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Abstract. In this paper we extend standard dynamic programming results for
the risk sensitive optimal control of discrete time Markov chains to a new
class of models. The state space is only ®nite, but now the assumptions about
the Markov transition matrix are much less restrictive. Our results are then
applied to the ®nancial problem of managing a portfolio of assets which are
a¨ected by Markovian microeconomic and macroeconomic factors and where
the investor seeks to maximize the portfolio's risk adjusted growth rate.
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1 Introduction

In a recent series of papers (see [4], [5], and [6]), Bielecki and Pliska developed
a new, control-theoretical approach for the optimal management of a portfo-
lio of assets. The assets are modeled as lognormal processes, but there are also
macroeconomic and ®nancial factors which are Gaussian processes that
directly a¨ect the mean returns of the assets, as in Merton [13], for example.
The innovative feature of their approach is the employment of methods of risk
sensitive control theory, thereby leading to the in®nite horizon objective of
maximizing the portfolio's risk adjusted growth rate. This criterion is natural,
for it is essentially a trade o¨ between the long run expected growth rate and
the asymptotic variance (i.e., the average squared volatility), analogous to the
mean return and variance, respectively, in the single period Markowitz model.

Bielecki and Pliska [4] used continuous time risk sensitive control theory
(see [3], [16], and [20]) to show that the optimal strategy is a simple function
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of the factor levels. Moreover, with an assumption that the residuals of the
assets are uncorrelated with the residuals of the factors, and even with con-
straints on the portfolio proportions, they showed that the optimal strategy
can easily be computed by solving a parametric quadratic program. Explicit
formulas can be obtained, as illustrated by an example in [6] where the only
factor is a Vasicek-type interest rate and where there are two assets: cash and
a stock index.

While their assumption about the uncorrelated residuals is reasonable for
some ®nancial applications, it is not for others. Unfortunately, when the re-
siduals are correlated, and especially when there are also constraints on the
portfolio proportions, the computational di½culties become formidable. The
resulting Hamilton-Jacobi-Bellman equation cannot be solved directly, and so
interest turns to the popular computational approach of making discrete time
approximations of the underlying continuous time processes. In particular,
interest turns to the idea of ®rst building discrete time stochastic process
models of the assets, factors, and trading strategies, then specifying the risk
adjusted growth rate criterion in this discrete time context, and ®nally using
discrete time risk sensitive control theory to develop a procedure for comput-
ing optimal strategies.

There is no di½culty with the ®rst step. In Section 3 below we show that it
is easy to formulate a discrete time risk sensitive portfolio management model
that is in perfect analogy to the continuous time model in Bielecki and Pliska
[4], [5]. In particular, the factor process is an exogenous Markov chain, and
the set of possible factor values becomes the state space for the Markov con-
trol model. Each period the action taken is the allocation of wealth among the
assets. The asset returns, which depend not only on the factor's state at the
beginning of the period but also on its state at the end of the period (this
additional dependence is important for many ®nancial applications), combine
with the chosen action to determine the portfolio's return. Portfolio wealth
grows in a multiplicative fashion, but log wealth grows in a linear fashion,
analogous to the cumulative reward (or cumulative cost) in a more conven-
tional Markov control model.

The second step is also straightforward. Since log wealth is analogous to
the cumulative reward, the discrete time risk adjusted growth rate is seen to be
identical to the criterion studied in the risk sensitive Markov control literature.
Hence the third step, the application of the discrete time risk sensitive control
theory (see [8], [9], [10], and [11]) would also seem to be straightforward. In-
deed it is. With suitable assumptions (especially about the transition matrix
for the underlying Markov factor process), it can be shown that the optimal
trading strategy can be characterized in terms of a dynamic programming
equation which resembles that for conventional Markov control problems
with the average reward (or average cost) criterion. Moreover, the maximum
risk adjusted growth rate corresponds to the maximum average reward (or
minimum average cost) as well as to the spectral radius of a certain matrix.
Finally, by virtue of a contraction argument, a value iteration algorithm can
be used to compute optimal solutions.

Hence it would seem that the theory of discrete time risk sensitive portfolio
management falls neatly in place, but there is still one major problem: a criti-
cal assumption needed by the discrete time risk sensitive Markov control the-
ory is much too severe when applied to the portfolio management situation.
This assumption virtually requires every element of the factor process' Mar-
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kov transition matrix to be strictly positive, and it results in the one-step value
iteration operator being a contraction. This assumption is too severe for ®-
nancial applications, because it is unreasonable to suppose that an economic
factor can swing from one extreme value to another in a short period of time
such as a day or even a month.

Fortunately, however, the discrete time risk sensitive control literature also
o¨ers a potential path to a solution of our problem. The literature assumes the
state space of the underlying controlled Markov chain is countable, whereas
for our ®nancial applications (since we are seeking to compute results!) it suf-
®ces for the state space (of the factor process) to be ®nite. As will be demon-
strated in the following section, by restricting the state space while simulta-
neously relaxing the assumption about the underlying Markov transition
matrix to, roughly, only irreducibility, the same kinds of dynamic program-
ming results found in the existing discrete time risk sensitive control theory
literature still hold true. In particular, and consistent with well known results
for classical Markov control problems with the average reward criterion and
only ®nitely many states, while the one-stage value iteration operator is not
necessarily a contraction, with an irreducibility assumption the N-stage oper-
ator is a contraction, where N is the number of states.

The control theoretic results in Section 2 stand alone, without any refer-
ence to ®nancial applications. Hence this section is a contribution to the dis-
crete time risk sensitive control theory literature such as [8], [9], [10], and [11].
In Section 3 we formulate our discrete time risk sensitive optimal portfolio
problem and then reformulate it in terms of the Markov control model of
Section 2. Finally, in Section 4 we apply the theory of Section 2 in order to
obtain various fundamental results for our ®nancial application.

