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Abstract. We study dependence between components of multivariate (nice Feller) Markov pro-

cesses: what conditions need to be satisfied by a multivariate Markov process so that its com-
ponents are Markovian with respect to the filtration of the entire process and such that they

follow prescribed laws? To answer these question we introduce a symbolic approach, which is

rooted in the concept of pseudo-differential operator (PDO). We investigate connections between
dependence, in the sense described above, and the PDOs. In particular we study the problem of

constructing a multivariate nice Feller process with given marginal laws in terms of symbols of the
related PDOs. This approach leads to relatively simple conditions, which provide solutions to this

problem.

1. Introduction

This paper continues studies presented in [2] and [3], where the problem of constructing a multi-
variate stochastic process with components following prescribed laws was investigated. In a nutshell,
we can say that those papers studied the problem of modeling dependence between random processes
subject to prescribed marginal laws. Thus, in a sense, they extended the classical finite-dimensional
copula theory encapsulated in the famous theorem due to Abe Sklar (cf. [17]) to the infinite-
dimensional realm of stochastic processes. In this paper we focus on study of dependence between
(nice Feller) Markov processes. It needs to be stressed that in the context of multivariate Markov
processes two problems are actually studied: what conditions need to be satisfied by a multivariate
Markov process so that its components are Markovian in the filtration of entire process, and thus
in their own filtrations (this is the first problem), and such that they follow prescribed laws (this is
the second problem).

The first approach to construct a copula between some Markov processes was given in Bielecki
et al. in [2], and it was then extended in Bielecki et al. in [3] to the case of general, real-valued
Feller processes. In [3] the copula between Markov processes was given in terms of the infinitesimal
generators. The approach taken here is complementing the one taken in [3]. Our symbolic approach
is rooted in the concept of a pseudo-differential operator (PDO). This approach appears to be more
transparent and gives relatively simple conditions guaranteeing that a multivariate (nice Feller)
Markov process has (nice Feller) Markovian components with respect to the filtration of entire
process, and thus with respect to their own filtrations. Moreover we give examples of construction
of a (nice Feller) Markov process with prescribed marginal laws.

In our approach to constructing the symbol corresponding to a Markov copula, one just has to
construct nonnegative definite functions satisfying appropriate conditions, whereas in the approach
of [3] one has to construct an operator acting on functions. In particular, in the symbolic approach
one avoids using tensor products of infinitesimal generators.

To avoid confusion we stress that the problem we study is different from the one considered,
for example, in Lager̊as [11], where results of Darsow et al. [5] are extended. Those papers aim at
relating the classical concept of copula and the concept of Markov property. In this context they
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investigate dependence along the time line in the case of a one-dimensional Markov process, and
characterize the Markov property in terms of copulae.

The paper is organized as follows: In Section 2 we introduce so called strong Markovian consis-
tency properties and we study their connection with the corresponding characteristic functions as
well as with the corresponding PDOs.

In Section 3 we study the question of constructing a multivariate nice Feller process with given
marginal laws in terms of symbols of the related PDOs. In other words, we show how to construct
an n-dimensional nice Feller process such that its marginal laws, that is, the laws of its components,
agree with the laws of a given collection of n one-dimensional nice Feller processes.

Without loss of generality we shall only consider time-homogeneous (nice Feller) Markov processes
in this paper.

2. Dependence and Symbols

Consider X = (Xj , j = 1, . . . , n), a time-homogenous Markov process, defined on an underlying
probability space (Ω,F ,P), taking values in Rn. It is well known that, in general, the coordinates
of X are not Markovian (neither with respect to filtration of entire process X nor in their own
filtrations).

Remark 2.1. In order to simplify presentation we fix j ∈ {1, . . . , n} for most of the discussion in the
rest of this paper. Thus the discussion and the results apply to an arbitrary j ∈ {1, . . . , n}.

We are interested in the following problems P0 and P1:

P0 : Provide necessary and sufficient conditions so that for each Xj the following property holds:
For every B ∈ B(R) and all t, s ≥ 0 we have

(2.1) P
(
Xj
t+s ∈ B|FXt

)
= P

(
Xj
t+s ∈ B|X

j
t

)
or equivalently

(2.2) P
(
Xj
t+s ∈ B|Xt

)
= P

(
Xj
t+s ∈ B|X

j
t

)
,

which means that Xj is a Markov process with respect to the filtration FX .

Note that if the above conditions hold then

(2.3) P
(
Xj
t+s ∈ B|FX

j

t

)
= P

(
Xj
t+s ∈ B|X

j
t

)
,

which means that Xj is a Markov process with respect to its own filtration.

Definition 2.2. i) We say that a Markov process X satisfies the strong Markovian consistency
condition with respect to Xj if (2.1) (or equivalently (2.2)) holds. We say that a Markov process X
satisfies the weak Markovian consistency condition with respect to Xj if (2.3) holds.
ii) If X satisfies the strong (weak) Markovian consistency condition with respect to Xj for each
j = 1, . . . , n, then we say that X satisfies the strong (weak) Markovian consistency condition.

Remark 2.3. (i) It is rather clear that condition (2.3) needs not to imply condition (2.1). In this
paper we carry out a study of the strong Markovian consistency condition (2.1) and the corresponding
Markov copulae. In the follow up paper [1] we carry out a study of the weak Markovian consistency
condition (2.3) and the corresponding Markov copulae. In particular, in [1] we give an example of a
nice Feller process, which satisfies the weak Markovian consistency condition but it does not satisfy
the strong Markovian consistency condition.
(ii) Sufficient conditions for strong Markov consistency in terms of infinitesimal generators can be
deduced from Dynkin [6], Theorem 10.13, by taking transformation γ there to be a coordinate
projection.
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P1 : Provide necessary and sufficient conditions, which guarantee that

the strong Markovian consistency condition holds with respect to Xj ,(2.4a)

L(Xj) = L(Y j) for a given one-dimensional Markov process Y j defined on (Ω̃, F̃ , P̃).(2.4b)

Definition 2.4. We say that a Markov process X satisfies the strong Markovian consistency con-
dition with respect to Xj relative to Y j if (2.4a) and (2.4b) hold.

Remark 2.5. Observe that if condition (2.4b) is satisfied then Xj is a Markov process with respect
to its own filtration. However, the strong Markovian consistency condition with respect to Xj may
not be satisfied.

Remark 2.6. Starting from Section 2.3 we shall study problems P0 and P1 with regard to a nice
Feller Markov process X.

Remark 2.7. The above two problems can be extended to the case of an arbitrary subset of compo-
nents of the process X.

2.1. Preliminary Discussion of Problem P0.

Here we shall provide sufficient and necessary conditions for the strong Markovian consistency
condition to hold in terms of relevant characteristic functions.

