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Abstract. This paper develops a continuous time risk-sensitive portfolio opti-
mization model with a general transaction cost structure and where the individual
securities or asset categories are explicitly affected by underlying economic fac-
tors. The security prices and factors follow diffusion processes with the drift and
diffusion coefficients for the securities being functions of the factor levels. We
develop methods of risk sensitive impulsive control theory in order to maximize
an infinite horizon objective that is natural and features the long run expected
growth rate, the asymptotic variance, and a single risk aversion parameter. The
optimal trading strategy has a simple characterization in terms of the security
prices and the factor levels. Moreover, it can be computed by solvitgk @en-
sitive quasi-variational inequalityThe Kelly criterion case is also studied, and
the various results are related to the recent work by Morton and Pliska.
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1 Introduction

The mathematical problem of optimally managing a portfolio of securities when
there are transaction costs has received considerable research attention in recent
years. For the classical problem where the objective is to maximize expected
utility of terminal wealth, most of the attention has been devoted to the case of
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proportional transaction costs, that is, to the case where the cost associated with
a transaction is proportional to the amount of money that is shifted between the
securities. Representative of work in this category are the papers by Cvitanic and
Karatzas [10], Davis and Norman [11], Taksar et al. [33], Fleming et al. [15],
and Shreve and Soner [31]. Typically, the optimal strategy is characterized by a
no-trade region, with trading that is essentially continuous on its boundary used
to keep a certain process contained in the region.

Other authors assumed the transaction cost has a fixed component, thereby
precluding the optimality of continuous trading. For example, Morton and Pliska
[26] (see also Pliska and Selby [28]) assumed the transaction cost is proportional
to the current value of the portfolio, and they showed the optimal strategy is
characterized by a fixed vector of portfolio proportions together with an optimal
stopping rule, a pair which can be computed by solving a free boundary problem.
Eastham and Hastings [12] and Hastings [17] considered a more general set-up for
transaction costs having a fixed component, although they obtained less specific
results. Instead of using optimal stopping theory, they characterized the optimal
strategies in terms of quasi-variational inequalities. Indeed, the approach that will
be presented in this paper was largely inspired by the Eastham and Hastings work
which, in turn, seems to have been inspired by Bensoussan and Lions [3].

In very recent work Korn [20] applied the theories of optimal stopping and
guasi-variational inequalities to two portfolio management problems, both involv-
ing two assets (a bank account with interest rate zero and a geometric Brownian
motion stock) and transaction costs of the form

K +K|AS],

where AS is the amount of funds added to the stock position when a transaction
occurs. One problem is to maximize expected utility of wealth at a fixed, finite
time horizon; the other is to maximize expected discounted utility of consumption
over an infinite planning horizon, where consumption occurs in discrete lumps at
discrete intervention times. Korn characterized the optimal solutions and showed
how they may be computed with iterative schemes. His asset and transaction cost
models are special cases of ours, but his two portfolio management problems do
not overlap with our infinite horizon risk sensitive objective.

In all of this literature the assets are modeled with conventional stochastic
differential equations as in Merton [24], for example. In other words, the only
physical processes being modeled are the assets themselves along with the bank
account and its short term interest rate. Moreover, there is no explicit dependence
of the asset processes on this interest rate. Meanwhile, Bielecki and Pliska [5],
Bielecki et al. [6], Brennan et al. [9], Brennan and Schwartz [8], and Merton [25]
have developed transaction-free optimal portfolio models where the asset pro-
cesses explicitly depend on underlying economic factors which are also explicitly
modeled with stochastic differential equations. This allows the return processes
for the assets to be affected by economic factors such as interest rates, unem-
ployment rates, and dividend yields. The optimal strategies therefore depend on
the levels of these factors.
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As explained more fully in Bielecki et al. [6], there are at least two rea-
sons why it is desirable to explicitly include factor processes in the optimization
model. First, factors are often used to make forecasts of asset returns, so their
inclusion facilitates understanding of the statistical issues and estimation difficul-
ties. Second, the optimal strategies that are obtained when the factor processes
are included are often different from, and thus superior to, those obtained with
the certainty equivalence approach. In other words, the naive approach of first
computing statistical estimates of asset drift and diffusion coefficients by conduct-
ing, say, linear regressions of returns against factor levels and then substituting
these statistical estimates in formulas that emerge from conventional optimization
models will lead to strategies that are not optimal. This difference is sometimes
called the “hedging effect” in the financial economics literature.

The aim of this paper is to combine these two streams of research and de-
velop a portfolio optimization model that features transaction costs as well as
economic factors which affect the assets. The transaction costs will have a fixed
component, so we will follow the impulse control approach taken by Eastham
and Hastings [12] and Hastings [17]. We will also take the risk sensitive control
theory approach developed by Bielecki and Pliska [5] in order to solve models
which have factor processes included. As explained in Bielecki et al. [6], the
risk sensitive objective is to maximize the risk adjusted exponential growth rate
(i.e., the volatility adjusted geometric mean return), and so the resulting set-up
is analogous to the Markowitz single period model, except the risk and mean
return measures are with respect to an infinite planning horizon, and points on
the efficient frontier are computed only approximately.

The main result in this paper is our characterization of optimal trading strate-
gies in terms of what we calisk sensitive quasi-variational inequalitigRS-

QVI). This is presented in Sect. 4 along with two corollaries which give sufficient
conditions for ruling out optimal strategies where one should rebalance more than
once at the same point in time. The problem formulation and some preliminary
results are presented in Sects. 2 and 3, respectively.

The results in Sect. 4 are for cases where the risk adjustment to the exponential
growth rate is nontrivial. With no adjustment one has the classical objective of
maximizing the exponential growth rate, that is, maximizing expected log utility.
Also called the Kelly criterion, this is what we call the risk null criterion and
is the subject of Sect.5. We characterize an optimal solution corresponding to
this criterion in terms of what we caliisk null quasi-variational inequalities
(RN-QVI).

Finally, in Sect.6 we revisit the Morton and Pliska [26] problem, showing
explicitly how it is solved via risk sensitive quasi-variational inequalities. Various
proofs are relegated to an appendix.

It is important to stress that in this paper we do not study the existence
and uniqueness of solutions of our quasi-variational inequalities. This will be an
objective for a future publication. However, the examples discussed in Sect. 6 do
lead to explicit solutions for both the RS-QVI and the RN-QVI.
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2 Formulation of the problem

We shall consider a market consisting raf > 1 risky securities, one risk-free

security (a bank account) amd > 1 factors. The set of risky securities may

include stocks, bonds and derivative securities, as in [8] for example. The set

of factors may include dividend vyields, price-earning ratios, short-term interest

rates, the rate of inflation, etc., as in Pesaran and Timmermann [27] for example.
Let (2, {%},.7, P) be the underlying probability space. Denoting ®t)

the price of the i-th security and b (t) the level of the j-th factor at time,

we consider the following market model for the dynamics of the security prices

and factors:

dSS;(Et)) = Ag(X(t))dt (risk — free security

dsiét)) = Ai(X(t))dt+mz:maik(X(t))dV\.{<(t), i=12....m

S0) = s>0, i:€11,2,~~~,m, (2.2)
dX(t) = B(X(t))dt + AX(0))dW(t), X(0) =x, 2.2)

where W(t) is a R™" valued standard Brownian motion process with com-
ponentsW(t), X(t) is the R" valued factor process with componerXs(t),

and the market parameter functioA&) := [Ao(X) Av(X) ... An()]T, E(X) :=
[aik(x)]:fll,’;’_'_'_';nr?"”, A(X) := [)\jk(x)]rjll,’zz."‘_‘_'y’,?””, andB(x) are matrix-valued func-
tions of appropriate dimensions, which satisfy standard conditions as in Borodin
and Salminen [7], 111.4.17, page 45. It is well known that under such conditions
a unique, non-explosive, strong solution exists for (2.1), (2.2). Moreover, the
processes (t) are positive with probability 1 (see e. g. [19], chapter 5). This is
an extension of the model that was studied by Bielecki and Pliska [5]. For the
purpose of this paper, however, we shall need to assume a stronger condition
abouti(x), namely, that it is a bounded function.

Let % = o((S(s), X(8)),0 < s <'t), whereS(t) = (Si(t), (1), ..., Sn(t)) is
the security price process. As usual, all filtrations considered here are assumed
to be completed.