After this paper was submitted for publication we became aware of very
recent works by Balaji and Meyn [2] and Balaji, Borkar and Meyn [1]. The
former one develops multiplicative ergodic theory for irreducible Markov
chains. The latter one applies this theory to a risk sensitive control problem
for a Markov chain on a denumerable state space. One of the underlying as-
sumptions made there is that the one step cost function is norm-like. Overall,
the approach of Balaji, Borkar and Meyn is di¨erent from ours.

2 Optimal risk sensitive control of ®nite state Markov chains

The control model. Let �E;A;P; c� be a Markov control model as in [12] sat-
isfying the following. The ®nite set E � f1; 2 . . . ;Ng is the state space, en-
dowed with the discrete topology, while A is a Borel space, called the action or
control space. For every x A E, there is a nonempty set A�x�HA, which rep-
resents the set of admissible actions when the system is in state x. The set of
admissible pairs is K :� f�x; a� : x A E; a A A�x�g, and is assumed to be a
Borel subspace of E� A. The transition law Px;y�a� is a stochastic kernel on
E given K. Finally, c : K! R is a bounded, continuous function, not neces-
sarily nonnegative, which represents the one stage cost.

Assumption A.1.

(i) For each x; y A E, the mapping a! Px;y�a� with a A A�x� is continuous.
(ii) For each x A E;A�x� is a compact subset of A.
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De®ne H0 � E and Ht � K�Htÿ1 if t � 1; 2; . . . : A control policy, or strat-
egy, is a sequence p � fptg of stochastic kernels on A given Ht that satisfy the
constraint

pt�A�xt�jht� � 1 Eht A Ht; tV 0:

The set of policies is denoted by P. A policy p A P is called a Markov policy if
there exists a sequence of functions fptg, with pt : E! P�A�, where P�A� is
the set of probability measures on A, such that pt�x��A�x�� � 1. We denote by
PM the set of Markov policies, and by PDM the set of deterministic Markov
policies, i.e., p A PDM if p � fptg A PM and pt�x� is a Dirac measure con-
centrated on some point of A�x�. We denote by F the set of functions f : E!
A such that f �x� A A�x� for all x A E. A policy p A PDM is stationary if there
exists f A F such that pt� f �xt�jht� � 1 for all ht A Ht; tV 0; this policy will
also be denoted by f A F.

If the initial state x A E and p A P are given, there exists a unique proba-
bility measure Pp

x on �W;F�, the canonical measurable space that consists of
the sample space W :� �E� A�y and the corresponding product s-algebra F.
Further, a stochastic process f�xt; at�; t � 0; 1; . . .g is de®ned in a canonical
way, where xt and at denote the state and action at time t, respectively. The
expectation operator with respect to Pp

x is denoted by Ep
x .

Assumption A.2.

(i) Under the action of any policy p A PDM the state space is irreducible, i.e.,
given x; y A E and p A PDM , there exists m � m�x; y; p� < N such that
Pp

x �xm � y� > 0.
(ii) For all x A E and a A A�x�, Px;x�a� > 0.

Risk sensitive optimality criterion. Given x A E, the risk sensitive average cost
under policy p A P is de®ned by

J�x; p� � lim sup
T!y

1

T
� 1

g
ln E p

x exp g
XTÿ1

t�0

c�xt; at�
( )

;

where g > 0 is a risk aversion parameter, and the corresponding value func-
tion is given by

J�x� :� inf
p AP

J�x; p�:

The optimal control problem is to ®nd a policy p� such that J�x� � J�x; p��.

The following veri®cation theorem was proved in [9].

Theorem 2.1. Suppose that there exist a number l and a function W : E! R
such that

el�W �x� � min
a AA�x�

egc�x;a�X
y AE

eW �y�Px;y�a�
( )

: �1�
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Then J�x� � 1

g
l, and the control f � A F with f ��x� achieving the minimum on

the r.h.s. is optimal.

In this section we shall prove that equation (1) has a unique (up to a con-
stant added to W ) solution and that the value iteration algorithm can be
implemented.

Span contraction operator. Throughout we identify the set of functions from E
to R with RN . Now, given g A RN , we de®ne the operator T : RN ! RN by

Tg�x� :� inf
a AA�x�

gc�x; a� � ln
X
y AE

eg�y�Px;y�a�
( )

: �2�

Further, for each k V 1 we de®ne gk A RN as

gk :� Tgkÿ1; �3�

with g0 � g.
Using the Markov property and the de®nition of gk, it can be seen that for

each k V 1

gk�x� � inf
p AP

ln E p
x e

Pkÿ1

t�0

gc�xt;at��g�xk�
; �4�

and, in fact, there exists pg � fpg
kg A PDM such that

gk�x� � ln E p g

x e

Pkÿ1

t�0

gc�xt;at��g�xk�
: �5�

With pg A PDM as above, for each t � 0; . . . ; k ÿ 1 de®ne the N �N matrix

Qg
x;y�t� :� egc�x;p g

t �x��Px;y�pg
t �x��:

Then

E p g

x e

Pkÿ1

t�0

gc�xt;at��g�xk� � Qg�0� � � �Qg�k ÿ 1�eg�x�
� H

g
k eg�x�; �6�

where H
g
k :� Qg�0� � � �Qg�k ÿ 1�.

Remark 2.1. We observe that from Assumption (A.2) the matrix H
g
k > 0 for

k VN.

