost of the interior inverse in the Sherman-Morrison formula would be greater than
simply solving the original system, so a direct approach is preferred. Total cost would be O(N3).

Because this search for a new basis is conducted with the goal of working in the “flat” kernel regime, it is
logical to assume that we are dealing with small ε. Therefore, it is reasonable to assume that the value of
M can be chosen relatively close to N because additional terms would be truncated. As a result, (4.9b) will
in general be solved using the Sherman-Morrison formula, i.e.,

b =
[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]−1
b̂

=
[
IN − R−1

1 R2

[
IM−N + Λ2R

T
2 R

−T
1 Λ−1

1 R−1
1 R2

]−1
Λ2R

T
2 R

−T
1 Λ−1

1

]
b̂ .

As mentioned earlier, here the diagonal scaling by Λ−1
1 and Λ2 is performed analytically.

4.2.2. Choosing the length of the eigenfunction expansion. Up until now we have treated the
truncation length M as a fixed but unknown quantity. For the RBF interpolation algorithm discussed thus
far, our choice of M coincides with that of [13], where M is chosen as the smallest value that satisfies
λM < εmachλN . Here εmach is machine precision (assumed to be 10−16) and λn is defined in (3.5b). Solving
this inequality for M produces√

α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)M−1

< εmach

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)N−1

(
ε2

α2 + δ2 + ε2

)M−N

< εmach

(M −N) log

(
ε2

α2 + δ2 + ε2

)
< log(εmach)

M > N + log(εmach)

(
log

(
ε2

α2 + δ2 + ε2

))−1

. (4.10)

This bound is derived in 1D, although it extends naturally to multiple dimensions. In doing so, the uniqueness
of the eigenfunction expansion is lost because there may be several multi-indices M which satisfy the
inequality. Rederiving this for a d-dimensional problem using |M | =

∑
jMj and (3.6a) produces(

α2

α2 + δ2 + ε2

)d/2 (
ε2

α2 + δ2 + ε2

)|M |−d

< εmach

(
α2

α2 + δ2 + ε2

)d/2 (
ε2

α2 + δ2 + ε2

)|N |−d

(
ε2

α2 + δ2 + ε2

)|M |−|N |
< εmach

|M | > |N |+ log(εmach)

(
log

(
ε2

α2 + δ2 + ε2

))−1

. (4.11)

We provide a simple example to illustrate the multivariate case. Suppose d = 2, ε2/(α2 + δ2 + ε2) = e−1,
N = 5, and εmach = 10−16. This yields the inequality

|M | > |N |+ 16.
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When trying to determine N to separate the eigenfunctions from the correction we need to consider the
indices of the dominating eigenvalue, i.e.,

N1 = 1 2 1 3 2∗ 1 4 ...
N2 = 1 1 2 1 2∗ 3 1 ...

Here we have marked the entries that correspond to the fifth index with a star. The eigenfunctions corre-
sponding to these entries are included in the Φ1 matrix and any later terms are pushed to the correction.
Note, however, that there are several entries (marked in bold) that correspond to eigenvalues of the same
magnitude as the fifth index, and we could just as easily have chosen these for the Φ1 matrix instead. This
exposes a non-uniqueness, but we do not believe this to be a problem as similar non-uniqueness results were
described in [12].

Since we chose N = 5 for this example we see that |N | = 4, and thus we need to select |M | > 20 to
meet our truncation criterion. Of course, thanks to Pascal’s triangle, we know that there are 19 different
values which satisfy |M | = 20 meaning that the number of eigenfunctions needed in the correction Φ2 may
be quite significant.

5. Numerical Experiments I. To determine the eigenfunction expansion’s ability to accurately carry
out radial basis interpolation with Gaussian kernels in the ε → 0 limit, some experiments need to be con-
ducted. All of our numerical experiments were performed in Matlab, using the built-in QR factorization
and triangular solvers for the RBF-QR results. A Matlab implementation of a direct solver via the “back-
slash” operator \ (mldivide) was used to produce the RBF-Direct results for comparison. The polynomial
fits were generated with the Matlab function polyfit. The software used for these numerical experiments
is available online at

http://math.iit.edu/~mccomic/gaussqr.

