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Abstract

In this paper, we consider multivariate interpolation with radial basis functions of finite smooth-

ness. In particular, we show that interpolants by radial basis functions in ℝ
d with finite smoothness

of even order converge to a polyharmonic spline interpolant as the scale parameter of the radial basis

functions goes to zero, i.e., the radial basis functions become increasingly flat.

1 Introduction

Radial basis functions (RBFs) have gained popularity over the last few decades in a variety of areas such
as multivariate interpolation, approximation theory, meshless methods, neural networks, and machine
learning. RBFs are typically used to approximate an unknown function f : ℝd → ℝ in the following form

s(x) =

n
∑

j=1

�j�(∥x− xj∥), (1.1)

whereX := {x1,x2, . . . ,xn} ⊂ ℝ
d, are given scattered data sites, � : [0,∞) → ℝ is a radial basic function,

and ∥ ⋅ ∥ denotes the Euclidean distance. In what follows, we will assume the Fourier transform �̂ of the
RBF � to be nonnegative on ℝ

d and positive at least on an open set of ℝd. In the case of multivariate
interpolation, the expansion coefficients � := (�1, . . . , �n)

T are obtained by solving the linear system

A� = f , (1.2)

where A := [�(∥xj − xl∥)]nj,l=1 and f := (f(x1), . . . , f(xn))
T represents the given data. By construction,

the function obtained from (1.1) and (1.2) interpolates the function f at the scattered points x1, . . . ,xn.
Many of the commonly used kernels contain a shape parameter in the following way

��(r) := �(�r), �, r ≥ 0. (1.3)

If � is very small, then the basic function �� becomes increasingly flat. Moreover, with a very small
�, we have good approximation properties for both interpolation problems and solving elliptic partial
differential equations (see [9, 6, 7, 14]). The condition of system (1.2) is, however, quite large for small �
(see [15]). A so-called “uncertainty relation” or “trade-off principle” quantifying these conflicting effects
of having a small shape parameter have been analyzed in the literature (see, e.g., [12, 16]). However,
it needs to be noted that the trade-off principle holds only if one follows the direct approach outlined
above and uses the matrix A to compute the expansion coefficients �. Alternative approaches that lead
to stable and accurate numerical algorithms for very flat �� are presented, e.g., in [6, 5]. However, we will
not discuss these approaches in this paper. We concentrate on the limiting behavior of the interpolants
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as � → 0. It was observed in [2] and later proved in [8, 9, 13] that, for infinitely smooth basic functions
�(∥ ⋅ ∥), the limit as � → 0 of the interpolant obtained from (1.1) and (1.2) is a multivariate polynomial
provided some mild assumptions on � and the data points X hold.

Previous work on flat RBFs has concentrated on infinitely smooth basic functions since they are known
to yield spectral approximation orders. However, RBFs with finite smoothness are also of importance,
especially in the setting of random fields. Often one has no a priori information of the smoothness of the
interpolation problems in the random field setting. Therefore it was suggested in [17] that one should
allow flexibility in the smoothness of the random field instead of assuming infinite smoothness. As a
specific type of RBF with finite smoothness, Matérn kernels were investigated there.

We will focus on the discussion of the limit of multivariate interpolants using RBFs with finite smooth-
ness. The motivation for this paper comes from our interest in the limiting behavior of interpolation with
Matérn kernels. It was shown in [4] that many RBF kernels can be computed via a related Green’s
function with respect to an appropriate differential operator L. It turns out that the operator associated
with the Matérn kernel “converges” to the operator associated with the polyharmonic splines as the
shape parameter � → 0 (see [4]). It is natural to ask whether the interpolants with Matérn functions
also “converge” to the interpolants with polyharmonic splines as �→ 0. We will confirm this conjecture
by showing that the interpolants based on a class of RBFs with finite smoothness converge to polyhar-
monic splines interpolants. As a consequence, we now know that a large class of infinitely smooth RBF
interpolants converge to polynomial interpolants, and, similarly, a large class of RBF interpolants with
finite smoothness converge to polyharmonic splines. Since univariate polynomial splines are commonly
viewed as a piecewise smooth version of univariate polynomials we suggest that the new insight from this
paper provides us with additional evidence that multivariate polyharmonic splines should (not only from
a variational point of view) be considered as the natural generalization of univariate polynomial splines.

