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Abstract. This paper develops a continuous time portfolio optimization model
where the mean returns of individual securities or asset categories are explicitly
affected by underlying economic factors such as dividend yields, a firm’s return on
equity, interest rates, and unemployment rates. In particular, the factors are Gaussian
processes, and the drift coefficients for the securities are affine functions of these
factors. We employ methods of risk-sensitive control theory, thereby using an infinite
horizon objective that is natural and features the long run expected growth rate, the
asymptotic variance, and a single risk-aversion parameter. Even with constraints
on the admissible trading strategies, it is shown that the optimal trading strategy
has a simple characterization in terms of the factor levels. For particular factor
levels, the optimal trading positions can be obtained as the solution of a quadratic
program. The optimal objective value, as a function of the risk-aversion parameter,
is shown to be the solution of a partial differential equation. A simple asset allocation
example, featuring a Vasicek-type interest rate which affects a stock index and also
serves as a second investment opportunity, provides some additional insight about
the risk-sensitive criterion in the context of dynamic asset management.
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1. Introduction

Beginning with the fundamental work by Merton [23], a number of very sophisticated
stochastic control models have been proposed for making optimal investment decisions.
A typical approach takes diffusion process models of securities and looks for the trading
strategy which maximizes the expected utility of consumption and/or terminal wealth
over a finite planning horizon. The optimal strategy is obtained by solving the dynamic
programming equation, which is a PDE that must be solved numerically except for a few
simple cases.

The computational difficulties associated with PDEs have been circumvented some-
what by taking a more modern approach (see [16], [26], and [27]) using convex opti-
mization theory and risk-neutral probability measures. The idea is to decompose the
portfolio problem into two parts: first an optimization problem for the random variable
representing the optimal terminal wealth (or its optimal consumption analog) is solved,
and then a martingale representation problem for the optimal trading strategy is solved.
Explicit results can be obtained for the first step in a wide variety of circumstances,
provided the model is complete, which means, roughly speaking, that the number of
underlying Brownian motions is equal to the number of securities (see [13]). However,
the second step remains difficult in many cases. Moreover, it is often more realistic to
consider incomplete models, but here the results are extremely limited (see [16] for the
most recent results).

So while portfolio management seems like a natural application of stochastic control
theory, the fact is that this technology is rarely used in practice. While there are several
possible reasons for this lack of use, two primary explanations seem to be computa-
tional tractability and the statistical difficulties associated with the estimation of model
parameters. The aim of this paper is to introduce a new stochastic control approach that
is intended to address these two problems and thereby reduce the gap between theory
and practice. This approach is distinguished by two key features: underlying economic
factors such as accounting ratios, dividend yields, and macroeconomic measures are
explicitly incorporated in the model, and an infinite horizon, risk-sensitive criterion is
used for the investor’s objective.

Practitioners commonly use economic factors to forecast the returns of securities,
so in this paper we explicitly model such factors as well as the dependence of security
prices on such factors. While our approach does not circumvent the statistical difficulties
of making good estimates, it sheds better light on this problem, because the variables
which are used to forecast returns now reside within the model. Both the estimation and
optimization parts of the portfolio management process can be analyzed in an integrated
fashion.

Finite horizon optimization criteria often lead to time-dependent optimal strategies,
in which case the computational difficulties may be great. The alternative, namely, the
adoption of an infinite horizon optimization objective, offers the possibility of stationary
policies being optimal and thus of less severe computational difficulties. In addition, an
infinite horizon objective frequently is very appropriate for practical investment problems
such as the problem of managing a mutual fund. However, the choices of infinite horizon
criteria are quite limited. About the only such criterion that has been studied in the
portfolio management context is that of maximizing the portfolio’s long-run growth
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rate (i.e., the Kelly criterion, associated with expected log utility). This criterion is not
conservative enough for most investors, and investors vary widely in regard to their
attitudes about risk. Meanwhile, the two classical infinite horizon criteria in the control
theory literature, namely, average cost/reward and discounted cost/reward, are poorly
suited for portfolio management applications.