5.1. 1D Interpolation. The first set of experiments is limited to 1D and studies the effect of increasing
the number of data points N . All the data points are located at the Chebyshev nodes within an interval
[xa, xb], i.e.,

xi =
1

2
(xb + xa)−

1

2
(xb − xa) cos

(
π
i− 1

N − 1

)
, i = 1, . . . , N. (5.1)

The interpolation is conducted using the eigenfunction-QR algorithm (abbreviated RBF-QR) over shape
parameter values logarithmically spaced within ε ∈ [10−2, 100.4]. For comparison, the solution to (4.7) is
computed using the traditional [5] RBF solution (abbreviated RBF-Direct) over ε ∈ [10−2, 101].

Input values yi are obtained by sampling a function f at the points xi and the error in the interpolant
s is computed by

error =
1

N̄

√√√√ N̄∑
k=1

[
f(x̄k)− s(x̄k)

f(x̄k)

]2
, (5.2)

where the x̄k are N̄ uniformly spaced points at which s is compared to f . For the 1D experiments, N̄ = 1000,
although this choice was made arbitrarily.

The experiments in 1D can be seen in Figure 5.1. Two functions were considered, first

f1(x) =
sinhx

1 + coshx
, x ∈ [−3, 3],

using N = {10, 20, 30} and α = 1, which can be seen in Figure 5.1a. The second function considered was

f2(x) = sin
(x
2

)
− 2 cosx+ 4 sin(πx), x ∈ [−4, 4],

using N = {10, 20, 30} and α = .65, which can be seen in Figure 5.1b.
These initial results confirm that for ε → 0 the RBF-QR algorithm evaluates the Gaussian interpolant

without the ill-conditioning associated with the use of RBF-Direct. Note that two different choices of α were
used for these two problems. We will elaborate on this further in later sections.
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(a) f1(x) = sinhx(1 + coshx)−1
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(b) f2(x) = sin
(
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2

)− 2 cos x+ 4 sin(πx)

Fig. 5.1: Comparison of RBF-QR and RBF-Direct; dashed horizontal lines represent errors of limiting
polynomial interpolants.

The two examples presented here also illustrate that interpolation with Gaussian kernels may be more
accurate than polynomial interpolation (which corresponds to the ε→ 0 limit) — even though both methods
are known to be spectrally accurate. The errors for the corresponding polynomial interpolants are included
as dashed horizontal lines in Figure 5.1. We point out that in some cases the Gaussian kernel (for ε � 0)
beats the polynomial interpolant by several orders of magnitude.

5.2. 2D Interpolation. In Figure 5.2 we show the errors for a series of interpolation experiments with
different values of ε for a small 2D problem involving the function

f3(x, y) = cos(x2 + y2), (x, y) ∈ [−3, 3]2,

sampled on a tensor product grid of Chebyshev nodes. The RBF-QR scheme works as it should, but the
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Fig. 5.2: RBF-QR is able to resolve the interpolant to f3 accurately as ε→ 0.

computational cost is quite significant, which is why fewer ε values were considered for RBF-QR than in the
previous 1D graphs. This cost issue will be discussed further in Section 6.
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5.3. Complications with the Interpolation Algorithm. Although the previous experiments suc-
cessfully illustrate the usefulness of the eigenfunction expansion for the solution of the RBF interpolation
problem, Figure 5.3 exposes some subtle complexities of our RBF-QR interpolation algorithm when we
perform a similar test with the function

f4(x) = 10e−x2

+ x2, x ∈ [−3, 3].

Specific attention should be paid to the effect of increasing N on the emerging oscillations in the error of
the interpolant.
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(a) α = 1 produces bad results for small ε and larger N .
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(b) α = 3 produces bad results for large ε.

Fig. 5.3: Different values of α have a significant effect on the stability of the interpolation to f4 at N
Chebyshev points in [−3, 3].

This new source of error is separate from the instability encountered in the ε→ 0 limit, although it has
similar roots. Recall the structure of the eigenfunctions from earlier:

ϕn(x) = γne
−δ2x2

Hn−1(αβx). (3.5a)

In much the same way as ε is a significant source of ill-conditioning for the original Gaussian basis, the value
of δ (and therefore α, since we defined δ in terms of α and ε, see (3.4)) may now be a source of ill-conditioning
for the eigenfunction basis.