Specifically, we study in this paper RBFs of finite smoothness belonging to the following class. We
consider any RBF � with the following series expansion around 0:

�(r) =

∞
∑

k=0

ckr
k, (1.4)

where c2v+1 ∕= 0 for some integer v and c2k+1 = 0 for 0 ≤ k ≤ v − 1. We denote this class of RBFs by
FS(v).

We point out that if the coefficients of all odd powers in (1.4) are zero, that is v = ∞, then FS(v)
reduces to the set of infinitely smooth RBFs. A typical example of an RBF with finite smoothness is the
C2v Matérn kernel (see [17, 3]):

�(r) =
Kv+ d

2
(r)rv+

d
2

2v−
d
2Γ(v + 1

2 )
, v ∈ ℕ0,

where K� is the modified Bessel function of the second kind of order �. Matérn kernels have also been
referred to as Sobolev spline kernels [11] since they are known to be reproducing kernels of Sobolev
spaces Hv+1(ℝd) whenever v+1 > d

2 . The C
2v Matérn kernel can be expanded in the form of (1.4) with

c2v+1 ∕= 0 and c2k+1 = 0 for 0 ≤ k ≤ v− 1 (see [17]). In [1, Ch. 6, Sect. 1.6] the authors discuss alternate
reproducing kernels for the Sobolev space Hv+1(ℝ) corresponding to a different Hilbert space norm. We
list some Matérn kernels and Sobolev kernels from [1] as examples in Table 1.

Since we consider the kernel with a shape parameter in the form of (1.3), we highlight the dependence
of the interpolant in (1.1) on � as

s(x, �) :=

n
∑

j=1

�j(�)��(∥x− xj∥), (1.5)
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�(r) = e−r = 1− r + 1
2r

2 − 1
6r

3 + ⋅ ⋅ ⋅ C0 Matérn (d = 1)

�(r) = (1 + r)e−r = 1− 1
2r

2 + 1
3r

3 − 1
8r

4 + ⋅ ⋅ ⋅ C2 Matérn (d = 1)

�(r) = (3 + 3r + r2)e−r = 3− 1
2r

2 + 1
8r

4 − 1
15r

5 + 1
48r

6 + ⋅ ⋅ ⋅ C4 Matérn (d = 1)

�(r) =
√
2
2 e−r sin

(

r + �
4

)

= 1
2 − 1

2r
2 + 1

3r
3 − 1

12r
4 + ⋅ ⋅ ⋅ kernel of H2(ℝ) [1, � =

√
2]

�(r) = 1
6e

−r + 1
3e

− r
2 sin

(√
3
2 r +

�
6

)

= 1
3 − 1

12r
2 + 1

72r
4 − 1

240r
5 + ⋅ ⋅ ⋅ kernel of H3(ℝ) [1, � = 1]

Table 1: Matérn functions and kernels of Sobolev spaces for different orders of smoothness.

where the corresponding matrix and coefficients are

A(�) = [��(∥xi − xj∥)]ni,j=1 and �(�) = A(�)−1f (1.6)

We use �m(ℝd),m ∈ ℕ to denote the set of polynomials in d variables of degree less than or equal to
m and Nm,d to denote the dimension of �m(ℝd). We say a set of distinct points {yj : j = 1, 2, . . . , N} ⊂
ℝ
d is unisolvent with respect to �m(ℝd) if for any choice of Nm,d linearly independent basis functions

{pl : l = 1, 2, . . . , Nm,d} from �m(ℝd), there is a unique linear combination
∑Nm,d

l=1 �lpl interpolating any
given data over the set of points. We next present the main result of this paper.

Theorem 1 If � ∈ FS(v) and X contains a unisolvent set with respect to �2v(ℝ
d), then the limit of the

interpolant s(x, �) as �→ 0 has the form of a polyharmonic spline interpolant. Specifically,

lim
�→0

s(x, �) =

n
∑

j=1

�j∥x− xj∥2v+1 +

Nv,d
∑

l=1

�lpl(x),

where {pl : l = 1, . . . , Nv,d} denotes a basis of �v(ℝ
d). Moreover, the coefficients can be determined by

solving the following linear system:

(

G P

P
T 0

)(

�

�

)

=

(

f

0

)

, (1.7)

where G = [∥xi − xj∥2v+1]ni,j=1, P = [pl(xj)]
n,Nv,d

j,l=1 and f is as in (1.2).