However, consider the criterion (hereV(t) is time-t portfolio value)

Jθ := lim inf
t→∞

(−2

θ

)
t−1 ln Ee−(θ/2) ln V(t),

whereθ > −2, θ 6= 0. SubstitutingR(t) = ln V(t) enables one to establish a connection
with the recently developed literature onrisk-sensitive optimal control(e.g., see [28]),
whereR(t) plays the role of a cumulative reward. This means that if we adopt, as we
shall, the objective of maximizingJθ , then many of the techniques that have recently
been developed for risk-sensitive control can be potentially applied to our portfolio
management problem.

Moreover, as is well understood in the risk-sensitive control literature, a Taylor
series expansion aboutθ = 0 yields

−2

θ
ln Ee−θ/2 lnV(t) = E ln V(t)− θ

4
var(ln V(t))+ O(θ2). (1.1)

HenceJθ can be interpreted as the long-run expected growth rate minus a penalty term,
with an error that is proportional toθ2. Furthermore, the penalty term is proportional to
theasymptotic variance, a quantity that was studied in [19] in the case of a conventional,
multivariate geometric Brownian motion model of securities. The penalty term is also
proportional toθ , so θ should be interpreted as arisk-sensitivity parameteror risk-
aversion parameter. The special case ofθ = 0 is referred to as therisk-null case; this is
the classical Kelly criterion, that is,J0 = lim inf t→∞ t−1E ln V(t).

Note thatJθ has the form of the large-deviations-type functional for the capital
processV(t). Consequently, maximizingJθ for θ > 0 protects an investor interested
in maximizing the expected growth rate of the capital against large deviations of the
actually realized rate from the expectations.

Some insight into our risk-sensitive criterion can be obtained by considering the
case where the processV(t) is a simple geometric Brownian motion with parameters
µ andσ. A simple calculation givesJθ = µ − 1

2σ
2 − (θ/4)σ 2, so the approximation

mentioned above is, in this case, exact.
This paper is not the first to apply a risk-sensitive optimality criterion to a financial

problem. Lefebvre and Montulet [22] used the calculus of variations approach to study a
firm’s optimal mix between liquid and nonliquid assets. Fleming [9] used risk-sensitive
methods to obtain asymptotic results for two kinds of portfolio management problems.

In summary, in this paper we develop a portfolio optimization model where securities
explicitly depend on underlying economic factors and where the objective is to maximize
the risk-sensitive criterionJθ that was introduced above. A precise formulation of our
model as well as the main results are all found in Section 2. Various preliminary and
auxiliary results are located in Section 3, while Section 4 has the principal arguments
and proofs of our main results.

Sections 2–4 are all for the case where the risk-aversion parameterθ > 0. The
risk-null caseθ = 0 is the subject of Section 5. It should be pointed out here, however,
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that when our model has no factors andθ = 0 it collapses to a well-studied, complete
model, but when factors are included our model is incomplete and our expected growth
rate maximization results are new. Indeed, most results in this paper, both whenθ = 0
andθ > 0, are significant contributions to the financial economic theory of incomplete
models of security markets.

Section 6 is devoted to providing some additional, interesting insight into the nature
of risk-sensitive optimality in the context of dynamic asset management. In Section 7 we
provide some thoughts about our future research. The paper concludes with an Appendix
in which we prove Lemmas 5.1 and 5.2.

2. Formulation of the Problem and the Main Results

We consider a market consisting ofm≥ 2 securities andn ≥ 1 factors. The set of secu-
rities may include stocks, bonds, cash, and derivative securities, as in [7], for example.
The set of factors may include dividend yields, price-earning ratios, short-term interest
rates, the rate of inflation, etc., as in [25], for example.

