Math 578 - Homework Assignment 4, due March 8, 2007

1. By considering only the autonomous scalar equation $y^{\prime}=f(y)$, prove that the explicit RungeKutta method with the tableaux

0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
1	0	0	1	0
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

is of order four.
2. Write the theta method

$$
\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+h\left[\theta \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)+(1-\theta) \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}\right)\right]
$$

as a Runge-Kutta method.
3. Determine all values of θ such that the theta method is A-stable.
4. Is there any reason to distrust the following numerical scheme for solving the IVP $\boldsymbol{y}^{\prime}=f(t, \boldsymbol{y})$

$$
\boldsymbol{y}_{n+3}-3 \boldsymbol{y}_{n+2}+2 \boldsymbol{y}_{n+1}=h\left[\boldsymbol{f}_{n+3}+2 \boldsymbol{f}_{n+2}+\boldsymbol{f}_{n+1}-2 \boldsymbol{f}_{n}\right] ?
$$

Explain.

