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Clustered Lagrange Interpolation vs. Hermite Interpolation

We now illustrate the symmetric approach to Hermite interpolation with
a set of numerical experiments for first-order Hermite interpolation (i.e.,
to positional and gradient data) in 2D using the MATLAB program
RBFHermite_2D.m listed below.

Since derivatives of both the RBFs and the test function need to be
included in the program we use the function

f (x , y) =
tanh(9(y − x)) + 1

tanh(9) + 1

which has fairly simple partial derivatives (see lines 9–10 of the
program) to generate the data.

The RBF used in this set of experiments is the multiquadric with shape
parameter ε = 6.
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Clustered Lagrange Interpolation vs. Hermite Interpolation

We compare four different problems:
1 Lagrange interpolation, i.e., interpolation to function values only, at

a set of N equally spaced points in the unit square.

2 Lagrange interpolation to function values at 3N clustered points
with separation distance q = 0.1h, where h is the fill distance of
the set of equally spaced points (see the left plot below).

3 The same as above, but with q = 0.01h (see the right plot below).

4 Hermite interpolation to function value, and values of both
first-order partial derivatives at the N equally spaced points used
in the first experiment.
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Figure: Clustered point sets with N = 25 basic data points. Cluster size h/10
(left) and cluster size h/100 (right).
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Clustered Lagrange Interpolation vs. Hermite Interpolation

The standard Lagrange interpolants were computed via a slightly
modified RBFInterpolation2D.m.

Lagrange interpolation at clustered data sites was accomplished by
the same program by adding the following lines to
RBFInterpolation2D.m (see
RBFInterpolation2Dcluster.m):

q = 0.1/(sqrt(N)-1);
grid = linspace(0,1,sqrt(N));
shifted = linspace(q,1+q,sqrt(N)); shifted(end) = 1-q;
[xc1,yc1] = meshgrid(shifted,grid);
[xc2,yc2] = meshgrid(grid,shifted);
dsites = [dsites; xc1(:) yc1(:); xc2(:) yc2(:)];
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Clustered Lagrange Interpolation vs. Hermite Interpolation

The program RBFHermite_2D.m maintains the same basic structure
as earlier interpolation programs.

Now, however, we need to define derivatives of the RBF of up to twice
the order of the data.

This is done for the MQ basic function on lines 1–6.
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Program (RBFHermite_2D.m)
1 rbf = @(e,r) sqrt(1+(e*r).^2); ep = 6; % MQ RBF
2 dxrbf = @(e,r,dx) dx*e^2./sqrt(1+(e*r).^2);
3 dyrbf = @(e,r,dy) dy*e^2./sqrt(1+(e*r).^2);
4a dxxrbf = @(e,r,dx) e^2*(1+(e*r).^2-(e*dx).^2)./...
4b (1+(e*r).^2).^(3/2);
5 dxyrbf = @(e,r,dx,dy) -e^4*dx.*dy./(1+(e*r).^2).^(3/2);
6a dyyrbf = @(e,r,dy) e^2*(1+(e*r).^2-(e*dy).^2)./...
6b (1+(e*r).^2).^(3/2);
7 tf = @(x,y) (tanh(9*(y-x))+1)/(tanh(9)+1);
8 tfDx = @(x,y) 9*(tanh(9*(y-x)).^2-1)/(tanh(9)+1);
9 tfDy = @(x,y) 9*(1-tanh(9*(y-x)).^2)/(tanh(9)+1);

