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Abstract In this paper we extend the definition of generalized Sobolev space and
subsequent theoretical results established recently for positive definite kernels and
differential operators in the article [21]. In the present paper the semi-inner product
of the generalized Sobolev space is set up by a vector distributional operator P con-
sisting of finitely or countably many distributional operators Pn, which are defined on
the dual space of the Schwartz space. The types of operators we now consider include
not only differential operators, but also more general distributional operators such as
pseudo-differential operators. We deduce that a certain appropriate full-space Green
function G with respect to L := P∗T P now becomes a conditionally positive function.
In order to support this claim we ensure that the distributional adjoint operator P∗ of
P is well-defined in the distributional sense. Under sufficient conditions, the native
space (reproducing-kernel Hilbert space) associated with the Green function G can
be imbedded into or even be equivalent to a generalized Sobolev space. As an appli-
cation, we take linear combinations of translates of the Green function with possibly
added polynomial terms and construct a multivariate minimum-norm interpolant s f ,X

to data values sampled from an unknown generalized Sobolev function f at data sites
located in some set X ⊂ Rd. We will provide several examples, such as Matérn ker-
nels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces
of well-known reproducing kernels are equivalent to a generalized Sobolev space.
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1 Introduction

A large and increasing number of recent books and research papers apply radial ba-
sis functions or other kernel-based approximation methods to such fields as scattered
data approximation, statistical or machine learning and the numerical solution of par-
tial differential equations, e.g., [2,3,5,8,13,14,19,20]. Generally speaking, the fun-
damental underlying practical problem common to many of these applications can be
represented in the following way. Given a set of data sites X ⊂ Rd and associated
values Y ⊂ R sampled from an unknown function f , we use translates of a kernel
function Φ and possible polynomial terms to set up an interpolant s f ,X to approxi-
mate the function f . When f belongs to the related native space of Φ, we can obtain
error bounds and optimality properties of this interpolation method. If Φ is only con-
ditionally positive definite (instead of the more straightforward positive definite case),
then it is known that the native space can also become a reproducing-kernel Hilbert
space with a reproducing kernel computed from Φ along with additional polynomial
terms (see Section 3 and [20]). Nevertheless, there still remains a couple of difficult
and challenging questions to be answered for kernel methods: What kind of functions
belong to the related native space of a given kernel function, and which kernel func-
tion is the best for us to utilize for a particular application? In particular, a better
understanding of the native space in relation to traditional smoothness spaces (such
as Sobolev spaces) is highly desirable. The latter question is partially addressed by
the use of techniques such as cross-validation and maximum likelihood estimation
to obtain optimally scaled kernels for any particular application (see e.g., [18,19]).
However, at the function space level, the question of scale is still in need of a satis-
factory answer.

By generalizing the ideas of [21], we will deal with these questions in a different
way than the authors of the survey paper [13] did. In this paper, we want to show that
the kernel functions and native spaces (reproducing kernels and reproducing-kernel
Hilbert spaces) can be computed via Green functions and generalized Sobolev spaces
induced by some vector distributional operators P := (P1, · · · , Pn, · · · )T consisting
of finitely or countably many distributional operators Pn (see Definition 4.1). We can
further check that the differential operators defined in [21] are special cases of these
distributional operators. As a consequence, all theoretical results in [21] can also be
verified by the conclusions of this article.

Some well known examples covered by our theory include the Duchon spaces and
Beppo-Levi spaces associated with polyharmonic splines (see Example 5.1 and 5.6).
Moreover, in [12] the author expressed a desire to choose the “best” scale parameter
of a given kernel function for a particular interpolation problem by looking at scaled
versions of the classical Sobolev space via different scale parameters. Example 5.3
and 5.7 tell us that we can balance the derivatives through selecting appropriate scale
parameters to reconstruct the classical Sobolev space by the reproducing-kernel inner
products of the Sobolev splines (Matérn functions). Finally, Example 5.8 shows that
the native space of the ubiquitous Gaussian function (the reproducing-kernel Hilbert
space of the Gaussian kernel) is equivalent to a generalized Sobolev space, which
can be applied to support vector machines and in the study of motion coherence (see
e.g., [16,22]).
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In this article, we use the notation Re(E) to be the collection of all real-valued
functions of the function space E. For example, Re(C(Rd)) denotes the collection of
all real-valued continuous functions on Rd. SI is defined as the collection of slowly
increasing functions which grow at most like any particular fixed polynomial, i.e.,

SI :=
{
f : Rd → C : f (x) = O(‖x‖m2 ) as ‖x2‖ → ∞ for some m ∈ N0

}
.

(The notation f = O(g) means that there is a positive number M such that | f | 6 M |g|.)
Roughly speaking, our generalized Soblev space is a generalization of the classical
real-valued L2(Rd)-based Sobolev space. Here the classical Sobolev space is usually
given by

Hn(Rd) :=
{
f ∈ Re(Lloc

1 (Rd)) ∩ SI : Dα f ∈ L2(Rd) for all |α| ≤ n, α ∈ Nd
0

}
with inner product

( f , g)Hn(Rd) :=
∑
|α|≤n

(Dα f ,Dαg), f , g ∈ Hn(Rd),

where (·, ·) is the standard L2(Rd)-inner product. Our concept of a generalized Sobolev
space (to be defined in detail below, see Definition 4.4) will be of a very similar form,
namely

HP(Rd) :=
{
f ∈ Re(Lloc

1 (Rd)) ∩ SI : {Pn f }∞n=1 ⊆ L2(Rd) and
∞∑

n=1

‖Pn f ‖2L2(Rd) < ∞
}

with the semi-inner product

( f , g)HP(Rd) :=
∞∑

n=1

(Pn f , Png), f , g ∈ HP(Rd).

Since the Dirac delta function δ0 at the origin is just a tempered distribution be-
longing to the dual space of the Schwartz space, the Green function G we introduce
in Definition 4.3 needs to be regarded as a tempered distribution as well. Thus we
want to define a distributional operator L on the dual space of the Schwartz space
so that LG = δ0. The distributional operator and its distributional adjoint operator
are well-defined in Section 4.1. According to Theorem 4.1, we can prove that an
even Green function G ∈ Re(C(Rd)) ∩ SI is a conditionally positive definite func-
tion of some order m ∈ N0. Therefore, we can construct the related native space
Nm

G (Rd) of G as a complete semi-inner product space (see Section 3 and [20]). More-
over, the distributional operator L can be computed by a vector distributional operator
P := (P1, · · · , Pn)T and its distributional adjoint P∗, i.e., L = P∗T P =

∑n
j=1 P∗jP j. Un-

der some sufficient conditions, we will further obtain a result in Theorem 4.2 that
shows that the native space Nm

G (Rd) is always a subspace of the generalized Sobolev
space HP(Rd) and that their semi-inner products are the same on Nm

G (Rd). This im-
plies that the native spaces can be imbedded into the generalized Sobolev spaces. By
Lemma 4.5, we know that HP(Rd)∩C(Rd)∩L2(Rd) is also a subspace ofNm

G (Rd). The-
orems 4.4 and 4.6 tell us that Nm

G (Rd) may even be equivalent to HP(Rd). However,
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we provide Example 5.5 to show that Nm
G (Rd) is not always equivalent to HP(Rd).

In other words, Nm
G (Rd) is sometimes just a proper subspace of HP(Rd). We com-

plete the proofs needed for the theoretical framework in this article by an application
of the techniques of distributional Fourier transforms (see Section 4.2 and [17]) and
generalized Fourier transforms (see Section 4.1 and [20]).

2 Background

Given data sites X = {x1, · · · , xN} ⊂ R
d (which we also identify with the centers

of our kernel functions below) and sampled values Y = {y1, · · · , yN} ⊂ R of a real-
valued continuous function f on X, we wish to approximate this function f by a linear
combination of translates of a conditionally positive definite function Φ of order m
(see Section 3.1) along with possible real-valued polynomial terms.

To this end we set up the interpolant in the form

s f ,X(x) :=
N∑

j=1

c jΦ(x − x j) +
Q∑

k=1

βk pk(x), x ∈ Rd, (2.1)

and require it to satisfy the additional interpolation and moment conditions

s f ,X(x j) = y j, j = 1, . . . ,N,
N∑

j=1

c j pk(x j) = 0, k = 1, . . . ,Q,
(2.2)

where Q is the dimension of πm−1(Rd) and {p1, · · · , pQ} is a basis of πm−1(Rd). Here
πm−1(Rd) denotes the space of real-valued polynomials of degree less than m, i.e.,

πm−1(Rd) :=
{
p(x) :=

∑
|α|6m−1

cαxα : cα ∈ R, |α| < m, α ∈ Nd
0

}
.

