
8 Numerical Solution of Ordinary Differential Equations

8.1 Existence and Uniqueness

Please review the material in Section 8.1 of the textbook on existence and uniqueness
of solutions of initial value problems for ordinary differential equations (ODEs).

8.2 Taylor Series Methods

We will consider general first-order initial value problems (IVPs) of the following form:

x′(t) = f(t, x(t)), t ≥ t0
x(t0) = x0. (1)

It is our goal to derive numerical methods for the solution of this kind of problem. The
first, and probably best known, method is known as Euler’s method.

The method is derived by considering the approximation

x′(t) ≈ x(t + h)− x(t)
h

of the first derivative. This implies

x(t + h) ≈ x(t) + hx′(t),

which – using the differential equation (1) – becomes

x(t + h) ≈ x(t) + hf(t, x(t)). (2)

This immediately leads to an iterative algorithm.

Algorithm

Input t0, x0, f , h, N

t = t0, x = x0

for i = 1 to N do

x = x + hf(t, x)

t = t + h

end

Remarks:

1. Note that Euler’s method yields a set of discrete points (ti, xi), i = 1, . . . , N ,
which approximate the graph of the solution x = x(t). In order to obtain a
continuous solution one of the interpolation or approximation methods of Chapter
6 must be used.
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2. Euler’s method is illustrated in the Maple worksheet 578 Euler Taylor.mws.

An immediate generalization of Euler’s method are the so-called general Taylor
series methods. We use a Taylor expansion

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) +

h3

6
x′′′(t) + . . . ,

and therefore obtain the numerical approximation

x(t + h) ≈
n∑

k=0

hkx(k)(t)
k!

(3)

which is referred to as an n-th order Taylor series method.

Remarks:

1. Obviously, Euler’s method is a first-order Taylor method.

2. In order to program a Taylor method we need to precompute all higher-derivatives
of x required by the method since the differential equation only provides a rep-
resentation for x′. This implies that we will end up with code that changes with
the IVP to be solved.

3. Computer software with symbolic manipulation capabilities (such as Maple or
Mathematica) allows us to write code for Taylor methods for arbitrary IVPs.

We illustrate the traditional treatment of a second-order Taylor method in the
following example.

Example: We consider the initial value problem

x′(t) = x(t)− t2 + 1

x(0) =
1
2
.

The second-order Taylor approximation is given by

x(t + h) ≈ x(t) + hx′(t) +
h2

2
x′′(t).

Therefore, we need to express x′(t) and x′′(t) in terms of x and t so that an iterative
algorithm can be formulated.

From the differential equation

x′(t) = f(t, x(t)) = x(t)− t2 + 1.

Therefore, differentiating this relation,

x′′(t) = x′(t)− 2t,

and this can be incorporated into the following algorithm.
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Algorithm

Input t0, x0, f , h, N

t = t0, x = x0

for i = 1 to N do

x′ = f(t, x)

x′′ = x′ − 2t

x = x + hx′ + h2

2 x′′

t = t + h

end

Remarks:

1. Two modifications are suggested to make the algorithm more efficient and nu-
merically stable.

(a) Replace the computation of x by the nested formulation

x = x + h

(
x′ +

h

2
x′′
)

.

(b) Advance the time t via t = t0 + ih.

2. An example of a fourth-order Taylor method is given in the Maple worksheet
578 Euler Taylor.mws.

Errors

When considering errors introduced using the Taylor series approximation we need
to distinguish between two different types of error:

• local truncation error, and

• global truncation error.

The local truncation error is the error introduced directly by truncation of the
Taylor series, i.e., at each time step we have an error

En =
hn+1

(n + 1)!
x(n+1)(t + θh), 0 < θ < 1.

Thus, the n-th order Taylor method has an O(hn+1) local truncation error.
The global truncation error is the error that results if we use an n-th order Taylor

method having O(hn+1) local truncation error to solve our IVP up to time t = T . Since
we will be performing

N =
T − t0

h
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steps we see that one order of h is lost in the global truncation error, i.e., the global
truncation error is of the order O(hn).

Remark: Of course, truncation errors are independent of roundoff errors which can
add to the overall error.

Often we want to choose the stepsize h so that the local truncation error is not too
large. A rough estimate that can easily be incorporated into the algorithm is given by

En ≈
hn

(n + 1)!

(
x(n)(t + h)− x(n)(t)

)
(see computer homework problem 8.2#19).

8.3 Runge-Kutta Methods

Runge-Kutta methods are motivated by the dependence of the Taylor methods on the
specific IVP. These methods do not require derivatives of the right-hand side function
f in the code, and are therefore general-purpose initial value problem solvers. Runge-
Kutta methods are among the most popular ODE solvers. They were first studied by
Carle Runge and Martin Kutta around 1900.

8.3.1 Second-Order Runge-Kutta Methods

We consider the general first-order ODE

x′(t) = f(t, x(t)). (4)

Since we want to construct a second-order method, we start with the Taylor expansion

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) +O(h3).

The first derivative can be replaced by the right-hand side of the differential equation
(4), and the second derivative is obtained by differentiating (4), i.e.,

x′′(t) = ft(t, x) + fx(t, x)x′(t)
= ft(t, x) + f(t, x)fx(t, x),

where we will from now on neglect to write the dependence of x on t when it appears
as an argument to f . Therefore, the Taylor expansion becomes

x(t + h) = x(t) + hf(t, x) +
h2

2
[ft(t, x) + f(t, x)fx(t, x)] +O(h3)

= x(t) +
h

2
f(t, x) +

h

2
[f(t, x) + hft(t, x) + hf(t, x)fx(t, x)] +O(h3). (5)

Recalling the multivariate Taylor expansion

f(x + h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y) + . . .
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we see that the expression in brackets in (5) can be interpreted as

f(t + h, x + hf(t, x)) = f(t, x) + hft(t, x) + hf(t, x)fx(t, x) +O(h2).

Therefore, we get

x(t + h) = x(t) +
h

2
f(t, x) +

h

2
f(t + h, x + hf(t, x)) +O(h3)

or
x(t + h) ≈ x(t) +

1
2

(F1 + F2) , (6)

with

F1 = hf(t, x),
F2 = hf(t + h, x + F1).

This is the classical second-order Runge-Kutta method. It is also known as Heun’s
method or the improved Euler method.

We obtain general second-order Runge-Kutta methods by assuming

x(t + h) = x(t) + w1F1 + w2F2 +O(h3) (7)

with

F1 = hf(t, x)
F2 = hf(t + αh, x + βF1).

Clearly, this is a generalization of the classical Runge-Kutta method since the choice
w1 = w2 = 1

2 and α = β = 1 yields that case.
We now need to study what other combinations of w1, w2, α and β in (7) give us

a second-order method. The bivariate Taylor expansion yields

f(t + αh, x + βF1) = f(t, x) + αhft(t, x) + βF1fx(t, x) +O(h2)
= f(t, x) + αhft(t, x) + βhf(t, x)fx(t, x) +O(h2).

Therefore, the general second-order Runge-Kutta assumption (7) becomes

x(t + h) = x(t) + w1hf(t, x) + w2h [f(t, x) + αhft(t, x) + βhf(t, x)fx(t, x)] +O(h3)
= x(t) + (w1 + w2)hf(t, x) + w2h

2 [αft(t, x) + βf(t, x)fx(t, x)] +O(h3).

In order for this to match the general Taylor expansion (5) we want

w1 + w2 = 1
αw2 = 1

2
βw2 = 1

2 .

Thus, we have a system of three nonlinear equations for our four unknowns. One
popular solution is the choice w1 = 0, w2 = 1, and α = β = 1

2 . This is known as the
modified Euler method or the midpoint rule.

Remark: The choice w1 = 1, w2 = 0 leads to Euler’s method. However, since now
αw2 6= 1

2 and βw2 6= 1
2 this method does not have second-order accuracy.
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8.3.2 Fourth-Order Runge-Kutta Methods

The classical method (whose derivation is similar to that of the second-order method
– just more technical) is given by

x(t + h) = x(t) +
1
6

[F1 + 2F2 + 2F3 + F4] (8)

with

F1 = hf(t, x)

F2 = hf

(
t +

h

2
, x +

1
2
F1

)
F3 = hf

(
t +

h

2
, x +

1
2
F2

)
F4 = hf (t + h, x + F3) .

The local truncation error for this method is O(h5). It is also important to note that
the classical fourth-order Runge-Kutta method requires four evaluations of the function
f per time step.

Remark: The classical fourth-order Runge-Kutta method is illustrated in the Maple
worksheet 578 Runge Kutta.mws.

Before we consider improving the efficiency of Runge-Kutta methods we illustrate
their connection to numerical integration rules.

If we consider the IVP

x′(t) = f(t, x(t))
x(t0) = x0

we can separate variables
dx = f(t, x(t))dt

and then integrate both sides of this equation from t to t + h, i.e.,∫ t+h

t
dx =

∫ t+h

t
f(τ, x(τ))dτ.

