
9 Numerical Solution of Partial Differential Equations

9.0 Classification of Partial Differential Equations

We now consider general second-order partial differential equations (PDEs) of the form

Lu = autt + buxt + cuxx + f = 0, (1)

where u is an unknown function of x and t, and a, b, c, and f are given functions. If
these functions depend only on x and t, then the PDE (1) is called linear. If a, b, c, or
f depend also on u, ux, or ut, then the PDE is called quasi-linear.

Remarks:

1. The notation used in (1) suggests that we think of one of the variables, t, as time,
and the other, x, as space.

2. In principle, we could also have second-order PDEs involving more than one space
dimension. However, we limit the discussion here to PDEs with a total of two
independent variables.

3. Of course, a second-order PDE can also be independent of time, and contain two
space variables only (such as Laplace’s equation).

There are three fundamentally different types of second-order quasi-linear PDEs:

• If b2 − 4ac > 0, then L is hyperbolic.

• If b2 − 4ac = 0, then L is parabolic.

• If b2 − 4ac < 0, then L is elliptic.

Examples:

1. The wave equation
utt = α2uxx + f(x, t)

is a second-order linear hyperbolic PDE since a ≡ 1, b ≡ 0, and c ≡ −α2, so that

b2 − 4ac = 4α2 > 0.

2. The heat or diffusion equation
ut = kuxx

is a second-order quasi-linear parabolic PDE since a = b ≡ 0, and c ≡ −k, so
that

b2 − 4ac = 0.

3. Poisson’s equation (or Laplace’s equation in case f ≡ 0)

uxx + uyy = f(x, y)

is a second-order linear elliptic PDE since a = c ≡ 1 and b ≡ 0, so that

b2 − 4ac = −4 < 0.

Remarks: Since a, b, and c may depend on x, t, u, ux, and ut the classification of the
PDE may even vary from point to point.
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9.1 Forward Differences for Parabolic PDEs

We consider the following model problem

uxx = ut, t ≥ 0, 0 ≤ x ≤ 1,
u(x, 0) = g(x), 0 ≤ x ≤ 1,
u(0, t) = α(t), t ≥ 0,
u(1, t) = β(t), t ≥ 0, (2)

which can be interpreted as the model for heat conduction in a one-dimensional rod
of length 1 with prescribed end temperatures, α and β, and given initial temperature
distribution g.

Finite Differences

We will proceed in a way very similar to our solution for two-point boundary value
problems. However, now we are dealing with an initial-boundary value problem, and
need to find the solution on the two-dimensional semi-infinite strip D = {(x, t) : 0 ≤
x ≤ 1, t ≥ 0}.

As before, we use a symmetric difference approximation for the second-order space
derivative, i.e., for any given location x and fixed time t

uxx(x, t) ≈ 1
h2

[u(x + h, t)− 2u(x, t) + u(x− h, t)] . (3)

For the first-order time derivative we use a forward difference approximation

ut(x, t) ≈ 1
k

[u(x, t + k)− u(x, t)] . (4)

Next, we introduce a partition of the spatial domain

xi = ih, i = 0, . . . , n + 1,

with mesh size h = 1
n+1 . Another partition is used for the time domain, i.e.,

tj = jk, j ≥ 0,

where k is the time step.
With the more compact notation

vi,j = u(xi, tj), vi+1,j = u(xi + h, tj), vi−1,j = u(xi − h, tj), vi,j+1 = u(xi, tj + k).

the heat equation (2) turns into the difference equation

1
h2

[vi+1,j − 2vi,j + vi−1,j ] =
1
k

[vi,j+1 − vi,j ] , i = 1, . . . , n, j = 0, 1, . . . . (5)

For the initial condition we have

vi,0 = g(xi), i = 0, 1, . . . , n + 1,
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whereas the boundary conditions become

v0,j = α(tj), vn+1,j = β(tj), j = 0, 1, . . . .

Remark: The discrete values vi,j will be our representation of the solution of the
PDE. The values at the points along the ”boundaries” of the domain are specified by
the initial and boundary conditions, whereas the those at interior points are computed
one ”row” at a time using a stencil involving values at four mesh points as stated in
(5). This is illustrated schematically in Figure 1.
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Figure 1: Schematic illustration of the forward difference method. Basic mesh points
are indicated with blue ◦, green + correspond to given values, and points marked with
red ♦ form a typical stencil.

Figure 1 shows that the values of the approximate solution v are computed one row
at a time, i.e., the ”new” value vi,j+1 at time level j + 1 is computed from three ”old”
values at time level j. Therefore, the method we just described is a forward (in time)
difference method, or an explicit time-stepping method.

In order to implement formula (5) in an algorithm we solve (5) for the ”new” value,
and obtain

vi,j+1 =
k

h2
[vi+1,j − 2vi,j + vi−1,j ] + vi,j

or
vi,j+1 = svi+1,j + (1− 2s)vi,j + svi−1,j , i = 1, . . . , n, j = 0, 1, . . . , (6)

where s = k
h2 is called the mesh ratio.

Remarks:

1. Note that this method is very simple since no linear systems have to be solved.

2. Moreover, all values at the new time level can be computed simultaneously.

3. An algorithm for this method is listed in the textbook on pages 618–619.

The combined choice of mesh size h and time step k is critical for the performance
of the algorithm. According to the finite difference approximations (3) and (4) of the
partial derivatives we expect an accuracy of order O(k + h2).
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We now investigate the effects of h and k on the stability of the given method.

Stability Analysis

There are two standard techniques used for the stability analysis of PDEs. We now
illustrate them both.

First we use the matrix form. We simplify the following discussion by introducing
homogeneous boundary conditions, i.e., α(t) = β(t) ≡ 0. Otherwise we would have
more complicated first and last rows in the matrix below.

We begin by writing (6) in matrix form, i.e.,

Vj+1 = AVj , (7)

where Vj = [v1,j , v2,j , . . . , vn,j ]T is a vector that contains the values of the approximate
solution at all of the interior mesh points at any given time level j. The matrix A is
tridiagonal, and of the form

A =



1− 2s s 0 . . . 0

s 1− 2s s
...

0
. . . . . . . . . 0

... s 1− 2s s
0 . . . 0 s 1− 2s


.

Note, however, that A appears on the right-hand side of (7) so that no system is solved,
only a matrix-vector product is formed.

To investigate the stability of this method we assume that the initial data V0 are
represented with some error E0, i.e.,

V0 = Ṽ0 + E0,

where Ṽ0 denotes the exact initial data. Then

V1 = AV0 = A(Ṽ0 + E0) = AṼ0 + AE0.

Advancing the solution further in time, i.e., iterating this formula, we get

Vj = AVj−1 = Aj Ṽ0 + AjE0.

Therefore, the initial error E0 is magnified by Aj at the j-th time level. In order to
have a stable and convergent method we need Ej = AjE0 → 0 as j →∞.

Taking norms we get

‖Ej‖ = ‖AjE0‖ ≤ ‖Aj‖‖E0‖,

so that we know that stability will be ensured if the spectral radius

ρ(A) < 1. (8)

One can show (see textbook pages 620–621) that the eigenvalues of A are given by

λi = 1− 2s(1− cos θi), θi =
iπ

n + 1
, i = 1, . . . , n. (9)
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Combining (8) and (9) we require

ρ(A) = max
i=1,...,n

|λi| = max
i=1,...,n

|1− 2s(1− cos θi)| < 1

or
0 < s <

1
1− cos θi

for each i = 1, . . . , n.
Now, the greatest restriction on s occurs if cos θi = −1, in which case s < 1

2 . Indeed,
for i = n, θn = nπ

n+1 → π for n →∞, and so

1
1− cos θi

→ 1
2
.

Therefore, we have the stability requirement s ≤ 1/2. This is summarized in

Theorem 9.1 The forward difference method (6) is stable provided k ≤ h2

2
.

Remarks:

1. The special choice of boundary conditions makes the preceding analysis simpler,
but has no effect on the stability of the method.

2. The stability requirement shows that a small mesh size h forces the time step
k to be very small. This makes the forward difference method potentially very
slow. Consider, e.g., a spatial domain [0, 1] with mesh size h = 0.01. Then the
time step k can be chosen no larger than 5× 10−5. This means that in order to
advance the solution from t = 0 to t = 10 we require 200000 time steps, or 20
million mesh points.

The second technique used for stability analyses was introduced by John von Neu-
mann around 1940 and is known as the von Neumann method or Fourier method.

It is possible to show (using separation of variables) that solutions to the finite
difference equation (6) are of the form

vi,j = e
√
−1σihQj , (10)

where σ could be determined by the boundary conditions. Using the principle of
superposition it is clear that all solutions of (6) will contain terms with the factor Qj ,
for different values of j. This term will decay for large values of j (and thus indicate
stability) only if |Q| < 1.

