- 1. Show that the function $f(t, x) = x^2 e^{-t^2} \sin t$ is Lipschitz continuous for $x \in [0, 2]$.
- 2. (a) Approximate the function f(x) = e^{x/2} over the interval [1,9] by a fourth-degree polynomial in two ways: using a Taylor polynomial centered at ξ = 5, and using the Lagrange form of the interpolating polynomial with ξ₀ = 1, ξ₁ = 3, ξ₂ = 5, ξ₃ = 7, and ξ₄ = 9.
 (b) Plot the error estimates for these two approaches (using Taylor's Theorem and the Lagrange form of the interpolating polynomial) for x ∈ [0, 12].

(c) Plot the actual error for these approximants on [0, 12]. Comment.

3. Use the Peano kernel theorem to obtain the following well-known formula for Simpson's rule:

$$\int_0^2 f(x)dx = \frac{1}{3} \left[f(0) + 4f(1) + f(2) \right] - \frac{1}{90} f^{(4)}(\xi).$$

4. (a) Write the following system of initial value problems

$$y'' + yz = 0, \quad y(0) = 1, \quad y'(0) = 0$$

 $z' + 2yz = 4, \quad z(0) = 3$

as a system of first-order initial value problems.

(b) Convert the following system of higher-order time-dependent ODEs into a system of first-order equations that do not explicitly depend on t:

$$\begin{aligned} x''' - 5tx''y'' + \ln(x')z &= 0\\ y'' - \sin(ty) + 7tx'' &= 0\\ z' + 16ty' - e^t zx' &= 0. \end{aligned}$$

Hint: introduce an additional differential equation for t.