Due to the nature of transaction costs that are going to be considered, it
will be appropriate to study impulsive investment strategies, rather than singular
control strategies (see e.g. Fleming and Soner [16], Karatzas [18] and references
therein for descriptions of the latter). An impulsive investment strategy
(7, Nk), k=0,1,2,...) is defined as follows:

@m=0<1<... <7 < 7e1 < ... are (%)-stopping times (these are
portfolio rebalancing times),

(b) 7« — oo almost surely ag — oo,

() Nk = [Nko Nk_yl...Nk,m]T is &, measurable, wher&l; is the number
of shares of security to which the investor rebalances her/his portfolio at the
transaction timer,, and

(d)Ng; >0,i=0,1,2,...forall k >0.
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Similarly as in Eastham and Hastings [12] we define for each impulsive
investment strategy a random sequence:

rng_: |nf{I >1: Tk<7—k+l}7 if 7« < o0
' 0, otherwise.

Remark 2.1Note that in view of the condition (b) above we have thgft < co
almost surely for eaclkk > 0. Although some transaction cost structures will
allow the investor to rebalance multiple times at the same point in time, sooner
or later she/he must let the clock run. Thus for eacbuch thatn (w) < oo we

shall haverk(w) = Tk+1(w) =...= Tk+m<(w)71(w) < Tk+m((w)(w).

We shall need to consider in what follows the share holding prokié'$s)
defined for each impulsive investment strateggs

Nu(t) = Nk+m:'—l; te [Tk+m|‘:—lv7—k+m|l<’[7 k :Oa 1; 27"'7m'

Let us also denote bk (s, N) a vector valued function ofs(N) € (0, oo)™?! x
[0, 00)™? with components

_sN . e T
Hi(S’N)_sTN’ i=0,12....m,if sSN >0,
otherwise
Ho(s,N)=1, Hi(s,N)=0, i=12,...,m.

In order to simplify the exposition we shall writ¢'(t) instead ofH (S(t), NY(t)).
Thush(t) represents the fraction of the investor’s titnerealth (generated by
the impulsive investment strategy) that is held in security. (Compare also
Morton and Pliska [26], Bielecki and Pliska [5].)

Remark 2.20bserve that for any impulsive investment strategy, condition (d)
implies that short selling of the securities is prohibited, and consequently it holds
that

0< sup h'(t) < 1.

i=0,1,2,...,m; t>0

Remark 2.3Note that by Remark 2.2 and our assumption tﬁ@t) is bounded,
for each impulsive investment strategyand for eacht > 0 we have

t u
Ee(l/Z)f0 [h*(r )T ZX ()| 2dr < 00

where

20= (0 5 )

and whereE is the expectation with respect B
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The transaction costs will be modeled by means of a fun@its N, N’) rep-
resenting the cost of the transaction when the security prices ar@, oc)™?%
and the portfolio changes froml € [0,00)™?! to the rebalanced portfolio
N’ € [0, c0)™1. We assume the following abo(:
(c1) C is lower-semi-continuous (see Bertsekas and Shreve [4], Definition 7.13),
(c2) C(s,N,N’) > 0 for all s € (0, 00)™* andN,N’ € [0, co)™1,
(c3) For each 0< Kk < oo there exists some number > 0 such that

infrs N NsTN <R} [C(SSP,\‘N)} > 0.

Remark 2.4A popular example of a cost function of the above type would be
the “proportional to the transaction volume'tost function:C(s,N,N’) := ¢ +
ci|s"(N = N’)|, ¢ >0, c; > 0, for example. (Frequently it will also hold
that C(s,N,N) = ¢, as in this example.) Another important example is the
“proportional to the investor’s wealth leveltost function considered in Morton
and Pliska [26]:C(s,N,N’) := as"N, for some constant € (0, 1).

To the transaction cost functio@ there is associated a multifunction?
representing sets of admissible transactions:

A(s,N) = {N €[0,00)™ : sTN —C(s,N,N’) >s"N'},
for (s,N) € (0, 00)™b x [0, 00)™.

Each set#4(s, N) is compact. Boundedness is obvious. In order to see closedness,
let N/ be a convergent sequence so tNate . 4(s, N) for eachk, and limN, =
N’. Sinces (N —N;) > C(s, N, N/) for eachk, then taking liminf on both sides
and using ¢1) we obtain thas" (N —N’) > C(s, N, N’), and thusN’ € . #(s, N).
The following natural condition is analogous to (1.4) in [12]:

A(s,N)#0 <1[000...0]" €.4(s,N). (2.3)

We shall be assuming (2.3) in what follows. In particular this condition is satisfied
for the examples of the two cost functions given in Remark 2.4.

Remark 2.5Conditions ¢1) and (2.3) imply that the sét = {(s,N) : . 4(s,N) #

()} is closed. Similarly as in Lemma 2.7 of [12] it can be easily demonstrated that
the multifunction -2 is upper-semi-continuous (u.s.c.) in the sense of Kuratowski
(see [23]) on the seA.

We can now define an admissible impulsive investment strategy:

Definition 2.1 An impulsive strategy & ((7x, Nk), k =0,1,2,...) isadmissible
if and only if

Nk € . 2(S(x), Nk—1), ST(mNk >0, k=0,1,2, ...,

where N ; denotes the portfolio held prior to the first rebalancing time= 0,
about which we assume that ®)N_; > 0. We let2# denote the set of admissible
impulsive investment strategies.
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In this paper we shall investigate the following family of risk sensitized
optimal investment problems, labeled &) :

for 6 € (0, 00), maximize the risk sensitized expected exponential growth rate of
the investor’s portfolio, namely

Jo(s,X;u) = Iitm_)Lgf(—Z/e)t‘lln E [(ST(NU(t))~#|S(0) =5, X(0) =x], (2.4)

over the class of all . ¢, subject to (2.1) and (2.2).

Remark 2.6We are using the terminologgxpected exponential growth rate of
the investor’s portfolialue to the fact that for eadhthe expected value of the in-
vestor portfolio is of the order of magnitude equakf@jPected exponentiggrowth rate)t,

For the interpretation and the discussion of the functional (2.4) please see Bielecki
and Pliska [5] for example.

Remark 2.7Let us denote by !(t) the investor's wealth at time correspond-
ing to the impulsive investment strategy that is, VY(t) = ST(t)NY(t). The
timet cumulative return on the investor’s portfolio, adjusted for the portfolio’s
volatility, is given by

oftavee) 1t L "
ARY(t) ._/0 Vg ) —(é)/0 hu(r)" 2(X(r))ZT (X (r))h"(r)dr.

According tolt&’s formula we have, fot > 0,

InVU(t) — InvVY(0) = ARY(t)+ Z [In(V”(r)/V“(r—))

o<r<t

— ((V“(r) — V(=) /VU(r —))}

Because U (1)) (2 = el-(9InV*®} then maximizing the risk sensitized ex-
pected exponential growth rate of the investor’'s portfolio, as in (2.4), is related
to maximizing the risk sensitized expected growth rate of the investor’s portfolio
cumulative return adjusted for the portfolio’s volatility.

It is perhaps interesting to observe that maximizing the risk sensitized ex-
pected exponential growth rate of the investor’'s portfolio, under the restriction
that the resulting wealth processes are continuousgisvalent to maximizing
the risk sensitized expected growth rate of the investor’'s portfolio cumulative
return adjusted for the portfolio’s volatility, because then we have

INVU(t) — InV¥(0) = ARY(1).

This is not the case here, however, since implementation of non-trivial admis-
sible impulsive strategies prohibits the resulting wealth processes from being
continuous.
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Remark 2.8The positive value of the risk sensitivity paramefecorresponds

to a risk averse investor (see Bielecki and Pliska [5] for example). The risk null
case, wher@ = 0, will be studied in Sect. 5. This case can be thought of as the
limit of the risk averse situations as the risk sensitivity paramggoes to zero
(compare discussion at the end of Sect. 4).

The main result of this paper, that will be presented in Theorem 4.1, is that
the solution to the above family of problems is characterized in terms of the risk
sensitive quasi-variational inequality (RS-QVI) (4.1). Before that, however, we
need some preliminary results.

3 Auxiliary results

In this section we shall obtain a convenient transformation of the functional
Jo(S, X; u).

Towards this end we first observe that:

> (Tks1At)—
nSTONY) = 3 xiney [ [T dwmsTemo
k=0 ™
+In(ST (n)Nk) — |n(ST(Tk)Nk1)} ; (3.1)
wherex-<;; =1 if 7 <t and = 0 otherwise.