Let (Ä, {Ft },F,P) be the underlying probability space. Denoting bySi (t) the price
of the i th security and byXj (t) the level of thej th factor at timet , we consider the
following market model for the dynamics of the security prices and factors:

dSi (t)

Si (t)
= (a+ AX(t))i dt+

m+n∑
k=1

σikdWk(t), Si (0) = si , i = 1,2, . . . ,m, (2.1)

d X(t) = (b+ B X(t))dt +3dW(t), X(0) = x, (2.2)

whereW(t) is an Rm+n-valued standard Brownian motion process with components
Wk(t), X(t) is theRn-valued factor process with componentsXj (t), the market param-
etersa, A, 6 := [σi j ], b, B, 3 := [λi j ] are matrices of appropriate dimensions,
and(a + Ax)i denotes thei th component of the vectora + Ax. It is well known that
a unique, strong solution exists for (2.1), (2.2), and that the processesSi (t) are positive
with probability 1 (see, e.g., Chapter 5 of [18]).

Let Gt := σ((S(s), X(s)),0 ≤ s ≤ t), whereS(t) = (S1(t), S2(t), . . . , Sm(t)) is
the security price process. Leth(t) denote anRn-valued investment process or strategy
whose components arehi (t), i = 1,2, . . . ,m.

Definition 2.1. An investment processh(t) is admissibleif the following conditions
are satisfied:

(i) h(t) takes values in a given measurable subsetχ of Rm, and
∑m

i=1 hi (t) = 1,
(ii) h(t) is measurable,Gt -adapted,
(iii) P[

∫ t
0 h′(s)h(s) ds<∞] = 1, for all finite t ≥ 0.

The class of admissible investment strategies will be denoted byH.
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Let nowh(t) be an admissible investment process. Then there exists a unique, strong,
and almost surely positive solutionV(t) to the following equation:

dV(t) =
m∑

i=1

hi (t)V(t)

[
µi (X(t))dt +

m+n∑
k=1

σik dWk(t)

]
, V(0) = v > 0, (2.3)

whereµi (x) is the i th coordinate of the vectora + Ax for x ∈ Rn. The processV(t)
represents the investor’s capital at timet, andhi (t) represents the proportion of capital
that is invested in securityi, so thathi (t)V(t)/Si (t) represents the number of shares
invested in securityi, just as in, for example, Section 3 of [17].

In this paper we investigate the following family of risk-sensitized optimal invest-
ment problems, labeled as(Pθ ):

for θ ∈ (0,∞), maximize the risk-sensitized expected growth rate

Jθ (v, x; h(·)) := lim inf
t→∞

(−2

θ

)
t−1 ln Eh(·) [e−(θ/2) ln V(t)|V(0) = v, X(0) = x] (2.4)

over the class of all admissible investment processes h(·), subject to(2.2)
and(2.3),

whereE is the expectation with respect toP. The notationEh(·) emphasizes that the
expectation is evaluated for processV(t)generated by (2.3) under the investment strategy
h(t).

Remark 2.1. As mentioned in the Introduction, the positive value of the risk-sensitivity
parameterθ corresponds to a risk-averse investor. The techniques used in this paper can
also be used to study problems(Pθ ) for negative values ofθ , corresponding to risk-
seeking investors. The risk-null case, forθ = 0, is studied in Section 5 as the limit of
the risk-averse situation when the risk-sensitivity parameterθ goes to zero.

Before we can present the main results contributed by this paper, we need to introduce
the following notation, forθ ≥ 0 andx ∈ Rn:

Kθ (x) := inf
h∈χ, 1′h=1

[
1
2

(
θ

2
+ 1

)
h′66′h − h′(a+ Ax)

]
. (2.5)

We also need to introduce the following assumptions:

Assumption (A1). The investment constraint setχ satisfies one of the following two
conditions:

(a) χ = Rn, or
(b) χ = {h ∈ Rn : h1i ≤ hi ≤ h2i , i = 1,2, . . . ,m}, where h1i < h2i are finite

constants.

Assumption (A2). For θ > 0,

lim
‖x‖→∞

Kθ (x) = −∞.
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Assumption (A3). The matrix33′ is positive definite, and63′ = 0.

Remark 2.2. (i) Note that if66′ is positive definite and ker(A) = 0, then assumption
(A2) is implied by assumption (A1)(a).