The proof of the main results in this section requires some preliminary
notation and results from positive matrices (see [19]). Given g; h A Rn with
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strictly positive entries, de®ne the projective pseudometric

d�g; h� :� ln max
x
�g�x�=h�x��

�
min

x
�g�x�=h�x��

� �
:

Observe that sp�gÿh� :� maxx�g�x� ÿ h�x�� ÿminx�g�x� ÿ h�x�� � d�eg; eh�.
Paralleling the theory for square matrices, we can de®ne the Birkho¨ 's con-
traction coe½cient tB for rectangular matrices in the following way: Given a
m� n positive matrix H > 0, let

tB�H� :� sup
g;h>0

d�Hg;Hh�
d�g; h� : �7�

The proof of the next proposition follows from adapting the arguments given
in [19] for square matrices, and we omit it.

Proposition 2.1. For a m� n positive matrix H � fHijg

tB�H� � 1ÿ �f�H��1=2

1� �f�H��1=2
;

where

f�H� :� min
0Ui; jUm
0Uk;lUn

HikHjl

HjkHil
:

The following result is fundamental to obtain the main results of this paper.

Theorem 2.2. There exists a constant 0 < t < 1 such that for any g; h A RN ,
k � rN � j, rV 1, and 0U j < N one has

sp�gk ÿ hk�U trsp�gÿ h�;

with gk; hk de®ned by (3).

Proof. We consider ®rst the case when r � 1. So, let k � N � j, with 0U
j < N. From (5) we know that there exist pg, ph A PDM such that

gk�x� � ln E p g

x e

Pkÿ1

t�0

gc�xt;at��g�xk�

and

hk�x� � ln E p h

x e

Pkÿ1

t�0

gc�xt;xt��h�xk�
:
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De®ning ~gj�x� :� ln�Qg�N� � � �Qg�N � j ÿ 1�eg�x��, for N > j V 1 with

~g0 � g, and similarly for ~hj�x�, the following identities hold:

gk�x� � ln E p g

x e

PNÿ1

t�0

gc�xt;at��~gj�xN �

and

hk�x� � ln E p h

x e

PNÿ1

t�0

gc�xt;xt��~hj�xN �
:

Let x� A argmax
x
fgk�x� ÿ hk�x�g and x� A argmin

x
fgk�x� ÿ hk�x�g. Then

gk�x�� ÿ hk�x��U ln E p h

x � e

PNÿ1

t�0

gc�xt;at��~gj�xN �
ÿ ln E p h

x � e

PNÿ1

t�o

gc�xt;at��~hj�xN �

and

gk�x�� ÿ hk�x��V ln E p g

x� e

PNÿ1

t�0

gc�xt;at��~gj�xN � ÿ ln E p g

x� e

PNÿ1

t�0

gc�xt;at��~hj�xN �
:

Hence

sp�gk ÿ hk�U ln
E p h

x � e

PNÿ1

t�0

gc�xt;at��~gj�xN � � E p g

x� e

PNÿ1

t�0

gc�xt;at��~hj�xN �

E p h

x � e

PNÿ1

t�0

gc�xt;at��~hj�xN �
� E p g

x� e

PNÿ1

t�0

gc�xt;at��~gj�xN �

26664
37775

U max
0Un;mUN

ln
H h

Ne ~gj �xn� �H g
Ne

~hj �xm�
H h

Ne
~hj �xn� �H g

Ne ~gj �xm�

" #

U max
0Un;mU2N

ln
�H h

N=H
g
N�e ~gj �xn�=�H h

N=H
g
N�e~hj �xn�

�H h
N=H

g
N�e ~gj �xm�=�H h

N=H
g
N�e~hj �xm�

" #

� d��H h
N=H

g
N�e ~gj ; �H h

N=H
g
N�e

~hj �; �8�

where �H h
N=H

g
N� is the 2N �N matrix in which the rows of H

g
N follow the

rows of H h
N . Observe that H h

N ;H
g
N > 0 and so �H h

N=H
g
N� > 0. Further, paral-

leling (8) it is easy to see that

sp�~gj ÿ ~hj�U sp�gÿ h�: �9�

Now we de®ne

f� :� min
p2;p2APDM

f1=2�H p1

N =H p2

N �: �10�

Risk sensitive control of ®nite state Markov chains in discrete time 173



Then, from Proposition 2.1,

tB�H p1

N =H p2

N � �
1ÿ f1=2�H p1

N =H p2

N �
1� f1=2�H p1

N =H p2

N �

U
1ÿ f�

1� f�

�: t:

Therefore, from (8)±(10) we conclude that

sp�gk ÿ hk�U tsp�gÿ h�: �11�

Thus, for r > 1 the theorem follows from (11). r

From the above result it follows that the operator T has a span ®xed point
W A RN ; that is, there exist W A RN and a constant l such that

l�W�x� � TW�x� for all x A E; �12�

which is the dynamic programming equation (1).

Value iteration. Given arbitrary g A RN the value iteration functions gk are
de®ned recursively by (3). The relative value functions are given by Gk�x� :�
gk�x� ÿ gk�z�, with z A E being arbitrary but ®xed. Also, lk�x� :� gk�x�ÿ
gkÿ1�x� with x A E and k A N represents the k-di¨erential cost at state x A E
(see [12]).

Theorem 2.3. Let l and W be as in (12). Then, for each x A E, lk�x� ! l and

Gk�x� !W�x� ÿW�z� when k !y. Moreover, sup
x AE

J�x; p�k� ÿ
l

g

���� ����! 0 as

k !y, with p�k A F achieving the minimum on the r.h.s. of (3).