The main task in this paper is to prove the above theorem. The technique used in our proofs is similar
to the method given in [8, 9]. More specifically, we will expand the interpolant s(x, �) in terms of powers
of � and establish the limit of s(x, �) exists by showing that the coefficients of negative powers of � in the
expansion are all zeros. Note that all the coefficients turn out to be polynomial functions of ∥x− xj∥.
We divide the coefficients into two types: lower order polynomials of ∥x−xj∥ with degree no more than
2v and higher order polynomials of ∥x − xj∥ containing the term ∥x − xj∥2v+1. Correspondingly, we
arrange the proof in two steps. We first show that the coefficients in the form of lower order polynomials of
∥x−xj∥ with degree no more than 2v are zeros by using the assumptions � ∈ FS(v) and the unisolvency
of X . In order to prove that the coefficients in the form of higher order polynomials of ∥x−xj∥ containing
the term ∥x− xj∥2v+1 are zero we first obtain some moment conditions for these coefficients, and then
use them together with the conditional positive definiteness of ∥ ⋅ ∥2v+1 to obtain the desired result.
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This paper is organized into 5 sections. In next section we expand s(x, �) in terms of powers of � and
show that the expansion coefficients are lower order polynomials of ∥x− xj∥ with degree no more than
2v which are zero. In Section 3, we present the moment conditions obtained from setting the coefficients
in the form of lower order polynomials to be zero. We finally give a complete proof of Theorem 1 in
Section 4 by showing that the coefficients in the form of higher order polynomials of ∥x−xj∥ are also zero
based on the moment conditions obtained in Section 3. The result concerning interpolation with Matérn
kernels will be presented as an immediate corollary there. Some numerical experiments to illustrate our
result are shown in Section 5.

2 Power series expansion of the interpolant s(x, �)

In this section, we will rewrite the interpolant s(x, �) in terms of powers of � and first show that the
expansion coefficients are given in the form of polynomials of ∥x − xj∥. We then establish that those
coefficients with degree no more than 2v are zero. To this end, we first introduce some notation used
throughout this paper. We define ℕ0 := {0, 1, 2, . . .} and for any j := (j1, j2, . . . , jd) ∈ ℕ

d
0 we let

∣j∣ :=
d

∑

l=1

jl, and j! := j1!j2! ⋅ ⋅ ⋅ jd!.

For any b := (b1, b2, . . . , bd) ∈ ℝ
d, let

bj := b
j1
1 b

j2
2 ⋅ ⋅ ⋅ bjdd , j ∈ ℕ

d
0 and bt := (bt1, b

t
2, . . . , b

t
d), t ∈ ℕ0.

For any x ∈ X , we define

g(x) := (∥x− x1∥, ∥x− x2∥, . . . , ∥x− xn∥)T .

We next give a specific form of s(x, �) in terms of the powers of �. Suppose � ∈ FS(v)and write �� in
terms of powers of �

��(r) = �(�r) =
∞
∑

k=0

ck�
krk.

Formally, the coefficients �(�) in (1.6) can be obtained by Cramer’s rule. It follows that they must be
rational functions of � since the entries of A(�) can be written as power series of �. More specifically, there
exists a positive integer � such that for each 1 ≤ j ≤ n

�j(�) = �−�
∞
∑

ℓ=0

aj,ℓ�
ℓ, (2.1)

for some sequence of numbers (aj,0, aj,1, . . .). We can assume � ≥ 2v + 1 without loss of generality (oth-
erwise we can make � large enough by taking the coefficients aj,ℓ = 0 for some missing j’s). Substituting
these two above equalities into (1.5), we obtain an expansion of s(x, �) in terms of powers of �:

s(x, �) =

∞
∑

t=0

't(x)�
−�+t,

where

't(x) =
t

∑

k=0

cka
T
t−kg

k(x), ak = (a1,k, . . . , an,k)
T , k ∈ ℕ0. (2.2)
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To show the limit of s(x, �) exists, we need to show that 't(x) ≡ 0 for all 0 ≤ t ≤ � − 1, i.e., the
expansion contains no negative powers of �. Since s(⋅, �) interpolates f at X for any � > 0, 't interpolates
0 at X for any t ∕= � and '� interpolates f at X . The next result shows that 't(x) ≡ 0 for any 0 ≤ t ≤ 2v
if X contains a unisolvent set with respect to �2v(ℝ

d).

