Math 578 - Homework Assignment 1, due Jan. 30, 2007

1. Show that the function $f(t, x)=x^{2} e^{-t^{2}} \sin t$ is Lipschitz continuous for $x \in[0,2]$.
2. Find the Lagrange and Newton forms of the interpolating polynomial for the data

$$
\begin{array}{c||c|c|c}
x & -2 & 0 & 1 \\
\hline f(x) & 0 & 1 & -1
\end{array} .
$$

Write both polynomials in the form $a+b x+c x^{2}$ to verify that they are identical as functions.
3. The polynomial p of degree $\leq n$ that interpolates a given functions f at $n+1$ prescribed nodes is uniquely defined. Hence, there is a mapping $f \mapsto p$. Denote this mapping by L and show that

$$
L f=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i} .
$$

Show that L is linear, i.e., $L(a f+b g)=a L f+b L g$, where f and g are given functions, and a, b are real constants.
4. Prove that the mapping, L, in Problem 3 has the property that $L q=q$ for every polynomial q of degree at most n.
5. Prove that if we take any set of 23 nodes in the interval $[-1,1]$ and interpolate the function $f(x)=\cosh x$ with a polynomial p of degree 22 , then the relative error $|p(x)-f(x)| /|f(x)|$ is no greater than 5×10^{-16} on $[-1,1]$.
6. (a) Approximate the function $f(x)=e^{x / 2}$ over the interval $[1,9]$ by a fourth-degree polynomial in two ways: using a Taylor polynomial centered at $x_{0}=5$, and using the Lagrange form of the interpolating polynomial with $x_{0}=1, x_{1}=3, x_{2}=5, x_{3}=7$, and $x_{4}=9$.
(b) Plot the error estimates for these two approaches (using Taylor's Theorem and the Lagrange form of the interpolating polynomial) for $x \in[0,12]$.
(c) Use your favorite software to plot the actual error for these approximants on $[0,12]$. Comment.
7. Prove that

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right|=\prod_{0 \leq j<k \leq n}\left(x_{k}-x_{j}\right) \\
& =\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)\left(x_{n}-x_{2}\right) \cdots\left(x_{n}-x_{n-1}\right) \cdots \\
& \left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right) .
\end{aligned}
$$