Proof. Let k > N and p�k A F be as in the statement of the theorem. Then

gk�x� � gc�x; p�k�x�� � ln
X
y AE

egkÿ1� y�Px;y�p�k�x��;

which implies that

lk�x� � gk�x� ÿ gkÿ1�x�

V ln
X
y AE

egkÿ1�y�Px;y�p�k�x�� ÿ ln
X
y AE

egkÿ2�y�Px;y�p�k�x��

V inf
x

lkÿ1�x�:
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Thus infx lkÿ1�x�U infx lk�x�, and similarly it can be seen that supx lk�x�U
supx lkÿ1�x�. On the other hand, using analogous arguments, it can be seen
also that k ! maxx�gk�x� ÿWk�x�� is nonincreasing and k ! infx�gk�x�ÿ
Wk�x�� is nondecreasing. Hence

sup
x

lk�x� � sup
x
fgk�x�ÿWk�x�ÿgkÿ1�x� �Wkÿ1�x� �Wk�x�ÿWkÿ1�x�g

U sup
x
fgk�x� ÿWk�x�g ÿ inf

x
fgkÿ1�x� ÿWkÿ1�x�g � l

U sup
x
fgkÿ1�x� ÿWkÿ1�x�g ÿ inf

x
fgkÿ1�x� ÿWkÿ1�x�g � l

� sp�gkÿ1�x� ÿWkÿ1�x�� � l

U trsp�gÿW� � l; �13�

where r is such that k ÿ 1 � rN � j, 0U j < N.
Analogously it can be seen that

inf
x

lk�x�Vÿtrsp�gÿW� � l: �14�

Therefore, for all x A E,

ÿtrsp�gÿW� � lU inf
x

lk�x�U lk�x�U sup
x

lk�x�U trsp�gÿW� � l;

and hence

sup
x
jlk�x� ÿ ljU trsp�gÿW�;

which implies the ®rst part of the theorem.
Now we shall prove the second part of the theorem. First, we observe that

gk�x� ÿWk�x� � gk�x� ÿW�x� ÿ kl, and so

gk�x� ÿ gk�z� ÿW�x� �W�z� � gk�x� ÿWk�x� ÿ gk�z� �Wk�z�: �15�

Further, from Theorem 2.2 we have that

sp�gk ÿWk�U trsp�gÿW�; �16�

which together with the monotone property of k ! maxx�gk�x� ÿWk�x�� and
k ! minx�gk�x� ÿWk�x�� we get limk!y maxx�gk�x� ÿWk�x�� � limk!y �
minx�gk�x� ÿWk�x��. It follows that

gk�x�ÿWk�x� ÿ lim
k!y

max
x
�gk�x�ÿWk�x��

� ����� ����U sp�gkÿWk�U t rsp�gÿW�:

Now, from (15),
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sup
x
jgk�x� ÿ gk�z� ÿW�x� �W�z�jU 2trsp�gÿW�;

which proves the second part of the theorem.
Finally, (13) and (14) imply that infx lk�x�U lU supx lk�x� for all k V 2,

and so

1

g
inf

x
lk�x�U 1

g
lU J�x; p�k�; �17�

where p�k is as in the statement of the theorem. Moreover, for all x A E,

gk�x� � gc�x; p�k�x�� � ln
X
y AE

egkÿ1�y�Px;y�p�k�x��:

Hence

E
p �

k
x e

g
PTÿ1

t�0

c�xt;at�
� E

p �
k

x

YTÿ1

t�0

egk�xt�P
y AE

egkÿ1�y�Pxt;y�p�k�xt��

U esupx�gk�x�ÿgkÿ1�x��T E
p �

k
x

YTÿ1

t�0

egkÿ1�xt�P
y AE

egkÿ1�y�Pxt;y�p�k�xt�� ;

and using the Markov property, it follows that the expectation on the r.h.s. is
bounded (see [9], eq. (2.21)). Then from the above we obtain

J�x; p�k�U
1

g
sup

x
lk�x�;

which together with (17) give

1

g
inf

x
lk�x�U 1

g
lU J�x; p�k�U

1

g
sup

x
lk�x�:

Finally, using (13) and (14), we obtain

ÿ 1

g
trsp�gÿW�U 1

g
inf

x
lk�x� ÿ 1

g
lU J�x; p�k� ÿ

1

g
l

U
1

g
sup

x
lk�x� ÿ 1

g
lU

1

g
trsp�gÿW�:

This concludes the proof of the theorem. r

In the following sections we shall apply the results obtained above in order
to characterize and compute optimal investment strategies for a problem of
risk sensitive portfolio management.
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3 Discrete time risk sensitive portfolio management: Model formulation

To formulate the model, let the factor process X be a discrete time, stationary
Markov chain having transition matrix Q � �Qx;y� and ®nite state space E.
For example, suppose ®ve macroeconomic variables are observed and each
classi®ed into four categories, thereby giving a total of 45 � 1024 states. There
is a bank account with constant interest rate r, so a deposit of one dollar be-
comes ert dollars after t periods (we ®nd it more convenient to model the bank
account as ert than as �1� r�t, even though the latter is often used for discrete
time models). There are m risky assets with the m-dimensional random vari-
able Z representing the vector of one-period price relatives (i.e., the multi-
plicative factors by which the prices change; see Example 1 in Section 5).
There is a conditional probability distribution of the form n�x; y; dz� such that
the price relative vector Zt�1 for the period between times t and t� 1 has this
distribution whenever Xt � x and Xt�1 � y. Note that having asset returns
depend on factor values at the end of a period, and not just the beginning of
the period, is important for realistic modeling, because asset returns are often
correlated with factor value changes.

To model the trading strategies, let A denote a compact subset of Rm

whose elements a represent admissible vectors of proportions for the risky as-
sets. For example, the ith component of a is the proportion of wealth invested
in the ith risky asset for the period, and 1ÿ a1 ÿ � � � ÿ am is the proportion
of wealth invested for the period in the bank account. Using the notation of
section 2 we assume that A�x� � A for every x in E. We now de®ne the set of
admissible pairs K, the set of histories Ht, the sets of policies (i.e., trading
strategies), and so forth exactly the same as in Section 2. In particular, we
denote by F the set of functions f : E! A, and a trading strategy p A PDM is
said to be stationary if there exists f A F such that pt� f �xt�jht� � 1 for all
ht A Ht; tV 0; this trading strategy will also be denoted by f A F.