If X contains a πm−1(Rd)-unisolvent set {ξ1, · · · , ξQ}, i.e., p ∈ πm−1(Rd) such that
p(ξk) = 0 for all k = 1, . . . ,Q if and only if p ≡ 0, then the above system (2.2) is
equivalent to a uniquely solvable linear system(

AΦ,X PX

PT
X 0

) (
c
β

)
=

(
Y
0

)
, (2.3)

where AΦ,X :=
(
Φ(x j − xk)

)N,N

j,k=1
∈ RN×N , PX :=

(
pk(x j)

)N,Q

j,k=1
∈ RN×Q, c := (c1, · · · , cN)T ,

β := (β1, · · · , βQ)T and Y := (y1, · · · , yN)T . All of the above is discussed in detail in
[20, Chapter 8.5].

Example 2.1 One of the best known examples that fits into this framework is the
cubic spline interpolant

s f ,X(x) :=
N∑

j=1

c j

∣∣∣x − x j

∣∣∣3 + β2x + β1, x ∈ R.
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If we let Φ(x) = |x|3, then Φ is known to be a conditionally positive definite function
of order 2.

In addition, if we take P := d2/dx2 and P∗ := d2/dx2 so that L = P∗T P = d4/dx4,
then 1

12Φ is a Green function with respect to L and the interpolant s f ,X as set up in
(2.1)-(2.2) is the minimum semi-norm interpolant for all real-valued functions f ∈
C2(R) such that f ′′ ∈ L2(R) (see [2, Chapter 6.1.5]).

Example 2.2 Another well-known example is the tension spline interpolant (see [11,
15])

s f ,X(x) :=
N∑

j=1

c jΦ(x − x j) + β1, where Φ(x) := −
exp(−σ |x|) + σ |x|

2σ3 , x ∈ R, (2.4)

and σ > 0 is called the tension parameter.
We can check that Φ is a conditionally positive definite function of order 1. If we

define P = (P1, P2)T := (d2/dx2, σd/dx)T and P∗ = (P∗1, P
∗
2)T := (d2/dx2,−σd/dx)T ,

then Φ is a Green function with respect to L := P∗T P = d4/dx4 − σ2d2/dx2.
Moreover, the interpolant s f ,X from (2.1)-(2.2) minimizes the semi-norm |·|TS of

all real-valued functions f ∈ C2(R) and

| f |2TS := (P f ,P f )TS =

∫
R

∣∣∣ f ′′(x)
∣∣∣2 dx +

∫
R

σ2
∣∣∣ f ′(x)

∣∣∣2 dx < ∞

subject to the constraints s f ,X(x j) = y j, j = 1, · · · ,N.

As we will show in Section 3.2, we can in general construct a reproducing-kernel
Hilbert spaceNm

Φ (Rd) from Φ such that the interpolant s f ,X is the best approximation
of the function f in Nm

Φ (Rd) fitting the sample values Y on the data sites X. The
construction consists of first introducing a complete Nm

Φ (Rd)-semi-inner product for
the native spaceNm

Φ (Rd) and then using this semi-inner product to set up a new inner
product such that the native space Nm

Φ (Rd) becomes a reproducing-kernel Hilbert
space whose reproducing kernel is determined by Φ.

3 Conditionally Positive Definite Functions and Native Spaces

Most of the material presented in this section can be found in the excellent monograph
[20]. For the reader’s convenience we repeat here what is essential to our discussion
later on.

3.1 Conditionally Positive Definite Functions

Definition 3.1 ([20, Definition 8.1]) A continuous even function Φ : Rd → R is said
to be a conditionally positive definite function of order m ∈ N0 if, for all N ∈ N,
all pairwise distinct centers x1, . . . , xN ∈ R

d, and all c = (c1, · · · , cN)T ∈ RN \ {0}
satisfying

N∑
j=1

c j p(x j) = 0
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for all p ∈ πm−1(Rd), the quadratic form

N∑
j=1

N∑
k=1

c jckΦ(x j − xk) > 0.

In the case m = 0 with π−1(Rd) := {0} the function Φ is called positive definite.

In general, we can not hope for Φ ∈ C(Rd) to be integrable. However, we can
restrict Φ to be a slowly increasing function, i.e., Φ ∈ SI.

Next, we want to have a criterion to decide whether Φ is a conditionally positive
definite function of order m ∈ N0. In Wendland’s book [20], the generalized Fourier
transform of order m is employed to determine the conditional positive definiteness
of Φ. Let a special test function space S2m be defined as

S2m :=
{
γ ∈ S : γ(x) = O

(
‖x‖2m

2

)
as ‖x‖2 → 0

}
,

where the Schwartz space S consists of all functions γ ∈ C∞(Rd) that satisfy

sup
x∈Rd

∣∣∣xβDαγ(x)
∣∣∣ 6 Cα,β,γ

for all multi-indices α, β ∈ Nd
0 with a constant Cα,β,γ.

Definition 3.2 ([20, Definition 8.9]) Suppose that Φ ∈ C(Rd) ∩ SI. A measurable
function φ̂ ∈ Lloc

2 (Rd\{0}) is called a generalized Fourier transform ofΦ if there exists
an integer m ∈ N0 such that∫

Rd
Φ(x)γ̂(x)dx =

∫
Rd
φ̂(x)γ(x)dx, for each γ ∈ S2m.

The integer m is called the order of φ̂.

Remark 3.1 IfΦ has a generalized Fourier transform of order m, then it has also order
l > m. If Φ ∈ L2(Rd) ∩ C(Rd), then its L2(Rd)-Fourier transform is a generalized
Fourier transform of any order.

Theorem 3.1 ([20, Theorem 8.12]) Suppose an even function Φ ∈ Re(C(Rd)) ∩ SI
possesses a generalized Fourier transform φ̂ of order m which is continuous on Rd \

{0}. ThenΦ is conditionally positive definite of order m if and only if φ̂ is nonnegative
and nonvanishing.

3.2 Native Space and Reproducing-Kernel Hilbert Space

If Φ is conditionally positive definite of order m, then the linear space

FΦ :=
{ N∑

j=1

c jΦ(· − x j) : N ∈ N, c ∈ RN , x1, . . . , xN ∈ R
d,

with
N∑

j=1

c j p(x j) = 0 for all p ∈ πm−1(Rd)
}
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can become a pre-Hilbert space by introduction of the inner product M∑
k=1

bkΦ(· − xk),
N∑

j=1

c jΦ(· − x j)


Φ

:=
M∑

k=1

N∑
j=1

bkc jΦ(xk − x j).

Hence, we can form the Hilbert-space completion FΦ of the pre-Hilbert space FΦ
with respect to the Φ-inner product.

Now we construct the so-called native space of Φ. Let Ξ := {ξ1, · · · , ξQ} ⊂ R
d

be a πm−1(Rd)-unisolvent set and {q1, · · · , qQ} be a Lagrange basis of πm−1(Rd) with
respect to Ξ, where Q = dim πm−1(Rd). First we set up the injective linear mapping

R : FΦ → Re(C(Rd)), R( f )(x) := ( f ,W(· − x))Φ,

where W(·−x) := Φ(·−x)−
∑Q

k=1 qk(x)Φ(·−ξk). We also need the projection operator

Π : Re(C(Rd))→ πm−1(Rd), Π( f ) :=
Q∑

k=1

f (ξk)qk.

Definition 3.3 ([20, Definition 10.16]) Suppose that Φ is conditionally positive def-
inite of order m ∈ N0. Then the native space corresponding to Φ with respect to
πm−1(Rd) is defined by

Nm
Φ (Rd) := R(FΦ) + πm−1(Rd)

and it is equipped with the semi-inner product

( f , g)Nm
Φ (Rd) :=

(
R−1 ( f − Π( f )) ,R−1 (g − Π(g))

)
Φ
, f , g ∈ Nm

Φ (Rd).

Since FΦ is a Hilbert space with respect to the Φ-inner product, the native space
Nm
Φ (Rd) is complete meaning that every Cauchy sequence has a (not necessarily

unique) limit. We can verify that FΦ ⊆ Nm
Φ (Rd) so that | f |Nm

Φ (Rd) = ‖ f ‖Φ whenever
f ∈ FΦ. The null space ofNm

Φ (Rd) is given by πm−1(Rd), i.e., |p|Nm
Φ (Rd) = 0 if and only

if p ∈ πm−1(Rd) ⊆ Nm
Φ (Rd). Moreover, according to [20, Theorem 10.20], Nm

Φ (Rd)
will become a reproducing-kernel Hilbert space with the new inner product

( f , g)K := ( f , g)Nm
Φ (Rd) +

Q∑
k=1

f (ξk)g(ξk), f , g ∈ Nm
Φ (Rd),

and its reproducing kernel is

K(x, y) :=Φ(x − y) −
Q∑

k=1

qk(x)Φ(ξk − y) −
Q∑

l=1

ql(y)Φ(x − ξl)

+

Q∑
k=1

Q∑
l=1

qk(x)ql(y)Φ(ξk − ξl) +
Q∑

k=1

qk(x)qk(y).