Evaluation of the left-hand integral yields

x(t + h)− x(t) =
∫ t+h

t
f(τ, x(τ))dτ. (9)

Therefore, the solution to our IVP can be obtained by solving the integral equation
(9). Of course, we can use numerical integration to do this:

1. Using the left endpoint method

∫ b

a
f(x)dx ≈ b− a

n︸ ︷︷ ︸
=h

n−1∑
i=0

f(xi)
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on a single interval, i.e., with n = 1, and a = t we get∫ t+h

t
f(τ, x(τ))dτ ≈ t + h− t

1
f(τ0, x(τ0))

= hf(t, x(t)).

Thus, (9) is equivalent to Euler’s method.

2. Using the trapezoid rule∫ b

a
f(x)dx ≈ b− a

2
[f(a) + f(b)]

with a = t and b = t + h gives us∫ t+h

t
f(τ, x(τ))dτ ≈ h

2
[f(t, x(t)) + f(t + h, x(t + h))] .

The corresponding IVP solver is therefore

x(t + h) ≈ x(t) +
h

2
f(t, x(t)) +

h

2
f(t + h, x(t + h)).

Note that this is not equal to the classical second-order Runge-Kutta method
since we have an x(t + h) term on the right-hand side. This means that we have
an implicit method. In order to make the method explicit we can use Euler’s
method to rewrite

x(t + h) = x(t) + hf(t, x(t)).

Then we end up with the method

x(t + h) ≈ x(t) +
h

2
f(t, x(t)) +

h

2
f(t + h, x(t) + hf(t, x(t)))

or
x(t + h) ≈ x(t) +

1
2
F1 +

1
2
F2

with

F1 = hf(t, x(t))
F2 = hf(t + h, x(t) + F1),

i.e., the classical second-order Runge-Kutta method.

3. The midpoint integration rule leads to the modified Euler method (or midpoint
rule).

4. Simpson’s rule yields a special case of a fourth-order Runge-Kutta method (see
HW problem 8.3#3).

5. Gauss quadrature leads to so-called Gauss-Runge-Kutta methods.

Remark: We saw earlier that in each time step of the second-order Runge-Kutta
method we need to perform two evaluations of f , and for a fourth-order method there
are four evaluations. More generally, one can observe the situation described in Table 1.

This data implies that higher-order (> 4) Runge-Kutta methods are relatively in-
efficient. However, certain higher-order methods may still be appropriate if we want to
construct a Runge-Kutta method which adaptively chooses the step size for the time
step in order to keep the local truncation error small.
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evaluations of f per time step 2 3 4 5 6 7 8 9 10
maximum order achievable 2 3 4 4 5 6 6 7 7

Table 1: Efficiency of Runge-Kutta methods.

8.3.3 Adaptive Runge-Kutta Methods

An obvious strategy for adaptive step size control is as follows: We prescribe some
tolerance tol, and if the local truncation error Eh exceeds this tolerance, then we halve
the step size, i.e., h is replaced by h

2 . If on the other hand Eh � tol, then we double
the step size.

The main question is now how to estimate the error Eh. A simple (but inefficient)
strategy is to compute the value x(t+h) twice. Once using one step of size h, and then
again using two steps of size h

2 . The difference of these two values can then be used as
an error estimate.

It turns out, however, that there is a much more efficient strategy: the so-called
embedded Runge-Kutta methods. With an embedded Runge-Kutta method we also
compute the value x(t + h) twice. However, it turns out that we can design methods
of different orders that use the same function evaluations, i.e., the function evaluations
used for a certain lower-order method are embedded in a second higher-order method.

We now describe the classical fourth-fifth-order Runge-Kutta-Fehlberg method which
was first published in 1970. The fourth-order method is one that uses five function eval-
uations at each time step. Specifically,

x(t + h) = x(t) +
25
216

F1 +
1408
2565

F3 +
2197
4104

F4 −
1
5
F5

with

F1 = hf(t, x),

F2 = hf

(
t +

h

4
, x +

1
4
F1

)
,

F3 = hf

(
t +

3
8
h, x +

3
32

F1 +
9
32

F2

)
,

F4 = hf

(
t +

12
13

h, x +
1932
2197

F1 −
7200
2197

F2 +
7296
2197

F3

)
,

F5 = hf

(
t + h, x +

439
216

F1 − 8F2 +
3680
513

F3 −
845
4104

F4

)
.

The associated fifth-order method is given by

x(t + h) = x(t) +
16
135

F1 +
6656
12825

F3 +
28561
56430

F4 −
9
50

F5 +
2
55

F6,

where F1–F5 are the same as for the fourth-order method above, and

F6 = hf

(
t +

h

2
, x− 8

27
F1 + 2F2 −

3544
2565

F3 +
1859
4104

F4 −
11
40

F5

)
.

The local truncation error is estimated by computing the deviation of the fourth-order
solution from the fifth-order result.
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The advantage of this embedded method is that an adaptive fifth-order method has
been constructed that uses only six function evaluations for each time step.

Remarks:

1. An algorithm for the adaptive RKF45 method is printed in the textbook on
pages 445–446. This algorithm is also implemented in most standard software
packages, e.g., in Maple the method can be employed by calling the function
dsolve with the options numeric and method=rkf45. This is illustrated in the
Maple worksheet 578 Runge Kutta.mws. In Matlab the method can be accessed
using the function ode45.

2. Other embedded Runge-Kutta methods also exist. For example, a fifth-sixth-
order method is due to Dormand and Prince (1980). The coefficients of this
method are listed in computer problem 8.3#10.

3. As mentioned earlier, Runge-Kutta methods are quite popular. This is probably
due to the fact that they have been known for a long time, and are relatively easy
to program. However, for so-called stiff problems, i.e., problems whose solution
exhibits both slow and fast variations in time, Runge-Kutta methods become
very inefficient. We will discuss stiff equations later.

8.4 Multistep Methods

Up to now, all methods we studied were single step methods, i.e., the value x(t + h)
was found using information only from the previous time level t. Now we will consider
so-called multistep methods, i.e., more of the history of the solution will affect the value
x(t + h).

Consider the first-order ODE

x′(t) = f(t, x(t)).

If we integrate from t to t + h we have∫ t+h

t
x′(τ)dτ =

∫ t+h

t
f(τ, x(τ))dτ

or

x(t + h)− x(t) =
∫ t+h

t
f(τ, x(τ))dτ. (10)

We now use a quadrature formula for the remaining integral.

Example: We interpolate f at the points τ = t− h and τ = t by a linear polynomial
in Lagrange form, i.e.,

p(τ) =
τ − t

(t− h)− t
f(t− h, x(t− h)) +

τ − (t− h)
t− (t− h)

f(t, x(t))

=
t− τ

h
f(t− h, x(t− h)) +

τ − t + h

h
f(t, x(t)).
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Therefore, the integral in (10) becomes∫ t+h

t
f(τ, x(τ))dτ ≈

∫ t+h

t
p(τ)dτ

=
∫ t+h

t

[
t− τ

h
f(t− h, x(t− h)) +

τ − t + h

h
f(t, x(t))

]
dτ

=

[
f(t− h, x(t− h))

(
−1

2

)
(t− τ)2

h
+ f(t, x(t))

(τ − t + h)2

2h

]t+h

t

=
3h

2
f(t, x(t))− h

2
f(t− h, x(t− h)).

Thus (10) gives us

x(t + h) ≈ x(t) +
h

2
[3f(t, x(t))− f(t− h, x(t− h))] . (11)

If we introduce the notation tn+i = t + ih, i = −1, 0, 1, and xn+i = x(tn+i), as well as
fn = f(tn, xn), then (11) becomes

xn+1 ≈ xn +
h

2
[3fn − fn−1] . (12)

This method is known as second-order Adams-Bashforth method dating back to 1883.

Remarks:

1. We will show later that this method is indeed of second order accuracy.

2. Note that the method (12) requires two initial conditions. Since the IVP will give
us only one initial condition, we need to precede the Adams-Bashforth method
by one step of, e.g., a second-order Runge-Kutta method.

3. Since (12) only involves one (new) function evaluation per time step the Adams-
Bashforth method is more efficient than the corresponding Runge-Kutta method.
However, it is slightly more difficult to program.

Example: If we use a linear Lagrange interpolant to the integrand f of (10) at the
points τ = t and τ = t + h then we obtain

x(t + h) ≈ x(t) +
h

2
[f(t, x(t)) + f(t + h, x(t + h))]

or
xn+1 = xn +

h

2
[fn + fn+1] . (13)

This method is known as second-order Adams-Moulton method.

Remark: Note that the Adams-Moulton method is an implicit method. Such methods
can be dealt with iteratively, e.g., using fixed-point iteration (see page 552 of the
textbook for some more details).

Instead of dealing with the implicit Adams-Moulton method by itself one usually
combines the two Adams methods into a so-called predictor-corrector scheme. The
procedure is as follows:
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1. Obtain initial values for the Adams-Bashforth method (e.g., using a Runge-Kutta
method of the same order).

2. Use the Adams-Bashforth method to ”predict” xn+1.

3. Use the Adams-Moulton method to ”correct” the value xn+1 predicted by the
Adams-Bashforth method.

Remarks:

1. Higher-order Adams methods can be derived analogously using higher-order poly-
nomial interpolants.

2. Alternatively, the method of undetermined coefficients can be used. Here one
assumes that the (m + 1)-st order Adams-Bashforth method is of the form

xn+1 ≈ xn + a0fn + a1fn−1 + . . . + amfn−m

and then determines the coefficients a0, . . . , am by forcing the quadrature a0fn +
a1fn−1 + . . . + amfn−m to be exact for polynomials of degree m. An example for
the case m = 4 is listed in the textbook on page 550.