Note that pt represents the vector of proportions that will be in place be-
tween times t and t� 1. Thus with Vt representing the time-t value of the
portfolio under a particular trading strategy, it follows that

Vt�1 � Vt�er � pt � �Zt�1 ÿ er1��;

where `�' here is meant to represent an inner product of vectors, and 1 repre-
sents the vector of 1's.

If p denotes an admissible trading strategy, then the risk sensitive measure
of performance (i.e., the risk adjusted growth rate) is

J�x; p� � lim inf
T!y

ÿ 2

y

� �
1

T
ln E p

x exp ÿ y

2
ln VT

� �
; �18�

where E p
x denotes conditional expectation given policy p and x0 � x. The

aim, of course, is to choose an admissible, Markov trading strategy p that
maximizes this expression, which has exactly the same form as in the contin-
uous-time formulation of Bielecki and Pliska [4]. The parameter y here is a
nonnegative scalar capturing the investor's attitudes about risk aversion. As
explained in Bielecki, Pliska, and Sherris [6], the bigger the value, the more
risk averse is the investor, and the ``risk null'' case y � 0 is the well-known
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Kelly criterion case where the objective is simply to maximize the portfolio's
long run growth rate.

We now seek to reformulate our optimal portfolio model in the terms of
the preceding section. To do this we ®rst introduce the expected value

my�x; y; a� : � Ex;y exp ÿ y

2
ln�er � a � �Z ÿ er1��

� �

�
�

exp ÿ y

2
ln�er � a � �zÿ er1��

� �
n�x; y; dz�: �19�

In order for this to make good sense, it is necessary to make the following:

Assumption A.3.

(i) The action set A is such that, for each a A A, er � a � �Z ÿ er1� > 0
almost surely.

(ii) For each x; y A E and each a A A, the conditional expectation my�x; y; a�
exists and is ®nite.

For assumption A.3(i) it may be necessary to impose constraints on the port-
folio proportions. For example, if a asset can become worthless, then you
cannot invest all your money in this asset. And there may need to be limits on
short selling.

We also de®ne the ``transition probability''

Py
x;y�a� �

Qx;ymy�x; y; a�P
s Qx; smy�x; s; a� ;

and the ``one period cost''

cy�x; a� � 2

y
ln

X
s

Qx; sm
y�x; s; a�

 !
:

Then, by some calculations involving iterated conditional expectations, it is
straightforward to show that our measure of performance J�x; p� can be ex-
pressed as

J�x; p� � lim inf
T!y

ÿ 2

y

� �
1

T
ln E p;y

x exp
y

2

XTÿ1

t�0

cy�Xt; pt�
 !

; �20�

where E p;y
x is the conditional expectation with respect to the probability

measure generated by the transition kernels Py
y;y 0 �a� and by the strategy p on

the canonical (i.e. trajectory) space, given that the trajectory of the Markov
chain Xt originates from x (that is X0 � x). Substituting g � y=2, this becomes

J�x; p� � ÿ lim sup
T!y

1

T
� 1

g
ln E p; g

x exp g
XTÿ1

t�0

cg�Xt; pt�
 !

; �21�
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where the change of notation to E p; g
x and cg�Xt; pt� is done to keep things nice

and tidy.
We thus have arrived at the discrete time, risk sensitive, Markov control

model that was presented in the preceding section, except that the measure of
performance there is the negative of the measure of performance here. Thus
minimizing the risk sensitive cost measure of Section 2 is the same as max-
imizing the risk adjusted growth rate for this section's portfolio management
model. Note also that the cost function cg�x; a� here explicitly depends on the
risk aversion parameter g, whereas it does not in Section 2; this di¨erence is
not important for what we intend to do.

In the following section we shall apply the theoretical results of Section 2
in order to draw some fundamental conclusions about risk sensitive portfolio
management in discrete time.

4 Discrete time risk sensitive portfolio management: Main results

With Assumption A.3 holding throughout this section and with the risk ad-
justed growth rate J�x; p� for any trading strategy p as in (18), the optimal
portfolio problem is to ®nd a trading strategy p� such that J�x� � J�x; p��,
where J�x� is the value function given by

J�x� :� sup
p AP

J�x; p�:

We intend to solve this problem using the results of Section 2. In order to be
sure that Assumptions A.1 and A.2 hold, we shall make the following:

Assumption A.4.

(i) The set A of admissible portfolio proportion vectors is compact.
(ii) For each x; y A E and each a A A, the conditional expectation m�x; y; a� is

strictly positive.
(iii) The Markov transition matrix Q for the factor process is irreducible.
(iv) For each x A E, Qx;x > 0.

Clearly a! my�x; y; a� is continuous, so a! Py
x;y�a� and a! cy�x; a� are

too. In particular, with A.4(i), it follows that Assumption A.1 holds. As-
sumption A.4(ii) is meant to rule out pathological cases, so we can be assured
that Qx;y > 0 if and only if Py

x;y�a� > 0 for all a A A. Thus Assumption A.2(i)

holds. Similarly, Assumption A.4(iv), which is very reasonable for ®nancial
economic applications, together with A.4(ii) imply Assumption A.2(ii).

Making some simple substitutions (and keeping in mind that the value
function in Section 2 is the negative of the value function here), the Veri®ca-
tion Theorem 2.1 can be restated as follows:

Theorem 4.1. Suppose that there exist a number l and a function W : E! R
such that
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eW�x��l � min
a AA�x�

X
y AE

Qx;ymy�x; y; a�eW� y�
( )

: �22�

Then J�x� � ÿ 2

y
l, and the stationary trading strategy f � A F, with f ��x�

achieving the minimum on the r.h.s., is optimal.