This means that K(·, y) ∈ Nm
Φ (Rd) for each y ∈ Rd and

( f ,K(·, y))K = f (y), for each f ∈ Nm
Φ (Rd) and y ∈ Rd.
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Theorem 3.2 ([20, Theorem 10.21]) Suppose that Φ is a conditionally positive def-
inite function of order m ∈ N0. Further suppose that Φ has a generalized Fourier
transform φ̂ of order m which is continuous on Rd \ {0}. Then its native space is
characterized by

Nm
Φ (Rd) =

{
f ∈ Re(C(Rd)) ∩ SI : f has a generalized Fourier transform f̂

of order m/2 such that φ̂−1/2 f̂ ∈ L2(Rd)
}
,

and its semi-inner product satisfies

( f , g)Nm
Φ (Rd) = (2π)−d/2

∫
Rd

f̂ (x)ĝ(x)
φ̂(x)

dx, f , g ∈ Nm
Φ (Rd).

All further details of the above results are discussed in [20, Chapter 10.3].

4 Green Functions and Generalized Sobolev Space Connected to Conditionally
Positive Definite Functions and Native Space

In this section, we will generalize the idea of using differential operators [21] to gen-
erate a generalized Sobolev space to distributional operators. After this is done, we
will be able to extend all results for positive definite functions and their reproducing-
kernel Hilbert space mentioned in [21] to conditionally positive definite functions of
some order and their native space. For the benefit of the readers familiar with [21]
we use the same notation here whenever possible. However, to keep the current pa-
per self-contained, we will introduce some of that notation again in the following
sections.

4.1 Distributional Operators and Distributional Adjoint Operators

First, we define a metric ρ on the Schwartz space S so that it becomes a Fréchet
space, where the metric ρ is given by

ρ(γ1, γ2) :=
∑
α,β∈Nd

0

2−|α|−|β|
ραβ(γ1 − γ2)

1 + ραβ(γ1 − γ2)
, ραβ(γ) := sup

x∈Rd

∣∣∣xβDαγ(x)
∣∣∣ ,

for each γ1, γ2, γ ∈ S. This means that a sequence {γn}
∞
n=1 of S converges to an

element γ ∈ S if and only if xβDαγn(x) converges uniformly to xβDαγ(x) on Rd for
each α, β ∈ Nd

0. Together with its metric ρ the Schwartz space S is regarded as the
classical test function space.

Let S′ be the space of tempered distributions associated with S (the dual space of
S, or space of continuous linear functionals on S). We introduce the notation

〈T, γ〉 := T (γ), for each T ∈ S′ and γ ∈ S.
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For any f , g ∈ Lloc
1 (Rd) whose product f g is integrable on Rd we define a bilinear

form by

( f , g) :=
∫
Rd

f (x)g(x)dx.

If f , g ∈ L2(Rd) then ( f , g) is equal to the standard L2(Rd)-inner product.
For each f ∈ Lloc

1 (Rd) ∩ SI there exists a unique tempered distribution T f ∈ S
′

such that

〈T f , γ〉 = ( f , γ), for each γ ∈ S.

So f ∈ Lloc
1 (Rd)∩SI can be viewed as an element of S′ and we rewrite T f := f . This

means that Lloc
1 (Rd)∩SI can be embedded intoS′, i.e., Lloc

1 (Rd)∩SI ⊆ S′. The Dirac
delta function (Dirac distribution) δ0 concentrated at the origin is also an element of
S′, i.e., 〈δ0, γ〉 = γ(0) for each γ ∈ S (see [17, Chapter 1] and [7, Chapter 11]).

Given a linear operator P : S′ → S′, is it always possible to define a linear
(adjoint) operator P∗ : S′ → S′ which also satisfies the usual adjoint properties? The
answer to this question is that it may be not be possible for all P. However, adjoint
operators are well-defined for certain special linear operators. We will refer to these
special linear operators as distributional operators and to their adjoint operators as
distributional adjoint operators in this article.

We first introduce these linear operators on S′. Let P∗ : S → S be a continuous
linear operator. Then a linear operator P : S′ → S′ induced by P∗ can be denote via
the form

〈PT, γ〉 := 〈T,P∗γ〉, for each T ∈ S′ and γ ∈ S.

Furthermore, if P|S is a continuous operator from S into S, i.e., {Pγ : γ ∈ S} ⊆
S and ρ(Pγn, Pγ) → 0 when ρ(γn, γ) → 0, then we call the linear operator P a
distributional operator.

Next we will show that the adjoint operators of these distributional operators are
well-defined in the following way. In the same manner as before, we can denote
another linear operator P∗ : S′ → S′ induced by P|S, i.e.,

〈P∗T, γ〉 := 〈T, P|Sγ〉 = 〈T, Pγ〉, for each T ∈ S′ and γ ∈ S.

Fixing any γ̃ ∈ S, we have

〈P∗γ̃, γ〉 = 〈γ̃, Pγ〉 = (γ̃, Pγ) = 〈Pγ, γ̃〉 = 〈γ,P∗γ̃〉 = (γ,P∗γ̃) = 〈P∗γ̃, γ〉,

for each γ ∈ S which implies that P∗γ̃ = P∗γ̃. Hence P∗|S = P∗ on S and P∗|S is also
a continuous operator from S into S. Therefore P∗ is also a distributional operator.
This motivates us to call P∗ the distributional adjoint operator of P. According to
the above definition, P is also the distributional adjoint operator of the distributional
operator P∗.

We can summarize the definitions of the distributional operator and its adjoint
operator as below.
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Definition 4.1 Let P, P∗ : S′ → S′ be two linear operators. If P|S and P∗|S are
continuous operators from S into S such that

〈PT, γ〉 := 〈T, P∗γ〉 and 〈P∗T, γ〉 := 〈T, Pγ〉, for each T ∈ S′ and γ ∈ S,

then P and P∗ are said to be distributional operators and, moreover, P∗ (or P) is called
a distributional adjoint operator of P (or P∗).

We will simplify the term distributional adjoint operator to adjoint operator in this
article.

Remark 4.1 Our distributional adjoint operator differs from the adjoint operator of a
bounded operator defined in Hilbert space or Banach space. Our operator is defined in
the dual space of the Schwartz space and it may not be a bounded operator. However,
since the fundamental idea of our construction is similar to the classical ones we also
call this an adjoint.

If P = P∗, then we call P self-adjoint. A distributional operator P is called translation
invariant if

τhPγ = Pτhγ, for each h ∈ Rd and γ ∈ S,

where τh is defined by τhγ(x) := γ(x−h). A distributional operator is called complex-
adjoint invariant if

Pγ = Pγ, for each γ ∈ S.

Now we will show that the differential operator used in [21, Definition 3] is a
special kind of distributional operator. Roughly speaking, the differential operator
is a linear combination of distributional derivatives [21] induced by the classical
derivatives

Dα :=
d∏

k=1

∂αk

∂xαk
k

, |α| :=
d∑

k=1

αk, α := (α1, · · · , αd)T ∈ Nd
0.

For convenience, we also denote the distributional derivative as P := Dα : S′ → S′.
According to [17, Chapter 1] and [21, Section 4.1], P|S = Dα|S is a continuous linear
operator from S into S and the distributional derivative also has the property

〈DαT, γ〉 := (−1)|α|〈T,Dαγ〉, for each T ∈ S′ and γ ∈ S.

Therefore the distributional derivative P = Dα is a distributional operator and its
distributional adjoint operator is given by P∗ = (−1)|α|Dα. Moreover, if f ∈ Lloc

1 (Rd)∩
SI and Dα f ∈ Lloc

1 (Rd) ∩ SI then we can verify that Dα f is equivalent to the weak
derivative of f defined in [1] and [21]. (This shows that the classical real-valued
Sobolev space Hn(Rd) defined in this article and [21] is the same as in [1].) Hence
we can determine that the differential operator

P :=
∑
|α|6N

cαDα, where cα ∈ C and α ∈ Nd
0, N ∈ N0,
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is also a distributional operator and its distributional adjoint operator has the form

P∗ :=
∑
|α|6N

(−1)|α|cαDα.

Much more detail is mentioned in [21, Section 4.1].
Finally, we introduce the second kind of distributional operator which is defined

for any fixed function

p̂ ∈ FT :=
{
f ∈ C∞(Rd) : Dα f ∈ SI for each α ∈ Nd

0

}
.

It is obvious that all complex-valued polynomials belong to FT . Since p̂γ ∈ S for
each γ ∈ S, we can verify that the linear operator γ 7→ p̂γ is a continuous operator
from S into S. Thus we can define the distributional operator P related to p̂ by

〈PT, γ〉 := 〈T, p̂γ〉, for each T ∈ S′ and γ ∈ S.