We can insert the solution (10) into (6) and obtain

e
√
−1σihQj+1 = se

√
−1σ(i+1)hQj + (1− 2s)e

√
−1σihQj + se

√
−1σ(i−1)hQj ,

where, as before, s = k
h2 is the mesh ratio. Now we remove the factor e

√
−1σihQj from

the equation above which results in

Q = se
√
−1σh + 1− 2s + se−

√
−1σh.

5



With the help of Euler’s formula

e
√
−1φ = cos φ +

√
−1 sinφ

and the trigonometric formula

sin2 φ =
1
2

(1− cos 2φ)

the expression for Q can be simplified as follows:

Q = se
√
−1σh + 1− 2s + se−

√
−1σh

= 1− 2s + 2s cos σh
= 1− 2s (1− cos σh)

= 1− 4s sin2 σh

2
.

From this it follows immediately that Q < 1 (since both h and k are positive, and thus
also s). To ensure also Q > −1 we need

4s sin2 σh

2
≤ 2

or
s sin2 σh

2
≤ 1

2
.

Since the sine term can approach 1, we need to impose the stability condition

s ≤ 1
2

which is the same condition obtained earlier via the matrix method.

Remarks:

1. Once stability is ensured, the forward difference method converges with order
O(k + h2) as stated earlier.

2. Computer Problem 9.1.1 illustrates the effect the choice of mesh size h and time
step k have on the stability of the forward difference method.

9.2 Implicit Methods for Parabolic PDEs

As we learned in the context of multistep methods for initial value problems, one can
expect a better stability behavior from an implicit method.

Therefore, we discretize the first-order time derivative as

ut(x, t) ≈ 1
k

[u(x, t)− u(x, t− k)] , (11)

and so the formula corresponding to (5) now becomes

1
h2

[vi+1,j − 2vi,j + vi−1,j ] =
1
k

[vi,j − vi,j−1] . (12)
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Figure 2: Schematic illustration of the backward difference method. Basic mesh points
are indicated with blue ◦, green + correspond to given values, and points marked with
red ♦ form a typical stencil.

A typical stencil along with the values given by initial and boundary data is shown
in Figure 2. Clearly, we now have an implicit or backward difference method.

The ”new” values of the approximate solution (at time level j) are no longer so
easily found. Using the mesh ratio s = k

h2 as before, we can re-write (12) as

−svi−1,j + (1 + 2s)vi,j − svi+1,j = vi,j−1, i = 1, . . . , n, j = 0, 1, . . . . (13)

If we make the simplification to homogeneous boundary conditions, i.e., α(t) =
β(t) ≡ 0, then we can write (13) in matrix form as

AVj = Vj−1, (14)

where Vj = [v1,j , v2,j , . . . , vn,j ]T as before, and

A =



1 + 2s −s 0 . . . 0

−s 1 + 2s −s
...

0
. . . . . . . . . 0

... −s 1 + 2s −s
0 . . . 0 −s 1 + 2s


.

Since the matrix A now appears on the left-hand side in (14) we need to solve a
tridiagonal linear system for each time step. However, since the mesh ratio s > 0, it is
clear that A is diagonally dominant.

Remarks:

1. An algorithm for the backward difference method with a call to a tridiagonal
solver is in the textbook on page 625.

2. Note that, even though the matrix A is constant for all time steps, it is more effi-
cient to solve the triangular system anew for each time step instead of computing
a factorization and using forward and back substitution.
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Stability Analysis

Under the same assumptions as for the forward difference method, the error now
propagates according to

Vj = A−1Vj−1 =
(
A−1

)j
Ṽ0 +

(
A−1

)j
E0,

with E0 the error present in the initial data. Therefore, this time we want

ρ
(
A−1

)
< 1

for stability. The eigenvalues of A are given by

λi = 1 + 2s(1− cos θi), θi =
iπ

n + 1
, i = 1, . . . , n.

Since 0 < θi < π we know that | cos θi| < 1, and therefore λi > 1 for all i. Thus,
ρ(A) > 1.

Finally, since the eigenvalues of A−1 are given by the reciprocals of the eigenvalues
of A we know that

ρ
(
A−1

)
< 1,

and there is no stability restriction.

Theorem 9.2 The backward difference method (13) is unconditionally stable.

Remarks:

1. Again, having non-homogeneous boundary conditions does not affect the stability
of the method.

2. The accuracy of the backward difference method is O(k +h2), which implies that
the time step needs to be chosen small for high accuracy.

It has been suggested to use the symmetric difference approximation

ut(x, t) ≈ 1
2k

[u(x, t + k)− u(x, t− k)] , (15)

for the time derivative. This choice gives the following difference scheme an accuracy
of order O(k2 + h2).

Using the above discretization of the time derivative, the difference version of the
heat equation is

1
h2

[vi+1,j − 2vi,j + vi−1,j ] =
1
2k

[vi,j+1 − vi,j−1] .

or
vi,j+1 =

2k

h2
[vi+1,j − 2vi,j + vi−1,j ] + vi,j−1. (16)

This method is known as Richardson’s method. Richardson’s method can be viewed as
an explicit method that requires two rows of initial values.
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Figure 3: Schematic illustration of Richardson’s method. Basic mesh points are indi-
cated with blue ◦, green + correspond to given values, and points marked with red ♦
form a typical stencil.

The stencil for Richardson’s method is shown in Figure 3.

Remark: Even though Richardson’s method seem like a very sensible approach, and
is known to have convergence order O(k2 +h2) it is prone to serious stability problems.
In fact, it turns out that this method is unstable for all values of the mesh ratio s = k

h2 .

Crank-Nicolson Method

The most successful difference method for parabolic equations is due to John Crank
and Phyllis Nicolson (1947). It is based on a convex combination of the spatial terms
of the forward and backward difference methods, i.e.,

θ

h2
[vi+1,j − 2vi,j + vi−1,j ] +

1− θ

h2
[vi+1,j−1 − 2vi,j−1 + vi−1,j−1] =

1
k

[vi,j − vi,j−1] .

(17)
This method is known as theta method or, in the case θ = 1

2 , as the Crank-Nicolson
method.

For θ = 0 we recover the forward difference method (with a shift in the time index
j), and for θ = 1 (17) yields the backward difference method. For the general case, the
stencil contains six points at the two time levels j − 1 and j as shown in Figure 4.

To get a better understanding of the Crank-Nicolson method we rewrite (17) for
the case θ = 1

2 . This leads to

− k

2h2
vi−1,j +

(
1 +

k

h2

)
vi,j −

k

2h2
vi+1,j =

k

2h2
vi−1,j−1 +

(
1− k

h2

)
vi,j−1 +

k

h2
vi+1,j−1.

If we multiply by 2 and introduce the mesh ratio s = k
h2 we get

−svi−1,j + (2 + 2s) vi,j − svi+1,j = svi−1,j−1 + (2− 2s) vi,j−1 + svi+1,j−1. (18)

By restricting the discussion to the case of homogeneous boundary conditions we get
a streamlined matrix form since, as before, α(t) = β(t) ≡ 0 results in v0,j = vn+1,j = 0
for all j. The resulting matrix form of (18) is

AVj = BVj−1
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Figure 4: Schematic illustration of the Crank-Nicolson method. Basic mesh points are
indicated with blue ◦, green + correspond to given values, and points marked with red
♦ form a typical stencil.

with Vj = [v1,j , v2,j , . . . , vn,j ]T ,

A =



2 + 2s −s 0 . . . 0

−s 2 + 2s −s
...

0
. . . . . . . . . 0

... −s 2 + 2s −s
0 . . . 0 −s 2 + 2s


,

and

B =



2− 2s s 0 . . . 0

s 2− 2s s
...

0
. . . . . . . . . 0

... s 2− 2s s
0 . . . 0 s 2− 2s


.

It is clear that A is a diagonally dominant tridiagonal matrix. Therefore, the
implementation of the Crank-Nicolson method can be broken down into two phases:

1. Compute Ṽj−1 = BVj−1. This can be done with an algorithm analogous to the
forward difference method.

2. Solve AVj = Ṽj−1. For this we can basically use the backward difference algo-
rithm.

Remarks:

1. Using a stability analysis as above, one can show that the Crank-Nicolson method
is unconditionally stable. An outline of the argument is given in the textbook on
page 626, and a detailed discussion can be found in the classical book ”Analysis
of Numerical Methods” by Isaacson and Keller (1966).
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2. Since the averaging of the forward and backward difference methods used for the
Crank-Nicolson can be interpreted as an application of the (implicit) trapezoid
rule for the time discretization, it follows that the order of accuracy of the Crank-
Nicolson method is O(k2 + h2). Therefore, this method is much more efficient
(for the same accuracy) than the forward or backward difference methods by
themselves.