3. (m + 1)-st order Adams-Moulton methods can be derived analogously.

General Linear k-Step Methods

The Adams-Bashforth method derived above is a two-step method, as it takes into
consideration two steps back in the history of the solution. Now we will study general
k-step methods of the form

akxn + ak−1xn−1 + . . . + a0xn−k = h [bkfn + bk−1fn−1 + . . . + b0fn−k] , (14)

where as before xi = x(ti), and ti = t0 + ih.

Remarks:

1. Note the shift in the index, i.e., the new approximate solution is no longer denoted
by xn+1, instead by xn.

2. Note that both explicit (when bk = 0) and implicit (bk 6= 0) methods are covered
by this framework.

In order to simplify the notation we will introduce a linear functional L such that

Lx =
k∑

i=0

aix(ih)− hbi x′(ih)︸ ︷︷ ︸
=f(ih,x(ih))

 . (15)

For simplicity we now also assume that time is shifted so that tn−k = t0. With this
assumption (14) is equivalent to

Lx = 0.
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Note that x here denotes the true solution to the discrete difference equation (14), and
an approximate solution to the ODE x′(t) = f(t, x(t)).

If we express the values x(ih) and x′(ih) by their Taylor series, i.e.,

x(ih) =
∞∑

j=0

(ih)j

j!
x(j)(0),

x′(ih) =
∞∑

j=0

(ih)j

j!
x(j+1)(0),

then we can rewrite (15) as

Lx = d0x(0) + d1hx′(0) + d2h
2x′′(0) + . . . (16)

with appropriate coefficients dj . In fact, comparing (15) and (16) we see

d0 =
k∑

i=0

ai,

d1 =
k∑

i=0

(iai − bi),

...

dj =
k∑

i=0

(
ij

j!
ai −

ij−1

(j − 1)!
bi

)
, j ≥ 1.

Here we use the notational conventions 0! = 1 and i0 = 1 for any i.

Characterization of Order and Accuracy

Theorem 8.1 Consider the k-step method

akxn + ak−1xn−1 + . . . + a0xn−k = h [bkfn + bk−1fn−1 + . . . + b0fn−k] .

The following are equivalent:

(1) d0 = d1 = . . . = dm = 0,

(2) Lp = 0 for all polynomials of degree at most m, i.e., L is exact for polynomials
of degree at most m,

(3) Lx is O(hm+1) for all x ∈ Cm+1.

Proof:

(1) =⇒ (2): Since d0 = d1 = . . . = dm = 0 by assumption, (16) gives us

Lx = dm+1h
m+1x(m+1)(0) + . . . .

For (2) we consider x to be a polynomial of degree at most m, i.e.,

x(j)(t) = 0 for j > m.

But then Lx = 0.
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(2) =⇒ (3): Now we may assume x ∈ Cm+1 so that it has Taylor expansion

x = p + r,

where p is a polynomial of degree at most m, and the remainder r satisfies r(j) = 0
for j ≤ m.

Now, using (16),

Lx = Lp︸︷︷︸
=0 by (2)

+Lr

= dm+1h
m+1r(m+1)(0) + dm+2h

m+2r(m+2)(0) + . . .
= O(hm+1).

(3) =⇒ (1): If Lx is of the order O(hm+1) then (16) implies

Lx = dm+1h
m+1x(m+1)(0) + . . .

so that d0 = d1 = . . . = dm = 0 or (1). ♠

Definition 8.2 The order of a k-step method is the smallest integer m such that

d0 = d1 = . . . = dm = 0 6= dm+1.

Example: We will show that the Adams-Bashforth method (12) derived earlier is
indeed of second order. The iteration formula is (with adjusted indices)

xn − xn−1 =
h

2
[3fn−1 − fn−2]

so that a0 = 0, a1 = −1, a2 = 1, and b0 = −1
2 , b1 = 3

2 , and b2 = 0 (which shows that
this is an explicit method).

Now,

d0 =
2∑

i=0

ai

= 0− 1 + 1 = 0,

d1 =
2∑

i=0

(iai − bi)

=
(

0(0) +
1
2

)
+
(

(1)(−1)− 3
2

)
+ (2(1)− 0) = 0,

d2 =
2∑

i=0

(
i2

2
ai − ibi

)
= 0 +

(
1
2
(−1)− 3

2

)
+
(

4
2
(1)− (2)(0)

)
= 0,
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d3 =
2∑

i=0

(
i3

6
ai −

i2

2
bi

)
= 0 +

(
1
6
(−1)− 1

2
3
2

)
+
(

8
6
(1)− 4

2
0
)

=
5
12
6= 0.

Therefore, the method is indeed of order 2.

Remark: In principle, the conditions of Definition 8.2 can be used to derive k-step
methods of order 2k. However, as we will see below, a numerical method also needs to
be stable. It is known that stable k-step methods can be of order at most k + 2.

8.5 Errors and Stability

We now denote by x(h, t) the value of the approximate solution at time t based on
computations with time steps of length h, and let x(t) denote the value of the true
solution at time t to our initial value problem x′(t) = f(t, x(t)) with initial condition
x(t0) = x0.

Definition 8.3 A k-step method is called convergent if

lim
h→0

x(h, t) = x(t)

for all (fixed) t in some interval [t0, tm] provided

lim
h→0

x(h, t0 + ih) = x0

for all 0 ≤ i < k.

For the following discussion we identify two polynomials associated with the k-step
method

akxn + ak−1xn−1 + . . . + a0xn−k = h [bkfn + bk−1fn−1 + . . . + b0fn−k] .

Let p and q be defined via

p(z) =
k∑

i=0

aiz
i

q(z) =
k∑

i=0

biz
i

with the coefficients ai and bi given above.

Definition 8.4 A k-step method is called zero stable if all roots λ of the polynomial
p lie inside the unit disk, i.e., |λ| ≤ 1, and those on the unit circle are simple, i.e., if
|λ| = 1 then p′(λ) 6= 0.
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Definition 8.5 A k-step method is called consistent if it is exact for constants and
linear polynomials, i.e., d0 = d1 = 0.

Remarks:

1. Consistency of a k-step method can also be characterized by p(1) = 0 and p′(1) =
q(1).

2. Theorem 8.1 implies that any first-order method is consistent.

The central theorem known as the Lax Equivalence Theorem is

Theorem 8.6 A k-step method is convergent if and only if it is zero stable and con-
sistent.

Proof: The fact that zero stability and consistency are sufficient for convergence is
rather involved. We do not discuss it here. Necessity of zero stability and consistency
are somewhat easier. We concentrate on necessity of zero stability (consistency is
covered in the textbook on page 559).

By assumption the method is convergent for all admissible right-hand side functions
f , and therefore it is also convergent for the particular IVP with f ≡ 0 and zero initial
data, i.e.,

x′(t) = 0
x(0) = 0.

Therefore, by assumption, the numerical scheme must converge to the zero solution for
any set of initial conditions that satisfy the second part of Definition 8.3.

We will use a proof by contradiction, and show that if the method is not zero stable,
then the above convergence claim does not hold.

If the method is not zero stable, then either some root λ of p lies outside the unit
disk, or is on the unit circle but has multiplicity greater than one, i.e.,

|λ| > 1 or |λ| = 1 with p′(λ) = 0.

For the simple problem above the k-step method becomes

akxn + ak−1xn−1 + . . . + a0xn−k = 0. (17)

In the case |λ| > 1 we see that xn = hλn is a possible solution since (17) is equivalent
to

akhλn + ak−1hλn−1 + . . . a0hλn−k

= hλn−k
[
akλ

k + ak−1λ
k−1 + . . . + a0

]
= hλn−k p(λ)︸︷︷︸

=0

= 0.

Now, for any fixed λ and 0 ≤ n < k,

|x(h, nh)| = |xn| = h|λn| < h|λ|k → 0
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for h → 0. This establishes the second part of Definition 8.3. However, we can see that
the first part cannot be satisfied by considering, for any t = nh,

|x(h, nh)| = |xn| = h|λn| = t

n
|λ|n.

This quantity tends to ∞ for n →∞ (⇐⇒ h → 0 since h = t
n , t fixed). So there is no

convergence in this case.
If |λ| = 1 with p′(λ) = 0 then xn = hnλn is another possible solution of (17) since

akhnλn + ak−1h(n− 1)λn−1 + . . . a0h(n− k)λn−k

= hλn−k

 n︸︷︷︸
=n−k+k

akλ
k + (n− 1)︸ ︷︷ ︸

=n−k+k−1

ak−1λ
k−1 + . . . (n− k)a0


= hλn−k

{
(n− k)

[
akλ

k + ak−1λ
k−1 + . . . + a0

]
+
[
kakλ

k + (k − 1)ak−1λ
k−1 + . . . + 0 · a0

]}
= hλn−k

(n− k) p(λ)︸︷︷︸
=0

+λ p′(λ)︸ ︷︷ ︸
=0

 = 0.