Lemma 2 If � ∈ FS(v) and X contains a unisolvent set with respect to �2v(ℝ
d), then

't(x) ≡ 0 for 0 ≤ t ≤ 2v.

Proof: Since � ∈ FS(v), c2k+1 = 0 for 0 ≤ k ≤ v − 1. It follows from (2.2) that for 0 ≤ t ≤ 2v < � , 't is
a radial polynomial and belongs to �2v(ℝ

d). If X contains a unisolvent set with respect to �2v(ℝ
d), then

't(x) ≡ 0 for any 0 ≤ t ≤ 2v since 't interpolates 0 at X for any 0 ≤ t ≤ 2v. □

We will show 't ≡ 0 for 2v + 1 ≤ t ≤ � − 1 in the next two sections.

3 Discrete moment conditions

To show 't ≡ 0 for 2v + 1 ≤ t ≤ � − 1, we need to use certain discrete moment conditions of aj and
the conditional positive definiteness of the function x 7→ ∥x∥2v+1. We present in this section the discrete
moment conditions of ak obtained from 't(x) ≡ 0, 0 ≤ t ≤ 2v. To this end, we first review the definition
of discrete moment conditions. Let It, where t ∈ ℕ0, be the lexicographically ordered sequence of all
multi-indices k ∈ ℕ

d
0 such that ∣k∣ = t and I≤t be the ordered sequence of all multi-indices k ∈ ℕ

d
0 such

that ∣k∣ ≤ t. The discrete moment of b ∈ ℝ
n with respect to X is defined as

�t(b) := (�k(b) : k ∈ It)
T

for t ∈ ℕ0, (3.1)

where

�k(b) :=

n
∑

j=1

bjx
k
j , k ∈ ℕ

d
0. (3.2)

The set of vectors satisfying discrete moment conditions of order m ∈ ℕ with respect to X is

MCm := {b ∈ ℝ
n : �t(b) = 0 for any 0 ≤ t < m}.

To be consistent with our notation, we let

MCm := ℝ
n for m ≤ 0.

We will next present the discrete moment conditions of the coefficients ak in (2.2). To this end, we
define a general form of radial polynomials for 't when 0 ≤ t ≤ 2v. For any t ∈ ℕ0 and {b0, b1, . . . , bt} ⊂
ℝ
n, let

pt(x, b0, . . . , bt) :=

⌊ t
2 ⌋

∑

k=0

c2kb
T
t−2kg

2k(x), (3.3)

where ck := �(k)(0)
k! , k ∈ ℕ0. We can immediately observe that pt(x,a0, . . . ,at) = 't(x) for 0 ≤ t ≤ 2v.

We define a few more quantities that we need in our proof. For any �,� ∈ ℕ
d
0 and ∣� + �∣ = 2m with

m ∈ ℕ0, let

B(�,�) := c2m(−1)∣�∣ m!
(

�+�

2

)

!

(�+ �)!

�!�!
. (3.4)
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For any k, l ∈ ℕ0, let

Ek,l := [B(�,�)]�∈I2k,�∈I2l and Wk,l := [B(�,�)]�∈I2k+1,�∈I2l+1
. (3.5)

We define two matrices for any m ∈ ℕ0

Em := [Ek,l]
m

k,l=0 and Wm := [Wk,l]
m

k,l=0 . (3.6)

It was proved in [9] that both Em and Wm are nonsingular for any m ∈ ℕ0 if the Fourier transform �̂ of
the RBF � is nonnegative on ℝ

d and positive at least on an open set of ℝd.
We have the following result on the discrete moment conditions of the coefficients of radial polynomials

pt that are zero functions.

Lemma 3 Suppose N ∈ ℕ0 and {b0, b1, . . . , bN} ⊂ ℝ
n. If pt(x, b0, . . . , bt) ≡ 0 for any 0 ≤ t ≤ N , then

b2k ∈MC⌊N+2
2 −2k⌋, b2k+1 ∈MC⌊N+1

2 −2k⌋, for 0 ≤ k ≤
⌊

N + 1

4

⌋

. (3.7)

Proof: We need to use the fact that both Em and Wm are nonsingular for any m ∈ ℕ0 (see [9]).
We will prove the desired result by induction. We first show the result holds for N = 0. In this case

we only need to show that b0 ∈MC1. It follows from p0(x, b0) = 0 and (3.3) that

c0b
T
0 1 = 0, where 1 := (1, . . . , 1)T .