3. If θ 6= 1
2 then the accuracy deteriorates to O(k + h2).

It is possible to ”fix” the Richardson method (16). To this end we replace the value
vi,j by the average of vi,j+1 and vi,j−1. We then end up with

vi,j+1 =
2k

h2 + 2k
[vi+1,j + vi−1,j ] +

h2 − 2k

h2 + 2k
vi,j−1. (19)

This method is known as the Dufort-Frankel method. It is stable for all values of s, and
converges with order O(k2 + h2) as long as k/h → 0.

The stencil for the Dufort-Frankel method consists of four points, and is depicted
in Figure 5.
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Figure 5: Schematic illustration of the Dufort-Frankel method. Basic mesh points are
indicated with blue ◦, green + correspond to given values, and points marked with red
♦ form a typical stencil.

Remarks:

1. The Dufort-Frankel method is considered an explicit method, and therefore fast
and simple to implement. There are no linear systems to solve. However, the
condition k/h → 0 is essential for convergence.

2. Since the Dufort-Frankel method involves mesh points at three time levels, it
requires a separate (possibly lower-order) method to get started.
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9.3 Finite Differences for Elliptic PDEs

We use Laplace’s equation in the unit square as our model problem, i.e.,

uxx + uyy = 0, (x, y) ∈ Ω = (0, 1)2,
u(x, y) = g(x, y), (x, y) on ∂Ω. (20)

This problem arises, e.g., when we want to determine the steady-state temperature
distribution u in a square region with prescribed boundary temperature g. Of course,
this simple problem can be solved analytically using Fourier series.

However, we are interested in numerical methods. Therefore, in this section, we use
the usual finite difference discretization of the partial derivatives, i.e.,

uxx(x, y) =
1
h2

[u(x + h, y)− 2u(x, y) + u(x− h, y)] +O(h2) (21)

and
uyy(x, y) =

1
h2

[u(x, y + h)− 2u(x, y) + u(x, y − h)] +O(h2). (22)

The computational grid introduced in the domain Ω = [0, 1]2 is now

(xi, yj) = (ih, jh), i, j = 0, . . . , n + 1,

with mesh size h = 1
n+1 .

Using again the compact notation

vi,j = u(xi, yj), vi+1,j = u(xi + h, yj), etc.,

Laplace’s equation (20) turns into the difference equation

1
h2

[vi−1,j − 2vi,j + vi+1,j ] +
1
h2

[vi,j−1 − 2vi,j + vi,j+1] = 0. (23)

This equation can be rewritten as

4vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1 = 0. (24)

This is the method referred to several times last semester.

Example: Let’s consider a computational mesh of 5× 5 points, i.e., h = 1
4 , or n = 3.

Discretizing the boundary conditions in (20), the values of the approximate solution
around the boundary

v0,j , v4,j j = 0, . . . , 4,
vi,0, vi,4 i = 0, . . . , 4,

are determined by the appropriate values of g. There remain 9 points in the interior
that have to be determined using the stencil (24). Figure 6 illustrates one instance of
this task. By applying the stencil to each of the interior points, we obtain 9 conditions
for the 9 undetermined values.
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Figure 6: Illustration for finite difference method for Laplace’s equation on 5× 5 grid.
Interior mesh points are indicated with blue ◦, green + correspond to given boundary
values, and points marked with red ♦ form a typical stencil.

Thus, we obtain the following 9 equations

4v1,1 − v2,1 − v1,2 = v0,1 + v1,0

4v2,1 − v1,1 − v3,1 − v2,2 = v2,0

4v3,1 − v2,1 − v3,2 = v4,1 + v3,0

4v1,2 − v2,2 − v1,1 − v1,3 = v0,2

4v2,2 − v1,2 − v3,2 − v2,1 − v2,3 = 0
4v3,2 − v2,2 − v3,1 − v3,3 = v4,2

4v1,3 − v2,3 − v1,2 = v1,4 + v0,3

4v2,3 − v1,3 − v3,3 − v2,2 = v2,4

4v3,3 − v2,3 − v3,2 = v4,3 + v3,4.

The first equation corresponds to the stencil shown in Figure 6. The other equations
are obtained by moving the stencil row-by-row across the grid from left to right.

We can also write the above equations in matrix form. To this end we introduce
the vector

V = [v1,1, v2,1, v3,1, v1,2, v2,2, v3,2, v1,3, v2,3, v3,3]T

of unknowns. Here we have used the natural (row-by-row) ordering of the mesh points.
Then we get

AV = B

with

A =



 4 −1 0
−1 4 −1
0 −1 4

  −1 0 0
0 −1 0
0 0 −1

  0 0 0
0 0 0
0 0 0


 −1 0 0

0 −1 0
0 0 −1

  4 −1 0
−1 4 −1
0 −1 4

  −1 0 0
0 −1 0
0 0 −1


 0 0 0

0 0 0
0 0 0

  −1 0 0
0 −1 0
0 0 −1

  4 −1 0
−1 4 −1
0 −1 4




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and

B =



v0,1 + v1,0

v2,0

v4,1 + v3,0

v0,2

0
v4,2

v1,4 + v0,3

v2,4

v4,3 + v3,4


.

We can see that A is a block-tridiagonal matrix of the form

A =

 T −I O
−I T −I
O −I T

 .

In general, for problems with n × n interior mesh points, A will be of size n2 × n2

(since there are n2 unknown values at interior mesh points), but contain no more than
5n2 nonzero entries (since equation (24) involves at most 5 points at one time). Thus,
A is a classical example of a sparse matrix. Moreover, A still has a block-tridiagonal
structure

A =



T −I O . . . O

−I T −I
...

O
. . . . . . . . . O

... −I T −I
O . . . O −I T


with n× n blocks

T =



4 −1 0 . . . 0

−1 4 −1
...

0
. . . . . . . . . 0

... −1 4 −1
0 . . . 0 −1 4


as well as n× n identity matrices I, and zero matrices O.

Remarks:

1. Since A is sparse (and symmetric positive definite) it lends itself to an applica-
tion of Gauss-Seidel iteration (see Chapter 4.6 of the previous semester). After
initializing the values at all mesh points (including those along the boundary) to
some appropriate value (in many cases zero will work), we can simply iterate with
formula (24), i.e., we obtain the algorithm fragment for M steps of Gauss-Seidel
iteration
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for k = 1 to M do

for i = 1 to n do
for j = 1 to n do

vi,j = (vi−1,j + vi+1,j + vi,j−1 + vi,j+1) /4
end

end

end

Note that the matrix A never has to be fully formed or stored during the com-
putation.

2. State-of-the-art algorithms for the Laplace (or nonhomogeneous Poisson) equa-
tion are so-called fast Poisson solvers based on the fast Fourier transform, or
multigrid methods.

9.4 Galerkin and Ritz Methods for Elliptic PDEs

Galerkin Method
We begin by introducing a generalization of the collocation method we saw earlier

for two-point boundary value problems. Consider the PDE

Lu(x) = f(x), (25)

where L is a linear elliptic partial differential operator such as the Laplacian

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, x = (x, y, z) ∈ IR3 .

At this point we will not worry about the boundary conditions that should be posed
with (25).

As with the collocation method we will obtain the approximate solution in the
form of a function (instead of as a collection of discrete values). Therefore, we need
an approximation space U = span{u1, . . . , un}, so that we are able to represent the
approximate solution as

u =
n∑

j=1

cjuj , uj ∈ U . (26)

Using the linearity of L we have

Lu =
n∑

j=1

cjLuj .

We now need to come up with n (linearly independent) conditions to determine the n
unknown coefficients cj in (26). If {Φ1, . . . ,Φn} is a linearly independent set of linear
functionals, then

Φi

 n∑
j=1

cjLuj − f

 = 0, i = 1, . . . , n, (27)
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is an appropriate set of conditions. In fact, this leads to a system of linear equations

Ac = b

with matrix

A =


Φ1Lu1 Φ1Lu2 . . . Φ1Lun

Φ2Lu1 Φ2Lu2 . . . Φ2Lun
...

...
...

ΦnLu1 ΦnLu2 . . . ΦnLun

 ,

coefficient vector c = [c1, . . . , cn]T , and right-hand side vector

b =


Φ1f
Φ2f

...
Φnf

 .

Two popular choices are

1. Point evaluation functionals, i.e., Φi(v) = v(xi), where {x1, . . . ,xn} is a set of
points chosen such that the resulting conditions are linearly independent, and v
is some function with appropriate smoothness. With this choice (27) becomes

n∑
j=1

cjLuj(xi) = f(xi), i = 1, . . . , n,

and we now have a extension of the collocation method discussed in Section 8.11
to elliptic PDEs is the multi-dimensional setting.