Note that property (2.1) (or, equivalently (2.2)) is a property of conditional probabilities µt−s(x, ·)
and µjs,t(xj , ·) defined as follows

µt−s(x,B) := P(Xt ∈ B|Xs = x), µjs,t(xj , Bj) := P(Xj
s ∈ Bj |Xj

s = xj),

t ≥ s ≥ 0, Bj ∈ B(R), B ∈ B(Rn), xj ∈ R.
Indeed, denoting

Bj = R× . . .×Bj × . . .× R.
we see that property (2.1) reads

µt−s(Xs, B
j) = µjs,t(X

j
s , Bj).

Consequently, we can formulate property (2.1) in terms of conditional characteristic functions of Xt

and Xj
t , which are defined by

λ̄t−s(x, ξ) := E
(
ei(Xt,ξ)|Xs = x

)
, λ̄js,t(x

j , ξj) := E
(
eiX

j
t ξj |Xj

s = xj

)
,

where ξ ∈ Rn and ξj ∈ R. Indeed, denoting by ej the standard unit vector in Rn with 1 in the j-th

position and defining λ̄jt (xj , ξj) := λ̄j0,t(xj , ξj), we have following result

Proposition 2.8. (i) The strong Markovian consistency property for Xj implies that

(2.5) λ̄js,t(X
j
s , ξj) = λ̄t−s(Xs, ejξj), ∀ ξj ∈ R, t ≥ s ≥ 0.

(ii) Assume that Xj is a time homogenous Markov process with respect to its own filtration and
assume that

(2.6) λ̄jt (xj , ξj) = λ̄t(x, ejξj), ∀ ξj ∈ R, x ∈ Rn, t ≥ 0.

Then the strong Markovian consistency condition with respect to Xj is satisfied.

Proof. (i) Equality of conditional distributions is equivalent to equality of conditional characteristic
functions (see Loeve [12, p. 30] or Karatzas and Shreve [16, Lemma 6.13, p. 85]).
(ii) In view of (2.6) we have

µj0,t(xj , Bj) = µt(x,B
j) ∀Bj ∈ B(R), x ∈ Rn, t ≥ 0.

This and the assumed time homogeneity properties implies

P
(
Xj
t ∈ Bj |Xs

)
= µt−s(Xs, B

j) = µj0,t−s(X
j
s , Bj) = P

(
Xj
t ∈ Bj |Xj

s

)
for every B ∈ B(R). This completes the proof. �
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Following Jacob [10] we define for t ≥ s ≥ 0

(2.7) λt−s(x, ξ) := E
(
ei(Xt−x,ξ)

∣∣∣Xs = x
)
, λjs,t(xj , ξj) := E

(
ei(X

j
t−xj)ξj

∣∣∣Xj
s = xj

)
and we denote λjt (xj , ξj) := λj0,t(xj , ξj).

Remark 2.9. (i) For x ∈ Rn, let Ax = {ω ∈ Ω : X0(ω) = x = (x1, . . . , xn)}. If condition (2.5) is
satisfied then, for ω ∈ Ax,

λt−s(x, ξjej) = λ̄t−s(X0, ξjej)(ω)e−i(x,ξjej) = λ̄js,t(X
j
0 , ξj)(ω)e−ixjξj = λjs,t(xj , ξj).

(ii) If

(2.8) λjs,t(xj , ξj) = λt−s(x, ξjej), ∀x ∈ Rn, ξj ∈ R, t ≥ s ≥ 0,

then condition (2.5) is satisfied.

2.2. Preliminary Discussion of Problem P1.

We define

ψjt (yj , ξj) := Ẽ
(
eiξj(Y j

t −yj)
∣∣∣Y j0 = yj

)
.

We have the following result regarding Problem P1:

Proposition 2.10. (i) Suppose condition (2.4b) is satisfied. Then (2.4a) holds if for all x ∈ Rn,
ξj ∈ R, and t ≥ 0 the following equality holds:

(2.9) λt(x, ejξj) = ψjt (xj , ξj).

(ii) Suppose (2.4a) holds. Also, suppose that L(Xj
0) = L(Y j0 ). Then (2.4b) is satisfied if for every

ξj ∈ R and t ≥ 0 the following equality holds:

(2.10) λjt (xj , ξj) = ψjt (xj , ξj).

Proof. (i) Since Y j is a Markov process with respect to its own filtration and since condition (2.4b)
holds, it follows that, as already observed earlier, the process Xj is a time homogenous Markov with
respect to its own filtration, and we have

(2.11) λjt (xj , ξj) = ψjt (xj , ξj).

This together with (2.9) implies (2.8), which in turn implies (2.5) by Remark 2.9.ii. Thus, the result
follows in view of Proposition 2.8(ii).
(ii) This follows from the fact that for a Markov processes the initial distribution and the transition
laws determine the entire law of the process. �

2.3. Connection with PDOs and their symbols.

From now on we focus on nice Feller processes.1 By a Feller process we mean a conservative
Markov processes whose corresponding semigroup is a strongly continuous semigroup on C0(Rn),
the family of real valued continuous functions vanishing at infinity. A Feller process with strong
generator A is called nice, if C∞c (Rn) ⊂ D(A) (cf. e.g. [15]).

Study of problems P0 and P1 in terms of the families of functions λt, λ
j
t and ψjt is equivalent to

study of these problems in terms of the Markov semigroups corresponding to the processes X, Xj

and Y j . This follows from Jacob [9]: Specifically, it is shown there that for a family of functions λt
given in (2.7) we can determine the semigroup (Tt)t≥0, corresponding to X, in the following way:

(2.12) Ttu(x) := Exu(Xt) = (2π)−n/2
∫
Rn

ei(x,ξ)λt(x, ξ)û(ξ)dξ,

1It is well known that a Feller process admits a càdlàg modification. Thus we implicity assume that processes

considered from now on are càdlàg.
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where û denotes the Fourier transform of function u : Rn → R, that is,

û(ξ) := (2π)−n/2
∫
Rn

e−i(x,ξ)u(x)dx.

Analogous properties hold for the families λjt and ψjt and the corresponding semigroups, say (T jt )t≥0

and (Sjt )t≥0.

It is rather clear though that providing conditions, with regard to Problems P0 and P1, in terms
of the entire families of operators (Tt)t≥0, (T jt )t≥0 and (Sjt )t≥0, or equivalently in terms of the entire

families λt, λ
j
t and ψjt , is quite inconvenient.2

That is why, in [2] and [3], Problems P0, P1 were studied in terms of the infinitesimal generators,
say A, Aj and Bj , of the relevant Markov processes X, Xj and Y j respectively.3 Here we take an
alternative approach, and pursue the study of these problems in terms of the derivatives of λt, λ

j
t

and ψjt at zero, i.e.

q(x, ξ) = − lim
t→0

λt(x, ξ)− 1

t
,

(2.13) qj(xj , ξj) = − lim
t→0

λjt (xj , ξj)− 1

t
,

%j(xj , ξj) = − lim
t→0

ψjt (xj , ξj)− 1

t
.