The reader may recall that the interpolation problems under consideration all exist on a compact domain,
but the orthogonality properties of the eigenfunctions demand integration to infinity. The choice of α
is a balancing act between interacting eigenfunctions to achieve accuracy (small α) and quickly decaying
eigenfunctions to numerically maintain orthogonality on the compact domain (large α).

To better understand what is going on here, we fix α and analyze two limits:

as ε→ 0, β → 1, δ2 → ε2,

as ε→ ∞, β →
√

2ε

α
, δ2 → αε.

We then consider the eigenfunctions in these two limiting situations, i.e.,

lim
ε→0

ϕn(x) = γne
−ε2x2

Hn−1(αx),

lim
ε→∞ϕn(x) = γne

−αεx2

Hn−1(
√
2αεx).
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In the ε→ 0 case, the effects of the two parameters ε and α are decoupled and each can be handled according
to its needs (ε for accuracy and α for orthogonality). When ε → ∞ this is no longer the case, and both
the exponential and polynomial portions of the eigenfunctions exist on the same scale

√
αεx. While this

analysis does provide an argument against using RBF-QR for larger values of ε, we remind the reader that
this case is really of no practical importance since in this case the RBF-Direct method can be applied to
great satisfaction.

To gain some more insight into the choice of α, we study the eigenfunctions graphically on the domain
[−4, 4] in Figure 5.4. The eigenfunctions corresponding to α = .1 exhibit virtually no exponential decay on
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α=1
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0

5
x 10

6 α=10

Fig. 5.4: The first 8 eigenfunctions evaluated when ε = 1 behave very differently for different values of α.

this domain, and therefore their orthogonality is not well preserved on [−4, 4]. For α = 10, on the other
hand, the eigenfunctions exist on drastically different scales, meaning that effectively only the very largest
eigenfunctions contribute to the solution since all the smaller functions are indistinguishable from each other.
When α = 1 there is a “good” balance of locality and distinction for the eigenfunctions.

This discussion has been entirely qualitative, but it is meant to explain holistically why there should be
an optimal value for α which produces the true RBF interpolant for any given ε. In Figure 5.5 we provide
some additional computational evidence that there is an α (indicated by a small circle) for each ε to alleviate
the instability shown in Figure 5.3.
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Fig. 5.5: A “good” value of α can be found for each ε to produce an accurate interpolant to f4 at N = 55
Chebyshev points in [−3, 3].

These results show that, given a set of data points x1, . . . , xN , a function f and an ε for which you want
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to produce a Gaussian interpolant, there should exist an α that lets you accomplish this without suffering
from the ill-conditioning associated with the ε → 0 “flat limit”. Furthermore, we see that the “optimal”
choice of α in the small ε regime is rather stable, while — as ε exits the asymptotically small regime — the
choice of an “optimal” α becomes a function of ε, as we predicted earlier when we discussed the ε → ∞
scenario.

Unfortunately, these results do not describe an approach to choosing the appropriate α. They only
suggest the existence of an “optimal” α, and that there may be some relationship to ε. Since in this work
we are only interested in exploration of the ε → 0 regime in which the choice of α is less sensitive, we will
not pursue this issue further. Determining an appropriate α a priori, and doing so efficiently, will certainly
be of significance in future work.

6. Early Truncation. RBF-QR allows us to stably compute with shrinking ε values for which RBF-
Direct is too ill-conditioned. Unfortunately, the cost associated with RBF-QR grows substantially with
increasing ε and in multiple dimensions. For larger values of ε, RBF-Direct is a viable option, but the
increased cost of RBF-QR in multiple dimensions is unavoidable — even for small values of ε. This is a
direct result of our definition of the truncation lengthM in Section 4.2.2. Assuming that all the combinations
of eigenfunctions which satisfy (4.11) are needed, the total number of columns in the matrix Φ, for a 2D
problem, is

|M |∑
k=1

k =
|M |(|M |+ 1)

2
.

