1. Show that the function $f(t, x)=x^{2} e^{-t^{2}} \sin t$ is Lipschitz continuous for $x \in[0,2]$.
2. Find the Lagrange and Newton forms of the interpolating polynomial for the data

$$
\begin{array}{c||c|c|c}
x & -2 & 0 & 1 \\
\hline f(x) & 0 & 1 & -1
\end{array} .
$$

Write both polynomials in the form $a+b x+c x^{2}$ to verify that they are identical as functions.
3. The equation $x-9^{-x}=0$ has a solution in [0, 1]. Find the interpolation polynomial on $x_{0}=0$, $x_{1}=0.5, x_{2}=1$ for the function on the left side of the equation. By setting the interpolation polynomial equal to 0 and solving the equation, find an approximate solution to the equation.
4. The polynomial p of degree $\leq n$ that interpolates a given functions f at $n+1$ prescribed nodes is uniquely defined. Hence, there is a mapping $f \mapsto p$. Denote this mapping by L and show that

$$
L f=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i} .
$$

Show that L is linear, i.e., $L(a f+b g)=a L f+b L g$, where f and g are given functions, and a, b are real constants.
5. (a) Approximate the function $f(x)=e^{x / 2}$ over the interval $[1,9]$ by a fourth-degree polynomial in two ways: using a Taylor polynomial centered at $x_{0}=5$, and using the Lagrange form of the interpolating polynomial with $x_{0}=1, x_{1}=3, x_{2}=5, x_{3}=7$, and $x_{4}=9$.
(b) Plot the error estimates for these two approaches (using Taylor's Theorem and the Lagrange form of the interpolating polynomial) for $x \in[0,12]$.
(c) Use your favorite software to plot the actual error for these approximants on [0, 12]. Comment.
6. The first U.S. postage stamp was issued in 1885 , with the cost to mail a letter set at 2 cents. In 1917, the cost was raised to 3 cents but then was returned to 2 cents in 1919. In 1932, it was upped to 3 cents again, where it remained for 26 years. Then a series of increases took place as follows: $1958=4$ cents, $1963=5$ cents, $1968=6$ cents, $1971=8$ cents, $1974=10$ cents, $1978=15$ cents, $1981=18$ cents in March and 20 cents in October, $1985=22$ cents, $1988=$ 25 cents, $1991=29$ cents, $1995=32$ cents, $1999=33$ cents, $2001=34$ cents, $2002=37$ cents, and $2006=39$ cents. Determine the Newton interpolation polynomial for these data. Based on this, when will it cost $\$ 1$ to mail a letter? When will it cost $\$ 10$, and when will it cost 42 cents?