For the in-depth discussion of these derivatives we refer to Jacob [9], Schilling [13] or Jacob
[10]. These derivatives play a role similar to the role played by the generator of a Feller semigroup.
In particular, they lead to the symbol of the corresponding semigroup and to the corresponding
infinitesimal operator.

Our approach in this paper is motivated by the fact that in view of the results of Courrège [4],
the strong generator A of X, acting on u ∈ C∞c (Rn), the space of infinitely differentiable functions
with compact support, has a representation

(2.14) Au(x) = −q(x,D)u(x) := −(2π)−n/2
∫
Rn

ei(x,ξ)q(x, ξ)û(ξ)dξ,

where q : Rn × Rn → C is an analytic symbol, i.e. it is a measurable, locally bounded, continuous
function in ξ, and for every x the function q(x, ·) is negative definite4. In this context, the function
q(x, ξ) is called the symbol of the pseudo-differential operator q(x,D) (cf. Jacob [10]), and it has
the following form:

q(x, ξ) = −i(b(x), ξ) + (ξ, a(x)ξ) +

∫
Rn\{0}

(
1− ei(y,ξ) +

i(y, ξ)

1 + |y|2

)
µ(x, dy)(2.15)

where a, b are Borel measurable functions, b(x) ∈ Rn, a(x) is a symmetric non-negative definite
matrix, and µ(x, dy) is a Lévy kernel. Moreover, if q is continuous (in all variables) then q maps
C∞c (Rn) into C(Rn) (Jacob [10, Vol. 1, Theorem 4.5.7, page 337]). Schnurr [15, Theorem 3.10] in
his PHD thesis gives a probabilistic interpretation of (b, a, µ) , namely (B,C, ν) is semimartingale
characteristic of X, where

Bt :=

∫ t

0

b(Xu)du, Ct := 2

∫ t

0

a(Xu)du, ν(du, dy) := µ(Xu, dy)du.

Remark 2.11. We shall distinguish the concept of analytic symbol from the concept of a probabilistic
symbol i.e. the symbol of a Feller process. This is to stress that not every analytic symbol generates
a Feller process.

2Note that in the case of the Lévy processes these conditions can be significantly simplified in the sense that they

can be reduced to considering t = 1 only.
3This also applies to Problem P2 discussed below.
4For definition of a negative definite function see for example [10, Vol I, Definition 3.6.5.]
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Analogous results hold for qj and %j . In particular, in the case of Y j , the infinitesimal generator
Bj , acting on w ∈ C∞c (R), satisfies

Bjw(xj) = −(2π)−1/2

∫
R
eixjξj ŵ(ξj)%j(xj , ξj)dξj ,

where

%j(xj , ξj) = −i bj(xj)ξj + cj(xj)ξ
2
j +

∫
R\{0}

(
1− eizjξj +

izjξj
1 + |zj |2

)
µj(xj , dzj).

We shall adopt the following convention:

Suppose that f : R→ R. Then we define fj : Rn → R by fj(x) = f(xj).

Note, however, that even though f may be of compact support, fj is not a function of compact
support.

In the remainder of the paper we shall need the following conditions5:

C1-a:

wj ∈ D(Ã), where Ã is the weak generator of X, for all w ∈ C∞c (R),

C1-b:

Ãwj(x) = −(2π)−1/2

∫
R
eixjξj ŵ(ξj)q(x, ejξj)dξj , for all w ∈ C∞c (R).

C2: The function q(x, ejξj) as a function of x depends only on xj .

Under C2 we define

(2.16) q̃j(xj , ξj) := q(x, ejξj),

and we postulate

C3: q̃j is a symbol of a nice Feller process.

Remark 2.12. i) We stress that condition C2 is the central condition underlying in the property of
strong Markovian consistency discussed in this paper.
ii) If condition C2 is satisfied, and if q is an analytic symbol, then q̃j given by (2.16) is also an
analytic symbol.

The following theorem is the first main result in this paper and it provides a solution to Problem
P0.

Theorem 2.13. Let X be a nice Feller process with symbol q satisfying C1 and C2. In addition,
assume that C3 is satisfied. Then component Xj of X is a nice FX-Feller process with generator
given by the symbol qj = q̃j.

Proof. First, we observe that since X is a Feller process,

f(Xt)−
∫ t

0

Ãf(Xu)du

is an FX -martingale for any function f ∈ D(Ã). Consequently, for any w ∈ C∞c (R), we have by
C1-a that the process

wj(Xt)−
∫ t

0

Ãwj(Xu)du

is an FX -martingale.

Let us denote the strong generator corresponding to q̃j by Aj . We shall now verify that

(2.17) Ãwj(x) = Ajw(xj), ∀x ∈ Rn.

5For definition and properties of a weak generator see Dynkin [6, Chapter I§6 ].
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Indeed,

Ajw(xj) = −(2π)−1/2

∫
R
eixjξj ŵ(ξj)q̃j(xj , ξj)dξj .

and by C1-a, C1-b and C2

Ãwj(x) = −(2π)−1/2

∫
R
eixjξj ŵ(ξj)q(x, ejξj)dξj

= −(2π)−1/2

∫
R
eixjξj ŵ(ξj)q̃j(xj , ξj)dξj

= Ajw(xj).

which implies (2.17). Hence

w(Xj
t )−

∫ t

0

Ajw(Xj
u)du

is an FX -martingale, for any w ∈ C∞c (R).

Consequently, Xj is a solution to the martingale problem for Aj relative to the full filtration
of process X, that is with respect to FX . Since C∞c (Rn) is separating class then, in view of [7,
Proposition 4.1.6], Xj is the unique solution to the martingale problem for Aj relative to the full
filtration of process X. Thus Xj is a FX -Feller process with symbol q̃j . �

Remark 2.14. The above theorem proves the strong Markovian consistency property with respect
to the component Xj . As we already noticed before strong Markovian consistency implies weak

Markovian consistency. Thus Xj is a FXj

-Feller process with symbol q̃j . This can also be concluded
by observing that

w(Xj
t )−

∫ t

0

Ajw(Xj
u)du

is also an FXj

-martingale, for any w ∈ C∞c (R).

Before we state the second main result of the paper (Theorem 2.18) we first prove the following
two auxiliary results.

Proposition 2.15. Let X be a nice Feller process with symbol q satisfying C1-a and C1-b. Assume
that the component Xj of X is a nice FX-Feller processes with symbol qj. Then

(2.18) q(x, ejξj) = qj(xj , ξj) for all x ∈ Rn and ξj ∈ R.
holds.