Again, the initial values satisfy the second part of Definition 8.3, i.e., for 0 ≤ n < k
(with k fixed)

|x(h, nh)| = |xn| = hn |λn|︸︷︷︸
=1

= hn < hk → 0

for h → 0. On the other hand, the first part fails again since

|x(h, nh)| = |xn| = hn|λn| = hn =
t

n
n = t 6= 0.

♠

Example: We already know that the second-order Adams-Bashforth method is con-
sistent. Now we show it is also zero stable, and therefore convergent.

Since
xn − xn−1 =

h

2
[3fn−1 − fn−2]

we have a0 = 0, a1 = −1, a2 = 1, and

p(z) = z2 − z = z(z − 1).

The roots of p are λ = 0 and λ = 1. Thus, all roots lie within the unit disk, and the
root on the boundary is simple.

Local Truncation Error

One can show (see textbook page 561)

Theorem 8.7 If a k-step method is of order m, x ∈ Cm+2 and ∂f
∂x ∈ C, then the local

truncation error
x(tn)− xn = O(hm+1)

provided the earlier values xn−1, xn−2, . . . , xn−k were computed exactly.

16



Global Truncation Error

For multistep methods the global truncation error is not simply the sum of local
truncation errors. The following concept of stability also plays an important role in
determining the global truncation error.

Definition 8.8 A numerical IVP solver is stable if small perturbations in the initial
conditions do not cause the numerical approximation to diverge away from the true
solution provided the true solution of the initial value problem is bounded.

Remark: For consistent k-step methods one can show that the notions of stability and
zero stability are equivalent.

Example: For λ ∈ IR we consider the family of initial value problems

x′(t) = λx(t), 0 ≤ t ≤ T
x(0) = x0.

This is a linear equation. The solution of this problem is given by

x(t) = x0e
λt.

Now we take the same differential equation, but with perturbed initial condition

xδ(0) = x0 + δ.

Then the general solution still is xδ(t) = ceλt. However, the initial condition now
implies

xδ(t) = (x0 + δ)eλt.

Therefore, if λ ≤ 0, a small change in the initial condition causes only a small change
in the solution and therefore the problem is a stable problem. However, if λ > 0,
then large changes in the solution will occur (even for small perturbations of the initial
condition), and the problem is unstable.

A stable numerical method is one for which the numerical solution of a stable
problem behaves also in this controlled fashion.

Example: We study how Euler’s method (a one-step method) behaves for the stable
problem of the previous example, i.e., in the case λ ≤ 0. Euler’s method states that

xn = xn−1 + hfn−1

= xn−1 + hλxn−1

= (1 + λh)xn−1.

Therefore,
xn = (1 + λh)nx0.

Since the exact problem has an exponentially decaying solution for λ < 0, a stable
numerical method should exhibit the same behavior. Therefore, in order to ensure
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stability of Euler’s method we need that the so-called growth factor |1 + λh| < 1. For
λ < 0 this is equivalent to

−2 < hλ < 0 ⇐⇒ h <
−2
λ

.

Thus, Euler’s method is only conditionally stable, i.e., the step size has to be chosen
sufficiently small to ensure stability.

Example: On the other hand, we can show that the implicit or backward Euler method

xn = xn−1 + hfn

is unconditionally stable for the above problem.
To see this we have

xn = xn−1 + hλxn

or
(1− λh)xn = xn−1.

Therefore,

xn =
(

1
1− λh

)n

x0.

Now, for λ < 0, the growth factor (
1

1− λh

)
< 1

for any h > 0, and we can choose the step size h arbitrarily large.

Remarks:

1. The backward Euler can be shown to be unconditionally stable for arbitrary
first-order IVPs.

2. The backward Euler method is only a first-order method, and therefore it is of
limited accuracy and of not much practical use for general problems. Moreover,
it is an implicit method, and therefore more complicated to program.

3. However, the backward Euler method is a rather popular solver for stiff problems.

More generally, we consider the initial value problem

x′(t) = f(t, x(t))
x(0) = s

and we want to understand how changes in the initial condition s affect the solution
x(t; s) at time t.

To this end we define
u(t) =

∂

∂s
x(t; s)

and consider the variational equation

∂

∂s

[
x′(t) = f(t, x(t; s))

]
⇐⇒ u′(t) = fx(t, x)xs(t; s).
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If we add the initial condition

∂

∂s
[x(0; s) = s] ⇐⇒ u(0) = 1,

then we end up with an IVP for u of the form

u′(t) = fx(t, x)u(t)
u(0) = 1. (18)

This is similar to the IVP studied in the Example above. In particular, if fx(t, x) = λ
then the solution is u(t) = eλt. Therefore,

Theorem 8.9 If fx ≤ λ then the solution of (18) satisfies

|u(t)| ≤ eλt.

Moreover,
|x(t; s)− x(t; s + δ)| ≤ |δ|eλt.

Theorem 8.10 If the local truncation errors of a k-step method at t1, t2, . . . , tn do
not exceed δ in magnitude, then the global truncation error at tn satisfies

|x(tn)− xn| ≤ δ
enλh − 1
eλh − 1

.

Proof: Denote the individual local truncation errors by

δj = |x(tj)− xj |, j = 1, . . . , n.

We now construct the global truncation error in a iterative manner. The main ingre-
dient is Theorem 8.9. Then

|x(t1)− x1| = δ1

|x(t2)− x2| ≤ |δ1|eλh + |δ2|
|x(t3)− x3| ≤

(
|δ1|eλh + |δ2|

)
eλh + |δ3|

...

|x(tn)− xn| ≤
n∑

j=1

|δj |e(n−j)λh.

Since, for all j, |δj | ≤ δ we can simplify the estimate for the global truncation error

|x(tn)− xn| ≤ δ
n∑

j=1

e(n−j)λh

= δ
[
e(n−1)λh + e(n−2)λh + . . . + e0

]
= δ

n−1∑
j=0

ejλh.

However, this is a finite geometric series, and the desired estimate follows. ♠
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Corollary 8.11 If all local truncation errors of a k-step method are O(hm+1) then the
global truncation error is O(hm).

Proof: We apply Theorem 8.10. Since t = nh we have

enλh − 1
eλh − 1

=
eλt − 1
eλh − 1

.

Moreover, the Taylor expansion of the exponential function gives us

eλh − 1 = O(λh).

Therefore, with δ = O(hm+1), Theorem 8.10 says

|x(tn)− xn| ≤ O(hm+1)
eλt − 1
O(λh)

= O(hm).

♠

8.6 Systems and Higher-Order ODEs

All of the methods studied so far can be adapted to systems of first-order ODEs.
Consider the general first-order system

x′1(t) = f1(t, x1(t), x2(t), . . . , xn(t))
x′2(t) = f2(t, x1(t), x2(t), . . . , xn(t))

...
x′n(t) = fn(t, x1(t), x2(t), . . . , xn(t)) (19)

with n unknown functions x1, . . . , xn, and initial conditions

x1(t0) = c1, x2(t0) = c2, . . . , xn(t0) = cn.

Using the vector notation

X =


x1

x2
...

xn

 , F =


f1

f2
...

fn

 , and C =


c1

c2
...

cn

 ,

the system (19) can be compactly written as

X ′(t) = F (t, X(t)) (20)

subject to the vector initial condition X(t0) = C.

Remark: If F (t, X(t) = F (X(t)), i.e., there is no explicit dependence on time, then
the system is called autonomous.
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All numerical IVP solvers can be applied immediately to such autonomous systems
as long as all operations are interpreted in a vectorized fashion. For example, the
solvers included in Maple and Matlab can all handle vectorized input.

Example: The fourth-order Runge-Kutta method for an autonomous first-order sys-
tem of the form

X ′(t) = F (X(t))

is simply

X(t + h) = X(t) +
h

6
(F1 + 2F2 + 2F3 + F4) ,

where

F1 = F (X(t))

F2 = F

(
X(t) +

h

2
F1

)
F3 = F

(
X(t) +

h

2
F2

)
F4 = F (X(t) + hF3) .

Example: The predator-prey model gives rise to an autonomous system of nonlinear
first-order equations

x′(t) = −dx(t) + ax(t)y(t)
y′(t) = by(t)− cx(t)y(t)

known as a Lotka-Volterra system. Here the positive constants d and b can be inter-
preted as the death and birth rates of the predator (x) and prey (y), respectively. The
other two positive constants, a and c, describe the interaction between the two species.
We can add initial conditions x(0) = α, y(0) = β. For general parameters a, b, c, d,
there is no closed-form solution to this problem. The only way to solve this problem is
using a numerical solver.

In vector notation the predator-prey system is written as

X ′(t) = F (X(t)),

with

X =

[
x
y

]
, F (X) =

[
−dx + axy
by − cxy

]
.

We solve two Lotka-Volterra systems numerically with a fourth-order Runge-Kutta
method in the Maple worksheet 578 ODESystems.mws.

Non-Autonomous Systems

Non-autonomous systems can be represented as autonomous systems in a straight-
forward way. We illustrate the general principle with an example.