Since c0 = E0, it follows from the non-singularity of E0 that c0 ∕= 0. We have bT0 1 = 0, i.e., b0 ∈MC1.
Suppose the desired result holds for N = 4ℓ for some ℓ ∈ ℕ0. We prove that it also holds for

N = 4ℓ+ 1, 4ℓ+ 2, 4ℓ+ 3, 4ℓ+ 4. We begin with the discussion of N = 4ℓ+ 1, i.e., we will show that

b2k ∈MC2ℓ+1−2k, b2k+1 ∈MC2ℓ+1−2k, 0 ≤ k ≤ ℓ.

Since (3.7) holds for N = 4ℓ by assumption, we have that

b2k ∈MC2ℓ+1−2k, b2k+1 ∈MC2ℓ−2k, 0 ≤ k ≤ ℓ,

and we only need to show
�2ℓ−2k(b2k+1) = 0, 0 ≤ k ≤ ℓ. (3.8)

We will prove this by using the fact that the coefficients of all powers of x in pt are zeros if pt ≡ 0. For
any 0 ≤ l ≤ ℓ and � ∈ I2l, let p∣x� be the coefficient of x� in p2ℓ+2l+1(x, b0, . . . , b2ℓ+2l+1). A direct
calculation from (3.3) yields that

p∣x� =

ℓ+l
∑

k=l

c2kb
T
2ℓ+2l+1−2k

∑

�∈I2k−2l

(−1)∣�∣ k!

(�+�
2 )!

(�+ �)!

�!�!
(x�

1 , . . . ,x
�
n)
T .

This combined with the definition of �k(a) in (3.2) and the definition of B(�,�) in (3.4) yields that

p∣x� =
ℓ+l
∑

k=l

∑

�∈I2k−2l

B(�,�)��(b2ℓ+2l+1−2k).

Let k := k + l in the right-hand side of the above equality. Then we have

p∣x� =

ℓ
∑

k=0

∑

�∈I2k

B(�,�)��(b2ℓ+1−2k).
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Let p∣x2l := (p∣x� : � ∈ I2l)
T . It follows from the above equality, the definition of Ek,l in (3.5) and the

definition of �t(b) in (3.1) that

p∣x2l =

ℓ
∑

k=0

El,k�2k(b2ℓ+1−2k).

If pt(x, b0, . . . , bt) = 0 for any x ∈ ℝ
d and 0 ≤ t ≤ 4ℓ+ 1, then p∣x2l = 0 for all 0 ≤ l ≤ ℓ. That is,

Eℓ ⋅ (�2k(b2ℓ+1−2k) : k = 0, . . . , ℓ)
T
= 0.

Since Eℓ is nonsingular, we have that

�2k(b2ℓ+1−2k) = 0, 0 ≤ k ≤ ℓ,

which implies (3.8).
We next show that the desired result holds with N = 4ℓ+ 2. One can easily see that it is enough to

show
�2ℓ+1−2k(b2k) = 0, 0 ≤ k ≤ ℓ. (3.9)

Similar to the proof for the case N = 4ℓ + 1, we can obtain the following linear system by setting the
coefficients of x� in p2ℓ+2l+2(x, b0, . . . , b2ℓ+2l+2) for any 0 ≤ l ≤ ℓ and � ∈ I2l+1 to zero

Wℓ ⋅
(

�2k+1(b2ℓ−2k) : k = 0, . . . , ℓ
)T

= 0.

Then (3.9) follows from the non-singularity of Wℓ.
We proceed with the proof for N = 4ℓ+ 3. That is, we need to show

�2ℓ+1−2k(b2k+1) = 0, 0 ≤ k ≤ ℓ. (3.10)

We obtain the following linear system by setting the coefficients of x� in p2ℓ+2l+3(x, b0, . . . , b2ℓ+2l+3) for
any 0 ≤ l ≤ ℓ and � ∈ I2l+1 to zero

Wℓ ⋅
(

�2k+1(b2ℓ+1−2k) : k = 0, . . . , ℓ
)T

= 0.

