Math 478 - Homework Assignment 6, due April 26, 2007

1. Provide the details of the case $j=0$ in the formula

$$
D_{j 0}=\frac{d}{d t}\left[\operatorname{sinc} \frac{t \pi}{h}\right]_{t=t_{j}=j h}= \begin{cases}0, & j=0 \\ \frac{(-1)^{j}}{j h}, & \text { otherwise }\end{cases}
$$

for the entries in the $k=0$ column of the spectral differentiation matrix D on unbounded grids.
2. Derive the formula

$$
D_{j 0}^{(2)}=\frac{d^{2}}{d t^{2}}\left[\operatorname{sinc} \frac{t \pi}{h}\right]_{t=t_{j}=j h}= \begin{cases}-\frac{\pi^{2}}{3 h^{2}}, & j=0 \\ 2 \frac{(-1)^{j+1}}{j^{2} h^{2}}, & \text { otherwise }\end{cases}
$$

for the entries in the $k=0$ column of the second-order differentiation matrix $D^{(2)}$ on unbounded grids.
3. In the periodic case, determine the Fourier differentiation matrices D_{N}, D_{N}^{2}, and $D_{N}^{(2)}$ for $N=2$ and $N=4$, and confirm that in both cases $D_{N}^{2} \neq D_{N}^{(2)}$. Note: D_{N}^{2} is the square of D_{N}, while $D_{N}^{(2)}$ is the differentiation matrix that corresponds to the second-order derivative as in Problem 2 above.
4. Find the linear transformation that is needed to map the Chebyshev points from the standard interval $[-1,1]$ to an arbitrary interval $[a, b]$.