Then we call this kind of distributional operator an FT operator. We can further
check that this operator is self-adjoint and Pg = p̂g ∈ Lloc

1 (Rd)∩SI if g ∈ Lloc
1 (Rd)∩

SI. Therefore we use the notation P := p̂ for convenience. The FT space is also ap-
plied to the definition of distributional Fourier transforms of distributional operators
in Section 4.2.

4.2 Distributional Fourier Transforms

Following [7, Chapter 11] and [1, Chapter 7], we will work with the following defi-
nitions of the Fourier transform and inverse Fourier transform of any γ ∈ S:

γ̂(x) := (2π)−d/2
∫
Rd
γ(y)e−ixT ydy, γ̌(x) := (2π)−d/2

∫
Rd
γ(y)eixT ydy,

where i :=
√
−1. Since γ̂ belongs to S for each γ ∈ S and the Fourier transform

map is a homeomorphism of S onto itself we can define the distributional Fourier
transform T̂ ∈ S′ of the tempered distribution T ∈ S′ by

〈T̂ , γ〉 := 〈T, γ̂〉, for each γ ∈ S.

Since γ̂ = γ̌ for each γ ∈ S, we have

〈T, γ〉 = 〈T̂ , γ̂〉, for each T ∈ S′ and γ ∈ S.

This implies that the Fourier transform of γ ∈ S is the same as its distributional trans-
form. If f ∈ L2(Rd), then its L2(Rd)-Fourier transform is equal to its distributional
Fourier transform. The distributional Fourier transform δ̂0 of the Dirac delta func-
tion δ0 is equal to (2π)−d/2. Moreover, we can check that the distributional Fourier
transform map is an isomorphism of the topological vector space S′ onto itself. This
shows that the distributional Fourier transform map is also a distributional operator.
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If Φ ∈ C(Rd) ∩ SI has the generalized Fourier transform φ̂ of order m, then its
generalized Fourier transform and its distributional Fourier transform coincide on the
set S2m, i.e.,

〈Φ̂, γ〉 = 〈Φ, γ̂〉 = (Φ, γ̂) = (φ̂, γ), for each γ ∈ S2m.

Even if Φ does not have any generalized Fourier transform, it always has a distribu-
tional Fourier transform Φ̂ since Φ can be seen as a tempered distribution (see [17,
Chapter 1] and [7, Chapter 11]).

Our main goal in this subsection is to define the distributional Fourier transform
of a distributional operator induced by the FT space introduced in Section 4.1.

Definition 4.2 Let P be a distributional operator. If there is a function p̂ ∈ FT such
that

〈P̂T , γ〉 = 〈p̂T̂ , γ〉 = 〈T̂ , p̂γ〉, for each T ∈ S′ and γ ∈ S,

then p̂ is said to be a distributional Fourier transform of P.

If P has the distributional Fourier transform p̂, then P is translation-invariant because
τ̂hPγ(x) = e−ixT h p̂(x)γ̂(x) = P̂τhγ(x) for each h ∈ Rd and γ ∈ S. Moreover, if P is
complex-adjoint invariant and has the distributional Fourier transform p̂, then

〈 p̂T̂ , γ〉 = 〈T̂ , p̂ ˆ̌γ〉 = 〈T̂ , P̂γ̌〉 = 〈T, Pγ̌〉 = 〈T, Pγ̌〉 = 〈P∗T, γ̌〉 = 〈P̂∗T , γ〉

for each T ∈ S′ and γ ∈ S. This shows that p̂ is the distributional Fourier transform
of the adjoint operator P∗ of P.

Now we show that any distributional derivative Dα has the distributional Fourier
transform p̂(x) := (ix)α where i =

√
−1. According to [17, Chapter 1], we know that

Dαγ̂ =
(
p̂γ

)̂
for each γ ∈ S. So

〈D̂αT , γ〉 = 〈DαT, γ̂〉 = (−1)|α|〈T,Dαγ̂〉 = (−1)|α|〈T, ̂̂pγ〉 = (−1)|α|〈T̂ , p̂γ〉 = 〈p̂T̂ , γ〉,

for each γ ∈ S. This also implies that the distributional Fourier transform p̂∗ of its
adjoint operator (−1)|α|Dα is equal to p̂∗(x) = (−ix)α = p̂(x). Furthermore, we can
also obtain the distributional Fourier transform of a differential operator in the same
way, e.g.,

p̂(x) =
∑
|α|6N

cα(ix)α, where P =
∑
|α|6N

cαDα, cα ∈ C and α ∈ Nd
0, N ∈ N0.

Finally, we can check that the distributional Fourier transform of the differential op-
erator is equivalent to [21, Definition 4].
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4.3 Green Functions and Generalized Sobolev Space

Definition 4.3 ([21, Definition 4]) G is the (full-space) Green function with respect
to the distributional operator L if G ∈ S′ satisfies the equation

LG = δ0. (4.1)

Equation (4.1) is to be interpreted in the distribution sense which means that 〈G, L∗γ〉 =
〈LG, γ〉 = 〈δ0, γ〉 = γ(0) for each γ ∈ S.

According to Theorem 3.1 and [10] we can obtain the following theorem.

Theorem 4.1 Let L be a distributional operator with distributional Fourier trans-
form l̂. Suppose that l̂ is positive on Rd \ {0}. Further suppose that l̂−1 ∈ SI and
that l̂(x) = Θ(‖x‖2m

2 ) as ‖x‖2 → 0 for some m ∈ N0. If the Green function G ∈
Re(C(Rd))∩SI with respect to L is an even function, then G is a conditionally posi-
tive definite function of order m and

ĝ(x) := (2π)−d/2 l̂(x)−1, x ∈ Rd.

is the generalized Fourier transform of order m of G. (Here the notation f = Θ(g)
means that there are two positive numbers M1 and M2 such that M1 |g| 6 | f | 6 M2 |g|.)

Proof First we want to prove that ĝ is the generalized Fourier transform of order m of
G. Since l̂−1 ∈ SI and l̂(x) = Θ(‖x‖2m

2 ) as ‖x‖2 → 0 for some m ∈ N0, the product ĝγ
is integrable for each γ ∈ S2m. So, if we let Ĝ be the distributional Fourier transform
of G and we can verify that

〈Ĝ, γ〉 = (ĝ, γ), for each γ ∈ S2m,

then we can conclude that ĝ is the generalized Fourier transform of G.
Since l̂ is the distributional Fourier transform of the distributional operator L we

know that l̂ ∈ FT . Thus Dα
(
l̂−1

)
∈ SI for each α ∈ Nd

0 because of Dα l̂ ∈ SI and
l̂−1 ∈ SI. If l̂(0) > 0, then l̂−1 ∈ FT , which implies that l̂−1γ ∈ S for each fixed
γ ∈ S2m. Hence

〈Ĝ, γ〉 = 〈l̂Ĝ, l̂−1γ〉 = 〈L̂G, l̂−1γ〉 = 〈δ̂0, l̂−1γ〉

=〈(2π)−d/2, l̂−1γ〉 = ((2π)−d/2, l̂−1γ) = (ĝ, γ).

If l̂(0) = 0, then l̂−1 does not belong to FT . However, since l̂ ∈ FT is positive
on Rd \ {0} we can find a positive-valued sequence {l̂n}∞n=1 ⊂ C∞(Rd) such that

l̂n(x) =

l̂(x), ‖x‖2 > n−1,

l̂(x) + n−1, ‖x‖2 < n−2.

In particular l1 ≡ 1. And then {l̂n}∞n=1 ⊂ FT . It further follows that Dα l̂n converges
uniformly to Dα l̂ on Rd for each α ∈ Nd

0.
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We now fix a arbitrary γ ∈ S2m. Since l̂−1
n γ and l̂−1γ have absolutely finite integral,

l̂−1
n γ also converges to l̂−1γ in the integral sense. Let γk := l̂−1

k γ for each fixed k ∈ N.
Since γk ∈ S,

lim
n→∞
〈Ĝ, l̂nγk〉 = 〈Ĝ, l̂γk〉 = 〈l̂Ĝ, γk〉 = 〈L̂G, γk〉 = 〈δ̂0, γk〉 = 〈(2π)−d/2, γk〉.

Moreover, we can also obtain that 〈Ĝ, l̂kγk〉 = 〈Ĝ, γ〉 for each k ∈ N and that

lim
k→∞
〈(2π)−d/2, γk〉 = lim

k→∞
((2π)−d/2, l−1

k γ) = ((2π)−d/2, l̂−1γ) = (ĝ, γ).