2. If we let Φi(v) = 〈ui, v〉, an inner product of the basis function ui with an appro-
priate test function v, then (27) becomes

n∑
j=1

cj〈ui, Luj〉 = 〈ui, f〉, i = 1, . . . , n.

This is the classical Galerkin method.

Ritz-Galerkin Method

For the following discussion we pick as a model problem a multi-dimensional Poisson
equation with homogeneous boundary conditions, i.e.,

−∇2u = f in Ω, (28)
u = 0 on ∂Ω,

with domain Ω ⊂ IRd. This problem describes, e.g., the steady-state solution of a
vibrating membrane (in the case d = 2 with shape Ω) fixed at the boundary, and
subjected to a vertical force f .
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The first step for the Ritz-Galerkin method is to obtain the weak form of (28). This
is accomplished by choosing a function v from a space U of smooth functions, and then
forming the inner product of both sides of (28) with v, i.e.,

−〈∇2u, v〉 = 〈f, v〉. (29)

To be more specific, we let d = 2 and take the inner product

〈u, v〉 =
∫∫
Ω

u(x, y)v(x, y)dxdy.

Then (29) becomes

−
∫∫
Ω

(uxx(x, y) + uyy(x, y))v(x, y)dxdy =
∫∫
Ω

f(x, y)v(x, y)dxdy. (30)

In order to be able to complete the derivation of the weak form we now assume that
the space U of test functions is of the form

U = {v : v ∈ C2(Ω), v = 0 on ∂Ω},

i.e., besides having the necessary smoothness to be a solution of (28), the functions
also satisfy the boundary conditions.

Now we rewrite the left-hand side of (30):∫∫
Ω

(uxx + uyy) vdxdy =
∫∫
Ω

[(uxv)x + (uyv)y − uxvx − uyvy] dxdy

=
∫∫
Ω

[(uxv)x + (uyv)y] dxdy −
∫∫
Ω

[uxvx − uyvy] dxdy.(31)

By using Green’s Theorem (integration by parts)∫∫
Ω

(Px + Qy)dxdy =
∫

∂Ω
(Pdy −Qdx)

the first integral on the right-hand side of (31) turns into∫∫
Ω

[(uxv)x + (uyv)y] dxdy =
∫

∂Ω
(uxvdy − uyvdx) .

Now the special choice of U , i.e., the fact that v satisfies the boundary conditions,
ensures that this term vanishes. Therefore, the weak form of (28) is given by∫∫

Ω

[uxvx + uyvy] dxdy =
∫∫
Ω

fvdxdy.

Another way of writing the previous formula is of course∫∫
Ω

∇u · ∇vdxdy =
∫∫
Ω

fvdxdy. (32)

17



To obtain a numerical method we now need to require U to be finite-dimensional
with basis {u1, . . . , un}. Then we can represent the approximate solution uh of (28) as

uh =
n∑

j=1

cjuj . (33)

The superscript h indicates that the approximate solution is obtained on some under-
lying discretization of Ω with mesh size h.

Remarks:

1. In practice there are many ways of discretizing Ω and selecting U .

(a) For example, regular (tensor product) grids can be used. Then U can consist
of tensor products of piecewise polynomials or B-spline functions that satisfy
the boundary conditions of the PDE.

(b) It is also possible to use irregular (triangulated) meshes, and again define
piecewise (total degree) polynomials or splines on triangulations satisfying
the boundary conditions.

(c) More recently, meshfree approximation methods have been introduced as
possible choices for U .

2. In the literature the piecewise polynomial approach is usually referred to as the
finite element method.

3. The discretization of Ω will almost always result in a computational domain that
has piecewise linear (Lipschitz-continuous) boundary.

We now return to the discussion of the general numerical method. Once we have
chosen a basis for the approximation space U , then it becomes our goal to determine
the coefficients cj in (33). By inserting uh into the weak form (32), and selecting as
trial functions v the basis functions of U we obtain a system of equations∫∫

Ω

∇uh · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n.

Using the representation (33) of uh we get∫∫
Ω

∇

 n∑
j=1

cjuj

 · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n,

or by linearity
n∑

j=1

cj

∫∫
Ω

∇uj · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n. (34)

This last set of equations is known as the Ritz-Galerkin method and can be written in
matrix form

Ac = b,
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where the stiffness matrix A has entries

Ai,j =
∫∫
Ω

∇uj · ∇uidxdy.

Remarks:

1. The stiffness matrix is usually assembled element by element, i.e., the contribution
to the integral over Ω is split into contributions for each element (e.g., rectangle
or triangle) of the underlying mesh.

2. Depending on the choice of the (finite-dimensional) approximation space U and
underlying discretization, the matrix will have a well-defined structure. This is
one of the most important applications driving the design of efficient linear system
solvers.

How does solving the Ritz-Galerkin equations (34) relate to the solution of the
strong form (28) of the PDE? First, we remark that the left-hand side of (32) can be
interpreted as a new inner product

[u, v] =
∫∫
Ω

∇u · ∇vdxdy (35)

on the space of functions whose first derivatives are square integrable and that vanish
on ∂Ω. This space is a Sobolev space, usually denoted by H1

0 (Ω).
The inner product [·, ·] induces a norm ‖v‖ = [v, v]1/2 on H1

0 (Ω). Now, using
this norm, the best approximation to u from H1

0 (Ω) is given by the function uh that
minimizes ‖u − uh‖. Since we define our numerical method via the finite-dimensional
subspace U of H1

0 (Ω), we need to find uh such that

u− uh ⊥ U

or, using the basis of U , [
u− uh, ui

]
= 0, i = 1, . . . , n.

Replacing uh with its expansion in terms of the basis of U we haveu−
n∑

j=1

cjuj , ui

 = 0, i = 1, . . . , n,

or
n∑

j=1

cj [uj , ui] = [u, ui], i = 1, . . . , n. (36)

The right-hand side of this formula contains the exact solution u, and therefore is not
useful for a numerical scheme. However, by (35) and the weak form (32) we have

[u, ui] =
∫∫
Ω

∇u · ∇uidxdy
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=
∫∫
Ω

fuidxdy.

Since the last expression corresponds to the inner product 〈f, ui〉, (36) can be viewed
as

n∑
j=1

cj [uj , ui] = 〈f, ui〉, i = 1, . . . , n,

which is nothing but the Ritz-Galerkin method (34).

The best approximation property in the Sobolev space H1
0 (Ω) can also be inter-

preted as an energy minimization principle. In fact, a smooth solution of the Poisson
problem (28) minimizes the energy functional

E(u) =
1
2

∫∫
Ω

∇2udxdy −
∫∫
Ω

fudxdy

over all smooth functions that vanish on the boundary of Ω. By considering the energy
of nearby solutions u + λv, with arbitrary real λ we see that

E(u + λv) =
1
2

∫∫
Ω

∇(u + λv) · ∇(u + λv)dxdy −
∫∫
Ω

f(u + λv)dxdy

=
1
2

∫∫
Ω

∇u · ∇udxdy + λ

∫∫
Ω

∇u · ∇vdxdy +
λ2

2

∫∫
Ω

∇v · ∇vdxdy

−
∫∫
Ω

fudxdy − λ

∫∫
Ω

fvdxdy

= E(u) + λ

∫∫
Ω

[∇u · ∇v − fv] dxdy +
λ2

2

∫∫
Ω

∇2vdxdy

The right-hand side is a quadratic polynomial in λ, so that for a minimum, the term∫∫
Ω

[∇u · ∇v − fv] dxdy

must vanish for all v. This is again the weak formulation (32).
A discrete ”energy norm” is then given by the quadratic form

E(uh) =
1
2
cT Ac− bc

where A is the stiffness matrix, and c is such that the Ritz-Galerkin system (34)

Ac = b

is satisfied.
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Example: One of the most popular finite element versions is based on the use of
piecewise linear C0 polynomials (built either on a regular grid, or on a triangular
partition of Ω). The basis functions ui are ”hat functions”, i.e., functions that are
piecewise linear, have value one at one of the vertices, and zero at all of its neighbors.
This choice makes it very easy to satisfy the homogeneous Dirichlet boundary conditions
of the model problem exactly (along a polygonal boundary).

Since the gradients of piecewise linear functions are constant, the entries of the
stiffness matrix essentially boil down to the areas of the underlying mesh elements.

Therefore, in this case, the Ritz-Galerkin method is very easily implemented. We
generate some examples with Matlab’s PDE toolbox pdetool.