Example: Consider the following non-autonomous system of two first-order ODEs:

x′1(t) = x1(t)− x2(t) + 2t
x′2(t) = x1(t) + x2(t) + t3. (21)
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In order to obtain an autonomous system we introduce the auxiliary function x0(t) = t
leading to the extra ODE x′0(t) = 1. Then the system (21) becomes

x′0(t) = 1
x′1(t) = x1(t)− x2(t) + 2x0(t)
x′2(t) = x1(t) + x2(t) + [x0(t)]3, (22)

or in vector notation
X ′(t) = F (X(t))

with

X =

 x0

x1

x2

 , F (X) =

 1
x1 − x2 + 2x0

x1 + x2 + x3
0

 .

Higher-Order Initial Value Problems

Once we have code to solve vectorized first-order initial value problems, it is again
straightforward to apply this code to the solution of higher-order initial value problems.
All we need to do is rewrite the n-th order initial value problem as a system of n first-
order equations.

Example: Consider the second-order IVP

y′′(t)− 2y′(t) + 2y(t) = e2t sin t, 0 ≤ t ≤ 1,

with initial conditions
y(0) = α, y′(0) = β.

If we let x1 = y and x2 = y′, then we obtain the two first-order equations

x′1(t) = x2(t)
x′2(t) = 2x2(t)− 2x1(t) + e2t sin t.

These equations are non-autonomous. Therefore we can – as before – introduce x0(t) =
t, and end up with the three autonomous equations

x′0(t) = 1
x′1(t) = x2(t)
x′2(t) = 2x2(t)− 2x1(t) + e2x0(t) sinx0(t).

The corresponding initial conditions are

x0(0) = 0, x1(0) = α, x2(0) = β.

Systems of Higher-Order Initial Value Problems

By combining the two ideas used above, we can also use our vectorized IVP solvers
to solve systems of n-th order initial value problems.

Example: Consider for t ≥ 1 the coupled non-autonomous system of two second-order
ODEs

y′′(t)− 2y′(t) + z(t) = tet − t
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t2z′′(t)− 2ty′(t) + 2z(t) = t3 ln t

with initial conditions

y(1) = α, y′(1) = β, z(1) = γ, z′(1) = δ.

Introducing the new variables x1 = y, x2 = y′, x3 = z, and x4 = z′ we get

x′1(t) = x2(t)
x′2(t) = tet − t + 2x2(t)− x3(t)
x′3(t) = x4(t)

x′4(t) = t ln t +
2
t
x2(t)−

2
t2

x3(t)

with initial conditions

x1(1) = α, x2(1) = β, x3(1) = γ, x4(1) = δ.

Of course, the system can again be made autonomous by introducing x0(t) = t.

8.7 Stiff ODEs

Some of this material is covered in Section 8.12 of the textbook.
Stiffness in differential equations can be interpreted in various ways. As mentioned

earlier, physically, a problem
X ′(t) = F (t, X(t))

is considered stiff if its solution X exhibits features present on largely varying time
scales. A more mathematical interpretation is that the eigenvalues of the Jacobian
matrix of F differ greatly in magnitude. Another way to identify a stiff ODE is if
stability considerations force the step size h to be much smaller than it would have to
be to satisfy the desired accuracy.

Remark: Stiff ODEs arise in various applications; e.g., when modeling chemical reac-
tions, or electrical circuits, such as the van der Pol equation in relaxation oscillation
(see the Maple worksheet 578 StiffODEs.mws).

We begin with an example.

Example: Consider for λ > 0 the second-order initial value problem

x′′(t) + (λ + 1)x′(t) + λx(t) = 0, 0 < t < 1,

with initial conditions x(0) = 1 and x′(0) = 0. The analytical solution is given by

x(t) =
λ

λ− 1
e−t − 1

λ− 1
e−λt.

It is easy to verify that the problem itself is a stable problem (as long as λ > 0).
However, we see that for very large values of λ the solution contains a relatively slowly
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decaying part, as well as the rapidly decaying transient component e−λt. Therefore, for
large λ this problem is stiff.

In order to apply one of our standard initial value problem solvers we rewrite the
second-order equation as a system of two first-order equations

x′1(t) = x2(t)
x′2(t) = −λx1(t)− (λ + 1)x2(t)

with initial conditions x1(0) = 1 and x2(0) = 0.
We illustrate the use of the standard fourth-fifth order Runge-Kutta-Fehlberg method

for the problem in the Maple worksheet 578 StiffODEs.mws.

Remark: We can observe that, for increased values of the parameter λ, the RKF45
method requires more and more function evaluations, and thus becomes more and
more inefficient. Notice that the problem itself, on the other hand, is more and more
dominated by the e−t term, and thus actually easier to solve.

The best way to deal with a stiff problem is to use a numerical method that is
unconditionally stable. In fact, unconditional stability for the test problem

x′(t) = λx(t), 0 ≤ t ≤ T
x(0) = x0.

is all that is needed for an effective stiff solver. This property is usually called A-
stability.

The region of absolute stability of a k-step method is the region of the complex
plane for which the roots of the polynomial φ = p− λhq lie inside the unit disk. Here
p and q are defined as earlier, i.e.,

p(z) =
k∑

i=0

aiz
i

q(z) =
k∑

i=0

biz
i

and ai and bi are the coefficients of the k-step method

akxn + ak−1xn−1 + . . . + a0xn−k = h [bkfn + bk−1fn−1 + . . . + b0fn−k]

with fj = λxj , j = n− k, . . . , n, given by the test problem.

Definition 8.12 A k-step method is A-stable if its region of absolute stability includes
the entire negative real axis.

We already have seen one A-stable method earlier: the backward (or implicit) Euler
method

xn = xn−1 + hf(tn, xn).

In general, only implicit multistep methods are candidates for stiff solvers. However,
the following theorem (due to Dahlquist) reveals the limited accuracy that can be
achieved by such A-stable k-step methods.
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Theorem 8.13 If a linear k-step method is A-stable then it must be an implicit method.
Moreover, the order of the method is at most 2.

Theorem 8.13 implies that the only other k-step method we need to consider is the
implicit trapezoid method (or second-order Adams-Moulton method) introduced at the
beginning of Section 8.4:

xn = xn−1 +
h

2
(fn + fn−1) . (23)

We have not verified that this method is of second order (but this can easily be done
using Theorem 8.1). To see that the implicit trapezoid method is A-stable we consider

xn = xn−1 +
h

2
λ (xn + xn−1)

or
(1− λ

h

2
)xn = (1 + λ

h

2
)xn−1.

Therefore,

xn =

(
1 + λh

2

1− λh
2

)n

x0,

and, for λ < 0, the growth factor

1 + λh
2

1− λh
2

=
2 + λh

2− λh
< 1

for any h > 0.

Remark: As mentioned earlier, in order to implement the implicit trapezoid method
(23) it needs to be coupled with Newton iteration.

Of course, one can also try to develop methods that do not completely satisfy the
condition of A-stability, and hope to achieve higher order by doing this. The state-of-
the-art stiff solvers today seem to be one of the following two methods:

1. The so-called Gear methods achieve this by monitoring the largest and small-
est eigenvalues of the Jacobian matrix, and thus assessing and dealing with the
stiffness adaptively. Gear methods employ variable order as well as variable step
size. In Maple some of these methods are available through the method=lsode
option (invoking the Livermore ODEPACK by Hindmarsh) to dsolve,numeric.
In Matlab, Gear methods are implemented in the stiff solver ode15s.

2. Another class of stiff solvers are implicit Runge-Kutta methods known as Rosen-
brock methods. In Maple a third-fourth order Rosenbrock method is the default
implementation in dsolve,numeric with the stiff=true option. In Matlab a
second-third order Rosenbrock method is implemented in the routine ode23s.

We illustrate the use of stiff solvers in the Maple worksheet 578 StiffODEs.mws.
References for this subject are the books ”Numerical Initial Value Problems in

Ordinary Differential Equations” by Bill Gear (1971), or ”Solving Ordinary Differential
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Equations II, Stiff and Differential-Algebraic Problems” by Hairer and Wanner (1991),
or the two books ”Numerical Solution of Ordinary Differential Equations” by Larry
Shampine (1994) and ”Computer Solution of Ordinary Differential Equations: the
Initial Value Problem” by Shampine and Gordon (1975).

8.8 Boundary Value Problems: Theory

We now consider second-order boundary value problems of the general form

x′′(t) = f(t, x(t), x′(t))
a0x(a) + a1x

′(a) = α, b0x(b) + b1x
′(b) = β. (24)

Remarks:

1. Note that this kind of problem can no longer be converted to a system of two
first order initial value problems as we did in Section 8.6.

2. Boundary value problems of this kind arise in many applications, e.g., in me-
chanics (bending of an elastic beam), fluids (flow through pipes, laminar flow in
a channel, flow through porous media), or electrostatics.

The mathematical theory for boundary value problems is more complicated (and
less well known) than for initial value problems. Therefore, we present a version of an
existence and uniqueness theorem for the general problem (24).

