1. Show that the function $f(t, x)=x^{2} e^{-t^{2}} \sin t$ is Lipschitz continuous for $x \in[0,2]$.
2. (a) Approximate the function $f(x)=e^{x / 2}$ over the interval $[1,9]$ by a fourth-degree polynomial in two ways: using a Taylor polynomial centered at $\xi=5$, and using the Lagrange form of the interpolating polynomial with $\xi_{0}=1, \xi_{1}=3, \xi_{2}=5, \xi_{3}=7$, and $\xi_{4}=9$.
(b) Plot the error estimates for these two approaches (using Taylor's Theorem and the Lagrange form of the interpolating polynomial) for $x \in[0,12]$.
(c) Plot the actual error for these approximants on $[0,12]$. Comment.
3. Use the Peano kernel theorem to obtain the following well-known formula for Simpson's rule:

$$
\int_{0}^{2} f(x) d x=\frac{1}{3}[f(0)+4 f(1)+f(2)]-\frac{1}{90} f^{(4)}(\xi) .
$$

4. (a) Write the following system of initial value problems

$$
\begin{aligned}
y^{\prime \prime}+y z & =0, \quad y(0)=1, \quad y^{\prime}(0)=0 \\
z^{\prime}+2 y z & =4, \quad z(0)=3
\end{aligned}
$$

as a system of first-order initial value problems.
(b) Convert the following system of higher-order time-dependent ODEs into a system of firstorder equations that do not explicitly depend on t :

$$
\begin{aligned}
x^{\prime \prime \prime}-5 t x^{\prime \prime} y^{\prime \prime}+\ln \left(x^{\prime}\right) z & =0 \\
y^{\prime \prime}-\sin (t y)+7 t x^{\prime \prime} & =0 \\
z^{\prime}+16 t y^{\prime}-e^{t} z x^{\prime} & =0
\end{aligned}
$$

Hint: introduce an additional differential equation for t.