10 N = 289; dsites = CreatePoints(N,2,’u’); ctrs = dsites;
11 M = 1600; epoints = CreatePoints(M,2,’u’);
12 DM_eval = DistanceMatrix(epoints,ctrs);
13 dx_eval = DifferenceMatrix(epoints(:,1),ctrs(:,1));
14 dy_eval = Differencematrix(epoints(:,2),ctrs(:,2));
15 DM_data = DistanceMatrix(dsites,ctrs);
16 dx_data = DifferenceMatrix(dsites(:,1),ctrs(:,1));
17 dy_data = DifferenceMatrix(dsites(:,2),ctrs(:,2));
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Program (RBFHermite_2D.m (cont.))
18a rhs = [tf(dsites(:,1),dsites(:,2)); ...
18b tfDx(dsites(:,1),dsites(:,2)); ...
18c tfDy(dsites(:,1),dsites(:,2))];
19 exact = tf(epoints(:,1),epoints(:,2));
20 IM = rbf(ep,DM_data);
21 DxIM = dxrbf(ep,DM_data,dx_data);
22 DyIM = dyrbf(ep,DM_data,dy_data);
23 DxxIM = dxxrbf(ep,DM_data,dx_data);
24 DxyIM = dxyrbf(ep,DM_data,dx_data,dy_data);
25 DyyIM = dyyrbf(ep,DM_data,dy_data);
26a IM = [IM -DxIM -DyIM;
26b DxIM -DxxIM -DxyIM;
26c DyIM -DxyIM -DyyIM];
27 EM = rbf(ep,DM_eval);
28 DxEM = dxrbf(ep,DM_eval,dx_eval);
29 DyEM = dyrbf(ep,DM_eval,dy_eval);
30 EM = [EM -DxEM -DyEM];
31 Pf = EM * (IM\rhs);
32 maxerr = norm(Pf-exact,inf)
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Since the derivatives of the basic function now also contain difference
terms we need another subroutine that computes matrices of
differences of point coordinates.

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(datacoord,centercoord)
2 [dr,cc] = ndgrid(datacoord(:),centercoord(:));
3 DM = dr-cc;

Remark
This code is used in the block matrices IM and EM in
RBFHermite_2D.m. The minus signs used in columns 2 and 3 of the
block matrices reflect differentiation of the basic function with respect
to its second variable.
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Mesh Lagrange Clustered, q = 0.1h

RMS-error cond(A) RMS-error cond(A)

3 × 3 1.620492e-001 6.078349e+001 8.471301e-002 9.052247e+003
5 × 5 6.148258e-002 9.464176e+002 2.733258e-002 3.073957e+005
9 × 9 8.521994e-003 6.523036e+004 2.678543e-003 8.811980e+007

17 × 17 2.246810e-004 9.017750e+007 3.138761e-005 3.555214e+012
33 × 33 2.017643e-006 4.799960e+013 2.925784e-007 6.474324e+020

Table: 2D interpolation with clustered data vs. Hermite interpolation (part 1).
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Mesh Clustered, q = 0.01h Hermite

RMS-error cond(A) RMS-error cond(A)

3 × 3 9.084939e-002 8.580483e+005 9.128193e-002 1.326346e+002
5 × 5 2.792157e-002 2.829762e+007 2.794943e-002 2.292450e+003
9 × 9 2.687753e-003 8.325283e+009 2.688346e-003 2.185224e+005

17 × 17 3.147808e-005 3.426489e+014 3.148843e-005 2.486624e+009
33 × 33 8.941613e-006 8.943758e+020 5.731027e-009 6.261336e+018

Table: 2D interpolation with clustered data vs. Hermite interpolation (part 2).
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Remark
We can see that the limit of the clustered Lagrange interpolants as
q → 0 behaves like the Hermite interpolants.

Interpolation to function and derivative data at a given point is
more accurate than interpolation to function values alone.
The advantage of the Hermite interpolation approach over the
clustered Lagrange approach is clearly evident for the
experiments with N = 33× 33 = 1089 basic data points (or
N = 3267 clustered data points).

The `2-condition number of A for the clustered interpolants is on the
order of 1020, while it is “only” 6.261336e+018 for the Hermite
matrix.
This difference has a significant impact on the numerical stability,
and the resulting RMS-errors.
The Hermite interpolant is more than three orders of magnitude
more accurate than the Lagrange interpolant to clusters with
q = h/100.
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Clustered Lagrange Interpolation vs. Hermite Interpolation

Figure: Fits for clustered interpolants with N = 289 basic data points. Top left
to bottom right: Lagrange interpolant, interpolant with cluster size h/10,
interpolant with cluster size h/100, Hermite interpolant.
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