It is not difficult to verify that the stiffness matrix for our example is symmetric
and positive definite. Since the matrix is also very sparse due to the fact that the ”hat”
basis functions have a very localized support, efficient iterative solvers can be applied.
Moreover, it is known that the piecewise linear FEM converges with order O(h2).

Remarks:

1. The Ritz-Galerkin method was independently introduced by Walther Ritz (1908)
and Boris Galerkin (1915).

2. In the textbook this method is referred to as the Rayleigh-Ritz method. Many
variations in terminology seem to exist indicating only slight (or no) differences
in methodology.

3. The finite element method is one of the most-thoroughly studied numerical meth-
ods. Many textbooks on the subject exist, e.g., ”The Mathematical Theory of
Finite Element Methods” by Brenner and Scott (1994), ”An Analysis of the Finite
Element Method” by Strang and Fix (1973), or ”The Finite Element Method”
by Zienkiewicz and Taylor (2000).

4. Even though the use of piecewise linear finite elements is very simple, there are
many problems that arise with higher-order methods, mesh refinement, or with
the generation of finite element meshes in higher space dimensions. This is where
meshfree approximation methods are trying to establish themselves as a viable
alternative.

9.5 Characteristics

We start with the simple advection equation

ut(x, t) = −cux(x, t), −∞ < x < ∞, t ≥ 0, (37)

where c is some nonzero constant. This problem has a unique solution as soon as we
specify an initial condition

u(x, 0) = f(x), −∞ < x < ∞.
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A pure initial value problem of this type is called a Cauchy problem. It is easily verified
(using the chain rule) that the solution to this problem is given by

u(x, t) = f(x− ct).

This shows us that the solution u is simply a shifted version of the initial profile f . In
fact, the initial profile ”moves to the right with velocity c”. Therefore, the PDE (37)
is also referred to as the transport equation or one-way wave equation.

A characteristic curve or simply characteristic is a curve in the (x, t)-plane on which
the solution u of a PDE is constant. For the advection equation we have

d

dt
u(x(t), t) = ux

dx(t)
dt

+ ut. (38)

Since ut = −cux we see that the solution u is constant, i.e.,

d

dt
u(x(t), t) = 0

if
dx(t)

dt
= c. (39)

This is an ODE that determines the characteristic x = x(t) of the advection equation.
From (39) it is clear that the characteristics of the advection equation are the lines

x(t) = ct + x0.

Remark: The left-hand side of equation (38) can be interpreted as the change as expe-
rienced by a moving observer, whereas the two parts on the right-hand side represent
the change due to the fact that the the observer is moving into a region of possibly
different u, and the change of the solution at a fixed point. Our discussion of charac-
teristics shows that an observer moving along with speed c will see no change in the
solution.

Characteristics give us fundamental insight into the solution of a partial differential
equation. Assume, e.g., that we have specified initial values for the advection equation
(37) only on the finite interval 0 ≤ x ≤ 1. If we consider the domain {(x, t) : 0 ≤ x ≤
1, t ≥ 0}, then the given initial values will determine the solution only in part of this
domain. The left part of Figure 7 illustrates this fact for a positive value of c.

The right part of Figure 7 shows how the solution ”propagates along characteris-
tics”. This is also clear when we recall that a characteristic curve is the location of
points in the (x, t)-plane along which the solution of the PDE is constant.

In order to obtain the solution on the remainder (unshaded part) of the domain we
need to specify boundary values along the line x = 0. However, specifying values along
the other boundary, x = 1, would possibly overdetermine the problem.

If we want to study characteristics for general second-order quasi-linear PDEs then
the situation is more complicated.
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Figure 7: Left: Characteristics (blue lines) and domain of influence (red area) for the
advection equation. Right: Typical propagation of solution of the advection equation.

If we consider the wave equation

utt(x, t) = α2uxx(x, t), 0 < x < 1, t ≥ 0,

then we can factor the differential operator

∂2

∂t2
− α2 ∂2

∂x2
=

(
∂

∂t
− α

∂

∂x

) (
∂

∂t
+ α

∂

∂x

)
.

Therefore, the wave equation will be satisfied if either of the two advection equations

ut(x, t) = −αux(x, t) or ut(x, t) = αux(x, t)

is satisfied.

Remark: This is the traveling wave solution of the wave equation found already by
d’Alembert in the 18th century. We illustrate this in the Maple worksheet 578 TravelingWaves.mws.

Characteristics for more general second-order quasi-linear equations are discussed
in Section 9.6 of the textbook. We just mention that if the PDE is of the form

autt + buxt + cuxx + e = 0

then the characteristic curves are determined by the nonlinear first-order ordinary
differential equation

a

(
dx(t)

dt

)2

− b
dx(t)

dt
+ c = 0.

Remark: It is the discriminant of this quadratic equation that gives rise to the classi-
fication of second-order quasi-linear PDEs into hyperbolic, elliptic, and parabolic types
as discussed in Section 9.0.

Elliptic problems, that do not depend on time, i.e., describe steady-state problems,
have no real characteristics. Parabolic equations, that are time-dependent (and gener-
ally evolve toward a steady-state) have one family of characteristics. And hyperbolic
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PDEs, that are time-dependent (but do not evolve toward a steady-state) have two
independent families of characteristics. If these characteristics cross, then the solution
can develop discontinuities or shocks (even for smooth initial data). This is one of the
major difficulties associated with the solution of hyperbolic PDEs.

Since hyperbolic PDEs are conservative, i.e., the ”energy” of the system remains
constant over time (such as in the perpetual vibrations for the wave equation), it is
important to ensure that numerical schemes are also conservative. We will follow up
on this idea in Section 9.7.
Remark: A numerical method, called the method of characteristics, asks the user
to determine the ordinary differential equation that defines the characteristics of a
given partial differential equations. Then a numerical ODE solver is used to solve this
ODE, resulting in level curves for the solution. Once these level curves are found, it
is possible to use another ODE solver to integrate the PDE (which is now an ODE)
along the characteristic (see (39)).

9.6 Finite Differences for Hyperbolic PDEs

Before we study specialized numerical methods for conservation laws, we take a look at
a straightforward finite difference scheme. This material is touched on in Section 9.7 of
the textbook. We now consider as a model problem the one-dimensional wave equation

utt(x, t) = α2uxx(x, t), 0 < x < 1, t ≥ 0,
u(x, 0) = f(x), 0 ≤ x ≤ 1,
ut(x, 0) = g(x), 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, t ≥ 0.

This model is used to describe the vibrations of a string of unit length fixed at both
ends subject to an initial displacement f(x) and initial velocity g(x).

In order to be able to formulate finite differences we need a discrete approximation
of the second derivatives. We use the symmetric formulas

utt =
1
k2

[u(x, t + k)− 2u(x, t) + u(x, t− k)] +O(k2)

and
uxx =

1
h2

[u(x + h, t)− 2u(x, t) + u(x− h, t)] +O(h2).

Here we have discretized the computational domain with

xi = ih, i = 0, . . . , n + 1,
tj = jk, j ≥ 0.

As always, h = 1
n+1 is the mesh size and k is the time step. Also, we use the notation

vi,j = u(xi, tj), etc..
Inserting the finite difference approximations into the wave equation we get

1
k2

[vi,j+1 − 2vi,j + vi,j−1] =
α2

h2
[vi+1,j − 2vi,j + vi−1,j ] . (40)
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Finally, we can introduce the mesh ratio s =
(

αk
h

)2
, and solve (40) for the value at

time level j + 1, i.e.,

vi,j+1 = 2(1− s)vi,j + s(vi−1,j + vi+1,j)− vi,j−1.

The stencil for this method is shown in Figure 8.
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Figure 8: Finite difference stencil for wave equation. Basic mesh points are indicated
with blue ◦, green + correspond to given values, and points marked with red ♦ form a
typical stencil.

Remarks:

1. From the finite difference approximations employed it is clear that our method
has accuracy O(k2 + h2).

2. As for Richardson’s method and the Dufort-Frankel method studied earlier, there
is a problem starting this method. Some additional procedure has to be applied
to generate the second row of starting values. In the context of the Dufort-Frankel
method we suggested that this was most likely accomplished using a lower-order
method. However, now we have the advantage that not only the values of u are
specified at the j = 0 level, but also values of the time derivative. We should be
able to use this to our advantage.

We can attempt to use the backward Euler discretization for the first-order time
derivative, i.e.,

ut(xi, 0) ≈ u(xi, t1)− u(xi, 0)
k

,

or
u(xi, t1) ≈ u(xi, 0) + kut(xi, 0).

Using the given initial velocity this becomes

u(xi, t1) ≈ u(xi, 0) + kg(xi)

which gives us the numerical scheme

vi,1 = vi,0 + kg(xi), i = 1, . . . , n.
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This lets us advance the information given at the j = 0 level to the first row of the
computational mesh at j = 1. However, the backward Euler discretization is order
O(k) only, so that the entire numerical method will be O(k + h2) only.

