1. Determine SVDs of the following matrices. Do not use a computer, and do not use the method for hand calculations discussed in class. Use only basic properties of the SVD and note that the matrices are either diagonal matrices or rank-1 matrices:

 (a) \[
 \begin{bmatrix}
 3 & 0 \\
 0 & -2
 \end{bmatrix}
 \],
 (b) \[
 \begin{bmatrix}
 2 & 0 \\
 0 & 3
 \end{bmatrix}
 \],
 (c) \[
 \begin{bmatrix}
 0 & 2 \\
 0 & 0 \\
 0 & 0
 \end{bmatrix}
 \],
 (d) \[
 \begin{bmatrix}
 1 & 1 \\
 0 & 0
 \end{bmatrix}
 \],
 (e) \[
 \begin{bmatrix}
 1 & 1 \\
 1 & 1
 \end{bmatrix}
 \].

2. In the discussion of matrix norms we claimed that the 2-norm of the matrix

 \[
 A = \begin{bmatrix}
 1 & 1 \\
 0 & 1
 \end{bmatrix}
 \]

 is approximately 1.6180. Using the SVD, work out (the “by-hand” method is from now on allowed) the exact values of \(\sigma_{\min}(A) \) and \(\sigma_{\max}(A) \) for this matrix.

3. Find the SVDs of the following matrices:

 \[
 A = \begin{bmatrix}
 4 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 7 \\
 0 & 0 & 0
 \end{bmatrix},
 B = \begin{bmatrix}
 2 & 1
 \end{bmatrix},
 C = \begin{bmatrix}
 5 & -4
 \end{bmatrix}
 .
 \]

4. If \(P \) is an orthogonal projector, then \(I - 2P \) is unitary. Prove this algebraically, and give a geometric interpretation.

5. Consider the matrices

 \[
 A = \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
 1 & 0
 \end{bmatrix},
 B = \begin{bmatrix}
 1 & 2 \\
 0 & 1 \\
 1 & 0
 \end{bmatrix}
 .
 \]

 Answer the following questions by hand calculation.

 (a) What is the orthogonal projector \(P \) onto range\((A) \), and what is the image under \(P \) of the vector \([1, 2, 3]^*\)?

 (b) Same questions for \(B \).