Let us now defineggi(s,N) := In(s"N), g2(s,N) := —In(s"N), the scalar
valued functionf (x, h) := AT(x)h, and the 1x (m +n) vector valued function
v(x,h) = hT X(x), whereh = [hg h; ... hy] € R™Yandh :=[h; hy ... hy].
Using It 6’s formula we thus obtain;

In(ST(ONY(1) = /Otf(x(r),h“(r))dr

+ Z X{n <t} [Ql(ST (1), Nie) + g2(ST (1), Ni—1)
k=0

t
~(1/2) / I (X(). he(r )| P
0
t
+ / AX(), RE(E)AW(D). (32)
0
Consequently, we obtain

(STON"@) 2 = exp{ - 9(/t fo(X(r), h*(r))dr
2\ Jo ’

+3 Xiney {gl(sT (n). N) + 02(ST (), Nkl)} )

k=0
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t
—(1/2) /O Ia(X(r), R ()| 2dr

t
« [ autxco h“(r»dW(r)}, (3.3)
0

where
fo0, 1) 1= 10 0) — (120 + Dl W2
and
00, h) = —(0)0x, ).

Remark 3.10bserve that the functiofy(x, h) is equal to the negative of the
argument minimized ifKy(x) of Bielecki and Pliska [5].

Owing to Remark 2.3, for each € ¢ and6 > 0 we can define an equivalent
measureP"-? by:

dpuf
dP

t
= exp{—<1/2) /0 o (X(r). ()12

t
+ [, h“(r))dvv(r)}. (3.4)
0

(Note that we do not claim the uniqueness of the meaBtife) Thus we can
finally reformulate the functionaly(s, x; u) in terms of P“-? as follows:

Jo(s,x;u) = Iitmﬁngf(—Z/G)tflln gu?
t
X {exp{ — g [/o fo(X(r), h¥(r))dr

£3 Xpnen [gl(sT (n).No)
k=0

+g2(ST(n0), Nkl)] HS(O) =s.X(0)=x|,  (35)

where EY-Y denotes expectation und@&?. Observe that the term under the
exponent is written in the form typical for the theory of impulsive stochastic
control (see e.g. Bensoussan and Lions [3], Bensoussan [2], Robin [29], Stettner
[32] and references therein).

4 The characterization theorem

In this section we shall characterize optimal, risk-sensitive, impulsive investment
strategies for the family of optimization problerRg introduced in Sect. 2.

For eachu € 77 it will be convenient to introduce a piece-wili® process:
YH(E) = (S(), X(1),
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NY(t))". We shall be denoting the state of the proc¥&ét) by y = (s,x,N)" €
@ = (0,00)™1 x R" x [0, 00)™. For future use we shall also denofe :=
(0, 00)™1 x R,

Between two consecutive but separated transaction tifags_1 and 7i+m,
the processy Y(t) is an I8 process with a differential operator, denoted Lty
under the measure":?. Before we give the expression for the operator, we need
to introduce the notation:

A(s,x) :=Diag[Ai(x),i =0,1,2,...,m]s,

00 e 00
s121(X)
$22(X) 5 5
(s, X) = . , 25 (x) := the i-th row of X (x),
SmZN;m(X)
A(s, X)
aly) = ( B(x) > ;
0

S(s, x)
Bly) = ( A(x) ) ;
0

ap(y) = aly) + By)vg (s, H (X, N)).
Observe that the dimensions of the above matrices are:

A(s,x) — ((m+1)x1),
S(s,x) — ((M+1)x (m+n)),
aly) — (@m+2+n) x 1),
Bly) — ((@m+2+n)x(m+n)).

Remark 4.1Let W' (t) be a Brownian motion unddé™-?. If 7, < 741 then the
processY!(t) satisfies the following SDE for € [y, Tk+1[:

dY!(t) = ag(YU(t)dt + BY U (E)dW (1),
with the initial condition
YU(7) = (S(7x), X(7k), Nk).
The operatoi.? can now be defined as

LOo(y) = ag (y)dy(y) + (1/2)tr (B(Y)B" (Y)dyy(Y)).-
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Remark 4.2Note thatL? does not really act on the compone¥itof y, that is,
L?¢(y) does not depend dM. This is because the proces$(t) is fixed between
two consecutive impulse times.

Let us also define another operator:

Moo= sup | (5) s+l ) + e x. N,

N’€.2(s,N)

where, as usual, treupremuntaken over thempty seequals—oc. It is perhaps
interesting to observe that the operaM¥ is a “local optimization” operator
acting on dbias function” ¢. The terminology “bias function” is borrowed here
from the theory of stochastic control with long-run-average optimization criteria.

We shall be considering the following risk-sensitive quasi-variational inequal-
ity (RS-QVI), which is to be solved for a constaktand a functionp on 7

A
o

o) - @/l s0IE - (3) (- < o yeime,
-M%(y)+o(y) > 0, ye,

L6(y) — (1/2)]l¢] 0B - (2) (A - f_e(y))] (4.1

\%

{ M o(y) + ¢(y)] 0, ycint®,

wheref_g(y) =fo(X,H(s,N)), and wherent” is the interior of the domain”.
Related to the RS-QVI (4.1) is theontinuation set

.7?5_./,3,3/' = {y e :-M 9¢(Y) + ¢(y) > 0}

We now suppose)!, ¢?) is a solution pair for (4.1) withp? being sufficiently
regular. We denote the continuation set corresponding to this pai#ly

Remark 4.3The functiong’ does not have to be a classical (i.e. smooth) solution.
What we require is that’ is upper-semi-continuous af and that we can apply

a (generalized) &t Tormula to it in the proofs below. This will be satisfied if, for
example,¢?(-,-,N) is in the Sobolev space/>P(2") for a sufficiently largep,

for everyN. In addition we require tha;bg can be used to construct the measure
%9 for the purpose of stating Theorem 4.1 below.

The study of existence of a pain{, ¢°) satisfying the above properties
will be the subject of future work. Note that once existence of such a pair is
demonstrated, then it will follow from the verification Theorem 4.1 below that
MY (but not necessarily?) is unique.

Whenever the generalizedlférmula is to be used in the proofs below, then
it will be assumed that the non-degeneracy condition in Krylov [21], Sect. 2.10,
is satisfied for the functiori(y), which is obtained from3(y) by deleting the
first row and the lasin + 1 rows.
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Remark 4.4The functionM ?¢?(y) is an upper-semi-continuous function yf
(s,x,N) with (s,N) € A andx € R" (compare Lemma 2.8 in [12], or Proposition
7.32 in [4]).

We shall now construct what will turn out to be an optimal sequente=

(¢ N9), k =0,1,2,...) and a corresponding proce¥s’ (t), which we shall
denote for simplicity agr?(t). To this end it will be convenient to introduce a
measurable selector, which exists due to Remark 2.5 and Remark 4.4 (see e.g
[12] and [30] for details):

. 0 / /
N G(Sa X, N) = argma&l’e 4(s,N) |: <2> (91(37 N ) + gZ(Sa N)) + ¢9(S, X, N ) .

Next we setr{ = 0. In addition if §(0), X(0), H (S(0), N_1),N_;) € .72 then
we setN09 = N_;; otherwise we set

Ng' =.77%(S(0), X(0),N_1).

In general, fork > 1 we define (as usual, the inf taken over an empty set is
+00):
Tkg =inf {t Z 7-ke—l : (S(t)a X(t)7 Nke—l) ¢ '*‘%9}7

and
N = 47 0(S(), X (1), NE_y).

For ease of exposition we also define
m’=m, k=0,12,...
It will follow from Lemma 4.1 below thatf < oo for eachk. Finally we define
NO(t) := Ngamo_1, for t e [Tlf+nf_1, T|f+mk9)7 k=01,2,...,

and
YO(t) = (S(t), X(t),N?(t)), t > 0.

Remark 4.50bserve that the following important equality follows from the def-
inition of the operatoM ? and from the above construction:

S XN = (3 ) (SN

SN 1)) + 0 XN,
Moreover, ifrf_; < 7¢, then

o0 = (5 ) (SN + ol SELNE ) ) + 62,
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Remark 4.60bserve that almost surely for eakh= 0,1,2, ... we have that
S(i&)TNG > 0.
In fact, let us fixk > 0 and assume tha(7{)"N_; > 0. Next we observe

that S() TN/ = 0 if and only if g1(S(7¢)TNf) = —oco. But then of course the
equalities in Remark 4.5 are violated, a contradiction. Since we initially assumed
in definition 2.1 thatS(0)"N_; > 0 we thus conclude th&(r/)"NJ > 0 holds
almost surely for eack =0,1,2, ... ..