Proof. It is sufficient to consider the case when j = 1. By C1-a and C1-b and by the strong Markov
consistency of X1, for any w ∈ C∞c (R) we have

−(2π)−1/2

∫
R
eix1ξ1ŵ(ξ1)q(x, e1ξ1)dξ1 = Ãw1(x) = lim

t→0+

Ex (w1(Xt)− w1(x))

t

= lim
t→0+

Ex1
(
w(X1

t )− w(x1)
)

t
= Ã1w(x1) = −(2π)−1/2

∫
R
eix1ξ1ŵ(ξ1)q1(x1, ξ1)dξ1.

Therefore
q(x, e1ξ1) = q1(x1, ξ1)

for all x ∈ Rn and ξ1 ∈ R. �

Remark 2.16. Note that in view of Theorem 2.13 and Proposition 2.15 conditions C1–C3 are
sufficient for (2.18) to hold.

Proposition 2.17. Let X, Y be two nice Feller processes with symbols qX and qY, respectively.
Then

qX = qY and L(X0) = L(Y0)⇐⇒ L(X) = L(Y ).

Proof. The result follows from [15, Corollary 1.21], [7, Proposition 4.1.6] and from the fact that
C∞c (Rn) is a separating class. �
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Finally, we provide a solution to Problem P1. This is done in the following theorem, which
combines the results of Theorem 2.13 and Propositions 2.15 and 2.17.

Theorem 2.18. Let Y j be a nice real valued Feller process with symbol %j, and let X = (X1, . . . , Xn)
be a nice Feller process with symbol q satisfying C1–C3. Then

L(Xj) = L(Y j)(2.19)

if and only if

(2.20) q(x, ejξj) = %j(xj , ξj) for all x ∈ Rn and ξj ∈ R,

and

(2.21) L(Xj
0) = L(Y j0 )

hold. In particular the symbol of Xj is equal to %j .

Proof. First observe that C1–C3 imply

q(x, ejξj) = qj(xj , ξj) for all x ∈ Rn and ξj ∈ R.(2.22)

Thus if (2.20) holds and (2.21) then in view of Proposition 2.17 we have that (2.19) holds. Conversely
if C1–C3 and (2.19) hold then (2.21) and qj = ρj , which in view of (2.22) implies that (2.20). �

Remark 2.19. It is interesting to verify whether conditions C1–C3 in the formulation of Theorem
2.18 can be replaced with the assumption that process X is strongly Markovian consistent with
respect to Xj . This is left for future work.

2.4. Discussion of conditions C1 and C3. We start with following technical result.

Lemma 2.20. Let X be a nice Feller process with symbol q and the corresponding generator A, and
let w ∈ C∞c (R). Next, let us fix j ∈ {1, . . . , n}, and v ∈ C∞c (Rn−1) such that v(0) = 1, ||v||∞ ≤ 1.
Finally, define a function uk as follows

(2.23) uk(x) = w(xj)v

(
1

k
(x1, . . . , xj−1, xj+1, . . . , xn)

)
, ∀x ∈ Rn.

Then

(2.24) lim
k→∞

Auk(x) = −(2π)−1/2

∫
R
eixjξj ŵ(ξj)q(x, ejξj)dξj , ∀x ∈ Rn.

Proof. We shall consider the case of j = 1; the proof for arbitrary j is analogous. Note that

uk(x) = w(x1)vk(x̄)

where

vk(x̄) = v

(
1

k
x̄

)
and x̄ = (x2, . . . , xn). Clearly (vk)k≥1 is a sequence of uniformly bounded (by 1) functions of class

C∞c (Rn−1), that converges pointwise in Rn−1 to 1. Using (2.14) and the fact that v̂k(ξ̄) = kn−1v̂(kξ̄)
we see that

Auk(x) = −(2π)−n/2
∫
Rn

ei(x,ξ)q(x, ξ)ûk(ξ)dξ

= −(2π)−n/2
∫
Rn

ei(x,ξ)q(x, ξ)ŵ(ξ1)kn−1v̂(kξ̄)dξ̄dξ1

= −(2π)−n/2
∫
Rn

eix1ξ1+ei
1
k (x̄,ξ̄)q

(
(x1, x̄),

(
ξ1,

ξ̄

k

))
ŵ(ξ1)v̂(ξ̄)dξ̄dξ1.
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We now observe that∣∣∣∣q((x1, x̄),

(
ξ1,

ξ̄

k

))
ŵ(ξ1)v̂(ξ̄)

∣∣∣∣ ≤ c(x)(1 + |ξ1|2 +
1

k2
|ξ̄|2)|ŵv(ξ1, ξ̄)|

≤ c(x)(1 + |ξ1|2 + |ξ̄|2)|ŵv(ξ1, ξ̄)|,

where the first inequality is implied by

|q(x, ξ)| ≤ c(x)(1 + ‖ξ‖2),

which follows from the fact that q is a symbol of a Feller semigroup (see Jacob [10, Vol.1, Lemma
3.6.22 and Theorem 4.5.6]). In addition we note that since wv ∈ C∞c (Rn) it follows that ŵv ∈ S(Rn),

which in turn implies that ξ 7→ (1 + ‖ξ‖2)ûk(ξ) is in L1. Thus invoking dominated convergence
theorem we see that

lim
k→∞

Auk(x) = −(2π)−n/2
∫
Rn

lim
k→∞

eix1ξ1+ei
1
k (x̄,ξ̄)q

(
(x1, x̄),

(
ξ1,

ξ̄

k

))
ŵ(ξ1)v̂(ξ̄)dξ̄dξ1

= −(2π)−1/2

∫
R
eix1ξ1ŵ(ξ1)q(x, e1ξ1)dξ1,

which demonstrates (2.24). �

Now we give sufficient conditions for C1-a and C1-b to hold.

Proposition 2.21. Let X be a nice Feller process with symbol q. Assume that q is continuous and
that

|q(x, ξ)| ≤ c(1 + |ξ|2), ∀x ∈ Rn, ∀ξ ∈ Rn.(2.25)

Then C1-a and C1-b holds.

Proof. Without loss of generality we take j = 1. We need to show that the following limit

bp-lim
t→0+

Ttw1 − w1

t

exists for each w ∈ C∞c (R). Towards this end we first note that the sequence (uk)k≥1, defined
in (2.23), is uniformly bounded and converges pointwise to w1(x). Therefore by the dominated
convergence theorem we have

lim
k→∞

Exuk(Xt) = Exw1(Xt).