(ii) These assumptions are sufficient for the results below to be true, but, as will
be seen for the example considered in Section 6, Assumption (A2) is not necessary, in
general.

Theorems 2.1 and 2.2 below contain the main results of this paper.

Theorem 2.1. Assume(A1)–(A3). Fix θ > 0. Let Hθ (x) denote a minimizing selector
in (2.5),that is,

Kθ (x) = 1
2

(
θ

2
+ 1

)
Hθ (x)

′66′Hθ (x) − Hθ (x)
′(a+ Ax).

Then the investment process

hθ (t) := Hθ (X(t)) (2.6)

is optimal sure in the sense of Foldes(see[11]). That is, letting, for eachτ ≥ 0,

Jτθ (v, x; h(·)) := −2

θ
ln Eh(·)[V−θ/2(τ )|V(0) = v, X(0) = x],

we have

Jτθ (v, x; h(·)) ≤ Jτθ (v, x; hθ (·)) (2.7)

for all admissible strategies h(·), v > 0, x ∈ Rn, and all τ ≥ 0.

Corollary 2.1. The investment process hθ (t) is optimal for problem(Pθ ), that is,

Jθ (v, x; h(·)) ≤ Jθ (v, x; hθ (·))

holds for all h(·) ∈ H, v > 0, x ∈ Rn.

Theorem 2.2. Assume(A1)–(A3), fix θ > 0, and consider problem(Pθ ). Let hθ (t) be
as in Theorem2.1.Then:

(a) For all v > 0 and x∈ Rn we have

Jθ (v, x; hθ (·)) = lim
t→∞

(−2

θ

)
t−1 ln Ehθ (·)[e−(θ/2) ln V(t)|V(0) = v, X(0) = x]

=: ρ(θ).

(b) The constantρ(θ) in (a) is the unique nonnegative constant which is a part of
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the solution(ρ(θ), v(x; θ)) to the following equation:

ρ = (b+ Bx)′ gradx v(x)−
θ

4

n∑
i, j=1

∂v(x)

∂xi

∂v(x)

∂xj

n+m∑
k=1

λikλjk

+ 1
2

n∑
i, j=1

∂2v(x)

∂xi ∂xj

n+m∑
k=1

λikλjk − Kθ (x),

v(x) ∈ C2(Rn), lim
‖x‖→∞

v(x) = ∞, ρ = const. (2.8)

The key point of the first equality in(a) is, of course, that the optimal objective value is
given by an ordinary lim rather than the lim inf as in (2.4). The key point of the second
equality in(a) is that the optimal objective value does not depend on either the initial
amount of the investor’s capital(v) or on the initial values of the underlying economic
factors(x), although it depends, of course, on the investor’s attitude toward risk (encoded
in the value ofθ ). The key point of (b) is that the optimal objective value is characterized
in terms of (2.8). It is important to observe that for the problem studied in this paper
the partv(x; θ) of the solution to (2.8) is a classical, smooth solution of a PDE. This
is mainly because the diffusion term in the factor equation (2.2) is nondegenerate. For
more general formulations, viscosity solutions may have to be considered.

3. Auxiliary Results

In this section we formulate several technical results that will be needed later. LetK (x)
be a real-valued function onRn. Throughout this section it is assumed thatK (x) has the
following properties:

Assumption (B1).

(a) K (x) ≤ 0.
(b) lim‖x‖→∞ K (x) = −∞.
(c) |K (x)| ≤ c(1+ ‖x‖2), where c is a positive constant.
(d) Let Ki ⊂ Rn, i = 1,2, . . . , I , I finite, be disjoint, open sets, such that⋃I

i=1 K̄i = Rn, whereK̄i is the closure of Ki . Then K(x) is smooth on each of
the Ki ’s.

(e) K (x) is locally Lipschitz on Rn.

