Math 477 - Homework Assignment 5, due Nov.9, 2006

1. For each of the following statements, prove that it is true or give an example to show it is false. Throughout, $A \in \mathbb{C}^{m \times m}$ unless otherwise noted.
(a) If λ is an eigenvalue of A and $\mu \in \mathbb{C}$, then $\lambda-\mu$ is an eigenvalue of $A-\mu I$.
(b) If A is real and λ is an eigenvalue of A, then so is $-\lambda$.
(c) If A is real and λ is an eigenvalue of A, then so is $\bar{\lambda}$.
(d) If λ is an eigenvalue of A and A is nonsingular, then λ^{-1} is an eigenvalue of A^{-1}.
2. Find the Schur factorizations of

$$
A=\left[\begin{array}{cc}
3 & 8 \\
-2 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
4 & 7 \\
1 & 12
\end{array}\right]
$$

3. Here is Gerschgorin's theorem, which holds for any $m \times m$ matrix A, symmetric or nonsymmetric:

Every eigenvalue of A lies in at least one of the m circular disks in the complex plane with centers $a_{i i}$ and radii $\sum_{j \neq i}\left|a_{i j}\right|$. Moreover, if n of these disks form a connected domain that is disjoint from the other $m-n$ disks, then there are precisely n eigenvalues of A within this domain.
(a) Prove the first part of Gerschgorin's theorem. (Hint: Let λ be any eigenvalue of A, and \boldsymbol{x} a corresponding eigenvector normalized so that its largest entry is 1.)
(b) Give estimates based on Gerschgorin's theorem for the eigenvalues of

$$
A=\left[\begin{array}{ccc}
8 & 1 & 0 \\
1 & 4 & \varepsilon \\
0 & \varepsilon & 1
\end{array}\right], \quad|\varepsilon|<1
$$

4. Suppose we have a 3×3 matrix and wish to introduce zeros by left- and/or right-multiplications by unitary matrices Q_{j} such as Householder reflections or Givens rotations. Consider the following three matrix structures:

$$
\text { (a) }\left[\begin{array}{lll}
x & x & 0 \\
0 & x & x \\
0 & 0 & x
\end{array}\right], \quad \text { (b) }\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & x \\
0 & x & x
\end{array}\right], \quad \text { (c) }\left[\begin{array}{lll}
x & x & 0 \\
0 & 0 & x \\
0 & 0 & x
\end{array}\right] \text {. }
$$

For each one, decide which of the following situations holds, and justify your claim.
(i) Can be obtained by a sequence of left-multiplications by matrices Q_{j};
(ii) Not (i), but can be obtained by a sequence of left- and right-multiplications by matrices Q_{j}
(iii) Cannot be obtained by any sequence of left- and right-multiplications by matrices Q_{j}.
5. Let $A \in \mathbb{C}^{m \times m}$ be given, not necessarily Hermitian. Show that a number $z \in \mathbb{C}$ is a Rayleigh quotient of A if and only if it is a diagonal entry of $Q^{*} A Q$ for some unitary matrix Q. Thus Rayleigh quotients are just diagonal entries of matrices, once you transform orthogonally to the right coordinate system.