Using this we obtain

Ttw1(x)− w1(x)

t
=

Exw1(Xt)− w1(x)

t
= lim
k→∞

Exuk(Xt)− uk(x)

t
= lim
k→∞

1

t
Ex
(∫ t

0

Auk(Xu)du

)
,

where the second equality follows from Dynkin formula, since uk ∈ D(A). From (2.25) we deduce
the following uniform boundedness

(2.26) |Auk(x)| ≤ K,

for a finite constant K. Applying again the dominated convergence theorem we obtain

Exw1(Xt)− w1(x)

t
=

1

t
Ex
(∫ t

0

Bw(Xu)du

)
,

where we denoted

Bw(x) = lim
k→∞

(Auk)(x).

Assumption of continuity of q with respect to x, together with (2.24) and (2.26), implies that Bw is
a bounded continuous function. Therefore, Bw(Xu) is a right continuous function and

lim
t→0+

1

t

∫ t

0

Bw(Xu)du = Bw(X0).
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Invoking the dominated convergence theorem gives

lim
t→0+

Exw1(Xt)− w1(x)

t
= Ex

(
lim
t→0+

1

t

∫ t

0

Bw(Xu)du

)
= ExBw(X0) = Bw(x).

Since

sup
t>0

sup
x∈R

∣∣∣∣Exw1(Xt)− w1(x)

t

∣∣∣∣ ≤ K,
we conclude that w1 ∈ D(Ã), and, in view of Dynkin [6, I.§6.1.15.D], we see that C1-b holds. �

Remark 2.22. By Schilling [14, Lemma 2.1] condition (2.25) is equivalent to

‖b‖∞ + ‖a‖∞ +

∥∥∥∥∥
∫
Rn\0

|y|2

1 + |y|2
µ(·, dy)

∥∥∥∥∥
∞

<∞ .

In order to give sufficient conditions for C3 to hold, we first introduce some additional definitions
and postulates (cf. Hoh [8, page 82]):

Let ψ : Rn → R be a continuous negative definite function such that for some positive constants
r and c we have

ψ(ξ) ≥ c ‖ξ‖r , for ‖ξ‖ ≥ 1.

Next, define
λ(ξ) := (1 + ψ(ξ))1/2.

Finally, let M be the smallest integer such that M > (nr ∨ 2) + n and set k = 2M + 1− n.

Now, following Hoh [8], we introduce the following conditions for an analytic symbol q : Rn ×
Rn → R:

H0(n): The function q is continuous in both variables.

H1(n): The map x 7→ q(x, ξ) is k times continuously differentiable and∥∥∂βx q(x, ξ)∥∥ ≤ cλ2(ξ), β ∈ Nn0 , ‖β‖ ≤ k.

H2(n): For some strictly positive function γ : Rn → R
q(x, ξ) ≥ γ(x)λ2(ξ), for ‖ξ‖ ≥ 1, x ∈ Rn.

H3(n):
sup
x∈Rn

|q(x, ξ)| −→
ξ→0

0.

The following proposition is proved in Hoh [8, Theorem 5.24, page 82],

Proposition 2.23. Under H0(n)–H3(n) the pseudo-differential operator −q(x,D) : C∞c (Rn) →
C0(Rn) has an extension, which generates a Feller semigroup given by

Ptf(x) = Exf(Xt),

where Ex is expectation with respect to the solution of the associated well-posed martingale problem
starting at x.

Given the above proposition we can now prove the following important result.

Proposition 2.24. Assume that symbol q satisfies conditions H0(n)–H3(n) and C2. Then the
pseudo-differential operator −q̃j(x,D) : C∞c (R) → C0(R), where q̃j is defined by (2.16), has an
extension that generates a nice Feller process; in other words q̃j satisfies condition C3.

Proof. By Remark (2.12) q̃j given by (2.16) is an analytic symbol. It is easy to verify that since q
satisfies conditions H0(n)–H3(n), then q̃j satisfies conditions H0(1)–H3(1). Therefore the result
follows from Proposition 2.23. �

Corollary 2.25. Let X be a nice Feller process with symbol q satisfying conditions H0(n)–H3(n)
and C1, C2. Then the component Xj of X is a nice Feller process with generator given by the
symbol q̃j.
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Proof. The result follows from Proposition 2.24 and Theorem 2.13. �

Proposition 2.26. Let q be a symbol given by (2.14). Assume that the following conditions hold
(cf. Stroock [18])

S1(n): a is bounded, continuous and positive definite,

S2(n): b is bounded and continuous,

S3(n): ∫
A

y

1 + |y|2
µ(x, dy) is bounded and continuous, ∀A ∈ B(Rn \ {0}),(2.27)

S4(n): ∫
Rn\{0}

(
1− ei(y,ξ) +

i(y, ξ)

1 + |y|2

)
µ(x, dy) is bounded and continuous in x,(2.28)

and that H3(n) holds. Then the pseudo-differential operator −q(x,D) : C∞c (Rn)→ C0(Rn) has an
extension that generates a nice Feller process with symbol q satisfying (2.25).

Proof. By results of Stroock [18], S1(n)–S3(n) imply that the martingale problem for q is well-posed.
By S1(n)–S4(n) we have that q is continuous and that (2.25) is satisfied. Thus the result follows
from [8, Theorem 5.23]. �

Remark 2.27. In case of nice Feller processes with continuous trajectories the result of Proposition
2.26 holds without assuming Condition H3(n). See [8, Proposition 5.18 ].

Proposition 2.28. Assume that symbol q satisfies conditions S1(n)–S4(n), H3(n) and C2. Then
the pseudo-differential operator −q̃j(x,D) : C∞c (R) → C0(R), where q̃j is defined by (2.16), has an
extension that generates a nice Feller process; in other words q̃j satisfies condition C3.

3. Symbolic Markov Copulae

In this section we study the following problem:

P2 : Provide an algorithm for construction of an n-dimensional nice Feller process with given
marginal distributions, and such that its components are also nice Feller processes.

In other words, we ask how to construct an n-dimensional nice Feller process such that its
marginal laws, agree with the laws of a given collection of n one-dimensional nice Feller process.
This leads to the following definition.

Definition 3.1 (Symbolic Markov copula for nice Feller processes). A nice n-dimensional Feller
process X with symbol q is a symbolic Markov copula for given nice Feller processes Y 1, . . . , Y n

with symbols q1, . . . , qn, if X is strongly Markovian consistent and for all j = 1, . . . , n,

(3.1) q(x, ejξj) = qj(xj , ξj).

and

(3.2) L(Xj
0) = L(Y j0 )

hold.