We begin by considering the following Cauchy problem:

∂ f (t, x)

∂t
= 1

2

n∑
i, j=1

∂2 f (t, x)

∂xi ∂xj

m+n∑
k=1

λikλjk

+ (b+ Bx)′ gradr f (t, r )+ K (x) f (x, t), (3.1)

f (0, x) = 1,

for t ∈ (0, T ], T <∞, andx ∈ Rn. The above problem has been extensively studied in
the literature, and its properties are well known (see [12] or [21] for classical expositions).
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The classical solution to (3.1) can, for example, be constructed as follows:
Let Z(x, ξ, t, τ ) be given as in (11.13) of [21] forx, ξ ∈ Rn and 0≤ τ < t ≤ T ,

and define

g(t, x) :=
∫

Rn

Z(x, ξ, t,0)dξ, (t, x) ∈ [0, T ] × Rn. (3.2)

Using the above estimates and formulas (11.8) and (11.9) on p. 358 of [21], it follows
that

g ∈ C1,2((0, T), Rn) ∩ C([0, T ], Rn) (3.3)

and

g ∈ C1+α/2,2+α((0, T), Br ) ∩ C([0, T ], Rn), (3.4)

whereBr = {x ∈ Rn : ‖x‖ < r }, andr > 0 is arbitrary. In addition, we also have
(see the discussion in Section IV.14 of [21]) thatg is a solution to the Cauchy problem
(3.1). Finally, using the Feynmann-Kac formula (see, e.g., [18]) we obtain the following
stochastic representation forg:

g(t, x) = E[e
∫ t

0
K (X(s))ds|X(0) = x], (3.5)

whereX(t) is our factor process. Since every smooth solution for the Cauchy problem
(3.1) has the above representation, theng is the unique solution to the problem (3.1).
In view of conditions (B1)(a),(c), representation (3.5) implies the following estimates
for g:

0< g(t, x) ≤ 1, (t, x) ∈ [0, T ] × Rn, (3.6)

∂g(t, x)

∂t
≤ 0, (t, x) ∈ (0, T)× Rn. (3.7)

We now fixθ > 0 and define

uθ,T (t, x) := −2

θ
ln g(t, x), (t, x) ∈ [0, T ] × Rn. (3.8)

The following lemma summarizes properties ofuθ,T that we need.

Lemma 3.1. Assume(A2) and(B1).Then the function uθ,T defined by(3.8)enjoys the
following properties:

(a) uθ,T ≥ 0,
(b) ∂uθ,T/∂t ≥ 0,
(c) uθ,T is the only, nonnegative, classical solution of

∂u(t, x)

∂t
= (b+ Bx)′ gradx u(t, x)

+ 1
2

[
−θ
2

n∑
i, j=1

∂u(t, x)

∂xi

∂u(t, x)

∂xj

n+m∑
k=1

λikλjk
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+
n∑

i, j=1

∂2u(t, x)

∂xi ∂xj

n+m∑
k=1

λikλjk

]
− 2

θ
K (x), (3.9)

u(0, x) = 0,

for (t, x) ∈ (0, T ] × Rn,
(d) uθ,T (t, x) is three times continuously differentiable in x on

⋃I
i=1 Ki .

Proof. Properties (a), (b), and (c) are obvious consequences of (3.12)–(3.14) and the
fact thatg(t, x) is the unique solution to (3.1). Property(d) follows sinceK (x) is smooth
on
⋃I

i=1 Ki .

In view of the above lemma and the fact that gradx uθ,T and∂uθ,T/∂t are continuous, we
can now apply the argument used in the proof of Lemma 1.5 of [24] in order to obtain
the following important estimate (compare (1.28) in [24]):

t

(
‖gradx uθ,T‖2+ γ ∂uθ,T

∂t

)
≤ t Kr,γ + Lr,γ , on (0, T ] × Br , (3.10)

whereγ , Kr,γ , andLr,γ are some positive constants that are independent oft andT .
We want to extend the solutionuθ,T (t, x) from [0, T ]× Rn to [0,∞)× Rn. Toward

this end, following the argument of Section 1.4 in [24] withuR(t, x) = u1(t, x) =
u2(t, x) = uθ,T (t, x) on [0, T ] × B̄R (using the notation of [24]), we arrive at the
following result (compare Theorem 1.1 in [24]):

