1. Given $A \in \mathbb{C}^{m \times n}$ of rank n and $\boldsymbol{b} \in \mathbb{C}^{m}$, consider the block 2×2 system of equations

$$
\left[\begin{array}{cc}
I & A \\
A^{*} & O
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{r} \\
\boldsymbol{x}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

where I is the $m \times m$ identity matrix. Show that this system has a unique solution $[\boldsymbol{r}, \boldsymbol{x}]^{T}$, and that the vectors \boldsymbol{r} and \boldsymbol{x} are the residual and the solution of the least squares problem:

Given $A \in \mathbb{C}^{m \times n}$ of full rank, $m \geq n, \boldsymbol{b} \in \mathbb{C}^{m}$, find $\boldsymbol{x} \in \mathbb{C}^{n}$ such that $\|\boldsymbol{b}-A \boldsymbol{x}\|$ is minimized.
2. Here is a stripped-down version of one of MATLAB's built-in m-files.

```
[U,S,V] = svd(A);
S = diag(S);
tol = max(size(A))*S(1)*eps;
r = sum(S > tol);
S = diag(ones(r,1)./S(1:r));
X = V(:,1:r)*S*U(:,1:r)';
```

Explain line-by-line what this code does. What is X ?
3. Suppose an $m \times m$ matrix A is written in the block form $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where A_{11} is $n \times n$ and A_{22} is $(m-n) \times(m-n)$. Assume that A is such that its LU factorization exists. Verify the formula

$$
\left[\begin{array}{cc}
I & O \\
-A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
O & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
$$

for "elimination" of the block A_{21}. The matrix $A_{22}-A_{21} A_{11}^{-1} A_{12}$ is known as the Schur complement of A_{11} in A.
4. Let A be the 4×4 matrix

$$
A=\left[\begin{array}{cccc}
-1 & 1 & 0 & -3 \\
1 & 0 & 3 & 1 \\
0 & 1 & -1 & -1 \\
3 & 0 & 1 & 2
\end{array}\right]
$$

(a) Compute the LU factorization of A with and without partial pivoting.
(b) Determine $\operatorname{det}(A)$ from the 2 LU factorizations of A obtained in (a).
(c) Describe how Gaussian elimination with partial pivoting can be used to find the determinant of a general square matrix.
5. Given a nonsingular matrix A. Describe how to find the inverse of A from its LU factorization $A=L U$ without explicitly computing inverse matrices.
6. Let A be a nonsingular square matrix and let $A=Q R$ and $A^{*} A=U^{*} U$ be QR and Cholesky factorizations, respectively, with the usual normalizations $r_{j j}, u_{j j}>0$. Is it true or false that $R=U ?$ Explain.
7. Give an example of a symmetric positive matrix that is not positive definite, i.e., construct a (2×2) matrix A with all positive entries such that $\boldsymbol{x}^{T} A \boldsymbol{x}$ is sometimes negative.