By taking the limit at the diagonal as k = n, we have 〈Ĝ, γ〉 = (ĝ, γ) for each γ ∈ S2m.
Since ĝ ∈ C(Rd \ {0}) is positive on Rd \ {0} and G ∈ Re(C(Rd)) ∩ SI is an

even function, we can use Theorem 3.1 to conclude that G is a conditionally positive
definite function of order m.

ut

Remark 4.2 If L is a differential operator, then its distributional Fourier transform l̂
satisfies the conditions of Theorem 4.1 if and only if l̂ has a polynomial of the form
l̂(x) := q(x) + a2m ‖x‖2m

2 , where a2m > 0 and q is a polynomial of degree greater than
2m so that it is positive on Rd \ {0}, or q ≡ 0.

Now we can define the generalized Sobolev space induced by a vector distribu-
tional operator P = (P1, · · · , Pn, · · · )T similar as in [21, Definition 6].

Definition 4.4 Consider the vector distributional operator P = (P1, · · · , Pn, · · · )T

consisting of countably many distributional operators {Pn}
∞
n=1. The generalized Sobolev

space induced by P is defined by

HP(Rd) :=
{
f ∈ Re(Lloc

1 (Rd)) ∩ SI : {Pn f }∞n=1 ⊆ L2(Rd) and
∞∑

n=1

‖Pn f ‖2L2(Rd) < ∞
}

and it is equipped with the semi-inner product

( f , g)HP(Rd) :=
∞∑

n=1

(Pn f , Png), f , g ∈ HP(Rd).

What is the meaning of HP(Rd)? By the definition of the generalized Sobolev
space we know that HP(Rd) is a real-valued subspace of Lloc

1 (Rd) ∩ SI and it is
equipped with a semi-inner product induced by the vector distributional operator P.
Viewed in another way, f ∈ Re(Lloc

1 (Rd))∩SI belongs to HP(Rd) if and only if there
is a sequence {gn}

∞
n=1 ⊂ L2(Rd) such that

∑∞
n=1 ‖gn‖

2
L2(Rd) < ∞ and

(gn, γ) = 〈gn, γ〉 = 〈Pn f , γ〉 = 〈 f , P∗nγ〉 = ( f , P∗nγ), for each γ ∈ S, n ∈ N.

In the following theorems of this section we only consider P constructed by a
finite number of distributional operators P1, . . . , Pn. If P := (P1, · · · , Pn)T , then the
distributional operator

L := P∗T P =
n∑

j=1

P∗jP j
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is well-defined, where P∗ := (P∗1, · · · , P
∗
n)T is the adjoint operator of P as defined

in Section 4.1. If we suppose that P is complex-adjoint invariant with distributional
Fourier transform p̂ = ( p̂1, · · · , p̂n)T , then the distributional Fourier transform p̂∗ =
( p̂∗1 · · · , p̂

∗
n)T of its adjoint operator P∗ is equal to p̂ = ( p̂1, · · · , p̂n)T . Since

〈P̂∗jP jT , γ〉 = 〈p̂∗j P̂ jT , γ〉 = 〈p̂ jT̂ , p̂∗jγ〉 = 〈 p̂ j p̂ jT̂ , γ〉 = 〈
∣∣∣p̂ j

∣∣∣2 T̂ , γ〉

for each T ∈ S′ and γ ∈ S, the distributional Fourier transform l̂ of L is given by

l̂(x) :=
n∑

j=1

∣∣∣ p̂ j(x)
∣∣∣2 = ‖p̂(x)‖22 , x ∈ Rd.

Moreover, since P has a distributional Fourier transform, P is translation invariant
(see Section 4.2).

We are now ready to state and prove our main theorem about the generalized
Sobolev space HP(Rd) induced by a vector distributional operator P := (P1, · · · , Pn)T .

Theorem 4.2 Let P := (P1, · · · , Pn)T be a complex-adjoint invariant vector distribu-
tional operator with vector distributional Fourier transform p̂ := ( p̂1, · · · , p̂n)T which
is nonzero on Rd \ {0}. Further suppose that x 7→ ‖p̂(x)‖−1

2 ∈ SI and that ‖p̂(x)‖2 =
Θ(‖x‖m2 ) as ‖x‖2 → 0 for some m ∈ N0. If the Green function G ∈ Re(C(Rd)) ∩ SI
with respect to L = P∗T P is chosen so that it is an even function, then G is a condition-
ally positive definite function of order m and its native spaceNm

G (Rd) is a subspace of
the generalized Sobolev space HP(Rd). Moreover, their semi-inner products are the
same on Nm

G (Rd), i.e.,

( f , g)Nm
G (Rd) = ( f , g)HP(Rd), f , g ∈ Nm

G (Rd).

Proof By our earlier discussion the distributional Fourier transform l̂ of L is equal
to l̂(x) = ‖p̂(x)‖22. Thus l̂ is positive on Rd \ {0}, l̂−1 ∈ SI and l̂(x) = Θ(‖x‖2m

2 ) as
‖x‖2 → 0. According to Theorem 4.1, G is a conditionally positive definite function
of order m and its generalized Fourier transform of order m is given by

ĝ(x) := (2π)−d/2 l̂(x)−1 = (2π)−d/2 ‖p̂(x)‖−2
2 , x ∈ Rd.

With the material developed thus far we are able construct its native space Nm
G (Rd)

(see Section 3.2).
Next, we fix any f ∈ Nm

G (Rd). According to Theorem 3.2, f ∈ Re(C(Rd)) ∩ SI
possesses a generalized Fourier transform f̂ of order m/2 and x 7→ f̂ (x) ‖p̂(x)‖2 ∈
L2(Rd). This means that the functions p̂ j f̂ belong to L2(Rd), j = 1, . . . , n. Hence we
can define the function fP j ∈ L2(Rd) by

fP j := (p̂ j f̂ )̌ ∈ L2(Rd), j = 1, . . . , n

using the inverse L2(Rd)-Fourier transform.
Since ‖p̂(x)‖2 = Θ(‖x‖m2 ) as ‖x‖2 → 0 we have p̂ j(x) = O(‖x‖m2 ) as ‖x‖2 → 0

for each j = 1, . . . , n. Thus p̂ jγ̌ ∈ Sm for each γ ∈ S. Moreover, since p̂ jγ̌ = p̂ jγ̂ =
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p̂∗j γ̂ = P̂∗jγ and the generalized and distributional Fourier transforms of f coincide on
Sm we have

( fP j , γ) = ((p̂ j f̂ )̌, γ) = ( p̂ j f̂ , γ̌) = ( f̂ , p̂ jγ̌) = 〈 f̂ , p̂ jγ̌〉

=〈 f̂ , P̂∗jγ〉 = 〈 f , P
∗
jγ〉 = 〈 f , P

∗
jγ〉 = 〈P j f , γ〉, γ ∈ S.

This shows that P j f = fP j ∈ L2(Rd). Therefore we know that f ∈ HP(Rd).
To establish equality of the semi-inner products we let f , g ∈ Nm

G (Rd). Then the
Plancherel theorem [7] yields

( f , g)HP(Rd) =

n∑
j=1

( fP j , gP j ) =
n∑

j=1

( p̂ j f̂ , p̂ jĝ) =
n∑

j=1

∫
Rd

f̂ (x)ĝ(x)
∣∣∣ p̂ j(x)

∣∣∣2 dx

=

∫
Rd

f̂ (x)ĝ(x) ‖p̂(x)‖22 dx =
∫
Rd

f̂ (x)ĝ(x)l̂(x)dx

= (2π)−d/2
∫
Rd

f̂ (x)ĝ(x)
ĝ(x)

dx = ( f , g)Nm
G (Rd).

ut

Remark 4.3 If each element of P is just a differential operator then each element of
P can be written as P j :=

∑
|α|6N cαDα where cα ∈ R and α ∈ Nd

0, N ∈ N0 because P
is complex-adjoint invariant.

The preceding theorem shows that Nm
G (Rd) can be imbedded into HP(Rd). Ideally,

Nm
G (Rd) would be equal to HP(Rd), but this is not true in general. However, if we

impose some additional conditions on HP(Rd), then we can obtain equality.

Definition 4.5 Let P := (P1, · · · , Pn)T be a vector distributional operator. We say that
the generalized Sobolev space HP(Rd) possesses the S-dense property if for every
f ∈ HP(Rd), every compact subset Λ ⊂ Rd and every ε > 0, there exists γ ∈ Re(S) ⊆
HP(Rd) such that

| f − γ|HP(Rd) < ε and ‖ f − γ‖L∞(Λ) < ε, (4.2)

i.e., there is a sequence {γn}
∞
n=1 ⊆ Re(S) ⊆ HP(Rd) so that

| f − γn|HP(Rd) → 0 and ‖ f − γn‖L∞(Λ) → 0, when n→ ∞.

Following the method of the proofs of [20, Theorems 10.41 and 10.43], we can
complete the proofs of the following lemma and theorem.