Then (3.10) follows from the non-singularity of Wℓ.
It remains to prove the desired result holds for N = 4ℓ+ 4. We need to show that

�2ℓ+2−2k(b2k) = 0, 0 ≤ k ≤ ℓ+ 1. (3.11)

Setting the coefficients of x� in p2ℓ+2l+2(x, b0, . . . , b2ℓ+2l+2) for any 0 ≤ l ≤ ℓ + 1 and � ∈ I2l to zero,
we have that

Eℓ+1 ⋅ (�2k(b2ℓ+2−2k) : k = 0, . . . , ℓ+ 1)
T
= 0.

Then (3.11) follows from the non-singularity of Eℓ+1.
□

We are now ready to present the discrete moment conditions for the coefficients ak in (2.2).

Lemma 4 If � ∈ FS(v) and X contains a unisolvent set with respect to �2v(ℝ
d), then

a2k ∈MCv+1−2k, a2k+1 ∈MCv−2k, 0 ≤ k ≤
⌊v

2

⌋

.

Proof: One can immediately observe that if � ∈ FS(v), then

�t(x) = pt(x,a0, . . . ,at), 0 ≤ t ≤ 2v.

It follows from Lemma 2 that
pt(x,a0, . . . ,at) ≡ 0, 0 ≤ t ≤ 2v.

The desired result follows from this combined with Lemma 3. □
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4 The limit of the interpolant: a proof of Theorem 1

To prove Theorem 1, we need to show 't ≡ 0 for 0 ≤ t ≤ � − 1. We already proved in Lemma 1 that
't ≡ 0 for 0 ≤ t ≤ 2v. It suffices to show that � = 2v + 1. For this purpose, we first review the
definition of conditional positive definiteness that will be used in the proof. We call a continuous function
 : ℝd → ℝ conditionally positive definite of order m if for all N ∈ ℕ, every finite set of pairwise distinct
centers Y := {y1, . . . ,yN} ⊂ ℝ

d, and every � ∈ ℝ
N∖{0} satisfying

N
∑

j=1

�jp(yj) = 0, p ∈ �m−1(ℝ
d),

the quadratic form
N
∑

i,j=1

�i�j (yi − yj)

is positive. Moreover, if  is conditionally positive definite of order m and X is unisolvent with respect
to �m−1(ℝ

d), then we have a unique interpolant to a function f at X in the following form

N
∑

j=1

�j (x− yj) +

Nm−1,d
∑

l=1

�lpl(x)

with the additional conditions

N
∑

j=1

�jpl(yj) = 0, 1 ≤ l ≤ Nm−1,d,

where {pl : 1 ≤ l ≤ Nm−1,d} is a basis of �m−1,d. That is, the following system
(

A ,Y P

P
T 0

)(

�

�

)

=

(

f ∣Y
0

)

, (4.1)

where A ,Y = [ (yi − yj)]
N
i,j=1, P = [pl(yj)]

N,Nm−1,d

j,l=1 and f ∣Y = (f(yj) : j = 1, . . . , N)T , is uniquely
solvable.

The next result gives an explicit form of '2v+1(x).

Lemma 5 If � ∈ FS(v) and X contains a unisolvent set with respect to �2v(ℝ
d), then

'2v+1(x) = c0a
T
0 g

2v+1(x) + q(x),

for some q(x) ∈ �v(ℝ
d).

Proof: Since � ∈ FS(v), c2k+1 = 0 for 0 ≤ k ≤ v − 1. It follows from (2.2) that

'2v+1(x) = c0a
T
0 g

2v+1(x) +
v

∑

k=1

c2ka
T
2v+1−2kg

2k(x).

Let q(x) :=
∑v

k=1 c2ka
T
2v+1−2kg

2k(x). It remains to prove q(x) ∈ �v(ℝ
d). That is, we need to show that

the coefficient of x� in q(x) is 0 if ∣�∣ ≥ v + 1. It follows from a direct calculation that for any �, the
coefficient of x� in q(x) is

q∣x� =

v
∑

k=⌊ ∣�∣
2 ⌋

c2ka
T
2v+1−2k

∑

�∈I2k−∣�∣

(−1)∣�∣ k!

(�+�
2 )!

(�+ �)!