Lemma 3.2. Assume(A2) and(B1). Then:

(a) The equation

∂u(t, x)

∂t
= (b+ Bx)′ gradx u(t, x)

+ 1
2

[
−θ
2

n∑
i, j=1

∂u(t, x)

∂xi

∂u(t, x)

∂xj

n+m∑
k=1

λikλjk

+
n∑

i, j=1

∂2u(t, x)

∂xi ∂xj

n+m∑
k=1

λikλjk

]
(3.11)

− 2

θ
K (x), (t, x) ∈ (0,∞)× Rn,

u(0, x) = 0, x ∈ Rn,

has a nonnegative solution uθ ∈ C1,2((0,∞), Rn) ∩C([0,∞), Rn). This uθ is
an extension of uθ,T to [0,∞)× Rn.

(b) ∂uθ /∂t ≥ 0.

(c) t

(
‖gradx uθ‖2+ γ ∂uθ

∂t

)
≤ t Kr,γ + Lr,γ , on (0,∞)× Br , (3.12)

for some positive constantsγ , Kr,γ and Lr,γ that are independent of t.
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We see now that Theorem 3.4 of [24] applies in our context. We state the version of
this theorem, appropriate for the situation considered here, as

Lemma 3.3. Assume(A2) and(B1). Then:

(a) As t→∞ then the function uθ (t, x)−uθ (t,0) converges to a functionνθ (x) in
W1

2,loc uniformly on each compact subset of Rn, and the function∂uθ (t, x)/∂t
converges to a constantρθ .

(b) The pair(νθ , ρθ ) is the unique solution to equation(νθ is unique up to an additive
constant)

ρ = (b+ Bx)′ gradx ν(x)−
θ

4

n∑
i, j=1

∂ν(x)

∂xi

∂ν(x)

∂xj

n+m∑
k=1

λikλjk

+ 1
2

n∑
i, j=1

∂2ν(x)

∂xi ∂xj

n+m∑
k=1

λikλjk − 2

θ
K (x), (3.13)

ν(x) ∈ C2(Rn), lim
‖x‖→∞

ν(x) = ∞, ρ = const.

Since∂uθ (t, x)/∂t converges to a constantρθ , we thus have an obvious

Corollary 3.1.

lim
t→∞

uθ (t, x)

t
≡ ρθ . (3.14)

4. Proofs of the Main Results

In this section we verify validity of the results stated in Section 2. Assumptions (A1)–(A3)
are supposed to hold throughout the section.

Fix θ > 0 and consider the following Bellman–Hamilton–Jacobi equation:

0= infh∈χ [Lhϕ(t, x, v)],

ϕ(0, x, v) = v−(θ/2), (4.1)

for t > 0, x ∈ Rn, v > 0, where

Lhϕ(t, x, v) := −∂ϕ(t, x, v)

∂t
+ ∂ϕ(t, x, v)

∂v
h′(a+ Ax)v

+ (b+ Bx)′ gradx ϕ(t, x, v)

+ 1
2

∂2ϕ(t, x, v)

∂v2
h′66′hv2+ 1

2

n∑
i, j=1

∂2ϕ(t, x, v)

∂xi ∂xj

n+m∑
k=1

λikλjk .

We seek a solution to (4.1) in the form

8(t, x, v; θ) = v−(θ/2)e−(θ/2)U (t,x;θ), (4.2)
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for some suitable functionU (t, x; θ). To this end, we consider first the following two
equations:

∂U (t, x)

∂t
= (b+ Bx)′ gradx U (t, x)

+ 1
2

[
−θ
2

n∑
i, j=1

∂U (t, x)

∂xi

∂U (t, x)

∂xj

n+m∑
k=1

λikλjk

+
n∑

i, j=1

∂2U (t, x)

∂xi ∂xj

n+m∑
k=1

λikλjk

]
(4.3)