Lemma 4.3 Let P and G satisfy the conditions of Theorem 4.2 and suppose that
HP(Rd) has the S-dense property. Assume we are given the data sets {x1, · · · , xN} ⊂

Rd and {λ1, · · · , λN} ⊂ R. If we define fλ :=
∑N

k=1 λkG(· − xk), then for every f ∈
HP(Rd) and every x ∈ Rd we have the representation

( fλ(x − ·), f )HP(Rd) =

N∑
k=1

λk f (x − xk). (4.3)
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Proof Let us first assume that γ ∈ Re(S). According to Theorem 4.2, fλ ∈ Nm
G (Rd) ⊆

HP(Rd). Since P is translation invariant and complex-adjoint invariant we have

( fλ(x − ·), γ)HP(Rd) =

n∑
j=1

(P j fλ(x − ·), P jγ) =
n∑

j=1

(P j fλ(x − ·), P jγ)

=

n∑
j=1

〈 fλ(x − ·), P∗jP jγ〉 = ( fλ,P∗T Pγ(x − ·)) =
N∑

k=1

λk(G(· − xk), Lγ(x − ·))

=

N∑
k=1

λk〈LG, γ(x − xk − ·)〉 =
N∑

k=1

λk〈δ0, γ(x − xk − ·)〉 =
N∑

k=1

λkγ(x − xk).

For a general f ∈ HP(Rd) we fix x ∈ Rd and choose a compact set Λ ⊂ Rd

such that x − xk ∈ Λ for k = 1, . . . ,N. For any ε > 0, there is a γ ∈ Re(S) which
satisfies Equation (4.2). Then two applications of the triangle inequality show that the
absolute value of the difference in the two sides of Equation (4.3) can be bounded by
ε
(∑N

k=1 |λk | + | fλ|HP(Rd)

)
, which tends to zero as ε → 0.

ut

Theorem 4.4 Let P and G satisfy the conditions of Theorem 4.2. If HP(Rd) possesses
the S-dense property, then

Nm
G (Rd) ≡ HP(Rd).

Proof By Theorem 4.2 we already know thatNm
G (Rd) is contained in HP(Rd) and that

their semi-inner products are the same in the subspace Nm
G (Rd). Moreover, Nm

G (Rd)
is a complete subspace of HP(Rd). So, if we assume that Nm

G (Rd) were not the whole
space HP(Rd), then there would be an element f ∈ HP(Rd) which is orthogonal to the
native space Nm

G (Rd).
Let Q = dim πm−1(Rd) and {q1, · · · , qQ} be a Lagrange basis of πm−1(Rd) with re-

spect to a πm−1(Rd)-unisolvent subset {ξ1, · · · , ξQ} ⊂ R
d. We make the special choice

of the data sets {−x,−ξ1, · · · ,−ξQ} and
{
1,−q1(x), · · · ,−qQ(x)

}
and correspondingly

define

fλ := G(· + x) −
Q∑

k=1

qk(x)G(· + ξk).

Since HP(Rd) has the S-dense property we can use Lemma 4.3 to represent any f ∈
HP(Rd) in the form

f (w + x) =
Q∑

k=1

qk(x) f (w + ξk) + ( fλ(w − ·), f )HP(Rd).

Since G is even, we have x 7→ fλ(−x) ∈ Nm
G (Rd). We now set w = 0. The fact that f

is orthogonal to Nm
G (Rd) gives us

f (x) =
Q∑

k=1

qk(x) f (ξk) + ( fλ(−·), f )HP(Rd) =

Q∑
k=1

f (ξk)qk(x).
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This shows that f ∈ πm−1(Rd) ⊆ Nm
G (Rd), and it contradicts our first assumption. It

follows that Nm
G (Rd) ≡ HP(Rd).

ut

Lemma 4.5 Let P and G satisfy the conditions of Theorem 4.2. Then

HP(Rd) ∩ C(Rd) ∩ L2(Rd) ⊆ Nm
G (Rd).

Proof We fix any f ∈ HP(Rd) ∩ C(Rd) ∩ L2(Rd) and suppose that f̂ and P̂ j f , re-
spectively, are the L2(Rd)-Fourier transforms of f and P j f , j = 1, . . . , n. Using the
Plancherel theorem [7] we obtain∫

Rd

∣∣∣ f̂ (x) p̂ j(x)
∣∣∣2 dx = ( p̂ j f̂ , p̂ j f̂ ) = (P̂ j f , P̂ j f ) = (P j f , P j f ) < ∞.

And therefore, with the help of the proof of Theorem 4.2, we have

∫
Rd

∣∣∣ f̂ (x)
∣∣∣2

ĝ(x)
dx = (2π)d/2

∫
Rd

∣∣∣ f̂ (x)
∣∣∣2 l̂(x)dx = (2π)d/2

∫
Rd

∣∣∣ f̂ (x)
∣∣∣2 ‖p̂(x)‖22 dx

= (2π)d/2
n∑

j=1

∫
Rd

∣∣∣ f̂ (x)p̂ j(x)
∣∣∣2 dx < ∞

showing that ĝ−1/2 f̂ ∈ L2(Rd), where ĝ is the generalized Fourier transform of G.
And now, according to Theorem 3.1, f ∈ Nm

G (Rd).
ut

This says that HP(Rd)∩C(Rd)∩L2(Rd) can be imbedded intoNm
G (Rd). Moreover,

according to Lemma 4.5 we can immediately obtain the following theorem.

Theorem 4.6 Let P and G satisfy the conditions of Theorem 4.2. If HP(Rd) ⊆ C(Rd)∩
L2(Rd), then

Nm
G (Rd) ≡ HP(Rd).

Remark 4.4 As Example 5.5 in Section 5.2 shows, the native space Nm
G (Rd) will not

always be equal to the corresponding generalized Sobolev space HP(Rd).

5 Examples of Conditionally Positive Definite Functions Generated By Green
Functions

5.1 One-Dimensional Cases

With the theory we developed in the preceding section in mind we again discuss the
cubic spline and the tension spline of Examples 2.1 and 2.2.



19

Example 5.1 (Piecewise Polynomial Splines) Consider the (scalar) distributional op-
erator P := d2/dx2 and L := P∗T P = d4/dx4. By integrating Equation (4.1) four times
we can obtain a family of possible Green functions with respect to L, i.e.,

G(x) :=
|x|3

12
+ a3x3 + a2x2 + a1x + a0, x ∈ R,

where a j ∈ R, j = 0, 1, 2, 3. However, we want the Green function to be an even
function. Hence, we choose

G(x) :=
1

12
|x|3 , x ∈ R.

This ensures that P and G satisfy the conditions of Theorem 4.2 and ‖p̂(x)‖2 = |x|
2.

As a result, the associated interpolant is given by

s f ,X(x) :=
N∑

j=1

c j

12

∣∣∣x − x j

∣∣∣3 + β2x + β1, x ∈ R.

This is the same as the cubic spline interpolant of Example 2.1.
More generally, we let P := dm/dxm and L := P∗T P = (−1)md2m/dx2m for some

m ∈ N. One of the Green functions with respect to L is

G(x) :=
(−1)m

2(2m − 1)!
|x|2m−1 , x ∈ R.

We can verify that P and G satisfy the conditions of Theorem 4.2 and that ‖p̂(x)‖2 =
|x|m. Therefore G is a conditionally positive function of order m and we can obtain its
associated interpolant in the form

s f ,X(x) :=
N∑

j=1

(−1)mc j

2(2m − 1)!

∣∣∣x − x j

∣∣∣2m−1
+

m−1∑
k=0

βk xk, x ∈ R.

This is known as a (2m − 1)st-degree spline interpolant (see [2, Chapter 6.1.5]).
In addition, according to [20, Theorem 10.40], we can check that

HP(R) ≡
{
f ∈ Re(Lloc

1 (R)) ∩ SI : f (m) ∈ L2(R)
}

has the S-dense property. Therefore, Theorem 4.4 tells us that Nm
G (R) ≡ HP(R) and

it follows that the (2m − 1)st-degree spline is the optimal interpolant for all functions
in the generalized Sobolev space HP(R).

Example 5.2 (Tension Splines) Let σ > 0 be a tension parameter and consider the
vector distributional operator P := (d2/dx2, σd/dx)T and L := P∗T P = d4/dx4 −

σ2d2/dx2. Then

G(x) := −
1

2σ3

(
exp(−σ |x|) + σ |x|

)
, x ∈ R,

is a solution of Equation (4.1). We can verify that P and G satisfy the conditions of
Theorem 4.2 and that ‖p̂(x)‖2 = (|x|4 + σ2 |x|2)1/2 = Θ(|x|) as |x| → 0. So G is a
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conditionally positive definite function of order 1. This yields the same interpolant as
the tension spline interpolant (2.4), i.e.,

s f ,X(x) :=
N∑

j=1

c jG(x − x j) + β1, x ∈ R.