For comparison, this means that a 2D interpolation problem based on N = 25 points with ε = .1 and α = 1
will result in |N | = 7 and |M | = 15, and thus require 120 eigenfunctions. If we take ε = 1, then |M | = 45
and we need 1035 eigenfunctions to approximate an interpolation problem based on only N = 25 data points.
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(a) In 1D, the cost of RBF-QR is about half an order
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(b) In 2D, the cost of RBF-QR is multiple orders of
magnitude more than that of RBF-Direct.

N M
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(c) In 1D, the truncation length M for the eigen-
function corrections remains reasonable.

N M
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289 43071
400 81810
529 142311

(d) In 2D, the cost of storing the eigenfunction cor-
rections becomes unreasonable.

Fig. 6.1: For ε only as large as .01, the cost of RBF-QR becomes unsustainable in higher dimensions.

In Figure 6.1 we illustrate how the cost of performing RBF-QR using the truncation strategy outlined
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in Section 4.2.2 is unreasonable for dimension d = 2 (and even more so in higher dimensions). Here cost
is defined as the time required to find the coefficients associated with the interpolation; associated with
this cost is also the memory required to perform the interpolation as shown in Figures 6.1c and 6.1d. We
use a value of ε = .01 together with several other values of N . While the cost of doing RBF-QR in 1D is
reasonable, and the payoff in terms of accuracy gain is high, this is no longer true in 2D. Clearly, we will
benefit from using some other approach in higher dimensions.

The dominant cost in performing the RBF-QR algorithm is associated with the QR factorization of the
matrix Φ, which is more expensive than the LU factorization used to solve the RBF-Direct system, although
on the same order when M ≈ N . Due to the aforementioned explosion in M as the dimension increases, it
is not viable to use RBF-QR for high-dimensional problems. To combat this, we now explore the feasibility
of choosing a truncation length M which is smaller than N .

6.1. Low-Rank Approximation. Our goal for this section is to produce a low-rank approximation
to the N -term RBF interpolant using M < N eigenfunctions. The motivation behind this is to eliminate
high-order eigenfunctions which contribute minimally to the solution, but greatly to the computational cost.
Additionally, this may reduce the sensitivity of the solution to α as shown in Figure 5.3. The discussion
from Section 5.3 suggests that the choice of an “optimal” α depends on ε and is also more sensitive with
increasing M . We therefore hope that reducing M will help mitigate this sensitivity issue.

In order to introduce this problem in the same context as Section 4 we assume that M ≤ N is fixed
and set all the eigenvalues λn with M < n ≤ N to zero. This results in an approximate kernel matrix
decomposition

K ≈ ΦΛ̃ΦT

=

⎛⎝ Φ1 Φ2

⎞⎠(
Λ1

0

)⎛⎝ Φ1 Φ2

⎞⎠T

,

where Φ1 contains the first M eigenfunctions, Λ1 contains the first M (and only nonzero) eigenvalues, and
Φ2 contains the remaining N −M eigenfunctions. Note that all these matrices are N ×N , and thus the QR
decomposition from before is no longer necessary because ΦT is invertible.

Defining the basis transformation matrix X analogously to (4.3) we now have

X = Λ̃ΦT ,

and because Λ̃ is not invertible we must instead consider the pseudoinverse [16]

X† = Φ−T Λ̃†

= Φ−T

(
Λ−1
1

0

)
.

This means that our new basis functions will be

Ψ(x)T = k(x)TX†,

which, when expressed in terms of the eigenfunctions by expanding the kernel as in (4.6), yields

Ψ(x) = (ϕ1(x) . . . ϕN (x))ΛΦTX†

= (ϕ1(x) . . . ϕN (x))ΛΦTΦ−T Λ̃†

= (ϕ1(x) . . . ϕN (x))ΛΛ̃†

= (ϕ1(x) . . . ϕN (x))

(
IM

0

)
= (ϕ1(x) . . . ϕM (x) 0 . . . 0)
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analytically setting the last N −M eigenfunctions equal to 0. Recasting the original linear system in this
new basis then gives

Ψb = y

⇐⇒ ΦΛΦTX†b = y

⇐⇒

⎛⎝ Φ1 Φ2

⎞⎠(
IM

0

)
b = y.