In order to get a second-order accurate formula for this first step we employ a Taylor
expansion of u with respect to the time variable, i.e.,

u(xi, t1) ≈ u(xi, 0) + kut(xi, 0) +
k2

2
utt(xi, 0). (41)

Now, the wave equation tells us that

utt(xi, 0) = α2uxx(xi, 0).

Moreover, since u = f for time t = 0 we get (provided f is smooth enough)

utt(xi, 0) = α2f ′′(xi),

and so the Taylor expansion (41) becomes

u(xi, t1) ≈ u(xi, 0) + kut(xi, 0) +
k2α2

2
f ′′(xi).

This allows us to express the values at the j = 1 level as

vi,1 = vi,0 + kg(xi) +
k2α2

2
f ′′(xi).

Using again a symmetric finite difference approximation for f ′′ we have

vi,1 = vi,0 + kg(xi) +
k2α2

2
1
h2

[f(xi+1)− 2f(xi) + f(xi−1)] .

Since f(xi) = u(xi, 0) = vi,0 we arrive at

vi,1 = (1− s)vi,0 +
s

2
[vi−1,0 + vi+1,0] + kg(xi), (42)

where we have used the mesh ratio s =
(

αk
h

)2
.

Remarks:

1. Formula (42) is second-order accurate in time. Therefore, the finite difference
method consisting of (42) for the first step, and (40) for subsequent steps is of
order O(k2 + h2).

2. Once the first two rows of values have be obtained, the method proceeds in an
explicit way, i.e., no linear systems have to be solved.

3. However, as with all explicit methods there are restrictions on the mesh ratio in
order to maintain stability. For this method we have s ≤ 1.
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9.7 Flux Conservation for Hyperbolic PDEs

We mentioned earlier that hyperbolic partial differential equations are conservative.
This was clearly illustrated by the simple advection equation (37). It is customary to
re-write hyperbolic PDEs in the so-called flux conservative form. We illustrate this
with the wave equation

utt(x, t) = α2uxx(x, t), 0 < x < 1, t ≥ 0.

If we introduce the new variables

v = αux, and w = ut

then

vt = αuxt

wx = utx

so that vt = αwx. Since we also have

vx = αuxx

wt = utt

we see that the wave equation is equivalent to a system of two coupled first-order partial
differential equations

vt = αwx

wt = αvx.

Remark: In physics these equations arise in the study of one-dimensional electromag-
netic waves, and are known as Maxwell’s equations.

To get the standard flux conservative form of a hyperbolic conservation law we
introduce matrix-vector notation

u =
[

v
w

]
, F (u) =

[
0 −α
−α 0

]
u,

so that
ut = −F (u)x.

The function F (u) is called the flux of the problem.

Remarks:

1. If the system consists of only one equation, then we recover the advection equation
(37).

2. An excellent book on hyperbolic conservation laws (covering theory and numerics)
is ”Numerical Methods for Conservation Laws” by Randy LeVeque (1992).
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We now investigate numerical methods for the simple conservation law

ut(x, t) = −cux(x, t), 0 < x < 1, t ≥ 0,
u(x, 0) = f(x), 0 ≤ x ≤ 1.

The most natural finite difference approach is based on the derivative approximations

ut(x, t) =
1
k

[u(x, t + k)− u(x, t)] +O(k)

ux(x, t) =
1
2h

[u(x + h, t)− u(x− h, t)] +O(h2).

Using the standard discretization

xi = ih, i = 0, . . . , n + 1,
tj = jk, j ≥ 0,

with mesh size h = 1
n+1 and time step k, as well as the notation vi,j = u(xi, tj), we

obtain
1
k

[vi,j+1 − vi,j ] = − c

2h
[vi+1,j − vi−1,j ]

or
vi,j+1 = −kc

2h
[vi+1,j − vi−1,j ] + vi,j . (43)

Remarks:

1. The method (43) is an explicit, and therefore fast method.

2. However, as we will show next, this method is completely useless since it is un-
conditionally unstable.

3. We use the advection equation with a smooth step function as initial condition
to illustrate the performance of this method. The (slightly modified) Matlab
program transport.m (with menu option ”forward Euler in time / centered dif-
ferences in space”) originally written by Stefan Hüeber, University of Stuttgart,
Germany, serves this purpose.

We now perform the von Neumann stability analysis to verify this claim. Let’s
assume that the solution of the model problem is of the form

vi,j = e
√
−1iβhejλk

= e
√
−1iβh

(
eλk

)j
(44)

obtained via separation of variables (the so-called plane wave solution). The question
is what the long time behavior of this solution is, i.e., we are interested in

lim
j→∞

vi,j .

Since (44) contains an oscillatory as well as an exponentially growing component, we
will need |eλk| ≤ 1 for stability.
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In order to compute the amplification factor eλk we substitute (44) into our numer-
ical method (43). This yields

e
√
−1iβhe(j+1)λk = −kc

2h

[
e
√
−1(i+1)βh − e

√
−1(i−1)βh

]
ejλk + e

√
−1iβhejλk.

Division by e
√
−1iβhejλk gives us

eλk = −kc

2h

[
e
√
−1βh − e−

√
−1βh

]
+ 1

= 1−
√
−1

kc

h
sinβh. (45)

Here we have used the complex trigonometric identity

sin z =
e
√
−1z − e−

√
−1z

2
√
−1

.

From (45) it is clear that
|eλk| ≥ 1

for all positive time steps k since eλk lies somewhere on the line <(z) = 1 in the complex
plane. Therefore the method is – as claimed – unconditionally unstable.

Lax-Friedrichs Method

Earlier, we were able to ”fix” Richardson’s method for parabolic PDEs by replacing
vi,j by an average of neighboring points (in time). This led to the Dufort-Frankel
method.

Now we replace vi,j in (43) by an average of neighboring values in space, i.e., we
insert

vi,j =
vi+1,j + vi−1,j

2
into (43). That results in

vi,j+1 =
vi+1,j + vi−1,j

2
− kc

2h
[vi+1,j − vi−1,j ] . (46)

This is known as the Lax-Friedrichs method due to Peter Lax and Kurt Friedrichs.
Introducing, as always, the mesh ratio s = kc

2h (46) becomes

vi,j+1 =
(

1
2
− s

)
vi+1,j +

(
1
2

+ s

)
vi−1,j

The Lax-Friedrich method is clearly an explicit method, and its three point stencil is
shown in Figure 9.

The first part of the stability analysis for this method is as above. However, now
we get an amplification factor of

eλk = cos βh−
√
−1

kc

h
sinβh,
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Figure 9: Schematic illustration of the Lax-Friedrichs method. Basic mesh points are
indicated with blue ◦, green + correspond to given values, and points marked with red
♦ form a typical stencil.

and stability will be ensured if
|eλk|2 ≤ 1.

This condition is equivalent to

cos2 βh +
(

kc

h

)2

sin2 βh ≤ 1

or (
kc

h

)2

≤ 1− cos2 βh

sin2 βh
= 1.

Therefore, stability of the Lax-Friedrichs method is ensured if

k|c|
h

≤ 1,

or (assuming positive c),

s ≤ 1
2
.

This condition is known in the literature as the CFL condition (or Courant-Friedrichs-
Levy condition).

Remarks:

1. As indicated in Section 9.6, the characteristics of a hyperbolic PDE define a
domain of dependence, i.e., that part of the domain that influences the solution
at a given point. The CFL condition says that for each mesh point the domain
of dependence of the numerical scheme must contain the domain of dependence
of the PDE.

2. The accuracy of the Lax-Friedrichs method is O(k + h2), i.e., only first-order
accurate in time.

30



3. We use the Matlab program transport.m (with menu option ”Lax-Friedrichs”)
on the advection equation with a smooth step function as initial condition to
illustrate the performance of this method.

We now present an alternate interpretation of the Lax-Friedrichs method. To this
end we rewrite (46). By subtracting the term vi,j from both sides of (46) we get

vi,j+1 − vi,j

k
= −c

[
vi+1,j − vi−1,j

2h

]
+

1
2

[
vi+1,j − 2vi,j + vi−1,j

k

]
. (47)

We can now interpret (47) as a finite difference discretization of the PDE

ut(x, t) = −cux(x, t) +
h2

2k
uxx(x, t)

using symmetric approximation for the space derivatives, and a forward difference in
time.

According to this interpretation we have implicitly added a diffusion term to the
advection equation. This process is referred to as adding numerical viscosity (or ar-
tificial viscosity) to a hyperbolic problem. By doing so we introduce stability in the
numerical method, but destroy its conservation properties. The effect is that sharp
discontinuites in the solution (shocks) are smeared out.