We shall demonstrate in Lemma 4.1 that the sequericeonstructed as above

is an admissible impulsive investment strategy. Then in Theorem 4.1 we shall
demonstrate that this is in fact an optimal impulsive investment strategy or
and that\? is the optimal value of our risk-sensitive objective criterion.

Lemma 4.1 Let us assume all the conditions of Sect.2. Then the sequénce u
constructed above constitutes an admissible impulsive investment stratedy for P

Proof. See the Appendix. O

For eachu € 24 we define a new measure"-? by

iy

t T
| = ew{ @) [ 1o

t T
- /O o (Y“(r»ﬂ(vuu))dwuﬁ(r)},

whereWY-?(t) is a Brownian motion undep"-’.

Remark 4.7In Remark 4.3 we postulated that the functipf(y) is such that
%% is well defined as a probability measure. This will be the case if, for
example, the folowing condition is satisfied:

t 0T vu u 2
Eu,ee(l/z)fD Iy (YEEDNBYE)II(r) <o0o, for all t>0.

As stated in Remark 4.3, existence of such’4y) will be the subject of future
study. Section 6 below provides a non-trivial, interesting example of a problem
for which the corresponding functiap’ (y) satifies the required property.

The following characterization theorem is the main result of this paper.

Theorem 4.1 Let us assume all the conditions of Sect.2. Consider the pair
(\?, ¢?) and assume additionally that the functiofi satisfies the following con-
ditions for each ue 77, s and x:

lim inf(—2/0)t " In &% [exp <¢9(Y“(t))) ‘5(0) =s, X(0) =x] <0,

and
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lim inf(—2/60)t~1In %ue’e[exp (¢9(Y9(t))> ’5(0) =s, X(0)=x] =0,

where#'-¢ denotes the expectation with respecta®-?. Then the sequencé u
constructed above is an optimal impulsive investment strategysfoMoreover,
the constant\’ is the optimal value of the risk-sensitive objective criterion (2.3).

Proof. We have already demonstrated in Lemma 4.1 tifais an admissible
impulsive investment strategy.

To show thatu? is optimal, fix an arbitrary admissible impulsive investment
strategyu = ((7x, Nk), k=0,1,2,...), and letY"'(t) correspond to thisi.

Fix k > 1 so thatry_1 < 7« < oo, and taket € [Tiame—1, Tkemp[. From Ito’s
formula and from our RS-QVI we deduce that

»o{(-2) ]

t T
=exp{(1/2) Jof v @nsere|ar — |

Tk+m‘l<1—1

W — f‘e(Y”(r»)dr}
amd—1
t

L9¢9(Y“(r))dr}

Tk+rn“j—1

t
= exp{cﬁe(Y”(Tkm;—l)) — ¢’ (YU(1) + (1/2) 6 (YU(r)BCY ()| 2dr

Tk+m“(1 -1
t
+ /
Tk+rnl‘: —1

This implies that, using the definition of the operakdf and the fact thaty =

Tk+n”\t‘71,
t J—
exp{ (—Z) / (Ae—fe(Y“(r)»dr}

k+my—1

<ep{ormen+ > | (-5) @aSmo. M+ a0 -]

1=k

¢§’T(Y”(r))B(Y”(r))dW“")(r)}-

t T
—¢(Y“(t))+(1/2)/ gy (Y (r)BCY ()| 2dr

t
- ¢;’T(Y”(r»ﬁ(Y“(r»dwu’f’(r)}.

Next, usinglt & again to substitute fap? (Y Y(r«—)), and then combining integrals,

we get t
exp{ (—Z) / (V—f‘e(Y“«)»dr}

< exp{¢9(Y“(Tk1>) + / " L0ghev e yar

-1



Risk sensitive asset management with transaction costs 15

k+my —1

+ > {(—Z) (gl(S(Tk),Nk)+92(S(Tk)aNk—1)):|

I=k

t T
v )+ 1/2) [ 16O e
t
- ¢§T(Y”(r))ﬂ(vua))dvv“ﬁ(r)}

=exp{ (v + ) [ 00 = acreer

k+my —1

+ %; {(—Z) (gl(S(Tk),Nk)+gz(S(Tk),Nk1))]
! T
S0 @/2) [ e ool

t
. ¢>§T(Y“(r»ﬂ(Y“(r))dwuﬁ(r)},

where the equality follows from the RS-QVI and a further combining of integrals.
Continuing untilk = 1 we eventually obtain

exp{ (—Z) /W (o fE(Y“(r)»dr}

< exp{¢o(ve(0)) () [0 R

9 k+my —1
- <2> > [91(3(71), Ni) + g2(S(n), N|_1)}
1=0

t
—o(YI(1) + (1/2)/O 1697 (YU (r)BCY () 2

‘ oT u u u,0
+ [ oo aw (r)}.

In other words for arbitrary > 0 we get
t L)
o] (5 [ Terenar—(3) 3 xas st Ny
> expf — a(r(O) - (5 ) 0 +acr(0)

t t
~(1/2) /0 16T (Y U(r)BCY ()| 2dr — /0 ¢3T(Y“(r»ﬁ(Y“(r))dwu-ﬂ(r)}.
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This means by (3.6) that
Jo(s,x;u) < N+ lim Lgf(—Z/o)rlm zul
[exp((40v(e) ) [0 =5, x(0) =x],
which implies by our hypothesis that
Jo(s,x;u) < M.

The above inequality becomes an equality dior u?. This completes the proof
of the theorem. O

Note that under our assumptions the risk-sensitive optimal investment prob-
lem that we consider here admits an optimal solution, with a finite value of the
objective criterion, for each value of the risk-sensitivity paraméter 0. As
we have already indicated above, we are not dealing with questions of exis-
tence/uniqueness/finiteness of solutions to our RS-QVI's in this paper. This is
left for a future publication which, in particular, will study dependence of the RS-
QVI on 6. In the example that we present in Sect. 6, the corresponding RS-QVI
admits a solution satisfying all our requirements.

In general the sequence of optimal transaction tifigs§ does not have to
be strictly increasing, that is, with’ < 7¢,, almost surely for everk such
thatn! < co. However, with a suitable additional condition imposed on the cost
functionC, then it is true that an optimal impulsive investment strategy exists for
which the sequence of optimal transaction times is strictly increasing. Before we
formulate a proposition to this effect let us first introduce the following definition:

Definition 4.1 A strategy u= {n,N¢} € # is called separatedif 7/ < 77,;
almost surely for every k such thaf < cc.

Proposition 4.1 In addition to all the conditions of Lemma 4.1, assume

(c4) C(s,N,N")—C(s,N,N")+C(s,N’,N”) > 0forall (s,N,N’) € (0, oo)™1x
[07 oo)2m+2.

Then a separated admissible impulsive investment stratéggmbe constructed
in the way described prior to Remark 4.5.

Proof. See the Appendix. O

Observe that the proportional to the volume transaction cost function (see Re-
mark 2.4) satisfies conditiofC4).

In case of a more stringent assumption on the cost structure and admissible
transaction sets, like the one considered by Morton and Pliska [26], we have
even a stronger result.
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Proposition 4.2 Assume (C1)-(C4). In addition assume that the cost function sat-
isfies:
(C5) there exists a constant € (0, 1) such that {s,N,N’) =as'N,
forall (s,N,N’) € (0, 00)™ x (0, 50)™? x [0, co)™?.
Moreover, suppose the sets of admissible transactions are defined as
#s,N) = {N'€[0,00)™ : sTN —C(s,N,N’)=s"N'},
for  (s,N) € (0, 00)™b x [0, 00)™?,

and assume all other conditions imposed on the system (2.1)-(2.3). Then every
impulsive investment strateg$ nonstructed in the way described prior to Remark
4.5 is separated.