As this is written, it is clearly a low rank system, which is appropriate since M nonzero functions are being
fit to N > M data points. There are two ways, identical in exact arithmetic, to solve this low-rank linear
system in a least-squares sense: the first uses the theoretically guaranteed invertibility of Φ in applying the
pseudoinverse, i.e.,

b =

(
IM

0

)
Φ−1y.

This, of course, requires forming Φ−1y, which would subject this problem to the same sensitivity issues as
before that stem from the unreasonably large M values given increasing N and/or ε. Moreover, inverting
the matrix Φ would be more costly than is necessary since the final solution will be a least-squares solution
of rank at most M , whereas Φ has rank N . Instead, it seems that the more efficient and logical method of
solving this system is to perform the matrix-matrix multiplication ΦΛΛ† analytically, leaving the system⎛⎝ Φ1 0

⎞⎠ b = y. (6.1)

Zeroing out the eigenvalues analytically has the effect of ignoring the finalN−M components of the coefficient
vector b during the solve, as should be expected. Solving this in a least-squares sense requires solving

min
b

∥∥∥∥(Φ1 0)

(
b1
b2

)
− y

∥∥∥∥2

2

⇐⇒ min
b

‖Φ1b1 − y‖22 ,

where the components b1 and b2 of the coefficient vector b are of sizeM and N −M , respectively. Following
this logic, the solution is

b1 = Φ†
1y,

and b2 is unconstrained because the eigenfunctions associated with b2 are all identically zero.

6.2. Implementing Truncation. The implementation of this regression approach is more straight-
forward than that of the interpolation problem because this system can be rephrased as an over-determined
least-squares problem. One aspect that has thus far been omitted from our discussion is the selection of an
M -value appropriate for early truncation. This choice is significant in reducing the computational complexity
of the approximation, but the most important factor in choosing M is producing a quality approximation.

To give an initial idea of the effect of M on the quality of the approximation, let us consider a simple
approximation problem. Given f(x) = cosx + e−(x−1)2 + e−(x+1)2 and fixing α = ε = 1, we consider N
evenly spaced values of f in the interval [−3, 3]. Different values of N ranging from 10 to 500 are chosen to
conduct the regression with five different sets of M -values corresponding to {.1N, .2N, .3N, .4N, .5N}. The
approximation error curves are displayed in Figure 6.2.

Regardless of the size of N , Figure 6.2 shows that the optimal accuracy of the approximation consistently
occurs for the same value of M ≈ 40. This is encouraging because it suggests that for a fixed ε, given any
problem size N , the underlying test function f has a certain complexity in the native reproducing kernel
Hilbert space of the Gaussian which is captured to within machine precision by using an approximation
(sub-)space R of dimension M ≈ 40. As was shown in [7], and has been known since well before (see, e.g.,
[29]), if one is allowed to optimally sample the function f , then the best M -term L2 approximation from
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Fig. 6.2: For any number N of data sites (and fixed α = ε = 1), M ≈ 40 eigenfunctions are adequate for
optimal accuracy of the QR regression algorithm.

the reproducing kernel Hilbert space associated with the Gaussian kernel is given by a linear combination
of its first M eigenfunctions. However, for this optimal approximation, the data needs to be given in the
form of the “Fourier coefficients” of the eigenfunctions, i.e., the L2 projections of the test function onto the
eigenfunctions. The problem we consider here is of a slightly different nature, since the data is given in terms
of function values of f at certain data locations x1, . . . ,xN , and we are determining a discrete least squares
approximation to the given values f(x1), . . . , f(xN ) from the space R. While we do not in general know
what the “correct” dimension of the approximation space R is, we will assume that we are using a “good”
value in our experiments (often based on a trial and error approach starting from a small value of M and
increasing as deemed necessary to achieve a desired accuracy).

The fact that the effective dimension of the space needed for an accurate kernel approximation or
interpolation is often rather small seems to be mathematical folklore and appears in different guises in
various communities dealing with kernels. In the RBF literature we have, e.g., [15, 23] or the unpublished
lecture notes [25]. In [25], for example, one can read that “there are low-rank subsystems which already
provide good approximate solutions”. In the statistical learning literature, the authors of [31] state that their
main goal is “to find a fixed optimal m-dimensional linear model independent of the input data x [of sample
size n], where the dimension m is also independent of n”. Matrices that are of the same type as the kernel
interpolation matrix K also arise in the method of fundamental solutions (MFS) for which the authors of [3]
make similar observations regarding the non-trivial singular values, i.e., numerical rank, of K. In particular,
in one of their examples [3, Figure 5] they see “no significant difference in accuracy using more than 40 [of
100] singular values”.