Of course we know by Theorem 2.2 in Section 2 that the solution �l;W� of
this dynamic programming equation exists and is unique up to a constant
added to W. The theory of non-negative matrices can be exploited to provide
an alternative and direct proof of this theorem, at least for the case where all
admissible trading strategies are deterministic and Markov. Since this will also
provide a better understanding of this theorem, we now digress to make these
arguments. We begin by de®ning for each f A F the square matrix

By� f � :� �Qx;ymy�x; y; f �x���:

This matrix enables us to recast Theorem 4.1 as follows:

Proposition 4.1. Suppose that there exist a strictly positive number r, a strictly
positive column vector v, and some f � A F such that

rv � By� f ��vUBy� f �v; E f A F: �23�

Then J�x� � ÿ 2

y
ln r, and the stationary trading strategy f � is optimal.

In order to prove this proposition for the special case where ``optimality''
is with respect to just the deterministic Markov trading strategies, use will be
made of the following:

Lemma 4.1. Given any deterministic Markov trading strategy p � � f0; f1; . . .� A
PDM , and assuming the initial capital V0 � 1, then E p

x exp ÿ y

2
ln VT

� �
equals

the sum of the elements in row x of the matrix By� f0�By� f1� � � �By� fTÿ1�.

Proof. It su½ces to show by induction that for an arbitrary deterministic
Markov trading strategy p � � f0; f1; . . .� A PDM

E p exp ÿ y

2
ln VT

� � ����X0 � i;XT � j

� �
P�X0 � i;XT � j� � By;T

ij

for all i; j A E and all times T, where By;T
ij denotes the element in row i and

column j of the matrix By� f0�By� f1� � � �By� fTÿ1�. The case T � 1 is left to the
reader. For the induction step, suppose this is true for T ÿ 1. Then
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E p exp ÿ y

2
ln VT

� � ����X0 � i;XT � j

� �

� E p

�
exp ÿ y

2
ln VTÿ1

� �

� exp ÿ y

2
ln�er � fTÿ1�XTÿ1��Zt�1 ÿ er1��

� � ����X0 � i;XT � j

�

� E p E p exp ÿ y

2
ln VTÿ1

� ���

� exp ÿ y

2
ln�er � fTÿ1�XTÿ1��Zt�1ÿer1��

� �

�
����X0� i;XTÿ1;XT � j

� ����X0� i;XT� j

�

� E p

�
E p

�
exp ÿ y

2
ln VTÿ1

� � ����X0 � i;XTÿ1

�

� my�XTÿ1; j; fTÿ1�XTÿ1�� jX0 � i;XT � j

�

�
X

k

E p exp ÿ y

2
ln VTÿ1

� � ����X0 � i;XTÿ1 � k

� �

� my�k; j; fTÿ1�k��P�XTÿ1 � k jX0 � i;XT � j�:

But

Prob�XTÿ1 � k jX0 � i;XT � j� � Prob�X0 � i;XTÿ1 � k;XT � j�
Prob�X0 � i;XT � j�

� Prob�X0 � i;XTÿ1 � k�Qkj

Prob�X0 � i;XT � j�

and by the induction assumption

E p exp ÿ y

2
ln VTÿ1

� � ����X0 � i;XTÿ1 � k

� �
Prob�X0 � i;XTÿ1 � k� � By;Tÿ1

ik ;

so substituting gives
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E p exp ÿ y

2
ln VT

� � ����X0 � i;XT � j

� �
�
P

k By;Tÿ1
ik my�k; j; fTÿ1�k��Qkj

Prob�X0 � i;XT � j�

�
P

k By;Tÿ1
ik By

kj� fTÿ1�
Prob�X0 � i;XT � j� ;

thereby completing this proof. r

We shall also need some theory of positive matrices. Recall that since each
By� f � is a nonnegative, irreducible, aperiodic matrix, we know (see [19]) that
it has a positive spectral radius, which we shall denote rf , with a correspond-
ing eigenvector that is strictly positive. Moreover, if n is any other eigenvalue,
then jnj < rf , and the corresponding eigenvector is not strictly positive. Note,
by the way, that the number r in equation (23) is precisely rf � , the spectral
radius of B� f ��.

Proof of Proposition 4.1. Let r; v, and f � be as in the Proposition, and let
p � � f0; f1; . . .� A PDM be an arbitrary deterministic Markov trading strategy.
Thus (23) implies

rv � By� f ��vUBy� fn�v; n � 0; 1; . . . �24�

In particular, taking n � 1 this gives

rvUBy� f1�v;

multiplying both sides of this on the left by By� f0� and then applying (24) with
n � 0 gives

�r�2vUBy� f0�By� f1�v:

It thus becomes apparent that an easy induction argument can be used to
show that

�r�nvUBy� f0�By� f1� � � �By� fnÿ1�v; En: �25�

Now the eigenvector v is strictly positive, so without loss of generality we can
assume vU 1. Hence (25) implies

�r�nvUBy� f0�By� f1� � � �By� fnÿ1�1; En:

By Lemma 4.1, therefore,

�r�T v�x�UE p
x exp ÿ y

2
ln VT

� �
;

so

T ln r� ln v�x�U ln E p
x exp ÿ y

2
ln VT

� �
:
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Hence by the de®nition (18) of the risk adjusted growth rate, we conclude that

ÿ 2

y
ln rV J�x; p�; Ex A E: �26�

Since p was chosen arbitrarily, this inequality holds for all deterministic
Markov trading strategies.