Proof. See the Appendix. O

Before we conclude this section let us briefly discuss a formal limit of the
RS-QVI (4.1) when the risk-sensitivity parametedecreases to 0 (thésk-null
limit). Towards this end let us first observe that (4.1) can be rewritten as

IN

L?¢o(y) — (6/4)(¢0)y MBW)II* — (A — f_e(y)) 0, yeintc,

—M¢o(y) +doly) = 0, ye,

L6o(y) — 0/ (@al 0B (A _ fE(y))] @.2)
[—M¢e(y>+¢e(y)] = 0 yeinte,
where
Moaly) = sup {gl(s, N') + ga(s.N) + 6o(s. X, N')},
N’€. #(s,N)
and

po = (2/0)¢.
Now, consider a quasi-variational inequality which is like (4.2) above, except
that ¢ is replaced with a generic functioh:

IN

Laty) - O/IWEOIE - (A-T)) < 0 yeine,
-Maoy)+oy) > 0, yeo,

La(y) — (0/4)]%7 ()B)|? ~ (A _ fE(y))} @.3)

V

[— M &(y) +415(y)} 0, yeint@.

Letting & = 0 in (4.3) produces the risk-null quasi-variational inequality (5.3)
studied in the next section.
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5 Risk-null criterion (8 = 0)

In this section we consider the risk-null investment problem in the presence
of transaction costs. In the framework of Sect. 2 the objective functional to be
maximized now is the classical long-run log-utility (Kelly) criterion:

Jo(s. x; u) := liminf t~1E[IN(S(t)"NY(1))[S(0) =s,X(0) =x].  (5.1)

Similarly as in Sect. 3 one easily demonstrates (compare with (3.6)) that for every
u € 77 the above functional can be represented as

Jo(s, x;u) = Iitminft‘lE[/tF(X(r),h“(r))dr+
—00 0

+3 Xpmey {gl(sT (7N
k=0

+ga(ST (), Nkl)] ‘s<o> =S X0 =x|,  (5.2)
where
F(x,h) = (x, h) — (1/2)]7(c ).

Formally, Jo(s, x; u) is the limit asf | 0 of Jy(s, X; u). This can be made precise,
but we shall not do so in this paper. In addition, it is interesting to observe that
no change of measure is needed in order to obtal),(&hich is the counter-part
of (3.5) for the risk-null case.

Let us now define the operator:

Lo(y) := ' ()y(y) + (1/2)tr (BY)5T () dyy(Y)-

For the present case we shall need to consider a risk-null quasi-variational in-
equality (RN-QVI), which is to be solved for constaktand functiong:

Lo(y) —(A—F(y)) < 0, yeint?,
“Mo(y) +oly) = 0, ye,

[w -~ F (y)] [ ~Mofy)+ <z>(y)}

A

0, yeint@, (5.3)

whereF (y) := F(x,H(s,N)) and the operatoM was defined at the end of the
preceding section. Related to the RN-QVI (5.3) is the continuation set:

T =y € O 1 =Mg(y) + o(y) > 0}.
We now suppose)l, ¢9) is a solution pair for (5.3) witht® being sulfficiently

regular. We denote the continuation set corresponding to this pai#isy

Remark 5.1Similarly as in Sect. 4, the functiop’ does not have to be a classical
solution. What we require is tha is upper-semi-continuous ofi' and that we
can apply a (generalized)olformula to it. Other conditions imposed @Y will

be stated in Theorem 5.1 below.
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A remark analogous to Remark 4.4 applies to the funchibp®(y). Thus, sim-
ilarly as in Sect.4, a measurable selectdr®, an impulsive strategy® =
{(r2,N?), k =0,1,2, ...}, and the corresponding proceg¥ (t) (which we shall
be denoting a¥ °(t)) can be constructed based on the solution pdir°). To
this end it will be convenient to introduce a measurable selector

A7, %,N) = argmay, c_ys ) |92(S,N') +ga2(s,N) + ¢°(s, x,N") |

Next we setrd = 0. In addition, if §(0), X(0),N_1) € .72 then we seN =
N_;, otherwise we set

Ng =.47°(S(0), X(0),N-1).
In general, forkk > 1 we define :
me=inf{t > 7 ;1 (SE),X(t),N¢y) & . 7°%,

and
NS = 470(S(r0), X (1), N_y).

For ease of exposition we also define
ml=m’, k=0,12...
It will follow from Lemma 5.1 below thatm{ < oo for eachk. Finally we define

NO(t) := Nysmo_1, for te [Tfmf_y o, k=0,1,2,...,

mg)a

and
YO(t) == (S(t), X(t),N°(t)), t > 0.

Remark 5.20bserve that the following important equality follows from the def-
inition of the operatoM and the above construction:

¢S, X(1), N 1) = g1(S(7), N&) + 92(S(70). N_p)
+0°(S(7), X (710), N).-
Moreover, if 0 ; < 70, then
(Y °(70-)) = ga(S(1), NO) + 92(S(10), N&_p) + (Y ().
The proof of the following lemma is analogous to the proof of Lemma 4.1 and

therefore will be omitted.

Lemma 5.1 Let us assume all the conditions of Sect.2. Then the sequénce u
constructed above constitutes an admissible impulsive investment strategy.

In the following theorem we shall demonstrate that under some additional
(mild) conditions ong® the impulsive investment strategy is optimal for the
criterion (5.1).
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Theorem 5.1 Let us assume all the conditions of Sect.2. Consider the pair
(X0, %) and assume that the functiei? satisfies two additional conditions:

— for each ue 774, s and x we have
lim inf t‘lE[qSO(Y“(t))’S(O) =s, X(0)=x] >0,
—00

and
Iitrgiogf t—E [¢°(Y°(t))‘8(0) =s, X(0) = x} =0,

— for each ue 74,t > 0, s and x we have

t
E[/O 1697 (Y (r)BCY U(r) 2dr|S(0) = s, X(0) =X] < ox.

Then the sequencé gonstructed above is an optimal impulsive investment strat-
egy for the Kelly criterion (5.1). Moreover, the consta¥itis the optimal value
of the objective criterion (5.1).

Proof. It follows from Lemma 5.1 thati is an admissible impulsive investment
strategy.

To show thatu® is optimal, fix an arbitrary admissible impulsive investment
strategyu = ((rx,Nk), k=0,1,2,...), and letY!(t) correspond to thisl.

Fix k > 1 so thatrc_1 < 7k < oo, and taket € [Tkemy—1, Tkemp[- From 1t0’s
formula and from our RN-QVI we deduce that

/t (A% — F(Y{(r)))dr

+rnll(1—1

t
= [ oo
Tk+m'l;'—1
t
T
= — (Y " (Tkemp—1)) + °(YH (1)) — / gy (YU(P)BYH(r)dW(r).
7—l<+mll<"—1
This implies that, using the definition of the operadrand the fact thaty =
Ti+my — 1,

/t(AO F(YY(r)))dr

Tk
k+my —1

> Y N+ > [gl(sm),w')+gz(S(rk),N|_1)

1=k

t T
+¢(Y“(t))—/ g (YU INBY ) dwW A (r).

Tk

Next, usinglt & again to substitute fap(Y{(m«—)), and then combining integrals,
we get
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/t(AO F(YY(r)))dr

k+my —1

> oSt a0, N

1=k

> oY (m) / LU+

t
+e (Y U(1)) — / 60" (YU(r)BIY ()W (r)

. _ k+my—1
=)= [ OOy {gﬂsm N)+2(S(r). Nk_l)}
T 1=k

t T
+¢°(Y“(t))—/ gy (YUrNBY ()W (r),

where the equality follows from (1) in the RN-QVI and a further combining of
integrals. Continuing untik = 1 we eventually obtain

/t(AO— F(YY(r))dr

k+my —1

> —¢(Y(0) /O (A0 — F(yUdr+ 3 [gl(S(nxN|)+gz(8(n),N|_1)

1=0
t T
+¢(Y“(t))—/O gy (YU(r)BYH(r)dw(r).

In other words for arbitrary > 0 we get

t o
[ o+ 3 e (). M) + g5

0 1=0
t
< B(YH(0) +tA® — p(YU(t)) +/O ¢ST(Y“(r))ﬁ(Y“(r))dW”ﬂ(r)-
This means by (5.2) and by our hypotheses that
Jo(s, x;u) < A% — lim inf tlE[gbO(Y”(t))‘S(O) =s, X(0) =x] < \°.