To consider cases with varying ε, refer to Figure 6.3a. The contour plot there shows the approximation
error, for fixed N = 200 and α = 1, obtained with values of M and ε that vary independently. The function
used to generate the data for this approximation problem is

f4(x) = 10e−x2

+ x2, x ∈ [−5, 5].

The function f4 is useful because in the absence of the exponential function term, the polynomial alone would
be best approximated with M on the same order as the polynomial and ε → 0, i.e., the “flat” polynomial
limit of the RBF interpolant [5]. The additional exponential term gives rise to a region of optimal M and
ε centered around (M, ε) ≈ (66, 0.7) far from the ε = 0 axis. Also note that the M with least error is far
away from the RBF-QR realm of M > N , although the difference in accuracy between the optimal error at
M = 66 overall and the optimal error for M = 180 is small at 10−16.4 and 10−15.1, respectively. Here the
error is computed with (5.2) by evaluating the interpolant at 1000 points in [−5, 5].

Finding an optimal value of M is still an open problem, as it probably depends not only on the choice
of ε, but also on such factors as the location of the data points, anisotropy in higher dimensions, the choice
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Fig. 6.3: Over a range of ε values (with fixed N and α = 1), experiments show an optimal M range.

of α for (3.5b) and more. It is possible that future work can examine optimal values of both M and ε
simultaneously to determine an optimal approximation. For the purposes of this work, we are interested
primarily in exploring the ε → 0 limit and thus we will assume for future experiments that a good value of
M has already been chosen.

7. Numerical Experiments II. In this section we provide comparisons of the RBF-QRr regression
algorithm to the RBF-direct method — and in Section 7.1 to RBF-QR as described in Section 4 — for
various data sets in various space dimensions. In each of these experiments, the truncation length M used
in the regression is specified.

For the following experiments, multiple M values were sampled and one was chosen to represent RBF-
QRr. When experiments include RBF-QR results, the required M values were chosen via (4.10). For each
ε, α was chosen as small as possible such that orthogonality is guaranteed for the first 25 eigenfunctions.
The reader should keep in mind that these are just choices made to display the usefulness of RBF-QRr when
exploring the ε→ 0 region, and more work needs to be done to determine optimalM and α values in general.

7.1. 1D Approximation. In this series of experiments the data is generated by two different univariate
functions f evaluated at N = 150 Chebyshev nodes (5.1) on their respective domains.

For Figure 7.1a we reprise the function from Figure 6.2 on the interval [−3, 3] and see that better
accuracy can be achieved with RBF-QRr approximation instead of RBF-QR interpolation, even at less cost.
In Figure 7.1b RBF-QRr maintains higher accuracy than both RBF-QR and RBF-Direct. Note that the
function used in Figure 7.1b is the notorious Runge function on the interval [−4, 4] and is much harder to
approximate by polynomials than the function used in Figure 7.1a. In fact, we can see that the Matlab

algorithm polyfit for degree 90 polynomials is no longer stable and the “flat limit” Gaussian approximation,
which uses orthogonal polynomials instead of a Vandermonde matrix, is considerably more accurate than
the polynomial interpolant. Moreover, the Gaussian approximation for ε ≈ 1.5 is many orders of magnitude
more accurate than the polynomial interpolant.

Looking at these two graphs, the reader will notice that RBF-QRr fails to reproduce RBF-Direct as ε
grows and RBF-Direct is sufficiently well-conditioned. This is because the eigenvalues decay more slowly for
larger ε and thus the choice of a small value ofM may no longer be appropriate. One should requireM > N
to conduct the approximation as ε → ∞. However, there would be no reason to use RBF-QR or RBF-QRr
in this regime since RBF-Direct is stable and more efficient.

