Math 590 - Homework 2 - due Wednesday, Oct.22, 2014

1. Find eigenvalues and eigenfunctions for the differential eigenvalue problem $\mathcal{L} \varphi(\boldsymbol{x})=\mu \varphi(\boldsymbol{x})$ with $\mathcal{L}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ with boundary conditions $\varphi(0)=\varphi(1)=0$.
2. Consider $\mathcal{L} G(\boldsymbol{x}, \boldsymbol{z})=\delta(\boldsymbol{x}-\boldsymbol{z})$ for the differential operator $\mathcal{L}=\frac{\mathrm{d}^{4}}{\mathrm{~d} x^{4}}$ together with boundary conditions $G(0, z)=G(1, z)=G^{\prime \prime}(0, z)=G^{\prime \prime}(1, z)=0$.
(a) Show that the corresponding Green's kernel G is given by

$$
G(x, z)= \begin{cases}\frac{1}{6} x(1-z)\left(1-x^{2}-(1-z)^{2}\right), & 0 \leq x \leq z \leq 1 \\ \frac{1}{6} z(1-x)\left(1-z^{2}-(1-x)^{2}\right), & 0 \leq z \leq x \leq 1\end{cases}
$$

(b) Verify that for any fixed z the kernel G is a cubic natural spline that interpolates zero at $x=0$ and $x=1$.
3. Fill in the details in the derivation of the closed form representation of the piecewise polynomial spline kernels K_{β} (see Chapter 6), i.e., show

$$
K_{\beta}(x, z)=(-1)^{\beta-1} \frac{2^{2 \beta-1}}{(2 \beta)!}\left[B_{2 \beta}\left(\frac{|x-z|}{2}\right)-B_{2 \beta}\left(\frac{x+z}{2}\right)\right], \quad 0 \leq x, z \leq 1
$$

Make sure to also explain why this is a piecewise polynomial of degree $2 \beta-1$.
4. (a) Find the kernel $K_{\beta, \varepsilon, M}$ obtained by truncating the Mercer series of the iterated Brownian bridge kernel $K_{\beta, \varepsilon}$ at M terms such that $\left\|K_{\beta, \varepsilon}-K_{\beta, \varepsilon, M}\right\|_{\infty}<\epsilon$.
(b) Build a table analogous to the one in Chapter 6 page 31 and compare the results.

Hint: Consider the infinite series of the eigenvalues as a Riemman sum and use a corresponding integral to obtain a good upper bound.