Remark 3.2. i) For further reference we note that condition (3.1) implies condition C2.
ii) In order to simplify presentation we shall use the term copula with regard to symbols rather than
with regard to processes. So, for example, we shall not say that a nice n-dimensional Feller process
X with symbol q is a symbolic Markov copula but we shall simply say that symbol q is a symbolic
Markov copula.
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In view of Theorem 2.13 conditions C1–C3 are sufficient for a nice Feller processes X to be
strongly Markovian consistent. In addition, in view of Theorem 2.18, under conditions C1–C3, the
sufficient and necessary conditions for

(3.3) L(Xj) = L(Y j)

are conditions (3.1) and (3.2).

To ensure (3.2), having Y 1
0 , . . . , Y

n
0 , we take X0 as a random variable with cumulative distribution

function

F : (x1, . . . , xn)→ C(F1(x1), . . . , Fn(xn)),

where C is a standard copula function (cf. Sklar [17]), and Fj is a cumulative distribution function of

Y j0 . So, our aim is to give a recipe for constructing a nice Feller process with symbol q, starting from
given nice Feller one-dimensional processes with symbols q1, . . . , qn, such that q satisfies conditions
C1, C3 and (3.1). Examples of relevant constructions are given in Section 3.1.

Working with conditions C1, C3 directly is rather difficult. However Propositions 2.24 or 2.28
provide conditions that are sufficient for C1 and C3 to hold, and that are much easier to work with.
Consequently in the examples given below we will use Propositions 2.24 or 2.28 as modus operandi.

3.1. Examples. Recall that a generic analytic symbol q is expressed through a triple of coefficients:
an Rn-valued function b, a function a with values in the set of symmetric non-negative definite
matrices, and a function µ(·, dy) taking values in the class of Lévy measures on Rn. We call (b, a, µ)
the characteristic triple of q.

Example 1. [Product copula] Let q1, . . . , qn be analytic symbols with characteristic triples (dj , cj , µj)
n
j=1

satisfying S1(1)–S4(1) and H3(1). Thus, in view of Proposition 2.26, the related PDOs have exten-
sions that generate nice Feller processes, say Y 1, . . . , Y n, with symbols q1, . . . , qn satisfying (2.25).

A symbol q is the product copula for symbols q1, . . . , qn if its characteristic triple (b, a, µ) is
constructed as

bj(x) := dj(xj), ai,j(x) := cj(xj)1{i=j},

µ(x, dy) :=

n∑
l=1

 n⊗
k=1,k 6=l

δ{0}(dyk)

⊗ µl(xl, dyl).
In order to verify that q constructed above is indeed a Markov copula we will verify that (3.1) is

satisfied, and that conditions S1(n)–S4(n), H3(n) hold. By Proposition 2.26 this will imply that q
is a symbol of a nice Feller process satisfying (2.25) which by Proposition 2.21 will also imply C1.
By Proposition 2.28 this will imply that C3 holds.

First we note that by construction condition (3.1) is satisfied. For this we only need to observe
that ∫

Rn\{0}

(
1− eiyjξj +

iyjξj
1 + |y|2

)
µ(x, dy) =

∫
R\{0}

(
1− eiyjξj +

iyjξj
1 + |yj |2

)
µj(xj , dyj).

Next, we note that here q satisfies the following property

(3.4) q(x, ξ) =

n∑
l=1

ql(xl, ξl).

Consequently, properties S1(1)–S4(1), H3(1) assumed for q1, . . . , qn imply that properties S1(n)–
S4(n), H3(n) are satisfied for q. It is intuitively clear from (3.4) that the product copula constructed
here represents a family of one-dimensional independent nice Feller processes. In this regard also
see Schnurr [15, Lemma 4.7]. �

Example 2. [Diffusion copula] Consider analytic symbols q1, . . . , qn given by

qj(xj , ξj) = −iξjdj(xj) + cj(xj)ξ
2
j ,
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where di, ci are functions satisfying S1(1)–S2(1). In view of Remark 2.27 this is sufficient for
the related PDOs to have unique extensions that generate nice Feller (diffusion) processes, say
Y 1, . . . , Y n, with symbols q1, . . . , qn satisfying (2.25).

In this example we shall construct a symbolic Markov copula q for q1, . . . , qn, that will correspond
to multivariate diffusion process. Towards this end we observe that it is natural to construct q as

q(x, ξ) := −i(b(x), ξ) + (ξ, a(x)ξ),

where the functions b : Rn → Rn, a : Rn → L(Rn,Rn) satisfy

(3.5) bj(x) = dj(xj), aj,j(x) = cj(xj), ∀j = 1, . . . , n,

and moreover a is symmetric and chosen so that S1(n) holds. It is clear that S2(n) holds in this
construction. Consequently, in view of Proposition 2.26 and Remark 2.27, q is a symbol of a nice
Feller process.

We shall now verify that (3.1) is also satisfied here. Indeed, one easily checks that conditions
(3.5) imply

q(x, ejξj) = i(b(x), ejξj) + (ejξj , a(x)ejξj) = ibj(x)ξj + aj,j(x)ξ2
j = qj(xj , ξj),

which means that (3.1) is satisfied for q.

We conclude that q is a symbolic copula for q1, . . . , qn. �

Remark 3.3. i) For construction of a diffusion copula under weaker assumptions on marginal pro-
cesses (indeed marginal symbols) we refer to [2].
ii) If a is chosen to be a diagonal matrix then this example is a special case of Example 1.

Example 3. [Poisson copula, cf. Section 3 in [2]] In this example verification of all technical
conditions (H and S) is straightforward and therefore will be omitted.

Consider two one-dimensional Poisson processes Y 1, Y 2 with constant intensities η1, η2. In
particular Y 1, Y 2 are nice Feller processes. From (2.13) it follows that their symbols are given by

qi(xi, ξi) = (1− eiξi)ηi, i = 1, 2.

A natural candidate for a symbolic copula is

q(x, ξ) = (1− eiξ2)λ(0,1) + (1− eiξ1)λ(1,0) + (1− ei(ξ1+ξ2))λ(1,1),

where λ(0,1), λ(1,0), λ(1,1) are nonnegative constants. However, observe that q is a symbolic copula
for q1, q2 if and only if λ(0,1), λ(1,0), λ(1,1) satisfy the following system of linear equations:

λ(0,1) + λ(1,1) = η2,

λ(1,0) + λ(1,1) = η1.

The above system has infinitely many solutions, which can be parameterized by λ(1,1). In this case
λ(0,1), λ(1,0) are given by

λ(0,1) = η2 − λ(1,1),

λ(1,0) = η1 − λ(1,1).

Since we are interested in nonnegative solutions, we restrict λ(1,1) to the interval [0, η1 ∧ η2]. Gen-
eralization to the n-dimensional case is immediate. �

In Example 4 below we provide a generalization of Example 3 by allowing λ-s to depend on x.
We need to precede the example with some important comments.