− Kθ (x), (t, x) ∈ (0,∞)× Rn,

U (0, x) = 0, x ∈ Rn,

and

∂Ū (t, x)

∂t
= (b+ Bx)′ gradx Ū (t, x)

+ 1
2

[
−θ
2

n∑
i, j=1

∂Ū (t, x)

∂xi

∂Ū (t, x)

∂xj

n+m∑
k=1

λikλjk

+
n∑

i, j=1

∂2Ū (t, x)

∂xi ∂xj

n+m∑
k=1

λikλjk

]
(4.4)

− K̄θ (x), (t, x) ∈ (0,∞)× Rn,

Ū (0, x) = 0, x ∈ Rn,

where

K̄θ (x) = Kθ (x)− Kθ

andKθ (x) andKθ are defined in (2.5) and (2.9), respectively. We now have the following:

Proposition 4.1. The constant Kθ is finite, and the functionK̄θ (x) satisfies Assump-
tion (B1).

Proof. Invoking the results from Section 5.5 of [1] we conclude thatKθ (x) satisfies
conditions (c) and (d) of Assumption (B1). In view of this and Assumption (A2), we
see that the constantKθ is finite, and thatK̄θ (x) satisfies conditions (a)–(d) of Assump-
tion (B1). Condition (e) is satisfied in view of problem (11)(a) in [10].

From the above proposition and from Lemma 3.2 it follows that there exists a
nonnegative classical solution̄U (t, x; θ) to (4.4). Now, by letting

U (t, x; θ) = Ū (t, x; θ)− t Kθ , (t, x) ∈ [0,∞)× Rn, (4.5)

we see thatU (t, x; θ) is a classical solution to (4.3). We thus have the following:
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Proposition 4.2. Let 8(t, x, v; θ) be as in(4.2), with U(t, x; θ) as in (4.5). Then
8(t, x, v; θ) is a classical solution to the Bellman–Hamilton–Jacobi equation(4.1).

Proof. The result follows by direct inspection.

We proceed with the statement and proof of a verification result, from which Theorem
2.1 and Corollary 2.1 follow immediately:

Proposition 4.3. Let8θ(t, x, v) denote any classical solution to(4.1).For each h(·) ∈
H we have

8θ(t, x, v) ≤ Eh(·)[V(t)−(θ/2)|V(0) = v, X(0) = x],

t ≥ 0, (x, v) ∈ Rn × (0,∞), (4.6)

For hθ (·) defined in(2.6)we have

8θ(t, x, v) = Ehθ (·)[V(t)−(θ/2)|V(0) = v, X(0) = x],

t ≥ 0, (x, v) ∈ Rn × (0,∞). (4.7)

Proof. The results are clearly true fort = 0.
Fix t > 0 and a strategyh(·) ∈ H. Applying Ito’s formula to9θ(s, x, v) =

8θ(t − s, x, v) for 0 ≤ s ≤ t , we get for each sufficiently smallε > 0 the following
equality:

Eh(·)[8θ(ε, X(t − ε),V(t − ε))|V(0) = v, X(0) = x] −8θ(t, x, v)

= Eh(·)
[∫ t

ε

Lh(·)8θ (r, X(t − r ),V(t − r ))dr |V(0) = v, X(0) = x

]
(4.8)

for all x ∈ Rn and v > 0, where Lh(·)8θ (s, X(s),V(s)) is defined similarly as
Lh8θ(s, X(s),V(s)) with h(s) substituting forh.

It follows from (4.1) that the expression on the right-hand side of (4.8) is nonnegative.
Thus, lettingε go to zero, we obtain (4.6).

It follows from the results of Section 5.5 in [1] thatHθ (x) (defined in Theorem 2.1) is
a piecewise affine function onRn. Thushθ (·) is an admissible strategy, and the conclusion
(4.7) follows since the right-hand side of (4.8) is equal to zero forh(·) ≡ hθ (·).

We are ready now to prove Theorem 2.1.