The diffusive effect of the Lax-Friedrichs method can also be observed by looking
at the amplification factor. Since

|eλk|2
{

= 1, |c|k = h,
< 1, |c|k < h,

the amplitude of the wave decreases, i.e., energy is lost, if the time step is taken too
small.

Remark: For certain hyperbolic problems the diffusive effect is not much of an issue
since for those problems one is interested in the case when βh � 1, so that |eλk| ≈ 1.

Lax-Wendroff Method
We now present another finite difference scheme for conservation laws named after

Peter Lax and Burt Wendroff. We start with the Taylor expansion

u(x, t + k) = u(x, t) + kut(x, t) +
k2

2
utt(x, t) + . . . .

Using the conservation equation ut = −cux this becomes

u(x, t + k) = u(x, t)− ckux(x, t) +
(ck)2

2
uxx(x, t) + . . . .

If we keep the terms explicitly listed, then the truncation error in the time component
obviously is O(k2).

With the standard notation vi,j = u(xi, tj) this expansion gives rise to the numerical
scheme

vi,j+1 = vi,j − ck
vi+1,j − vi−1,j

2h
+

(ck)2

2
vi+1,j − 2vi,j + vi−1,j

h2
,
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where we have used O(h2) approximations for both the first-order and second-order
spatial derivatives. Therefore, introducing the mesh ratio s = ck

2h we get the Lax-
Wendroff method

vi,j+1 =
(
2s2 − s

)
vi+1,j +

(
1− 4s2

)
vi,j +

(
2s2 + s

)
vi−1,j . (48)

This method enjoys O(k2 + h2) accuracy, is an explicit method, and involves a stencil
as shown in Figure 10.
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Figure 10: Schematic illustration of the Lax-Wendroff method. Basic mesh points are
indicated with blue ◦, green + correspond to given values, and points marked with red
♦ form a typical stencil.

For the stability analysis we again begin with a plane wave solution of the form

vi,j = e
√
−1iβh

(
eλk

)j
.

Inserting this into the Lax-Wendroff scheme yields

e
√
−1iβhe(j+1)λk =

(
2s2 − s

)
e
√
−1(i+1)βhejλk+

(
1− 4s2

)
e
√
−1iβhejλk+

(
2s2 + s

)
e
√
−1(i−1)βhejλk.

Next, we divide by e
√
−1iβhe(j+1)λk so that

eλk =
(
2s2 − s

)
e
√
−1βh +

(
1− 4s2

)
+

(
2s2 + s

)
e−
√
−1βh

= 2s2
(
e
√
−1βh + e−

√
−1βh

)
− s

(
e
√
−1βh − e−

√
−1βh

)
+ 1− 4s2

= 4s2 cos βh− 2
√
−1s sinβh + 1− 4s2,

due to the trigonometric identities

cos z =
e
√
−1z + e−

√
−1z

2
, sin z =

e
√
−1z − e−

√
−1z

2
√
−1

.

Now, a straightforward (but lengthy) calculation yields

|eλk|2 = 1− 16s2 sin2 βh

2

(
1− 4s2 sin2 βh

2
+ cos2

βh

2

)
.
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Stability will be ensured if the term in parentheses is non-negative, i.e.,

1− 4s2 sin2 βh

2
+ cos2

βh

2
≥ 0.

It is easy to show that the expression on the left-hand side takes its minimum for
βh = π

2 . The minimum value is then 1− 4s2, and it will be nonnegative as long as

|s| ≤ 1
2
.

This is the CFL condition encountered earlier.

Remark: We use the Matlab program transport.m (with menu option ”Lax-Wendroff”)
on the advection equation with a smooth step function as initial condition to illustrate
the performance of this method.

Leapfrog Method

Another method that is second-order accurate in time and space for the advection
equation can be found by using symmetric approximations to the partial derivatives,
i.e.,

vi,j+1 − vi,j−1

2k
= −c

vi+1,j − vi−1,j

2h
or

vi,j+1 = −ck

h
[vi+1,j − vi−1,j ] + vi,j−1. (49)

This method has its name from the fact that the values used in the stencil (see Fig-
ure 11) leapfrog over the missing central point vi,j .
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Figure 11: Schematic illustration of the leapfrog method. Basic mesh points are indi-
cated with blue ◦, green + correspond to given values, and points marked with red ♦
form a typical stencil.

Remarks:

1. The leapfrog method requires more storage than the previous methods since the
two most recent rows of values need to be kept in memory.
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2. Also, this method requires a special start-up step (which may be of lower order).

The stability analysis of the leapfrog method involves the solution of a quadratic
equation, and leads to the amplification factor

eλk = −
√
−1

ck

h
sinβh±

√
1−

(
ck

h

)2

sin2 βh

so that

|eλk|2 =
(

ck

h

)2

sin2 βh + 1−
(

ck

h

)2

sin2 βh

= 1.

Therefore, the leapfrog method is stable for our model problem for all mesh ratios
s = ck

2h , and does not involve any numerical diffusivity.
However, for more complicated (nonlinear) problems this method becomes unstable.

This instability is due to the fact that the stencil isolates the ”black” from the ”white”
mesh points. This leads to so-called mesh drifting.

Remark: By combining the leapfrog method with the Lax-Friedrichs method it is
possible to get a two-step Lax-Wendroff type method which has accuracy O(k2 + h2)
and is stable (i.e., does not suffer from mesh drifting).

As the examples viewed earlier with the help of the Matlab program transport.m
have shown, most of the methods presented so far are not capable of advecting a sharp
transition accurately. The numerical solution of the test problem

ut(x, t) = −2ux(x, t), 0 ≤ x ≤ 1, t ≥ 0,

with initial profile

u(x, 0) = arctan
(

(0.5− x)
0.002

)
, 0 ≤ x ≤ 1,

as displayed in Figure 12

• was not handled at all by the Euler/centered difference method (43),

• was significantly smeared out by the Lax-Friedrichs method (46) (see left part of
Figure 13),

• and suffered from Gibbs-like oscillations with the Lax-Wendroff method (48) (see
right part of Figure 13).

Remark: Use of the leapfrog method (49) will result in oscillations similar to the
Lax-Wendroff method.
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Figure 12: A smoothed out step function as initial condition for the advection equation.

Figure 13: Advection of initial profile shown in Figure 12 by the Lax-Friedrichs (left)
and Lax-Wendroff (right) methods.

Upwind Differencing

A slight modification of the Lax-Friedrichs method lets us obtain a more accurate
solution for the test problem just discussed. By considering the direction in which
the solution will propagate, i.e., using information from the characteristics, we use the
difference scheme

vi,j+1 = vi,j −


kc

h
[vi,j − vi−1,j ] , c > 0,

kc

h
[vi+1,j − vi,j ] , c < 0.

(50)

The stencils for this so-called upwind differencing method are shown in Figure 14.

Remarks:

1. The accuracy of the upwind differencing method (50) is only O(k +h). However,
it deals with sharp discontinuities more effectively.

2. We use the Matlab program transport.m (with menu option ”upwind”) on the
advection equation with a smooth step function as initial condition to illustrate
the performance of this method. A plot of this solution is presented in Figure 15.
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Figure 14: Schematic illustration of upwind differencing (left: c > 0, right: c < 0).
Basic mesh points are indicated with blue ◦, green + correspond to given values, and
points marked with red ♦ form a typical stencil.

Figure 15: Advection of initial profile shown in Figure 12 using upwind differencing
(right) compared to Lax-Friedrichs solution (left).

A Nonlinear Model Problem

Matters start to become really interesting once we consider nonlinear conservation
equations. The inviscid Burgers’ equation

ut(x, t) = −u(x, t)ux(x, t) (51)

is a nonlinear advection equation whose speed depends on the solution u. This equation
will produce shocks even for smooth initial data.

The solution of the inviscid Burgers’ equation (51) with initial profile u(x, 0) =
cos(x) is illustrated in the (slightly modified) Matlab program burgers.m originally
written by Mary Pugh (University of Toronto). The program uses explicit time-stepping
and a spectral (FFT-based) differencing method in space. The initial profile and shock
at time t = 1 are shown in Figure 16.

We end our discussion of hyperbolic conservation laws with a discussion of flux
conservation. The idea is to introduce a numerical flux into the numerical scheme.
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Figure 16: Initial profile u(x, 0) = cos(x) (left) and shock at t = 1 for Burgers’ equation
generated with burgers.m.