Theorem 8.14 Suppose f in (24) is continuous on the domain D = {(t, y, z) : a ≤
t ≤ b,−∞ < y < ∞,−∞ < z < ∞} and that the partial derivatives fy and fz are also
continuous on D. If

1. fy(t, y, z) > 0 for all (t, y, z) ∈ D,

2. there exists a constant M such that

|fz(t, y, z)| ≤ M

for all (t, y, z) ∈ D, and

3. a0a1 ≤ 0, b0b1 ≤ 0, and |a0|+ |b0| > 0,

then the boundary value problem (24) has a unique solution.

Proof: A proof of this theorem can be found, e.g., in the book ”Numerical Methods
for Two-Point Boundary Value Problems” by H. B. Keller (1968). ♠

Example: Consider the BVP

x′′(t) + e−tx(t) + sinx′(t) = 0, 1 ≤ t ≤ 2,
x(1) = x(2) = 0.
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To apply Theorem 8.14 we identify f(t, y, z) = −e−ty − sin z. Then

fy(t, y, z) = te−ty

which is positive for all t > 0, y, z ∈ IR. So, in particular it is positive for 1 ≤ t ≤ 2.
Moreover, we identify fz(t, y, z) = − cos z, so that

|fz(t, y, z)| = | − cos z| ≤ 1 = M.

Obviously, all continuity requirements are satisfied. Finally, we have a0 = b0 = 1 and
a1 = b1 = 0, so that the third condition is also satisfied. Therefore, the given problem
has a unique solution.

If the boundary value problem (24) takes the special form

x′′(t) = u(t) + v(t)x(t) + w(t)x′(t)
a0x(a) + a1x

′(a) = α, b0x(b) + b1x
′(b) = β, (25)

then it is called linear. In this case Theorem 8.14 simplifies considerably.

Theorem 8.15 If u, v, w in (25) are continuous and v(t) > 0 on [a, b], then the linear
boundary value problem (25) has a unique solution.

Remark: A few more results are compiled in Section 8.7 of the textbook. A classical
reference for the numerical solution of two-point BVPs is the book by Keller mentioned
above. A modern reference is ”Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations” by Ascher, Mattheij, and Russell (1995).

8.9 Boundary Value Problems: Shooting Methods

One of the most popular, and simplest strategies to apply for the solution of two-point
boundary value problems is to convert them to sequences of initial value problems, and
then use the techniques developed for those methods.

We now restrict our discussion to BVPs of the form

x′′(t) = f(t, x(t), x′(t))
x(a) = α, x(b) = β. (26)

With some modifications the methods discussed below can also be applied to the more
general problem (24).

The fundamental idea on which the so-called shooting methods are based is to for-
mulate an initial value problem associated with (26). Namely,

x′′(t) = f(t, x(t), x′(t))
x(a) = α, x′(a) = z. (27)

After rewriting this second-order initial value problem as two first-order problems we
can solve this problem with our earlier methods (e.g., Runge-Kutta or k-step methods),
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and thus obtain a solution xz. In order to see how well this solution matches the solution
x of the two-point boundary value problem (26) we compute the difference

φ(z) := xz(b)− β

at the right end of the domain. If the initial slope z was chosen correctly, then φ(z) = 0
and we have solved the problem. If φ(z) 6= 0, we can use a solver for nonlinear equations
(such as secant or Newton iteration discussed last semester in Chapter 3) to find a better
slope.

Remarks:

1. Changing the ”aim” of the initial value problem by adjusting the initial slope to
”hit” the target value x(b) = β is what gave the name to this numerical method.

2. Even though the shooting method is fairly simple to implement, making use
of standard code for initial value problems, and a nonlinear equation solver, it
inherits the stability issues encountered earlier for IVP solvers. For boundary
value problems the situation is even worse, since even for a stable boundary value
problem, the associated initial value problem can be unstable, and thus hopeless
to solve.

We illustrate the last remark with

Example: For λ < 0 the (decoupled) boundary value problem

x′1(t) = λx1(t)
x′2(t) = −λx2(t)

x1(0) = 1, x2(a) = 1

for t ∈ [0, a] is stable since the solution x1(t) = eλt, x2(t) = eaλe−λt remains bounded
for t →∞ even for large values of a. On the other hand, the initial value problem

x′1(t) = λx1(t)
x′2(t) = −λx2(t)

x1(0) = α, x2(0) = β

is unstable for any λ 6= 0 since always one of the components of the solution x1(t) =
αeλt, x2(t) = βe−λt will grow exponentially.

Remark: A convergence analysis for the shooting method is very difficult since two
types of errors are now involved. On the one hand there is the error due to the IVP
solver, and on the other hand there is the error due to the discrepancy of the solution
at the right boundary.

Using the Secant Method

Recall that the secant method for solving the equation φ(z) = 0 is

zn+1 = zn − φ(zn)
zn − zn−1

φ(zn)− φ(zn−1)
, n ≥ 1.
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This method requires two starting values z0 and z1, i.e., two initial guesses need to be
provided. In order to find the updated slope zn+1 (i.e., when using the secant method)
we need the values φ(zn−1) and φ(zn). These values are rather expensive to obtain
since

φ(zn) = xzn(b)− β,

and xzn(b) is obtained by solving an initial value problem up to t = b. Thus, each
improvement of the slope z requires the solution of two initial value problems.

Algorithm

1. Provide two initial slopes z0 and z1, and a tolerance ε.

2. Solve the two initial value problems (27) with initial conditions x′(a) = z0 and
x′(a) = z1. This yields solutions xz0 and xz1 . Let n = 1. Then

φ(zn−1) = xzn−1(b)− β and φ(zn) = xzn(b)− β.

3. Apply the secant method, i.e., compute

zn+1 = zn − φ(zn)
zn − zn−1

xzn(b)− xzn−1(b)
.

4. Check if |φ(zn+1)| < ε. If yes, stop. Otherwise, increment n and repeat from 3.

Remarks:

1. Note that the comparison in Step 4 involves the solution of another initial value
problem.

2. Once a number of slopes zj and values φ(zj), j = 1, . . . , n, have been computed
one can also use polynomial interpolation to obtain an updated value for the
slope. To this end one constructs a polynomial p that interpolates p(φ(zj)) = zj ,
j = 1, . . . , n. The next slope is obtained by evaluating p(0).

Using Newton’s Method

Newton’s method for solving the nonlinear equation φ(z) = 0 is

zn+1 = zn −
φ(zn)
φ′(zn)

, n ≥ 0.

Now the problem is to obtain the value φ′(zn). Note that this is anything but obvious,
since we do not even have an expression for the function φ – only for the value φ(zn).

In order to obtain an expression for φ′(zn) we consider the initial value problem
(27) in the form

x′′(t, z) = f(t, x(t, z), x′(t, z))
x(a, z) = α, x′(a, z) = z. (28)
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We now look at the change of the solution x with respect to the initial slope z, i.e.,

∂x′′(t, z)
∂z

=
∂

∂z
f(t, x(t, z), x′(t, z))

=
∂f

∂x

∂x

∂z
+

∂f

∂x′
∂x′

∂z
, (29)

where we have omitted the arguments of f , x, and x′ in the second line. The initial
conditions become

∂x

∂z
(a, z) = 0, and

∂x′

∂z
(a, z) = 1.

If we introduce the notation v(t) = ∂x
∂z (t, z), then (29) becomes

v′′(t) = ∂f
∂x (t, x(t), x′(t))v(t) + ∂f

∂x′ (t, x(t), x′(t))v′(t)
v(a) = 0, v′(a) = 1. (30)

Equation (30) is called the first variational equation. We can recognize this as another
initial value problem for the function v.

Now,
φ(z) = x(b, z)− β,

so that
φ′(z) =

∂x

∂z
(b, z) = v(b).

Therefore, we can obtain the value φ′(zn) required in Newton’s method by solving the
initial value problem (30) up to t = b.

Algorithm

1. Provide an initial guess z0 and a tolerance ε.

2. Solve the initial value problems (27) and (30) with initial conditions

x(a) = α, x′(a) = z0, and v(a) = 0, v′(a) = 1,

respectively. Let n = 0. This provides us with φ(zn) = xzn(b) − β and φ′(zn) =
v(b).

3. Apply Newton’s method, i.e., compute

zn+1 = zn −
φ(zn)
φ′(zn)

.

4. Check if |φ(zn+1)| < ε. If yes, stop. Otherwise, increment n and repeat from 3.

Remark:

1. Again, computing φ(zn+1) in Step 4 requires solution of an IVP (27).

2. The initial value problems (27) and (30) can be solved simultaneously using a
vectorized IVP solver.
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Linear Boundary Value Problems

If the boundary value problem (26) is linear, then the function φ will also be linear,
and therefore a single step of the secant method will provide the ”correct” initial slope.

We now illustrate how to implement this special case. Consider the linear BVP

x′′(t) = u(t) + v(t)x(t) + w(t)x′(t)
x(a) = α, x(b) = β.

We need to provide two initial guesses for the associated IVPs (27), i.e., x′z0
(a) = z0

and x′z1
(a) = z1. Now we form a convex combination of the two solutions xz0 and xz1 :

x(t) = λxz0(t) + (1− λ)xz1(t).

We will determine λ so that x satisfies the second boundary condition x(b) = β. There-
fore,

β = x(b) = λxz0(b) + (1− λ)xz1(b)

or
λ =

β − xz1(b)
xz0(b)− xz1(b)

.