Suppose that we are given a family, parameterized by x, of finite positive measures µ(x, dy), that
are locally bounded with respect to x. Then the function q : Rn × Rn → C defined by

(3.6) q(x, ξ) :=

∫
Rn

(
1− ei(y,ξ)

)
µ(x, dy)

is a continuous and negative definite function in ξ, and therefore is a good candidate for a symbol
of a nice Feller process. It is clear that properties of q are fully determined by the properties of
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µ(·, dy), and therefore the properties of µ(·, dy) are decisive with regard to whether q is the symbol
of a nice Feller process. Thus natural questions that one needs to consider are:

(1) For what families of measures µ(·, dy) does there exist a nice Feller process corresponding
to q?

(2) Is it unique in the sense of finite-dimensional distributions?
(3) What are the properties of processes corresponding to symbol q defined in such a way?

The answer to the first two questions is positive provided that the family of measures µ(·, dy) is such
that q given by (3.6) satisfies either conditions of Proposition 2.23 or Proposition 2.26. To answer
the third question one should first plug the above formula for q into (2.14). Then, using the basic
property of Fourier transforms,

ei(y,ξ)û(ξ) = ̂u(·+ y))(ξ),

one concludes that

Au(x) =

∫
Rn

(u(x+ y)− u(x))µ(x, dy)

for every u ∈ C∞0 (Rn). This form of generator corresponds to a Markov jump process (see Ethier,
Kurtz [7, Section 4.2, p.162]), and measures µ(·, dy) are jump measures.

Example 4. [Generalized two-dimensional point Markov processes] Consider analytic symbols q1

and q2 given by

qj(xj , ξj) :=
(
1− eiξj

)
ηj(xj), j = 1, 2,

where η1 and η2 are assumed to be nonnegative continuous functions. This implies that assumptions
S3(1), S4(1) and H3(1) are satisfied for q1 and q2. In view of Proposition 2.26 this is sufficient
for the related PDOs to have unique extensions that generate nice Feller processes, say Y 1, Y 2,

with symbols q1, q2 satisfying (2.25). Process Y j is a counting process with FY j

-intensity process

(ηj(Y
j
t−))t≥0, i.e.,

Y jt −
∫ t

0

ηj(Y
j
s−)ds

is an FY j

local martingale. By analogy with Example 3, we define

µ(x, dy1, dy2) = δ(0,1)(dy1, dy2)λ(0,1)(x) + δ(1,0)(dy1, dy2)λ(1,0)(x) + δ(1,1)(dy1, dy2)λ(1,1)(x),

where λ(0,1)(x), λ(1,0)(x), λ(1,1)(x) are nonnegative continuous functions satisfying

λ(0,1)(x) + λ(1,1)(x) = η2(x2),

λ(1,0)(x) + λ(1,1)(x) = η1(x1).

Just as in Example 3, λ(1,1)(x) cannot be too large:

0 ≤ λ(1,1)(x) ≤ ηi(xi), i = 1, 2.

So λ(1,1) is bounded, and also λ(1,0), λ(1,0) are bounded. Then the corresponding symbol given by

q(x, ξ) :=
(
1− eiξ2

)
λ(0,1)(x) +

(
1− eiξ1

)
λ(1,0)(x) +

(
1− ei(ξ1+ξ2)

)
λ(1,1)(x).

satisfies S3(n), S4(n) and H3(n). Therefore q is a symbol of a nice Feller process. One can easily
check that this is indeed a symbol such that (3.1) holds, so it is a symbolic copula for q1, q2. �

Example 5. [Generalized n-dimensional Markov point processes] Now we generalize the above
example to n dimensions. Thus, we consider a family of analytic symbols q1, . . . , qn given by

qj(xj , ξj) :=
(
1− eiξj

)
ηj(xj), j = 1, . . . , n,

where ηj , j = 1, . . . , n, are assumed to be bounded, nonnegative continuous functions. This implies
that assumptions S3(1), S4(1) and H3(1) are satisfied for qj ,j = 1, . . . , n. In view of Proposition 2.26
this is sufficient for the related PDOs to have unique extensions that generate nice Feller processes,
say Y 1, . . . , Y n, with symbols q1, . . . , qn satisfying (2.25).
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Now, in order to construct a relevant symbolic copula, we introduce some notation. We set
S := 2{1,...,n}, Jk := {S ∈ S : card(S) ≥ k}. Given that, we construct a symbolic copula q using
formula (3.6) with the family of jump measures µ(·, dy) specified as

µ(x, dy) :=
∑
S∈J1

λS(x)
⊗
k∈S

δ{1}(dyk)⊗
⊗
l∈Sc

δ{0}(dyl),

where λS-s are nonnegative continuous functions indexed by S ∈ S, chosen in such a way that for
each j = 1, . . . , n we have ∑

S∈J1:j∈S
λS(x) = ηj(xj), ∀x ∈ Rn.

Hence,

λS(x) ≤ ηj(xj), ∀j ∈ S, ∀x ∈ Rn,
which implies that λS is bounded. Thus q satisfies

q(x, ξ) =
∑
S∈J1

(
1− ei(e(S),ξ)

)
λS(x),

where e(S), for S ∈ S, denotes the vector in Rn defined by

e(S)j :=

{
1 for j ∈ S,
0 for j /∈ S.

It is straightforward to verify that conditions S3(n), S4(n) and H3(n) are satisfied, thus q is a
symbol of a nice Feller process. To check that this symbol gives a symbolic copula for q1, . . . , qn, we
note that (

1− ei(e(S),ekξk)
)
λS(x) =

(
1− eiξk

)
λS(x)1{k∈S},

hence

q(x, ekξk) =
∑
S∈J1

(
1− eiξk

)
λS(x)1{k∈S} =

(
1− eiξk

) ∑
S∈J1:k∈S

λS(x) =
(
1− eiξk

)
ηk(xk) = qk(xk, ξk),

and thus (3.1) holds. �

Example 6. [Markov jump processes] We consider a family of analytic symbols q1, . . . , qn of the
form

(3.7) qj(xj , ξj) := ηj(xj)

∫
R

(
1− ei(yj ,ξj)

)
rj(xj , dyj),

where ηj , j = 1, . . . , n, are nonnegative, bounded continuous functions, and the rj are probability
measures. We assume that conditions S3(1), S4(1) and H3(1) hold for q1, . . . , qn.6 In view of
Proposition 2.26 this is sufficient for the related PDOs to have unique extensions that generate nice
Feller processes, say Y 1, . . . , Y n, with symbols q1, . . . , qn satisfying (2.25). With the notation as in
Example 5 we construct a symbolic copula q using formula (3.6) with the family of jump measures
µ(·, dy) specified as

(3.8) µ(x, dy) :=
∑
S∈J1

λS(x)

⊗
j∈S

rj(xj , dyj)⊗
⊗
i∈Sc

δ{0}(dyi)

 ,

where the λS are nonnegative continuous functions indexed by S ∈ S such that for every j = 1, . . . , n
we have

(3.9)
∑

S∈J1:j∈S
λS(x) = ηj(xj), ∀x ∈ Rn.