Let’s consider again the upwind differencing scheme. Applied to the inviscid Burgers’
equation in the case of vi,j > 0 we get

vi,j+1 = vi,j −
k

h
vi,j [vi,j − vi−1,j ] . (52)

Now we introduce the numerical flux f so that (52) becomes

vi,j+1 = vi,j −
k

h
[f(vi,j , vi+1,j)− f(vi−1,j , vi,j)] . (53)

For example, with f(v, w) = 1
2v2 this leads to

vi,j+1 = vi,j −
k

2h

[
(vi,j)

2 − (vi−1,j)
2
]
, (54)

which is the conservation form of (52).
To understand this formula better, recall the flux conservation form of the standard

hyperbolic PDE
ut(x, t) = −F (u)x(x, t),

where F (u) is the flux. From a physical point of view it is natural to consider the
integral form∫ xi+1/2

xi−1/2

u(x, tj+1)dx =
∫ xi+1/2

xi−1/2

u(x, tj)dx−

[∫ tj+1

tj

F (u(xi+1/2, t))dt−
∫ tj+1

tj

F (u(xi−1/2, t))dt

]
,

(55)
where xi±1/2 = xi ± h

2 . In order to simplify this relation we introduce the notion of a
cell average

vi,j =
1
h

∫ xi+1/2

xi−1/2

u(x, tj)dx.

If we divide (55) by h and use the cell averages just introduced, then we get

vi,j+1 = vi,j −
1
h

[∫ tj+1

tj

F (u(xi+1/2, t))dt−
∫ tj+1

tj

F (u(xi−1/2, t))dt

]
.
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Finally, using a numerical flux defined as a time-average of the true flux, i.e.,

f(vi,j , vi+1,j) =
1
k

∫ tj+1

tj

F (u(xi+1/2, t)dt,

we get

vi,j+1 = vi,j −
k

h
[f(vi,j , vi+1,j)− f(vi−1,j , vi,j)] .

Therefore, vi,j in (53) can be interpreted as an approximation to the cell average

vi,j =
1
h

∫ xi+1/2

xi−1/2

u(x, tj)dx.

Remarks:

1. State-of-the-art methods for solving hyperbolic conservation laws are the finite
volume methods described in the book ”Finite Volume Methods for Hyperbolic
Problems” by Randy LeVeque (2002), and also featured in the software library
CLAW.

2. An alternative are so-called essentially non-oscillating (ENO) methods introduced
by Stan Osher, Chi-Wang Shu, and others. These methods are based on the
integral form of the conservation law, and use polynomial interpolation on small
stencils that are chosen so that the developing shock is preserved.

3. The full (viscous) Burgers’ equation

ut(x, t) = −u(x, t)ux(x, t) +
1
R

uxx(x, t)

with Reynolds number R is much easier to solve numerically than the inviscid
equation (51). This is due to the smoothing effect of the diffusive term uxx. Only
for large Reynolds numbers does this equation resemble the inviscid case, and
becomes a challenge for numerical methods.

4. All of the methods discussed above can be generalized to systems of conservation
laws.

9.8 Other Methods for Time-Dependent PDEs

Method of Lines

The method of lines is a semi-discrete method. The main idea of this method is
to convert the given PDE to a system of ODEs. This is done by discretizing in space,
and leaving the time variable continuous. Thus, we will end up with a system of ODE
initial value problems that can be attacked with standard solvers.

If, e.g., we want to solve the heat equation

ut(x, t) = uxx(x, t)
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with zero boundary temperature and initial temperature u(x, 0) = f(x), then we can
discretize this problem in space only (using a second-order accurate symmetric differ-
ence approximation). This means that on each line through a spatial mesh point in
{x0, x1, . . . , xn} we have the ODE

dui

dt
(t) =

ui+1(t)− 2ui(t) + ui−1(t)
h2

, i = 1, . . . , n− 1, (56)

with boundary and initial conditions

u0(t) = un(t) = 0, ui(0) = f(xi).

In matrix form we have
u′(t) = Au(t),

where, for this example, the matrix A is given by

A =
1
h2



−2 1 0 . . . 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 . . . 0 1 −2


,

and u = [u1, . . . , un − 1]T . Any standard IVP solver can be used to solve this system.
However, for small h this matrix is very stiff, and so some care has to be taken in
choosing the solver.
Remark: From (56) it is apparent that we are obtaining the solution of the wave equa-
tion along lines with constant x-value (parallel to the time-axis). This interpretation
has given the method its name.

(Pseudo-)Spectral Methods

Another semi-discrete approach involves an expansion in terms of basis functions
for the spatial part of the PDE, and an IVP solver for the time component.

Assume that the numerical solution is given in the form

uh(x, t) =
n∑

j=1

cj(t)φj(x),

where the φj form a basis for an approximation space used for the space component.
Ideally, these basis functions will satisfy the boundary conditions of the PDE. The
time-dependent coefficients cj can be determined via collocation at a discrete set of
points {x1, . . . , xn}. If we again use the heat equation

ut(x, t) = uxx(x, t)

to illustrate this method, then the collocation conditions are

∂uh

∂t
(xi, t) =

∂2uh

∂x2
(xi, t), i = 1, . . . , n,
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or
n∑

j=1

c′j(t)φj(xi) =
n∑

j=1

cj(t)φ′′j (xi), i = 1, . . . , n.

This is a system of n first-order ODEs for the coefficients cj . In matrix form we have

Ac′(t) = Bc(t), (57)

where c = [c1, . . . , cn]T and the matrices A and B have entries

Aij = φj(xi), Bij = φ′′j (xi).

The initial conditions for (57) can be obtained by interpolation

n∑
j=1

cj(0)φj(xi) = f(xi),

where f specifies the initial condition of the PDE.

Remarks:

1. Standard IVP solvers can be used to solve the system (57). Of course, the basis
functions should be such that the matrix A is invertible.

2. All standard interpolation or approximation methods can be used to generate the
basis {φ1, . . . , φn} (e.g., polynomials, splines, radial basis functions).

3. Again, the ODE systems (57) are often rather stiff, which means that the IVP
solvers need to be chosen carefully.

4. The program burgers.m used earlier employs a trigonometric basis coupled with
the fast Fourier transform, and leapfrog time-stepping for ODEs (initialized with
one forward Euler step).

Time-Dependent Galerkin Methods

It is also possible to combine the basis function expansion with a least squares best
approximation criterion instead of collocation as indicated in Section 9.4. This leads
to time-dependent Galerkin methods.

Assume that the numerical solution is given in the form

uh(x, t) =
n∑

j=1

cj(t)φj(x), (58)

where the φj form a basis for an approximation space used for the space component. To
keep the discussion simple, we will assume that the basis functions satisfy the boundary
conditions of the PDE. We will once more use the heat equation

ut(x, t) = uxx(x, t)
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with boundary conditions u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = f(x) to
illustrate this method. Inserting the expansion (58) into the heat equation results in

n∑
j=1

c′j(t)φj(x) =
n∑

j=1

cj(t)φ′′j (x). (59)

The conditions for the time-dependent coefficients cj are generated by taking inner
products of (59) with the basis functions φi, i = 1, . . . , n. This results in a system of n
first-order ODEs for the coefficients cj of the form

n∑
j=1

c′j(t)〈φj , φi〉 =
n∑

j=1

cj(t)〈φ′′j , φi〉,

where the inner products are standard L2-inner products over the spatial domain (as-
sumed to be [0, 1] here)

〈v, w〉 =
∫ 1

0
v(x)w(x)dx.

In matrix form we have
Ac′(t) = Bc(t), (60)

where c = [c1, . . . , cn]T and the matrices A and B have entries

Aij = 〈φj , φi〉, Bij = 〈φ′′j , φi〉.

If the basis functions are orthogonal on [0, 1] then the matrix A is diagonal, and the
system (60) is particularly simple to solve.

As for the spectral methods above, the initial condition becomes
n∑

j=1

cj(0)φj(x) = f(x),

and the initial coefficients cj(0), j = 1, . . . , n, can be obtained by interpolation or
least squares approximation. In the case of least squares approximation (with orthog-
onal basis functions) the coefficients are given by the generalized Fourier coefficients
cj(0) = 〈f, φi〉.

By applying integration by parts to the entries of B (remember that the basis
functions are assumed to satisfy the boundary conditions) we get an equivalent system

Ac′(t) = −Cc(t)

with ”stiffness matrix” C with entries

Cij = [φj , φi] =
∫ 1

0
φ′j(x)φ′i(x)dx.

This is analogous to the inner product in the Ritz-Galerkin method of Section 9.4.

Remarks:

1. Higher-dimensional time-dependent PDEs can be attacked by using higher-dimensional
spatial methods, such as finite elements, or higher-dimensional collocation schemes.

2. Matlab’s pdetool.m uses piecewise linear finite elements in a Galerkin method
to solve both (linear) parabolic and hyperbolic PDEs.
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