In order to formulate the algorithm for this case we convert the two initial value
problems (27) to an autonomous system using the notation x0(t) = t, x1(t) = xz0(t),
and x2(t) = xz1(t).

Algorithm

1. Let z0 = 0, z1 = 1, and solve

x′0(t) = 1
x′1(t) = x3(t)
x′2(t) = x4(t)
x′3(t) = u(x0(t)) + v(x0(t))x1(x0(t)) + w(x0(t))x3(t)
x′4(t) = u(x0(t)) + v(x0(t))x2(x0(t)) + w(x0(t))x4(t)

with

x0(a) = a
x1(a) = α
x2(a) = α
x3(a) = 0
x4(a) = 1.

2. Compute

λ =
β − x2(b)

x1(b)− x2(b)
.

3. To evaluate the solution use

x(t) = λx1(t) + (1− λ)x2(t),

where x1 and x2 were obtained in Step 1.
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Multiple Shooting

It is also possible to subdivide the interval [a, b], and then apply the shooting method
from both ends. This means that additional (internal boundary) conditions need to
be formulated that ensure that the solutions match up at the subdivision points. This
leads to a system of nonlinear equations which can then be solved with a multivariate
Newton or Quasi-Newton method. A few more details are provided in the textbook
on page 585–587. A more complete reference is the book ”Introduction to Numerical
Analysis” by Stoer and Bulirsch (1980).

8.10 Boundary Value Problems: Finite Differences

Again we consider the boundary value problem

x′′(t) = f(t, x(t), x′(t))
x(a) = α, x(b) = β. (31)

Now we create a uniform partition of the interval [a, b] into n + 1 subintervals [ti, ti+1],
i = 0, 1, . . . , n, where

ti = a + ih, and h =
b− a

n + 1
.

The basic idea is to discretize the differential equation (31) on the given partition. To
this end we introduce the following difference approximations to the first and second
derivatives involved in (31):

x′(t) =
x(t + h)− x(t− h)

2h
− h2

6
x(3)(ξi)

x′′(t) =
x(t + h)− 2x(t) + x(t− h)

h2
− h2

12
x(4)(τi). (32)

Recall that we introduced these kinds of derivative approximations in Section 7.1. If
we use the notation xi = x(ti) along with the finite difference approximations (32),
then the boundary value problem (31) becomes

x0 = α
xi+1 − 2xi + xi−1

h2
= f

(
ti, xi,

xi+1 − xi−1

2h

)
, i = 1, . . . , n,

xn+1 = β. (33)

We now first discuss the case in which f is a linear function of x and x′, i.e.,

f(t, x(t), x′(t)) = u(t) + v(t)x(t) + w(t)x′(t).

Then (33) becomes

x0 = α
xi+1 − 2xi + xi−1

h2
= ui + vixi + wi

xi+1 − xi−1

2h
, i = 1, . . . , n,

xn+1 = β, (34)
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where we have used the notation ui = u(ti), vi = v(ti), and wi = w(ti). This is a
system of n linear equations for the n unknowns xi, i = 1, . . . , n. In fact, the system is
tridiagonal. This can be seen if we rewrite (34) as

x0 = α(
−1− wi

2
h

)
xi−1 +

(
2 + h2vi

)
xi +

(
−1 +

wi

2
h

)
xi+1 = −h2ui, i = 1, . . . , n,

xn+1 = β,

or in matrix form

2 + h2v1 −1 + w1
2 h 0 . . . 0

−1− w2
2 h 2 + h2v2 −1 + w2

2 h
...

...
. . . . . . . . .

...

... −1− wn−1

2 h 2 + h2vn−1 −1 + wn−1

2 h
0 . . . 0 −1− wn

2 h 2 + h2vn


×

×


x1

x2
...

xn−1

xn

 =


−h2u1 − α

(
−1− w1

2 h
)

−h2u2
...

−h2un−1

−h2un − β
(
−1 + wn

2 h
)

 .

Remark: As with our earlier solvers for initial value problems (which were also used
for the shooting method) the numerical solution is obtained only as a set of discrete
values {xi : i = 0, 1, . . . , n}. However, all values are obtained simultaneously once the
linear system is solved.

The tridiagonal system above can be solved most efficiently if we can ensure that
it is diagonally dominant, since then a tridiagonal Gauss solver without pivoting can
be applied. Diagonal dominance for the above system means that we need to ensure

|2 + h2vi| > |1 +
h

2
wi|+ |1− h

2
wi|.

This inequality will be satisfied if we assume vi > 0, and that the discretization is so
fine that |h2wi| < 1. Under these assumptions we get

2 + h2vi > 1 +
h

2
wi + 1− h

2
wi = 2 ⇐⇒ h2vi > 0

which is obviously true.

Remarks:

1. The assumption vi > 0 is no real restriction since this is also a condition for the
Existence and Uniqueness Theorem 8.15.

2. The assumption |h2wi| < 1 on the mesh size h is a little more difficult to verify.
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Convergence of the Linear Finite Difference Method

Theorem 8.16 The maximum pointwise error of the linear finite difference method is
given by

max
i=0,1,...,n

|x(ti)− xi| ≤ Ch2, as h → 0,

where x(ti) is the exact solution at ti, and xi is the corresponding approximate solution
obtained by the finite difference method.

Proof: For the exact solution we have

x(ti + h)− 2x(ti) + x(ti − h)
h2

−h2

12
x(4)(τi) = ui+vix(ti)+wi

[
x(ti + h)− x(ti − h)

2h
− h2

6
x(3)(ξi)

]
,

whereas for the approximate solution we have the relation (34). Subtracting (34) from
the above equation yields

ei+1 − 2ei + ei−1

h2
= viei + wi

ei+1 − ei

2h
+ h2gi, (35)

where
ei = x(ti)− xi

and
gi =

1
12

x(4)(τi)−
1
6
x(3)(ξi).

Since (35) is analogous to (34) it can be rewritten as(
−1− wi

2
h

)
ei−1 +

(
2 + h2vi

)
ei +

(
−1 +

wi

2
h

)
ei+1 = −h4gi.

Now we let λ = ‖e‖∞, and pick i such that

|ei| = ‖e‖∞ = λ.

Then we get

|2 + h2vi| |ei|︸︷︷︸
=λ

≤ h4|gi|+ | − 1 +
wi

2
h| |ei+1|︸ ︷︷ ︸

≤λ

+| − 1− wi

2
h| |ei−1|︸ ︷︷ ︸

≤λ

.

Using the definition of λ, and bounding |gi| by its maximum we have

λ

(
|2 + h2vi| − | − 1 +

wi

2
h| − | − 1− wi

2
h|
)
≤ h4‖g‖∞.

Using the same assumptions and arguments as in the diagonal dominance discussion
above, the expression in parentheses is equal to h2vi, and therefore we have

λvi ≤ h2‖g‖∞,

or, since λ = ‖e‖∞,
max

i=0,1,...,n+1
|x(ti)− xi| ≤ Ch2,
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where
C =

‖g‖∞
infa≤t≤b v(t)

.

♠
Remark: The error bound in Theorem 8.16 holds only for C4 functions x, whereas for
the solution to exist only C2 continuity is required.

Nonlinear Finite Differences

We now return to the original discretization

x0 = α
xi+1 − 2xi + xi−1

h2
= f

(
ti, xi,

xi+1 − xi−1

2h

)
, i = 1, . . . , n,

xn+1 = β

of the boundary value problem (31). However, now we allow f to be a nonlinear
function. This leads to the following system of nonlinear equations:

2x1 − x2 + h2f

(
t1, x1,

x2 − α

2h

)
− α = 0

−xi−1 + 2xi − xi+1 + h2f

(
ti, xi,

xi+1 − xi−1

2h

)
= 0, i = 2, . . . , n− 1,

−xn−1 + 2xn + h2f

(
tn, xn,

β − xn−1

2h

)
− β = 0. (36)

One can show that this system has a unique solution provided

h <
2
M

,

where M is the same as in the Existence and Uniqueness Theorem 8.14.
To solve the system we need to apply Newton iteration for nonlinear systems. This

is done by solving the linear system

J(x(k))u = −F (x(k))

for u, and then updating
x(k+1) = x(k) + u,

where x(k) is the k-th iterate of the vector of grid values x0, x1, . . . , xn+1, and J is the
tridiagonal Jacobian matrix defined by

J(x)ij =


−1 + h

2fx′

(
ti, xi,

xi+1−xi−1

2h

)
, i = j − 1, j = 2, . . . , n,

2 + h2fx

(
ti, xi,

xi+1−xi−1

2h

)
, i = j, j = 1, . . . , n,

−1− h
2fx′

(
ti, xi,

xi+1−xi−1

2h

)
, i = j + 1, j = 1, . . . , n− 1.

F (x) is given by the left-hand side of the equations in (36).

Remarks:

1. As always, Newton iteration requires a ”good” initial guess x1, . . . , xn.

2. One can show that the nonlinear finite difference method also has O(h2) conver-
gence order.
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8.11 Boundary Value Problems: Collocation

We now present a different type of numerical method that will yield the approximate
solution of a two-point boundary value problem in the form of a function, as opposed
to the set of discrete points resulting from the shooting or finite difference methods.