The last inequalities become equalities to= u®, so this completes the proof
of the theorem. O
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6 Relation with results of Morton and Pliska

In their paper Morton and Pliska [26] considered a risk-null investment problem
under proportional (fixed) transaction costs. In our framework the transaction cost
structure considered by these authors can be described by taking the fubction
in the form (see also Remark 2.4):

C(s,N,N’):=as"N,

wherea € (0, 1) represents the fraction paid to the broker (engs 0.01). As

was already observed at the end of Sect. 4, this cost function satisfies conditions
(c1) — (c5). The price formation model assumed in [26] corresponds to our
equations (2.1) with all coefficients constant (so no dependence and with

no factors (so equation (2.2) should be omitted). Additionally it is assumed in [26]
thatAq(x) =r > 0, where byr these authors denoted the short term interest rate.
Finally, Morton and Pliska assumed tHég(t) > O for all t > 0, but we do not

need to do so here. The proper state space for this setting is therefore (compare
with the beginning of Sect. 4P := (0, o0)™? x [0, c0)™?. This is because the
state of the procesg!(t) is nowy = (s,N) € (0, 00)™* x [0, c0)™*. Theorem

5.1 is still applicable in this setting.

In this section we shall first apply the results of Sect.5 in order to solve
the optimal investment example stated in Sect. 4 of Morton and Pliska [26]; later
we’ll study a risk sensitive version (whefie> 0) of this problem. In this example
only two securities are considered: a risk-free security and a risky security (with
an immediate mean return rate > r and volatility ¢ > 0). Specifically, our
equations (2.1) take the following form for this example:

dS(t) . .

— = = rdt (risk — free securit

So(t) ( d

ds(t) i i

—= = udt+odW(t) (risky securit

0 pdt +odW(t)  (risky y

SO0) = >0 i=01 (6.1)

Thus, to summarize, the data for this example are:

-m=1n=0 .
—AX)=[r 1", XX) =0
-BXx)=0, Ax)=0.

The solution approach provided in Sect. 4 of [26] does not apply vﬁggén:
1/2, because then the presented solution of a differential equation is degenerate.
However, we can solve the Morton-Pliska example in this case using our quasi-
variational inequality approach, as will now be demonstrated. And it will be seen
that our solution is consistent with the results of Morton and Pliska derived for
cases wheré—- # 1/2.

In the present example the state of the proc€§s) is (with a slight change
of notation)y = (so, S1, Mo, N1) € @ := (0, 00)? x [0, 00)?, wheren; denotes the
number of shares of security The RN-QVI (5.3) takes the following form:
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1
(1) Sor P (Y) + S1pahs, (y) + 531202(253131 —A

SoMo S 1 2< sim

20 \sono+sing

2
+r + <0 No, N1) € int”
SoMo + SNy ‘LLSOnO +sM 20 ) =Y (a)a $1, No, 1) €

M) oy)>In(L—a)+ sup ®(So, S1, Ny, M),

{ng,n]>0]song +sin/=(1— ) (Sono+siny) }
(S0, S1,M0, Ny) € @

(1)yxM)=0, (s,51,N0,N) € int@. (6.2)

We shall not analyze this RN-QVI directly. Instead, we shall consider an equiva-
lent quasi-variational-inequality (which provides a natural counterpart to the ap-
proach taken by Morton and Pliska in [26]). The following QVI is to be solved
for a functiony(b), b € [0, 1] and a constank:

(1) %sz(lf b)?pp + o2 (“Uzr — b) b(1 —b)yp — A+ ub

02
+r(1—b) — 7b2 <0, be(01),
() ¥(b)>In(l—a)+ sup ¢(b'), bel0,1],
0<b’<1

(I)x@M)=0, be(0,1), (6.3)

which (using our assumption th#{;‘z—’ = 1/2) can be restated as
o, 2 2 (1 o?
() 5 b (A-b) ppto” { 5 = b ) b(I-D)p—A+r+=-b(1-b) <0, b€ (0,1),

() ) >In(L-a)+ sup ¥(’), bel0,1],
0<b’<1

()= (1)=0, beO,1). (6.4)

Note that the first partial differential inequality in (6.3) expresses the dynamics
of what Morton and Pliska called thiesky fraction processwhich is the fraction
of wealth in the risky asset when the share holdings are fixed.

The following lemma relates problems (6.2) and (6.3). In its formulation,
H2(0,1) andH?2(int?) denote the second Sobolev spaces ar)@ndint”,
respectively (see e.g. Bensoussan [2], chapter Il, or Kufner et al. [22]).
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Lemma 6.1 Suppose a constan® and a functiom)® € H?(0, 1) satisfy (6.3).
Also suppose that for somé k& [0, 1] we have

sup 9°(b’) =4%(b").

0<b’<1
Define a functio(sg, s1, g, N1) on @ by

SNy H
b(so, S1, No, 1) = {Sono+sln1’ if Sono + 1M > 0

) if sogng + 51Ny = 0.
Then the function®(so, s1, No, N1) defined by

¢°(s0, 51, Mo, N1) = °(b(So, S1, Mo, M), (S0, 51, Mo, M) € 7
belongs in H(int?) and, together with the constaif, satisfies the QVI (6.2).

Proof. Since b(sy, s1, No, 1) is smooth forng,n; # 0, then ¢%(so, s1, Ng, N1) €
H2(int?). Also, it is easily seen by direct inspection that the functisy, st, no,
n;) and the constant® satisfy () in (6.2).

Now, from (1) in (6.3) we see that

¥(b(So,S1, Mo, M) > IN(L— )+ sup y(b')
0<b’<1

> In(1-a)+ sup ¥(b(So, S1, Mg, Ny)), (So, St Mo, N1) € 7,
{ng:n;>0|song+s1n; =(1—)(Sono+sim) }
which implies that ) of (6.2) is satisfied by°(so, S1, g, Ny).
Next, let
b (1 — a)(sono + s1Ny)

n; (So, St, No, Ny) := s ,

(1 —Db")(1 — a)(sono + s1)

= .
Fix arbitrary &,S1,M0,N1) € 7. If equality holds in (1) of (6.3) for b =
b(so, 1, No, N1), then equality holds inl() of (6.2) for (s, S1, No, N1), Since the
supremumon the right hand side ofll() in (6.2) is realized byr{;, n;). On the
other hand, if equality does not hold ifl { of (6.3), then it must hold inl( of
(6.3), in which case it also holds in)(of (6.2). We thus see thatl) of (6.2)

is satisfied by the function®(so, s1, ng, N1) and the constam®. The proof of the
lemma is complete. O

and

ng (SOa $1, N, nl) =

Thus it suffices to determine a solution pal®(y°) for (6.4). Towards this
end please consider a functigr{b) defined as

B 2
CESEE)
b) = _ _
Vi) +§In(b(1—b)>, fb<b<1l-b
0, fo<b<borl-b<b<i,
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where A arldl; € (0,1/2) are constants (depending of yet to be determined.
Note thaty is symmetric aboub = 1/2.

We require that) € H2(0,1). Due to the Sobolev imbedding theorem (see
e.g. Kufner et al. [22]) this implies that € C1(0, 1) (a class of functions on (@)
once differentiable in the classical sense, and with continuous first derivatives).
In particular, in order for) and its derivative to be continuoustatthe following
conditions must be satisfied byandb:

'”<a30i>+§ﬂr(m<165>>2+;m<&16)20’ (6.5)

A—T b —
R —— ) = +1=0 .
4—; In(1 ) 2b+1=0 (6.6)

and

Moreover, in order to ensure thdf) (of (6.4) is satisfied by alb < borb > 1-b,
we require thab satisfies the inequality

_1-/1-8Mf
0<b< 5 , (6.7)
which necessitates that ,
r§>_\§r+%. (6.8)

It can be shown that for any satisfying (6.8), if there exists a corresponding
solution b to (6.6), thenb satisfies (6.7). This leaves us with the problem of
solving (6.5) and (6.6) so that (6.8) is satisfied. Equations (6.5) and (6.6) can
easily be solved numerically for specified valueswof (0,1),r > 0, ando > 0.
For example, ifa = 0.001,r = 0.07, ando = 0.4 (so thaty = 0.15), then we
obtain: _ _

A =0.0893 and b =0.3381

It is interesting to note, by the way, that these numbers are very close to the com-
putations one obtains, namely,= 0.0893 andb = 0.3345 with the asymptotic
approach developed by Atkinson and Wilmott [1].

In summary, suppose that constaitandb satisfying (6.5)-(6.8) have been
found. Then it is easy to verify that the resulting pai 4) satisfies the QVI
(6.4). We can thus set _ _

A=), and ¢° = . (6.9)

In addition we see thdi* = 0.5 realizes thesupremunon the right-hand side of
(I1') in (6.4) for the above choice of\f, 4°).