7.2. Higher-dimensional Approximation. One of the great benefits of considering radial basis func-
tions for scattered data fitting is their natural adaptation to use in higher dimensions. That flexibility is
not lost when using an eigenfunction expansion to approximate the Gaussian, as was initially described in
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Fig. 7.1: Regression avoids both the sensitivity in RBF-QR associated with large N , and the ε → 0 ill-
conditioning in RBF-Direct.

Section 3.2. For the experiments in this section only regression is considered because of the computational
cost associated with the use of RBF-QR in higher dimensions. The scale parameter α was chosen to satisfy
orthogonality for up to the fourth eigenfunction. This choice is somewhat arbitrary, but seems to produce
good results in the ε→ 0 region of interest.

In Figure 7.2 we present examples of RBF-QRr compared to RBF-Direct for two different test functions.
The data is generated by sampling these functions atN evenly spaced points in the region [−1, 1]2. As before,
RBF-QRr drifts further from the true RBF interpolant for large values of the shape parameter ε because
the number of eigenfunctions required to conduct a more accurate approximation is too great to complete
the regression efficiently. As mentioned several times before, for this ε-regime it is not necessary to use
RBF-QRr since RBF-Direct has acceptable condition, but it is worth noting that also the RBF-QRr method
has its limitations. In the small-ε regime, on the other hand, RBF-QRr performs stably and accurately as
promised.

Just as in the 2D setting, eigenfunction expansions work for higher-dimensional settings as well. Fig-
ure 7.3 shows examples for two functions of five variables with very different ε profiles. As one would expect,
the polynomial in Figure 7.3a is reproduced to within machine precision as soon as enough eigenfunctions are
used and ε is chosen small enough (note that the dimension of the space of polynomials of total degree five
in five variables is 252). For the trigonometric test function illustrated in Figure 7.3b the RBF-QRr method
is again more accurate and more stable than RBF-Direct. However, the accuracy of the approximation is
weak for larger ε, as was noted previously. These functions were sampled at N Halton points (see e.g., [5])
and the error was evaluated at 4000 Halton points; the first N error evaluations were ignored because those
points were input points due to the nesting property of Halton point sets.

8. Conclusions. The stated purpose of this work was to provide a technique to allow for stable evalua-
tion of RBF interpolants when the shape parameter values are so small that ill-conditioning overwhelms the
traditional approach to RBF interpolation. This “flat-limit” regime is of particular practical interest since it
often corresponds to the range of the shape parameter that will provide the most accurate RBF interpolant
(provided it can be stably computed and evaluated). Our initial approach closely followed [13] replacing
the use of spherical harmonics with an eigenfunction decomposition parametrized by a value α related to
the global scale of the problem. This technique consists of replacing the Gaussian basis functions centered
at the N data sites with M > N new basis functions that reproduce the Gaussian kernel within the limits
of machine precision. The choice of this new basis was driven by the desire to have condition properties
superior to the Gaussian for sufficiently small ε, but it introduces some redundancy in the representation of

19



10
-1

10
0

10
1

10
-15

10
-10

10
-5

10
0

ε

av
er

ag
e 

er
ro

r

 

 

N=112 (Direct)

N=152 (Direct)

N=192 (Direct)

N=112 (QR)

N=152 (QR)

N=192 (QR)

(a) f(x, y) = cos(x+ y), M = .5N

10
-1

10
0

10
1

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ε

av
er

ag
e 

er
ro

r

 

 

 

 
N=152 (Direct)

N=192 (Direct)

N=252 (Direct)

N=332 (Direct)

N=152 (QR)

N=192 (QR)

N=252 (QR)

N=332 (QR)

(b) f(x, y) = (x2 + y2)−1, M = .7N
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Fig. 7.3: Comparison of RBF-Direct and RBF-QRr regression in 5D using a different number, N , of Halton
data points in [−1, 1]5.

the N -dimensional Gaussian approximation space which leads to some of the conditioning problems observed
in Figure 5.3.

For certain values of N and ε this approach worked well, but for larger values of N we encountered
limitations incurred by the computational expense of the algorithm. To compensate for this, a new approach
was devised involving M < N basis functions and a least squares solution to the approximation problem.
This technique overcame the ill-conditioning of the interpolation problem using careful, but more or less
ad hoc, choices of α and M to balance the cost and sensitivity of the solution against producing the best
approximation from the space spanned by the Gaussians.