It is easy to check that | f |HP(R) = | f |TS for each f ∈ C2(R) ∩ HP(R). According to
the Sobolev inequality [1] and [20, Theorem 10.40], HP(R) has the S-dense property
which implies that N1

G(R) ≡ HP(R). Theorem 4.4 and [20, Theorem 13.2] provide us
with the same optimality property as stated in Example 2.2.

Example 5.3 (Univariate Sobolev Splines, [21, Example 2]) Let σ > 0 be a scaling
parameter and consider P := (d/dx, σI)T and L := P∗T P = σ2I − d2/dx2. It is known
that the Green function with respect to L is

G(x) :=
1

2σ
exp(−σ |x|), x ∈ R.

Since P and G satisfy the conditions of Theorem 4.2 and ‖p̂(x)‖2 =
(
σ2 + x2

)1/2
=

Θ(1) as |x| → 0, we can determine that G is positive definite. By the same method
as in [21, Example 2] we can verify that HP(R) is equivalent to the classical Sobolev
spaceH1(R) so that HP(R) ⊆ C(R) ∩ L2(R). According to Theorem 4.6,

N0
G(R) ≡ HP(R) ≡ H1(R).

5.2 Two and Three-Dimensional Cases

Example 5.4 (Thin Plate Splines) Let P :=
(
∂2/∂x2

1,
√

2∂2/∂x1∂x2, ∂
2/∂x2

2

)T
and

L := P∗T P = ∆2. It is well-known that the fundamental solution of the Poisson equa-
tion on R2 is given by x 7→ log ‖x‖2, i.e., ∆ log ‖x‖2 = −2πδ. Therefore Equation (4.1)
is solved by

G(x) :=
1

8π
‖x‖22 log ‖x‖2 , x ∈ R2. (5.1)

Since P and G satisfy the conditions of Theorem 4.2 and ‖p̂(x)‖2 = ‖x‖
2
2, G is a

conditionally positive definite function of order 2 and its related interpolant has the
form

s f ,X(x) :=
N∑

j=1

c jG(x − x j) + β3x2 + β2x1 + β1, x = (x1, x2) ∈ R2. (5.2)

Moreover, according to [20, Theorem 10.40], we can verify that HP(R2) has the
S-dense property. Therefore, N2

G(R2) ≡ HP(R2) by Theorem 4.4. Equation (5.2) is
known as the thin plate spline interpolant (see [4,8]).

Finally, we consider the Duchon semi-norm mentioned in [4], i.e.,

| f |2D2
:=

∫
R2

∣∣∣∣∣∣∂2 f (x)
∂x2

1

∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣ ∂2 f (x)
∂x1∂x2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣∂2 f (x)
∂x2

2

∣∣∣∣∣∣2 dx, f ∈ HD2 (R2),
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and the Duchon semi-norm space

HD2 (R2) :=
{
f ∈ Re(Lloc

1 (R2)) ∩ SI : | f |D2
< ∞

}
.

If we define P as above, then it is easy to check that HP(R2) ≡ HD2 (R2). According
to [20, Theorems 13.1 and 13.2] we can conclude that the Duchon semi-norm space
possesses the same optimality properties as those listed in [4].

The following example shows that the same Green function G can generate dif-
ferent generalized Sobolev spaces HP(Rd). Moreover, it illustrates the fact that the
native space Nm

G (Rd) may be a proper subspace of HP(Rd).

Example 5.5 (Modified Thin Plate Splines) Let P := ∆ and L := P∗T P = ∆2. We find
that the thin plate spline (5.1) is also the Green function with respect to the operator
L defined here. The associated interpolant is again of the form (5.2).

We now consider the Laplacian semi-norm

| f |2∆ :=
∫
R2
|∆ f (x)|2 dx, f ∈ C(R2) ∩ SI,

and the Laplacian semi-norm space

H∆(R2) :=
{
f ∈ Re(Lloc

1 (R2)) ∩ SI : | f |∆ < ∞
}
.

It is easy to verify that HP(R2) ≡ H∆(R2). However, it is known that HD2 (R2) is
a proper subspace of H∆(R2) since q ∈ H∆(R2) but q < HD2 where q(x) := x1x2.
Therefore, due to Example 5.4, we conclude that

N2
G(R2) ≡ HD2 (R2) & H∆(R2) ≡ HP(R2).

Instead of working with the polynomial space π1(R2) which is used to define
N2

G(R2), we can construct a new native space NP
G (R2) for G by using another finite-

dimensional space P of Re(C2(R2)) ∩ SI such that NP
G (R2) may be equal to the

other subspace of HP(R2). First we can verify that the finite-dimensional space P :=
span

{
π1(R2) ∪ {q}

}
is a subspace of the null space of HP(R2). Since π1(R2) ⊂ P

and G is a conditionally positive definite function of order 2, we know that G is
also conditionally positive definite with respect to P . Hence, the new native space
NP

G (R2) with respect to G and P is well-defined (see [20, Chapter 10.3]). We can
further check that NP

G (R2) is a subspace of HP(R2) but it is larger than N2
G(R2), i.e.,

N2
G(R2) $ NP

G (R2) ⊆ HP(R2).
So we can obtain a modification of the thin plate spline interpolant based on P:

sP
f ,X(x) :=

N∑
j=1

c jG(x − x j) + β4x1x2 + β3x2 + β2x1 + β1, x = (x1, x2) ∈ R2,

where the unknown coefficients are found by solving(
AG,X QX

QT
X 0

) (
c
β

)
=

(
Y
0

)
, QX :=

(
qk(x j)

)N,4

j,k=1
∈ RN×4,

with AG,X as in (2.3) and q1(x) := 1, q2(x) := x1, q3(x) := x2, q4(x) := x1x2.
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Conjecture 5.1 Motivated by Example 5.5 we audaciously guess the following ex-
tension of the theorems in Section 4.3: Let P and G satisfy the conditions of Theo-
rem 4.2. If the subspace P of the null space of HP(Rd) is a finite-dimensional sub-
space and πm−1(Rd) ⊆ P , then the new native space NP

G (R2) with respect to G and
P is a subspace of HP(Rd).

5.3 d-Dimensional Cases

Example 5.6 (Polyharmonic Splines) This is a generalization of the earlier Exam-

ples 5.1 and 5.4. Let P :=
(
∂m/∂xm

1 , · · · ,
(

m!
α!

)1/2
Dα, · · · , ∂m/∂xm

d

)T
consisting of all(

m!
α!

)1/2
Dα with |α| = m > d/2. We further denote L := P∗T P = (−1)m∆m. Then the

polyharmonic spline on Rd is the solution of Equation (4.1) (see [2, Chapter 6.1.5]),
i.e.,

G(x) :=

 Γ(d/2−m)
22mπd/2(m−1)! ‖x‖

2m−d
2 for d odd,

(−1)m+d/2−1

22m−1πd/2(m−1)!(m−d/2)! ‖x‖
2m−d
2 log ‖x‖2 for d even.

We can also check that P and G satisfy the conditions of Theorem 4.2 and that
‖p̂(x)‖2 = ‖x‖

m
2 . Therefore G is a conditionally positive definite function of order

m. Furthermore, according to [20, Theorem 10.40], we can verify that HP(Rd) has the
S-dense property. Therefore, Nm

G (Rd) ≡ HP(Rd) by Theorem 4.4.
We now consider the Beppo-Levi space of order m on Rd, i.e.,

BLm(Rd) :=
{
f ∈ Re(Lloc

1 (Rd)) : Dα f ∈ L2(Rd) for all |α| = m
}

equipped with the semi-inner product

( f , g)BLm(Rd) :=
∑
|α|=m

m!
α!

(Dα f ,Dαg), f , g ∈ BLm(Rd).

According to [9], we know that BLm(Rd) ⊆ Re(Lloc
1 (Rd)) ∩ SI whenever m > d/2.

Hence HP(Rd) ≡ BLm(Rd).
By the way, it is well-known that G is also conditionally positive definite of order

l := m−dd/2e+1 (see [20, Corollary 8.8]). However, the native spaceN l
G(Rd) induced

by G and πl−1(Rd) is a proper subspace of Nm
G (Rd) when d > 1. Therefore

N l
G(Rd) $ Nm

G (Rd) ≡ HP(Rd) ≡ BLm(Rd), d > 1.

Remark 5.1 If a vector distributional operator P := (P1, · · · , Pn)T satisfies its distri-
butional Fourier transform x 7→ ‖p̂(x)‖22 ∈ π2m(Rd) and{

aαDα : |α| = m, α ∈ Nd
0

}
⊆

{
P j : j = 1, . . . , n

}
, where aα , 0 and m > d/2,

then HP(Rd) ⊆ BLm(Rd). According to the Sobolev inequality [1], there is a positive
constant C such that ‖ f ‖2HP(Rd) 6 C ‖ f ‖2BLm(Rd) for each f ∈ HP(Rd). This implies that
this generalized Sobolev space HP(Rd) also has the S-dense property.
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Example 5.7 (Sobolev Splines, [21, Example 3]) This is a generalization of Exam-
ple 5.3. Let P :=

(
QT

0 , · · · ,Q
T
n

)T
, where

Q j :=


(

n!σ2n−2 j

j!(n− j)!