It remains to show that equality holds in (26) when p � f �. To do this we
de®ne C :� rÿ1By� f ��, a matrix with spectral radius one. By Theorem 1.2 in
Seneta [19] we know that C T , the T-th power of C, converges to some strictly
positive matrix as T !y. So ln�C T 1�x�� also converges for all x A E, in
which case Tÿ1 ln�C T 1�x�� converges to zero. Since by Lemma 4.1

ln E f �
x exp ÿ y

2
ln VT

� �
� ln�By� f ���T 1�x�

� ln�rC�T 1�x� � T ln r� ln C T 1�x�;

it follows that

J�x; f �� � lim inf
T!y

ÿ 2

y

� �
1

T
�T ln r� ln C T 1�x��

� ÿ 2

y
ln r� lim inf

T!y
ÿ 2

y

� �
1

T
ln C T 1�x� � ÿ 2

y
ln r:

This proof is done. r

With a similar kind of argument we obtain the following interesting char-
acterization of the ``optimal'' spectral radius r.

Proposition 4.2. The spectral radius r of Proposition 4.1 satis®es

r � inf
f AF

rf

Proof. Let f A F be arbitrary, and let u denote the eigenvalue corresponding
to spectral radius rf and matrix By� f �. With r; v, and f � as in Proposition
4.1, the fact that both u and v are strictly positive mean that we can assume
without loss of generality that vU u. Hence by (23) we have

rv � By� f ��vUBy� f �vUBy� f �u � rf u:

It follows by a simple induction argument that we have, in fact,

rnvU rn
f u; En:

Hence rf < r gives rise to a contradiction, so this proof is completed. r

This ends our discussion of the optimality criteria Theorem 4.1 and Prop-
osition 4.1. We now turn to the span contraction operator, which we denote
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by T y to emphasize its dependence on y, and value iteration. According to
de®nition (2), the operator T y for our portfolio management model given by
(22) can be written as

T yg�x� � inf
a AA

ln
X
y AE

Qx;ymy�x; y; a�eg�y�:

Equivalently, we can write this in vector form as

T yg � inf
f AF

ln By� f �eg:

Then as explained in Section 2, given arbitrary g0 : E! R the value iteration
functions are de®ned recursively by

gk � T ygkÿ1 � inf
f AF

ln By� f �egkÿ1 :

The sequence de®ned by lk�x� :� gk�x� ÿ gkÿ1�x� converges to l � ln r, part
of the dynamic programming solution, as k !y. With z A E being arbitrary
and ®xed, the relative value functions given by Gk�x� :� gk�x� ÿ gk�z� con-
verge as k !y to a function W which is also part of the dynamic program-
ming solution. This algorithm will be illustrated in the following section.

It is important to remark that as a consequence of the successive approx-
imations and span contraction results, we now know that there exists a solu-
tion to the dynamic programming equation. Moreover, this solution is unique,
up to an additive constant for W in the case of equation (22) or up to multi-
plication of v by a scalar in the case of relation (23).

We also remark that a policy improvement algorithm can be used to
compute a dynamic programming equation solution, provided that the set A
of admissible proportion vectors is ®nite. This procedure for a general risk
sensitive Markov chain control problem is fully explained in Di Masi and
Stettner [8].

We conclude this section by observing that the results presented here can
be easily generalized to the case when the interest rate r is a function of the
underlying Markov factor process. We illustrate this observation in the ex-
ample 2 below, where the short rate r is a factor process itself.

5 Numerical examples

Example 1. In this toy example we suppose E � �1; 2�, there is one risky asset,
the interest rate is r � 0, and the risk aversion parameter is y � 2. The Mar-
kov transition matrix for the factor process is

Q � :8 :2

:3 :7

� �
:

The conditional probability distribution for the risky asset's price relative is:

n�1; 1; 1:1� � 1; n�1; 2; :7� � 1

n�2; 1; :6� � 1; n�2; 2; 1:2� � 1:
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Thus if the initial price is S, then after one period the price will be either 1.1S,
0.7S, 0.6S, or 1.2S, and these are perfectly correlated with the four possible
transitions of the factor process. Note that the conditional expected one period
returns are the same for both states (i.e., E1�Z� � E2�Z� � 1:02), but state 2 is
more volatile than state 1.

The set A of admissible risky asset proportions must be speci®ed with some
care. In view of Assumption A.3(i) we must have

1� a�Z ÿ 1� > 0

for all a A A and all four possible values of Z. It follows with some simple
algebra that we must have ÿ5 < a < 2:5 for all a A A. Since A must also be
compact, we shall therefore assume that A � �ÿ1; 2�.

Given our simplifying assumptions, the conditional expectations
my�x; y; a� have simple, explicit expressions:

my�1; 1; a� � �1� :1a�ÿ1; my�1; 2; a� � �1ÿ :3a�ÿ1

my�2; 1; 1� � �1ÿ :4a�ÿ1; my�2; 2; 1� � �1� :2a�ÿ1:

Consequently, the matrix By� f � has the form:

By� f � � :8�1� :1 f �1��ÿ1 :2�1ÿ :3 f �1��ÿ1

:3�1ÿ :4 f �2��ÿ1 :7�1� :2 f �2��ÿ1

 !
:

We implemented the value iteration algorithm starting with g0 � 1 and using
Solver on an Excel spreadsheet. After seven iterations the optimal risky asset
proportions had converged to 0.3416 and 0.1301 for factor states 1 and 2, re-
spectively. After eight iterations the value of l had converged to ÿ0:00264,

which corresponds to a risk adjusted growth rate of J�x� � ÿ 2

y
l � 0:00264.

We took ®xed state z � 1 and thus W�0� � 0. After ten iterations the value of
W�2� had converged to 0.00428.