Given that we have seen the potential for success with this eigenfunction approximation of the Gaussian
kernels, there is still much to be investigated to fully understand the work started here. We end by briefly
discussing some of these topics.
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8.1. Location of Data Points. In our work leading to this paper we have studied input data on
an evenly spaced grid, on the Chebyshev points and at the Halton points. While the point distribution
is important for RBF-QR solutions, we have noticed very little effect of the data point distribution on
the condition and accuracy of the RBF-QRr solution provided the domain is “covered well” by the data
points. Is this true in general, i.e., will the distribution of data points have little or no significance on
the effectiveness of RBF-QRr? The references [3, 15, 23, 25, 31] mentioned earlier in our disussion of the
“correct” approximation subspace R may suggest that this should indeed be true, but rigorous proof of this
fact is still missing.

8.2. Analytic Relationship of the Parameters ε, M and α. Rigorous analysis needs to be done on
the relationship between α and ε. Every Gaussian kernel with shape parameter ε has a family of equivalent
eigenfunction expansions parametrized by α. In exact arithmetic with M → ∞ all of these series are equal
to the Gaussian kernel, but for a finite M there are significant differences which may lead to ill-conditioned
systems. Can we determine analytically what α-value is appropriate for each M , or if there even always
exists such a (unique) value? Or, should we first determine a “best” value of α and then find the suitable
M?

8.3. Computational Cost. There is a significant computational cost involved in performing RBF
interpolation with the RBF-QR algorithm when M is much greater than N (especially in higher space
dimensions). Likewise, determining the optimal values of M and α for the RBF-QRr regression method is
costly and overwhelms the savings of solving an overdetermined N ×M problem via least squares instead of
an M ×M problem (with M � N) for RBF-QR or an (ill-conditioned) N ×N system for RBF-Direct. How
can this cost be reduced? Having analytical guidance for “good” choices of M and α would certainly help.

8.4. Choice of Algorithm. The RBF-QRr regression method is built on the assumption that we use
M < N eigenfunctions. This limits its accuracy for large ε-values. As ε grows, it is generally assumed
that RBF-Direct will be well conditioned, which alleviates much of the demand for RBF-QRr in that range.
Even so, is there a type of problem for which RBF-Direct is unreliable for an ε-value which is unacceptably
inaccurate for RBF-QRr? Would that then force RBF-QR into action, requiring M � N? What guidelines
might one use to build a general-purpose hybrid algorithm?

8.5. Anisotropic Approximation. In this paper we have worked under the assumption that the same
shape parameter ε should be used in each space dimension. As mentioned in Section 3.2, the theoretical
possibilities of our eigenfunction-based QR algorithms are much more general. We could choose to write
the kernel as K(x, z) = exp(−(x− z)TE(x− z)), where the standard isotropic Gaussian would correspond
to E = ε2IN . The derivation in Section 3.2 provides a natural route to using eigenfunction expansions for
anisotropic Gaussians (i.e., with E diagonal, but not a scalar multiple of the identity). However, in so doing
there is also the opportunity to use a strategy to employ different choices ofM and α in different dimensions.
What flexibility and accuracy does this added freedom offer? How does this affect the complexity of the
implementation and execution of the method? A different choice of E (still positive definite) would result in a
different kernel and more flexibility when conducting interpolation in higher dimensions. Can the theoretical
foundation be extended to cover eigenfunction decompositions for a nondiagonal E?

8.6. Other Kernels. The work in this paper focused on the Gaussian kernel. There are many other
positive definite kernels (see, e.g., [5]) that involve a shape parameter for which the RBF-Direct method
is associated with the trade-off principle, i.e., increased accuracy comes at the price of a loss in numerical
stability. In [12] some ideas for the oscillatory Bessel or Poisson kernels are presented. What about inverse
multiquadrics, Matérn kernels, and many others?
Acknowledgment. We would like to thank our colleague, Fred Hickernell, for fruitful discussions on this
topic and the anonymous reviewers for their valuable comments which helped us improve the final version
of the paper.
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