)1/2
∆k when j = 2k,(

n!σ2n−2 j

j!(n− j)!

)1/2
∆k∇ when j = 2k + 1,

k ∈ N0, j = 0, 1, . . . , n, n > d/2.

Here we use ∆0 := I. We further define L := P∗T P = (σ2I − ∆)n.
The Sobolev spline (or Matérn function) is known to be the Green function with

respect to L (see [2, Chapter 6.1.6]), i.e.,

G(x) :=
21−n−d/2

πd/2Γ(n)σ2n−d
(σ ‖x‖2)n−d/2 Kd/2−n (σ ‖x‖2) , x ∈ Rd,

where z 7→ Kν(z) is the modified Bessel function of the second kind of order ν. Since
P and G satisfy the conditions of Theorem 4.2 and ‖p̂(x)‖2 = Θ(1) as ‖x‖2 → 0, G is
positive definite and the associated interpolant s f ,X is the same as the Sobolev spline
(or Matérn) interpolant.

Combining [21, Example 3] and Theorem 4.6, we can determine that

N0
G(Rd) ≡ HP(Rd) ≡ Hn(Rd).

Moreover, this shows that the classical Sobolev spaceHn(Rd) becomes a reproducing-
kernel Hilbert space with HP(Rd)-inner product and its reproducing kernel is given
by K(x, y) := G(x − y).

In the following example we are not able to establish that the operator P satisfies
the conditions of Theorem 4.2 and so part of the connection to the theory developed
in this paper is lost. We therefore use the symbol Φ to denote the kernel instead of G.

Example 5.8 (Gaussians, [21, Example 4]) The Gaussian kernel K(x, y) := Φ(x −
y) derived by the Gaussian function Φ is very important and popular in the cur-
rent research fields of scattered data approximation and machine learning. A large
group of people would like to know the native space of the Gaussian function or
the reproducing-kernel Hilbert space of the Gaussian kernel. In this example we will
show that the native space of the Gaussian function is equivalent to a generalized
Sobolev space.

We firstly consider the Gaussian function

Φ(x) :=
σd

πd/2 exp(−σ2 ‖x‖22), x ∈ Rd, σ > 0.

We know that Φ is a positive definite function and its native spaceN0
Φ(Rd) is a repro-

ducing kernel Hilbert space (see [5, Chapter 4]).
Let P :=

(
QT

0 , · · · ,Q
T
n , · · ·

)T
, where

Qn :=


(

1
n!4nσ2n

)1/2
∆k when n = 2k,(

1
n!4nσ2n

)1/2
∆k∇ when n = 2k + 1,

k ∈ N0.
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Here we again use ∆0 := I. Since the differential operators are just special cases of
distributional operators, the generalized Sobolev space HP(Rd) defined by P is the
same as that derived in [21, Example 4]. According to the proof of [21, Example 4],
we have

N0
Φ(Rd) ≡ HP(Rd).

Moreover, it is easy to verify that HP(Rd) ⊆ Hn(Rd) for each n ∈ N. According to
the Sobolev embedding theorem [1], we also have HP(Rd) ⊆ Re(C∞b (Rd)). However,
HP(Rd) does not contain polynomials. If f ∈ Re(C∞b (Rd)) and there is a positive
constant C such that ‖Dα f ‖L∞(Rd) 6 C |α| for each α ∈ Nd

0, then f ∈ HP(Rd) which
implies that f ∈ N0

Φ(Rd).

6 Extensions and Future Works

In this paper we have presented a unified theory for the generation of conditionally
positive definite functions of order m as (full-space) Green functions with respect to
a distributional operator L := P∗T P with an appropriate vector distributional operator
P. These even Green functions G ∈ Re(C(Rd)) ∩ SI can be used as basic functions
of a translation invariant meshfree kernel-based approximation methods of the form
(2.1)-(2.2). Our analysis is limited to this translation invariant setting which does
not address the fully general situation with kernels of the form K(x, y), but is more
general than the radial setting.

In Section 5 we were able to show that many different types of “splines” and
radial basis functions can be treated with our Green function framework. Thus, re-
producing kernel Hilbert space methods can be viewed as a natural generalization of
univariate splines (including such variations as tension splines). Other forms of uni-
variate splines such as smoothing splines or regression splines can be covered using
a related least squares framework, and multivariate generalizations of these methods
are widely used in statistics and machine learning.

We only consider real-valued functions as candidates for the generalized Sobolev
spaces and Green functions in this paper, but all the conclusions and the theorems
can be extended to complex-valued functions in a way similarly to [20]. HP(Rd) may
not be complete even though we extend it to complex-valued functions. However, its
completion is embedded into the tempered distribution space S′ and has the explicit
form

HP(Rd) ≡
{
T ∈ S′ : P jT ∈ L2(Rd), j = 1, . . . , n

}
, if P = (P1, · · · , Pn)T .

The vector distributional operator P can be further constructed by pseudo-differential
operators with non constant coefficients. Therefore their generalized Sobolev spaces
HP(Rd) could be equivalent to the Beppo-Levi type spaces Xm

τ (Rd). For example, if

P :=
(
ωτ∂

m/∂xm
1 , · · · , ωτD

α, · · · , ωτ∂
m/∂xm

d

)T
, then

HP(Rd) ≡ Xm
τ (Rd) :=

{
f ∈ Re(Lloc

1 (Rd)) ∩ SI : ωτDα f ∈ L2(Rd), |α| = m, α ∈ Nd
0

}
,

where ωτ(x) := ‖x‖τ2 and 0 6 τ < 1. However, P may not satisfy the condition of
Theorem 4.2. We have reserved these situations for our future research.
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Unfortunately, it is sometimes difficult for us to solve a Green function matching
the conditions of Theorem 4.2 even if the vector distributional operator P satisfies
the conditions of Theorem 4.2. However, there is usually an even Green function
G ∈ Re(C(Rd \ {0})) ∩ SI. This means that the Green function merely has a singular
point at the origin. According to our numerical tests of some cases, we find that this
kind of Green function can still play the role of a basic function for the construction
of a multivariate interpolant s f ,X via (2.1)-(2.2) after some techniques to remove the
singularity. One of the numerical tests is a two-dimensional example as below. Let
P :=

(
∆, σ∇T )T with σ > 0 and the Green function with respect to L := P∗T P =

∆2 − σ2∆ be given by

G(x) := −
1

2πσ2

(
K0 (σ ‖x‖2) + log (σ ‖x‖2)

)
, x ∈ R2,

where z 7→ Kν(z) is the modified Bessel function of the second kind of order ν. We
can use a transformations to remove the singularity of G as follows:

Gr(x) := −
1

2πσ2

(
K0 (σ ‖x‖2 + r) + log (σ ‖x‖2 + r)

)
, x ∈ R2, r > 0.

We guess that the interpolant via this modified Green function may be used to ap-
proximate functions belonging to the related generalized Sobolev space.

We merely consider the Lebesgue measure here. However, we can further gen-
eralize our results to other measure spaces (Ω,BΩ, µ), where Ω ⊆ Rd and BΩ is the
Borel set of Ω. We suppose that the bijective map

A : (Ω,BΩ, µ)→ (Rd,BRd )

is differentiable at every point of Ω such that

dµ(x) = |det (JA(x))| dx, where JA(x) is the Jacobian matrix ofA at x.

According to the Radon-Nikodym Theorem [7] it is not difficult to gain similar con-
clusions when we transform the generalized Sobolev space to be

HµP(Ω) :=
{
fA := f ◦ A : f ∈ HP(Rd)

}
,

with the semi-inner product

( fA, gA)HµP(Ω) :=
∞∑

n=1

∫
Ω

Pn f (A(x))Png(A(x))dµ(x), fA, gA ∈ HµP(Ω).

Finally, we do not specify any boundary conditions for the (full-space) Green
functions. Thus we may have many choices of the Green functions with respect to the
same distributional operator L. In our future work we will apply a vector distributional
operator P := (P1, · · · , Pn)T and a vector boundary operator B := (B1, · · · , Bs)T on
a bounded domain Ω to construct a reproducing kernel and its related reproducing-
kernel Hilbert space (see [6]). We further hope to use the distributional operator L to
approximate the eigenvalues and eigenfunctions of the kernel function with the goal
of obtaining fast numerical methods to solve the interpolating systems (2.1)-(2.2)
similar as fast multipole methods in [20, Chapter 15].
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