Math 478/578: Computer Assignment 1 - due Tuesday, Feb. 13, 2007

1. Consider the following system of second-order initial-value problems:

$$
\begin{align*}
x^{\prime \prime}(t) & =-\frac{x(t)}{\left(x(t)^{2}+y(t)^{2}\right)^{3 / 2}}, \tag{1}
\end{align*} \quad x(0)=1, x^{\prime}(0)=0, ~ 子, ~ y(0)=0, y^{\prime}(0)=1 .
$$

These are Newton's equations of motion for the two-body problem. Here the pair $(x(t), y(t))$ describes the trajectory of one of the bodies at time t. If we let t range from 0 to 2π, then the solution will be a circle.
(a) Transform the given problem into an appropriate system of first-order initial-value problems.
(b) Write a Matlab function Twobody.m that calculates the (vectorized) right-hand side of the system obtained in the previous step. The function should be of the form

$$
\text { function yprime }=\operatorname{Twobody}(\mathrm{t}, \mathrm{y})
$$

where yprime and y are appropriate column vectors.
(c) Write a Matlab driver script that solves the equations of motion with Matlab's built-in ODE solvers ode23 and ode45. The calling sequence for both of these functions is of the form

$$
[\mathrm{t}, \mathrm{y}]=\text { ode23(f, [tstart tend }], \mathrm{y} 0)
$$

where f is the name of the right-hand side function (your function Twobody), tstart and tend are starting and ending t-values, and y0 is a (column vector) of initial conditions.
(d) Plot the computed solutions in the $x y$-plane. For debugging/testing purposes you should also include plots of the components of the vector y against t. This can be accomplished in a single plot by using Matlab syntax such as

```
subplot(2, 2, 1), plot(t,y(:, 1))
subplot(2, 2, 2), plot(t,y(:, 2))
subplot(2, 2, 3), plot(t,y(:,3))
subplot(2, 2,4), plot(t,y(:,4))
```

(e) Modify the Matlab functions Euler.m and Trapezoid.m presented in class so that they work for systems of first-order initial-value problems.
(f) Solve the system (1), (2) again via Euler's method and the trapezoidal rule and compare your answers to Matlab's solutions obtained in (c) and (d). Comment.