�!�!
(x�

1 , . . . ,x
�
n)
T .
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This combined with the definition of �k(a) in (3.2) and the definition of B(�,�) in (3.4) yields that

q∣x� =

v
∑

k=⌊ ∣�∣
2 ⌋

∑

�∈I2k−∣�∣

B(�,�)��(a2v+1−2k).

It suffices to show that

�2k−∣�∣(a2v+1−2k) = 0, for

⌊ ∣�∣
2

⌋

≤ k ≤ v and ∣�∣ ≥ v + 1.

We will use the discrete moment conditions of the coefficients ak. It follows from Lemma 4 that for any
⌊

∣�∣
2

⌋

≤ k ≤ v and ∣�∣ ≥ v + 1

a2v+1−2k ∈MC2k−v ⊂MC2k−∣�∣+1,

which implies �2k−∣�∣(a2v+1−2k) = 0. □

We are now ready to present the proof of Theorem 1 on the limit of s(x, �) as �→ 0.

Proof of Theorem 1: To show the existence of the limit of s(x, �) as � → 0, it suffices to prove that
we can take � = 2v + 1. Then it follows from Lemma 1 that 't ≡ 0 for 0 ≤ t ≤ � − 1 which implies the
limit of s(x, �) as �→ 0 exists.

Recall that 't interpolates 0 at X if t ∕= � . If � > 2v + 1, then '2v+1 also interpolates 0 at X .
Since X contains a unisolvent set with respect to �2v(ℝ

d), it follows from Lemma 5 and the fact that
x 7→ ∥x∥2v+1 is conditionally positive definite of order v + 1 ([10, 18]) that '2v+1(x) ≡ 0. Moreover,

a0 = 0.

This implies that the term �−� is not present in the expansion (2.1) of �(�), i.e., we can let � := � −1 and
repeat the same process to conclude that there is no term of the form �−k in �(�) whenever k > 2v + 1.
Consequently, we can take � = 2v + 1 and the limit of s(x, �) is '2v+1(x) as � → 0. The desired result
follows from Lemma 5 and the conditional positive definiteness of '2v+1. □

The result for interpolation with Matérn kernels follows immediately.

Corollary 6 If � is the C2v Matérn kernel, then � ∈ FS(v). Moreover, if X contains a unisolvent set
with respect to �2v(ℝ

d), then

lim
�→0

s(x, �) =

n
∑

j=1

�j∥x− xj∥2v+1 +

Nv,d
∑

l=1

�lpl(x),

where the coefficients �j , �l are uniquely determined by solving the linear system (1.7).

Proof: It was pointed out in [17] that the C2v Matérn kernel can be expanded in the form of (1.4) with
c2v+1 ∕= 0 and c2k+1 = 0 for 0 ≤ k ≤ v−1. That is, the C2v Matérn kernel belongs to FS(v). The second
result follows immediately from Theorem 1. □

5 Numerical Experiments

In this section we present three numerical examples to illustrate the convergence behavior of interpolation
with C0 and C2 Matérn kernels as well as a Sobolev kernel for H2(ℝ) from [1] (see Table 1). For each
example, we interpolate the values (0, 0.8, 1.5, 0.9, 1.1, 1.4) at (0, 0.5, 1.5, 3.5, 4, 5).
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In the first example, we consider interpolation with the C0 Matérn kernel ��(x) = e−�x and the shape
parameter � takes the values 2, 1, and 0.1. The interpolants are shown in Figure 1.

In the second example, we consider interpolation with the C2 Matérn kernel ��(x) = (1 + �x)e−�x

with values of the shape parameter � ranging from 2, 1, to 0.1. The interpolants are shown in Figure 2.

For the third example we consider interpolation with theH2 Sobolev kernel ��(x) =
√
2
2 e−�x sin

(

�x+ �
4

)

with values of the shape parameter � ranging from 2, 1, to 0.1. The interpolants are shown in Figure 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

data
ε=2
ε=1
ε=0.1
piecewise linear

Figure 1: Convergence of C0 Matérn interpolant to piecewise linear spline.

From all three examples presented here we can see that the interpolants with both types of finitely
smooth kernels converge to the polyharmonic interpolants as the shape parameter � goes to 0.
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Figure 3: Convergence of H2 kernel interpolant to cubic spline.
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