1. Find the solution at $t=\frac{1}{2}$ of the linear two-point boundary value problem

$$
\begin{gathered}
y^{\prime \prime}(t)+2 y^{\prime}(t)+10 t=0 \\
y(0)=1, \quad y(1)=2
\end{gathered}
$$

by applying the finite difference method (by hand) with $h=\frac{1}{2}$.
2. Consider the linear boundary value problem

$$
\begin{gathered}
y^{\prime \prime}(t)=u(t)+v(t) y(t)+w(t) y^{\prime}(t) \\
a_{0} y(a)+a_{1} y^{\prime}(a)=\alpha, \quad b_{0} y(b)+b_{1} y^{\prime}(b)=\beta
\end{gathered}
$$

Set up the resulting system of linear equations if the finite difference method is used with meshsize $h=\frac{b-a}{m+1}$. Make sure that you use only $\mathcal{O}\left(h^{2}\right)$ approximations.
3. Consider the eigenvalue $\operatorname{BVP} y^{\prime \prime}(t)=\lambda y(t)$ with $y(-1)=y(1)=0$.
(a) Show that the eigenvalues and eigenfunctions of this problem are given by

$$
\lambda=-\left(\frac{n \pi}{2}\right)^{2}, \quad \sin \frac{n \pi}{2}(x+1), \quad n=1,2, \ldots
$$

(b) Describe an algorithm you would use to solve this problem with the finite difference method.