In order to conclude the discussion of this risk-null example, let us now
observe that in view of Lemma 6.1 the paff and¢? := ¥°ob, where\® and,°
are chosen according to (6.9), satisfies the QVI (6.2). Sifde bounded we can
apply the generalizett&’s lemma to it (see Krylov [21]), although some minor
modifications to the argument used in the proof of Theorem 5.1 are needed here
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since in our example the price proceSsgt) is a degenerate diffusion process.
Finally, again using boundedness ¢t we see that bottiminf conditions of
Theorem 5.1 are satisfied fg®. Consequently we may apply Theorem 5.1 to
conclude the following:

The optimal impulsive investment strategyis determined for the considered
example by

— the optimal continuation region

. s S =
00 = Ob< ————_<1-b
{(50,31, fo,Mm) € “lb < o am < }

— the optimal portfolio selector

(s, 51, 10, M) = (0-5(1— @)(SoNo + 51”1), 0.5(1 — o)(soMo + 51n1)>.
So S

This means that it is optimal for the investor to rebalance if the price/share-
holdings proces¥ °(t) is outside of the region7©, and the rebalancing should
be made to the share-holding levels determined. by°(Y°(t)), resulting in
a position with exactly half of the wealth in each asset. Note that this result is
consistent with results obtained by Morton and Pliska in [26] via a combination of
renewal theory and optimal-stopping theory for the c%t;.é # 0.5. In particular,
the optimal rebalancing times are separated (as they should be according to our
Proposition 4.2).

We now conclude this section by considering a risk-sensitive version of the
Morton/Pliska problem. That is, the objective criterion to be maximized now is
(2.4), with all the other relevant data as in the example considered previously
in this section. According to the remarks made at the end of Sect. 4, and using
a result analogous to the one stated in Lemma 6.1, it can be easily shown that
the quasi-variational inequalities one should consider in order to characterize an
optimal solution to this risk-sensitive version of the Morton/Pliska problem can
be written as:

0_2
1) G0 0~ @/208) + (5 - ba+0/2)) b by, ~ A+
+ %213(1 —b(1+6/2))<0, be(0,1),

(1) ¥(b)>InL—-a)+ sup ¢(’), bel0,1],
0

<b’<1
(1)< (1)=0, be(,1). (6.10)

For the numerical values of all the parameters as above, that ds=if0.001,
r =0.07, ando = 0.4, and for the value of the risk-sensitivity parameter 0.1,
we obtained the following solution pair to the RS-QVI (6.10):
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Fig. 1. Continuation region versus risk sensitivity parameter

) (9In(1 —b)+In <1 +tan2(\/g\@[ln <(1bb)> + c%]))) +Cg,

_ b =
1/)0( ) if b179 <b < bzyg .
0, if0§b§b1790rbz79§b§l,
and
Ag =0.0883

wherec; = 0.2289, ¢, = 2.14225,c3 = 0.1642,b; 9 = 0.32, and b,y = 0.64.
The maximum value of the functiotty(b) on the interval [01] is attained at
b; = 0.485.

The optimal impulsive investment strategy is determined for the consid-
ered example by

— the optimal continuation region
. . Sy -
0 = S, Ng,M) € Olbrg < —————— < by s,
{(So S1, No, Ny) by, oMo + S1 2,9}

— the optimal portfolio selector

0.515(1— a)(song + S1ny)  0.485(1— o)(Sono + sinl))

N %(s0,51, M0, M) = ( ,
( 0, N1) % s
This means that it is optimal for the investor to rebalance if the price/share-
holdings proces¥ ?(t) is outside of the region7 ™, and the rebalancing should
be made to the share-holding levels determined by’(Y?(t)), resulting in a
position where 51.5% of the current wealth is allocated in the bond, and the
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remaining 48.5% of the current wealth is allocated in the risky asset. This result

is consistent with economic intuition: since the investor is more risk averse that

with # = 0, she/he is expected to allocate a larger proportion of the current

wealth in the risk free asset at the time of rebalancing. Note that even such

a small value of the risk-sensitivity parameter tass 0.1 causes a significant

change in the optimal rebalancing proportions from 50%-50% to 51.5%-48.5%.
We also solved the problem for various larger valueg.dfigure 1 illustrates

the dependence dhe [0, 4] of the optimal continuation regiorb{ ¢, b 4), and

of the optimal rebalancing poittit;. The values oby 4, b, ¢, andbj are denoted

by lower, upperandmax respectively, on the graph.

AcknowledgementWe are grateful to an anonymous referee for a careful reading and very useful
comments and suggestions.

Appendix

Proof of Lemma 4.8ince. /" is a measurable selector th&lf is &, mea-
surable fork = 0,1,2, .. .. It is straightforward to verify that! is a & stopping
time using adebuttheorem (see e.g. [13], chapter 6) and the fact that the contin-
uation set7/rs is measurable. The condition contained in Definition 2.1 follows
directly from the the construction af’. We have also observed in Remark 4.6
that S(rY)TN/ > 0 for eachk = 0,1,2,... almost surely. Therefore, it suffices
to demonstrate that almost surely we haye— co ask — oo.

To prove this claim le/ (t) denote the optimal (maximal) wealth at timhe
of a risk-sensitive investor allowed to usg-adapted trading strategiégt) for
which the wealth equation analogous to equation (2.4) in Bielecki and Pliska [5]
is not explosive. Note that in view of the Remark 2.2 the fraction prob&gs
corresponding to the impulsive strateg¥ is admissible in the sense of Bielecki
and Pliska [5]. Clearly, then, we ha& (t)N?(t) < V(t) < oo almost surely
for each finitet, and thus((t) := sug., «[ST(r)N?(r)] < oo almost surely for
each finitet. o

Let, for a finite integer7,

297 = {w| lim 7d(w) <.7}.
k— o0
Takew € 297 and denote
7 (W) = lim 7 ().
k— o0
Next, since
ST(MINK_1 = STRING = C(ST(7), N1, NY),

we also have for alk (we suppress dependence wrio simplify notation)

_ C(ST(Tkg)v Nke—la Nke) > ST(Tke)Nke

1 .
ST (Tke ) Nke—l - ST (Tlf ) Nke— 1
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Since((7 (w)) < oo, we obtain from assumption (c3) that there exists a number
0 < ¢/(w) < 1 such that, for alk > 0,
ST(rAINY . C(s,N,N’)
— " < 1- inf _—
ST(rN?_, {s,N,N":sTN<C(7 (W)} sTN
1-0((7 (W) = c'(w). (7.1)

IN

From (3.1) we obtain

T (w)
IN(S™(7 (W)N’(7 ())) —/0 f(X(r), H(S(r),N°(r)))dr

T (w)
+(1/2) /0 I (X(F), H (S(r), N(r)))|Per
T ()
- /O A(X(E), H (S(), N (r)))dw(r)

= > (TGN + (7. N
k=0

The left hand side of the above equality is finite almost surely. In view of (7.1)
we have for our selected and for allk > 0
T (-0 0
In (S(T‘<)Nk(w)>

ST(TkO)ngfl

In (c’(w)> <0.

Thus the right hand side of the above equality is equal to negative infinity, a
contradiction. Thus the sé2?~” has probability zero. This concludes the proof
of the lemma.

91(ST(1), NOYW) + g2(ST (1), N¢_ ) (w)

IA

Proof of Proposition 4.1Fix w € (2. In what follows we shall suppress depen-
dence onw for the ease of exposition. Fik so thatry ; < 77 < cc. (If k =0
then we sety! ; =0.)

We begin by observing that#(S(7), N¢) C . 4(S(7),N¢_,). To see this,
consider arbitranN’ € . 2(S(7), N?), that is,N’ satisfying

S(m)™N¢ = C(S(¢), N¢,N") > S({) TN’
In view of the condition ¢4) we thus have
C(S(1), N1, N¢) = C(S(¢), N1, N') + S(rd) TN/
= C(S(1), N1, N¢) = C(S(r), N1, N')
+C(S(7), N, N') + S(r¢) TN — C(S(7), N, N')
> S(rY)™N’.



