1. Determine SVDs of the following matrices. Do not use a computer, and do not use the method for hand calculations discussed in class. Use only basic properties of the SVD and note that the matrices are either diagonal matrices or rank-1 matrices:

 (a) \[
 \begin{bmatrix}
 3 & 0 \\
 0 & -2
 \end{bmatrix},
 \]
 (b) \[
 \begin{bmatrix}
 2 & 0 \\
 0 & 3
 \end{bmatrix},
 \]
 (c) \[
 \begin{bmatrix}
 0 & 2 \\
 0 & 0
 \end{bmatrix},
 \]
 (d) \[
 \begin{bmatrix}
 1 & 1 \\
 0 & 0
 \end{bmatrix},
 \]
 (e) \[
 \begin{bmatrix}
 1 & 1
 \end{bmatrix}.
 \]

2. In the discussion of matrix norms we claimed that the 2-norm of the matrix

 \[
 A = \begin{bmatrix}
 1 & 1 \\
 0 & 1
 \end{bmatrix}
 \]

is approximately 1.6180. Using the SVD, work out (the “by-hand” method is from now on allowed) the exact values of \(\sigma_{\min}(A) \) and \(\sigma_{\max}(A) \) for this matrix.

3. Consider the matrix

 \[
 A = \begin{bmatrix}
 -2 & 11 \\
 -10 & 5
 \end{bmatrix}.
 \]

 (a) Determine, on paper, a real SVD of \(A \) in the form \(A = U\Sigma V^T \). The SVD is not unique, so find the one that has the minimal number of minus signs in \(U \) and \(V \).

 (b) List the singular values, left singular vectors, and right singular vectors of \(A \). Draw a careful, labeled picture of the unit ball in \(\mathbb{R}^2 \) and its image under \(A \), together with the singular vectors, with the coordinates of their vertices labeled.

 (c) What are the \(1-, 2-, \infty- \), and Frobenius norms of \(A \)?

 (d) Find \(A^{-1} \) not directly, but via the SVD.

 (e) Find the eigenvalues \(\lambda_1, \lambda_2 \) of \(A \).

 (f) Verify that \(\det A = \lambda_1 \lambda_2 \) and \(|\det A| = \sigma_1 \sigma_2 \).

 (g) What is the area of the ellipsoid onto which \(A \) maps the unit ball of \(\mathbb{R}^2 \)?

4. Assume \(A \) is Hermitian and positive definite, i.e., \(A \) can be uniquely factored into \(A = LL^* \) with \(L \) a lower triangular matrix with positive diagonal entries (Cholesky factorization). What is the SVD of \(A \)?

5. If \(P \) is an orthogonal projector, then \(I - 2P \) is unitary. Prove this algebraically, and give a geometric interpretation.

6. Consider the matrices

 \[
 A = \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}, \quad B = \begin{bmatrix}
 1 & 2 \\
 0 & 1
 \end{bmatrix}.
 \]

Answer the following questions by hand calculation.

 (a) What us the orthogonal projector \(P \) onto range(\(A \)), and what is the image under \(P \) of the vector \([1, 2, 3]^*\)?

 (b) Same questions for \(B \).