- 1. Find eigenvalues and eigenfunctions for the differential eigenvalue problem $\mathcal{L}\varphi(\boldsymbol{x}) = \mu\varphi(\boldsymbol{x})$ with $\mathcal{L} = -\frac{d^2}{dx^2}$ with boundary conditions $\varphi(0) = \varphi(1) = 0$.
- 2. Consider $\mathcal{L}G(\boldsymbol{x}, \boldsymbol{z}) = \delta(\boldsymbol{x} \boldsymbol{z})$ for the differential operator $\mathcal{L} = \frac{d^4}{dx^4}$ together with boundary conditions G(0, z) = G(1, z) = G''(0, z) = G''(1, z) = 0.
 - (a) Show that the corresponding Green's kernel G is given by

$$G(x,z) = \begin{cases} \frac{1}{6}x(1-z)\left(1-x^2-(1-z)^2\right), & 0 \le x \le z \le 1, \\ \frac{1}{6}z(1-x)\left(1-z^2-(1-x)^2\right), & 0 \le z \le x \le 1. \end{cases}$$

- (b) Verify that for any fixed z the kernel G is a cubic natural spline that interpolates zero at x = 0 and x = 1.
- 3. Fill in the details in the derivation of the closed form representation of the piecewise polynomial spline kernels K_{β} (see Chapter 6), i.e., show

$$K_{\beta}(x,z) = (-1)^{\beta-1} \frac{2^{2\beta-1}}{(2\beta)!} \left[B_{2\beta} \left(\frac{|x-z|}{2} \right) - B_{2\beta} \left(\frac{x+z}{2} \right) \right], \quad 0 \le x, z \le 1.$$

Make sure to also explain why this is a piecewise polynomial of degree $2\beta - 1$.

- 4. (a) Find the kernel $K_{\beta,\varepsilon,M}$ obtained by truncating the Mercer series of the iterated Brownian bridge kernel $K_{\beta,\varepsilon}$ at M terms such that $\|K_{\beta,\varepsilon} K_{\beta,\varepsilon,M}\|_{\infty} < \epsilon$.
 - (b) Build a table analogous to the one in Chapter 6 page 31 and compare the results.

Hint: Consider the infinite series of the eigenvalues as a Riemman sum and use a corresponding integral to obtain a good upper bound.