30 T.R. Bielecki, S.R. Pliska

Meanwhile, sinceN? € . 4(S(7),N?_,), we have
ST (N1 = N¢) > C(S(70) N1, NY).
Combining the two above inequalities yields
S(n)"NK_1 — C(S(). N1, N) = S(r) TN,

that is,N’ € . 4(S(1¢), NZ_,).
Next, sincec > 0 we see thalN? ¢ . 4(S(7Y), N7). From the definition of
the impulsive strategy? it follows that (compare Remark 4.5)

(S XN = (-5 ) (SN
(SN D)) + (S XN )
= (~3) (SN + oSN )
fo | (5) SN SN oS XN

We now consider two cases. Suppose that there islhe . 4(S(r7), Nf)
for which the supremum is achieved on the right hand side of the last equality.
Then we obviously have

¢*((S(1d), X (1), N¢)

~5) ((SEDND + st N ) )

1
TN
<>

e s () SN SN ) S XN
N‘e 4SHE)NS )

v sup [( )(gl(S(Tf),N’)+gz(S<T£),N£1))+¢(S(Tf),X(T£),N')]
N’e 4S(rf)N?)

=M% ((S(1), X (7). NY)).-

Thus in this casen{ = 1, so thatry < 77,,.
For the other case, suppose there extdfsc . 4(S(r7), N?) realizing the
maximum in

e [ @) (g1(S()N') + 92(S(70), N 1)) + H(S(0), X (), N |.
N’€4(S(T8),N2_)
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Observe that the samd’ realizes the maximum in

sup [ (g) (91(S(TE), N) + go(S(7), N9)) + &(S(7), X (), N /)] ,

N’€.2(S(EE)NE_)

and thus it also realizes the maximum in

sup [ () (xS N + 2SN + S X))

N’€.2(S(r0),NF) 2

as well. It follows that
7 ((S(), X (1), N9))

0
= sup [() (gl(S(Tf)yN')+gz(S(T£),Nf))+¢(S(T£),X(TE)7N’)}

N’€.24(S(rf),N) 2

= [ (g) (91(S(17), &) + g2(S(70), NO)) + ¢(S(rd), X (1), Ni¢ ))} ;

and so we may taki/,, := N/. Thus the portfolio jumps from\? to N2, = N/
at the transaction time/, ;.

Now if m¢ = 1, then again we conclude thatt < 7,,. Alternatively, suppose
thatm? > 1. We already know from Lemma 4.1 thaf < oo (except possibly
whenw is in a set of measure zero). It is thus enough to consiger= 2.
According to the above considerations we see that rather than going\fom
to Nf in two consecutive transactions with one immediately following the other
(recall that herer! = 7¢,,), we may as well go fromN/ ; to NZ in just one
jump. Sincem? = 2 we know thatrf,; < 7¢,,. It is now clear that we can use the
construction of Sect.4 in order to construct an (optimal) impulsive investment
strategy for which the transaction times form a strictly increasing sequence. Since
w was arbitrary (outside of a zero measure set), this strategy is separated and so
the proof of the proposition is complete.

Proof of Proposition 4.2Vith the notation used in the preceding proof, suppose
N/ andN/? both realize the maximum in

0
sup [ (> (91(S(T), N') + g2(S(1), N 1)) + &(S(), X (7). N ’)} ;

N’€. 4(SEE)NE_) 2
andN? €. 4(S(r?),N?). We shall show that given our present hypotheses the

last inclusion cannot happen. In fact, since bidghandN, realize the maximum,
then we have by@5)

{ (Z) (91(S(1Y), N2) + g2(S(7E), NZ_)) + &(S(7), X (), ng)}

- <g> IN(1 - a) + ¢(S(1), X (1), N¢)
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0 ~ -
= | (§) S0 50) + oS(a8). N2 + S, X))

0 .
) (2> (1~ @) + &(S(7), X (1), NY),

and thus

B(S(), X (1), N) = ¢(S(rf), X (), Nf).

But it is also true that

(3) st Ny + st x|

- { @ (92(S(). K + 6(S(). X (), Nke)]

and thus

918 N¢) = g1(S(), NY).

However, this last equality cannot be satisfied since we assumed(llfha{
A(S(?),Nf). This is a contradiction, so the proof of the proposition is com-
plete.

References

10.

11.

12.

13.
14.

. Atkinson, C., Wilmott, P.: Portfolio management with transaction costs: an asymptotic analysis

of the Morton and Pliska model. Math. Finanse357-367 (1995)

. Bensoussan, A.: Stochastic Control by Functional Analysis Methods. Amsterdam: North-Holland

1982

. Bensoussan, A., Lions, J. L.: Impulse Control and Quasi-Variational Inequalities. Paris: Bordas

1984

. Bertsekas, D. P., Shreve, S. E.: Stochastic Optimal Control: The Discrete Time Case. New York:

Academic Press 1978

. Bielecki, T. R., Pliska, S. R.: Risk sensitive dynamic asset management. Applied Math. Opti-

mization (forthcoming, 1999)

. Bielecki, T. R., Pliska, S. R., Sherris, M.: Risk sensitive asset allocation. J. Econ. Dyn. Control

(forthcoming, 1999)

. Borodin, A. N., Salminen, P.: Handbook of Brownian Motion — Facts and Formulae. Basel:

Birkhauser 1996

. Brennan, M. J., Schwartz, E. S.: The use of treasury bill futures in strategic asset allocation

programs. |IFA working paper 226—1996, London Business School (1996)

. Brennan, M. J., Schwartz, E. S., Lagnado, R.: Strategic asset allocation. J. Econ. Dyn. Control

21, 1377-1403 (1997)

Cvitanic, J., Karatzas, |.: Hedging and portfolio optimization under transaction costs: a martingale
approach. Math. Finandg 133-165 (1996)

Davis, M. H. A., Norman, A. R.: Portfolio selection with transaction costs. Math. Oper. Res.
15, 676-713 (1990)

Eastham, J., Hastings, K.: Optimal impulse control of portfolios. Math. Oper.1Rg588-605
(1988)

Elliott, R. J.: Stochastic Calculus and Applications. Berlin Heidelberg New York: Springer 1982
Fleming W. H.: Optimal investment models and risk sensitive stochastic control. In: Davis, M.
H. A. et al. (eds.) Math. Finance. Berlin Heidelberg Berlin Heidelberg New York: Springer 1995,
pp 75-88



Risk sensitive asset management with transaction costs 33

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34.

Fleming, W. H., Grossman, S. G., Vila, J. L., Zariphopolou, T.: Optimal portfolio rebalancing
with transaction costs. Preprint 1990

Fleming, W. H., Soner, H. M.: Controlled Markov Processes and Viscosity Solutions. Berlin
Heidelberg New York: Springer 1993

Hastings, K. J.: Impulse control of portfolios with jumps and transaction costs. Commun. Stat.
— Stochastic Model8, 59-72 (1992)

Karatzas |.: Lectures on the Mathematics of Finance. CRM Monograph Sersvidence,

RI: American Mathematical Society 1996

Karatzas |., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Berlin Heidelberg New
York: Springer 1988

Korn, R.: Portfolio optimisation with strictly positive transaction costs and impulse control.
Finance Stochas®, 85-114 (1998)

Krylov, N.V.: Controlled Diffusion Processes. Berlin Heidelberg New York: Springer 1980
Kufner, A., John, O., Fucik, S.: Function Spaces. Leyden: Noordhoff 1977

Kuratowski, K.: Topology I. New York: Academic Press 1966

Merton, R. C.: Optimum consumption and portfolio rules in a continuous time model. J. Econ.
Theory3, 373-413 (1971)

Merton, R. C.: An intertemporal capital asset pricing model. Econometiic866—-887 (1973)
Morton, A. J., Pliska, R. S.: Optimal portfolio management with transaction costs. Math. Finance
5, 337-356 (1995)

Pesaran M. H., Timmermann, A.: Predictability of stock returns: robustness and economic sig-
nificance. J. FinancB0, 1201-1228 (1995)

Pliska, S. R., Selby, M. J. P.: On a free boundary problem that arises in portfolio management.
Philos. Trans. R. Soc. Lond. 847, 555-561 (1994)

Robin, M.: On some impulse control problems with long run average cost. SIAM J. Control
Optimization19, 333—-358 (1981)

Sclal, M.: A selection theorem for optimization problems. Arch. M&B, 219-224 (1974)

Shreve, S. E., Soner, H. M.: Optimal investment and consumption with transaction costs. Ann.
Appl. Probab4, 609-692 (1994)

Stettner, L.: On ergodic stopping and impulsive control problems for nonuniformly ergodic
Markov processes. Appl. Math. Optimizatid®, 75-95 (1989)

Taksar, M., Klass M., Assaf, D.: A diffusion model for optimal portfolio selection in the presence
of brokerage fees. Math. Oper. R4S, 277-294 (1988)

Whittle P.: Risk Sensitive Optimal Control. New York: John Wiley 1990