Assume we are given a general linear boundary value problem of the form

Lx(t) = f(t), t ∈ [a, b],
x(a) = α, x(b) = β. (37)

To keep the discussion as general as possible, we now let

V = span{v1, . . . , vn}

denote an approximation space we wish to represent the approximate solution in. We
can think of V as being, e.g., the space of polynomials or splines of a certain degree,
or some radial basis function space. We will express the approximate solution in the
form

x(t) =
n∑

j=1

cjvj(t), t ∈ [a, b],

with unknown coefficients c1, . . . , cn. Since L is assumed to be linear we have

Lx =
n∑

j=1

cjLvj ,

and (37) becomes

n∑
j=1

cjLvj(t) = f(t), t ∈ [a, b],

n∑
j=1

cjvj(a) = α,
n∑

j=1

cjvj(b) = β. (38)

In order to determine the n unknown coefficients c1, . . . , cn in this formulation we
impose n collocation conditions to obtain an n × n system of linear equations for the
cj .

The last two equations in (38) ensure that the boundary conditions are satisfied,
and give us the first two collocation equations. To obtain the other n − 2 equations
we choose n − 2 collocation points τ2, . . . , τn−1, at which we enforce the differential
equation. As in the previous numerical methods, this results in a discretization of the
differential equation.

If we let τ1 = a and τn = b, then (38) becomes

n∑
j=1

cjvj(τ1) = α,

n∑
j=1

cjLvj(τi) = f(τi), i = 2, . . . , n− 1,
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n∑
j=1

cjvj(τn) = β.

In matrix form we have the linear system
v1(τ1) v2(τ1) . . . vn(τ1)

Lv1(τ2) Lv2(τ2) . . . Lvn(τ2)
...

...
Lv1(τn−1) Lv2(τn−1) . . . Lvn(τn−1)

v1(τn) v2(τn) . . . vn(τn)




c1

c2
...

cn

 =


α

f(τ2)
...

f(τn−1)
β

 . (39)

If the space V and the collocation points τi, i = 1, . . . , n, are chosen such that the
collocation matrix in (39) is nonsingular then we can represent an approximate solution
of (37) from the space V uniquely as

x(t) =
n∑

j=1

cjvj(t), t ∈ [a, b].

Remark: Note that this provides the solution in the form of a function that can be
evaluated anywhere in [a, b]. No additional interpolation is required as was the case
with the earlier methods.

Radial Basis Functions for Collocation

The following discussion will be valid for any sufficiently smooth radial basic func-
tion. However, to be specific, we will choose the multiquadric basic function

φ(r) =
√

r2 + σ2, σ > 0,

with r = | · −τ |. If we center a multiquadric at each one of the collocation points τj ,
j = 1, . . . , n, then the approximation space becomes

V = span{φ(| · −τj |), j = 1, . . . , n}.

Now the system (39) becomes
φ(|τ1 − τ1|) φ(|τ1 − τ2|) . . . φ(|τ1 − τn|)

Lφ(|τ2 − τ1|) Lφ(|τ2 − τ2|) . . . Lφ(|τ2 − τn|)
...

...
Lφ(|τn−1 − τ1|) Lφ(|τn−1 − τ2|) . . . Lφ(|τn−1 − τn|)

φ(|τn − τ1|) φ(|τn − τ2|) . . . φ(|τn − τn|)




c1

c2
...

cn

 =


α

f(τ2)
...

f(τn−1)
β

 .

(40)
To get a better feel for this system we consider an example.

Example: Let the differential operator L be given by

Lx(t) = x′′(t) + λx′(t) + µx(t),

and φ denote the multiquadric radial basic function. Then

Lφ(|t− τ |) = φ′′(|t− τ |) + λφ′(|t− τ |) + µφ(|t− τ |)
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with

φ′(|t− τ |) =
d

dt
φ(|t− τ |)

=
d

dt

√
|t− τ |2 + σ2

=
t− τ√

|t− τ |2 + σ2

and

φ′′(|t− τ |) =
d

dt
φ′(|t− τ |)

=
d

dt

t− τ√
|t− τ |2 + σ2

=

√
|t− τ |2 + σ2 − (t−τ)2√

|t−τ |2+σ2

|t− τ |2 + σ2

=
σ2

(|t− τ |2 + σ2)3/2
.

Therefore, we get

Lφ(|t− τ |) =
σ2

(|t− τ |2 + σ2)3/2
+ λ

t− τ√
|t− τ |2 + σ2

+ µ
√
|t− τ |2 + σ2,

and the collocation matrix has entries of this type in rows 2 through n− 1.

Remarks:

1. This method was suggested by Kansa (1990) and is one of the most popular
approaches for solving boundary value problems with radial basis functions. The
popularity of this method is due to the fact that it is simple to implement and
it generalizes in a straightforward way to boundary value problems for elliptic
partial differential equations in higher space dimensions.

2. It was not known for a long time whether the matrix for this kind of radial
basis function collocation was nonsingular. However, recently Hon and Schaback
(2001) showed that there exist configurations of collcoation points (in the elliptic
PDE setting in IR2) for which the matrix will be singular for many of the most
popular radial basis functions.

It is obvious that the matrix in (40) is not symmetric. This means that many effi-
cient linear algebra subroutines cannot be employed in its solution. Another approach
to radial basis function collocation which yields a symmetric matrix for operators L
with even order derivatives was suggested by Fasshauer (1997).

We now use a different approximation space, namely

V = span{φ(| · −τ1|), φ(| · −τn|)} ∪ span{L(2)φ(| · −τj |), j = 2, . . . , n− 1}.

Here the operator L(2) is identical to L, but acts on φ as a function of the second
variable τ .

38



Since the approximate solution is now of the form

x(t) = c1φ(|t− τ1|) +
n−1∑
j=2

cjL
(2)φ(|t− τj |) + cnφ(|t− τn|) (41)

we need to look at the collocation system one more time.
We start with (38), which – based on (41) – now becomes

c1φ(|a− τ1|) +
n−1∑
j=2

cjL
(2)φ(|a− τj |) + cnφ(|a− τn|) = α,

c1Lφ(|t− τ1|) +
n−1∑
j=2

cjLL(2)φ(|t− τj |) + cnLφ(|t− τn|) = f(t), t ∈ [a, b],

c1φ(|b− τ1|) +
n−1∑
j=2

cjL
(2)φ(|b− τj |) + cnφ(|b− τn|) = β.

If we enforce the collocation conditions at the interior points τ2, . . . , τn−1, then we
get the system of linear equations

φ(|a− τ1|) L(2)φ(|a− τ2|) . . . L(2)φ(|a− τn−1|) φ(|a− τn|)
Lφ(|τ2 − τ1|) LL(2)φ(|τ2 − τ2|) . . . LL(2)φ(|τ2 − τn−1|) Lφ(|τ2 − τn|)

...
...

Lφ(|τn−1 − τ1|) LL(2)φ(|τn−1 − τ2|) . . . LL(2)φ(|τn−1 − τn−1|) Lφ(|τn−1 − τn|)
φ(|b− τ1|) L(2)φ(|b− τ2|) . . . L(2)φ(|b− τn−1|) φ(|b− τn|)

×

×


c1

c2
...

cn−1

cn

 =


α

f(τ2)
...

f(τn−1)
β

 . (42)

Remarks:

1. If L = L(2), i.e., only even-order derivatives are used (see the example below),
then the matrix in (42) is symmetric as claimed earlier.

2. Depending on whether globally or locally supported radial basis functions are
being used, we can now employ efficient linear solvers, such as Cholesky factor-
ization or the conjugate gradient method, to solve this system.

3. The most important advantage of the symmetric collocation method over the
non-symmetric one proposed by Kansa is that one can prove that the collocation
matrix in the symmetric case is nonsingular for all of the standard radial basis
functions and any choice of distinct collocation points.

4. Another benefit of using the symmetric form is that it is possible to give conver-
gence order estimates for this case.
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5. Since terms of the form LL(2)φ are used, the symmetric collocation method has
the disadvantage that it requires higher smoothness. Moreover, computing and
coding these terms is more complicated than for the non-symmetric collocation
method.

Example: We again consider the differential operator L given by

Lx(t) = x′′(t) + λx′(t) + µx(t),

and multiquadrics. Then

L(2)φ(|t− τ |) =
d2

dτ2
φ(|t− τ |) + λ

d

dτ
φ(|t− τ |) + µφ(|t− τ |)

=
σ2

(|t− τ |2 + σ2)3/2
− λ

t− τ√
|t− τ |2 + σ2

+ µ
√
|t− τ |2 + σ2,

which is almost the same as Lφ(|t− τ |) above except for the sign difference in the first
derivative term. The higher-order terms are rather complicated. In the special case
λ = µ = 0 we get

LL(2)φ(|t− τ |) =
15(t− τ)2σ2

(|t− τ |2 + σ2)7/2
− 3σ2

(|t− τ |2 + σ2)5/2
+

σ2

(|t− τ |2 + σ2)3/2
.

Remark: Collocation with cubic splines is described in the textbook on pages 595–596.
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