Again, for every S ∈ S we have

λS(x) ≤ ηj(xj), ∀j ∈ S, ∀x ∈ Rn.

6Conditions for rj-s, under which these assumption is satisfied will be investigated elsewhere.
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The corresponding symbolic copula q is given by

q(x, ξ) =
∑
S∈J1

λS(x)

∫
Rn

(
1− ei(y,ξ)

)⊗
j∈S

rj(xj , dyj)⊗
⊗
i∈Sc

δ{0}(dyi)

 .

To see that this is indeed a symbolic copula for q1, . . . , qn defined in (3.7), we first note that for each
S ∈ S,∫

Rn

(
1− ei(y,ekξk)

)⊗
j∈S

rj(xj , dyj)⊗
⊗
i∈Sc

δ{0}(dyi)


=

∫
Rn

(
1− eiykξk

)⊗
j∈S

rj(xj , dyj)⊗
⊗
i∈Sc

δ{0}(dyi)

 = 1{k∈S}

∫
R

(
1− eiykξk

)
rk(xk, dyk).

The above calculation implies that for all k ∈ {1, . . . , n} we have

q(x, ekξk) =
∑
S∈J1

λS(x)1{k∈S}

∫
R

(
1− eiykξk

)
rk(xk, dyk)

=

( ∑
S∈J1:k∈S

λS(x)

)∫
R

(
1− eiykξk

)
rk(xk, dyk)

= ηk(xk)

∫
R

(
1− eiykξk

)
rk(xk, dyk) = qk(xk, ξk),

where the third equality follows from (3.9), and thus (3.1) holds. �

In the previous example we have constructed a copula for given Markov jump processes by
adding the possibility of common jumps. Note that the distribution of these common jump sizes
was taken to be the product of marginal distributions. In the next example we will show that it is
also possible to introduce dependence between common jumps by using ordinary copulae between
finite-dimensional random variables; however, we will have to sacrifice some generality of processes
under consideration.

Example 7. [Markov jump processes with space homogeneous jump size distribution] We consider
a family of analytic symbols q1, . . . , qn of the form

(3.10) qj(xj , ξj) := ηj(xj)

∫
R

(
1− ei(yj ,ξj)

)
rj(dyj),

where ηj , j = 1, . . . , n, are nonnegative, bounded continuous functions, and the rj are probability
measures. In view of Proposition 2.26 this is sufficient for the related PDOs to have unique extensions
that generate nice Feller processes, say Y 1, . . . , Y n, with symbols q1, . . . , qn satisfying (2.25).

Process Y j is a Markov jump processes with jumps size distribution that is independent of x; we
will call such processes space homogeneous Markov jump processes. Similarly as before, we construct
a symbolic copula q for q1, . . . , qn by exploiting formula (3.6). Here we specify the family of jump
measures µ(·, dy) as

(3.11) µ(x, dy) :=
∑
S∈J1

λS(x)

(
CS(rj(dyj), j ∈ S)⊗

⊗
i∈Sc

δ{0}(dyi)

)
,

where for S ∈ J1, CS is an ordinary copula on [0, 1]S , and where λS-s are nonnegative continuous
functions indexed by S ∈ S, and such that for every j = 1, . . . , n we have

(3.12)
∑

S∈J1:j∈S
λS(x) = ηj(xj), ∀x ∈ Rn.
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The symbolic copula q that corresponds to µ via (3.6) is given by

q(x, ξ) :=
∑
S∈J1

λS(x)

∫
Rn

(
1− ei(y,ξ)

)(
CS(rj(dyj), j ∈ S)⊗

⊗
i∈Sc

δ{0}(dyi)

)
.

Again, to see that this is indeed a symbolic copula for q1, . . . , qn defined in (3.10), we first note that
for each S ∈ S,∫

Rn

(
1− ei(y,ekξk)

)(
CS(rj(dyj), j ∈ S)⊗

⊗
i∈Sc

δ{0}(dyi)

)

=

∫
Rn

(
1− eiykξk

)(
CS(rj(dyj), j ∈ S)⊗

⊗
i∈Sc

δ{0}(dyi)

)
= 1{k∈S}

∫
R

(
1− eiykξk

)
rk(xk, dyk),

where the last equality follows from the fact that CS(rj(dyj), j ∈ S) is a probability measure with
given marginals rj(dyj) for j ∈ S. Now by analogous arguments to the ones used in the previous
example we find that q(x, ekξk) = qk(xk, ξk) for all k ∈ {1, . . . , n}. Consequently (3.1) holds. �

Example 8. [Markov jump-diffusion processes with space homogeneous jump size distribution] We
consider a family of analytic symbols q1, . . . , qn of the form

(3.13) qj(xj , ξj) := −idj(xj)ξj + cj(x)ξ2
j + ηj(xj)

∫
R

(
1− ei(yj ,ξj)

)
rj(dyj),

where di, ci are functions satisfying S1(1)–S2(1), ηj , j = 1, . . . , n, are nonnegative, bounded con-
tinuous functions, and the rj are probability measures. In view of Proposition 2.26 this is sufficient
for the related PDOs to have unique extensions that generate nice Feller processes, say Y 1, . . . , Y n,
with symbols q1, . . . , qn satisfying (2.25).

Process Y j is a Markov jump-diffusion processes with jumps size distribution that is independent
of x. Similarly as before, we construct a symbolic copula q for q1, . . . , qn by exploiting formula (2.15),
so the symbolic copula q is given by

q(x, ξ) := −i(b(x), ξ)+(ξ, a(x)ξ)+
∑
S∈J1

λS(x)

∫
Rn

(
1− ei(y,ξ)

)(
CS(rj(dyj), j ∈ S)⊗

⊗
i∈Sc

δ{0}(dyi)

)
.

where the functions b : Rn → Rn, a : Rn → L(Rn,Rn) satisfy (3.5), and moreover a is symmetric
and chosen so that S1(n) holds, and for each S ∈ J1, CS is an ordinary copula on [0, 1]S , and λS

satisfies (3.12). By combining calculations from Examples 2 and 7 we immediately obtain that q is
a symbolic copula for q1, . . . , qn defined in (3.13). �

Remark 3.4. We stress that the above examples are motivated by those presented by Bielecki,
Vidozzzi and Vidozzi [3] by using infinitesimal generators of Markov processes. It appears however
that the approach based on symbols is more transparent and gives a relatively simple condition to
verify.
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