Example 2. This example is motivated by the continuous time ``Vasicek'' ex-
ample in the asset allocation paper [6] by Bielecki, Pliska and Sherris. There is
a single factor representing the short interest rate, and it takes values in one of
three possible states: ``low'' (namely, 4 per cent per annum), ``medium'' (6 per
cent), and ``high'' (8 per cent). The Markov transition matrix for the factor
process is

Q �
:96 :04 :0

:02 :96 :02

0 :04 :96

0@ 1A:
We are thinking of time periods being months, so the expected sojourn time in
each state is 25 months. Note that this matrix is irreducible but not strictly
positive; just seven kinds of one-step transitions can occur with positive
probability: low-low, low-medium, medium-low, etc.

Risk sensitive control of ®nite state Markov chains in discrete time 185



There is a single risky security whose one-period return is a lognormal
random variable of the form expmÿs2=2�sM , where M is a standard normal
random variable. The volatility s always equals 0.06; this is on a monthly
basis and thus equals approximately 20:78��6

�����
12
p � per cent on an annual

basis). The mean return parameter m varies with the type of transition. It
equals 13%, 12%, and 11% (on an annual basis) if the transition is low-low,
medium-medium, or high-high, respectively. This re¯ects the idea that if the
interest rate remains unchanged, then the asset return will be fairly routine,
although there will be a small advantage for low interest rates. An upward
shift in the interest rate is bearish, so m equals 3% and 2% (on an annual basis)
if the transition is low-medium and medium-high, respectively. Finally, a
downward shift in the interest rate is bullish, so m equals 22% and 21% (again,
on an annual basis) if the transition is medium-low and high-medium, re-
spectively.

As with Example 1, we did all our computations taking y � 2, only this
time we did our computations using Maple rather than a spreadsheet. The ®rst
step was to specify the seven my functions, one for each type of transition. We
wanted these to be explicit functions of the decision parameter a, the propor-
tion of wealth in the risky asset, in order to facilitate the minimization opera-
tion that is part of the dynamic programming equation and the operator T y.
However, with each my function being the expectation of a function of a log-
normal random variable, Maple was not able to produce the corresponding
inde®nite integral, and thus it could not produce the my functions in the form
we wanted. Consequently, we took a discrete approximation of the underlying
standard normal random variable M, and so Maple was able to produce each
of the seven my's as an explicit function of the decision parameter a, as desired.

At this point it was straightforward to implement with Maple the succes-
sive approximations algorithm; we did so starting with g � 0 and conducting
27 iterations. Convergence was judged by looking at the three values of
gk ÿ gkÿ1, all three of which should have been converging to l � ln r. For
instance, after 20 iterations these three values were ÿ0:00674;ÿ0:00671, and
ÿ0:00741, whereas after 27 iterations these values were ÿ0:00674;ÿ0:00679,
and ÿ0:00725. Convergence is somewhat slow, perhaps due to the fact that Q
is not strictly positive. After 27 iterations the optimal proportions were com-
puted to be 0.991009, 0.691934, and 0.392575 for states low, medium, and
high, respectively.

We initially imposed the constraint 0U aU 1, but it soon became appar-
ent from our successive approximation calculations that the optimal value of
the risky asset proportion a would be in the interior of this interval for all
three of the states. We then realized that we could set up a system of six
equations in six unknowns that could be solved for an optimal solution of the
dynamic programming equation. We ®xed W�m� � 0, so the six variables
were W�l�;W�h�; l; al ; am; and ah (the last three are the optimal proportions
in states low, medium, and high, respectively). There were three equations
corresponding to the dynamic programming equation, one for each state in
the form

W�x� � l � ln
X
y AE

Qx;ymy�x; y; ax�eW�y�:

The other three equations are the three necessary conditions, one for each
state. Each such equation, which is easily provided by Maple, is simply the
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derivative with respect to ax of the right hand side of the preceding equation,
set equal to zero.

Maple solved this system within a few seconds, obtaining the solution
W�h� � ÿ0:008228396;W�l� � 0:000131498, ah � 0:392966, am � 0:692224,
al � 0:991776, and l � ÿ0:00689525. These results are consistent with the
successive approximation calculations. The optimal objective value is J�x� �
0:00689525.

6 Concluding remarks

In the introduction we have already emphasized the importance of discrete
time modeling as a computationally feasible approximation to a continuous
time problem. Discrete time modeling provides other bene®ts as well. It allows
for modeling of time delays (time lags) within a ®nite dimensional framework.
This is an important feature as the econometric literature indicates that both
linear and non-linear models involving time lags provide more accurate de-
scription of dynamic economic systems (see e.g. Pesaran and Timmermann
[17]). Modeling time delays within the framework presented in this paper
poses no di½culty: it can be easily achieved by (®nitely) enlarging the state
space of the underlying Markov chain and/or by introducing more than one
random variable Z [possibly dependent on the underlying Markov chain]. On
the other hand, the model presented here o¨ers a potential of considering
various probability distributions for the random noise variable Z. Hetero-
schedasticity (correlations between the random noises corresponding to dif-
ferent time epochs) can be easily built into the model as well [this could serve
as a proxy for the so called long-range dependence that is reported in the lit-
erature to manifest itself in some ®nancial markets (see e.g. Peters [18])]. In
addition, our discrete time framework allows for considering probability dis-
tributions for Z for which the exponential moment in (19) may not exist. This
is important as many recent studies (see e.g. Mittnik and Rachev [14], and
McCulloch [15]) indicate that returns on numerous securities are distributed
according to leptokurtic (e.g. stable non-Gaussian) distributions. In such case
of course our techniques would need to be adapted to maximization of the
risk-sensitized value of the so called location parameter of the distribution of

the log return ln
Vt�1

Vt

� �
(see e.g. Bielecki and Pliska [7]).
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