Proof of Theorem2.1. Let8(t, x, v; θ) be as in (4.2), withU (t, x; θ) as in (4.5). Then
it follows from Propositions 4.2 and 4.3 that8(t, x, v; θ) is the unique solution to
the Bellman–Hamilton–Jacobi equation (4.1), and that it satisfies (4.6) and (4.7). This
implies (2.7).

It remains to demonstrate Theorem 2.2.
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Proof of Theorem2.2. As in the proof of Theorem 2.1 we first observe that8(t, x, v; θ)
is the unique solution to (4.1). Thus̄U (t, x, v; θ) is the unique nonnegative solution to
(4.4), and we have

−2

θ
ln8(t, x, v; θ) = ln v + Ū (t, x; θ)− t Kθ , (4.9)

for (t, x, v) ∈ [0,∞) × Rn × (0,∞). Applying Lemma 3.3 and Corollary 3.1 to (2.8)
and (4.4) we conclude that

lim
t→∞

Ū (t, x; θ)
t

= ρ(θ)+ Kθ . (4.10)

The conclusions of Theorem 2.2 follow now from (4.9) and (4.10) since8(t, x, v; θ)
satisfies (4.6) and (4.7).

5. Risk-Null Problem (θ = 0)

In this section we study the limit whenθ ↓ 0 of problems(Pθ ). This leads to consideration
of the classical problem of maximizing the portfolio’s expected growth rate, that is, the
growth rate under the log-utility function (see, e.g., [15] and [16]). We label this problem
as(P0) and formulate it as follows:

maximize the expected growth rate

J0(v, x; h(·)) := lim inf t→∞ t−1 Eh(·)[ln V(t)|V(0) = v, X(0) = x]

over the class of all admissible investment processes h(·), subject to(2.2)
and(2.3).

(5.1)

Throughout the section we impose the following three assumptions:

Assumption (C1). For eachθ ≥ 0 the function Kθ (x) (see(2.5)) is quadratic and of
the form

Kθ (x) = 1
2x′K1(θ)x + K2(θ)x + K3(θ).

Assumption (C2). For eachθ ≥ 0 the matrix K1(θ) is symmetric and negative definite.

Assumption (C3). The matrix B in(2.2) is stable.

Remark 5.1. (a) Assumption (C1) will be relaxed in a future paper. We briefly discuss
at the end of this section how our results can be generalized to the case of general
functionsKθ (x), as defined in (2.5).

(b) Assumption (C1) is satisfied if, for example, the matrix66′ is nonsingular and if
χ = Rn. As will be seen in Section 6, nonsingularity of66′ is not a necessary condition
for (C1) to hold.
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(c) It follows from Section 5.5 in [1] that limθ↓0 Ki (θ) = Ki (0) for i = 1,2,3.
(d) Note that we did not assume stability ofB in order to prove Corollary 2.1 and

Theorem 2.2. This is because positivity of the risk-sensitivity parameterθ (which was
assumed there) was enough to enforce “good” behavior of our objective functionals for
larget .

(e) Note that Assumption (A2) is satisfied. Assumption (A1) is no longer needed.

We intend to establish a relationship between therisk-null problem(P0) and therisk-
sensitive problems(Pθ ), θ > 0. Toward this end we consider the following equation:

ρ(0) = (b+ Bx)′ gradx v0(x)+ 1
2

n∑
i, j=1

∂2v0(x)

∂xi ∂xj

n+m∑
k=1

λikλjk − K0(x),

v0(x) ∈ C2(Rn), lim
‖x‖→∞

v0(x) = ∞, ρ(0) = const.
(5.2)

We now have the following two results:

Lemma 5.1. Assume(A3) and(C1)–(C3).Then there exists a solution pair(ρ(0), v0)

to (5.2).

Proof. See the Appendix.

Proposition 5.1. Let H0(x) be a minimizing selector on the right-hand side of(2.5).
Define a strategy h0(·) as in(2.6)with 0 replacingθ . If (ρ(0), v0) is a solution to(5.2),
then we have:

(a) The strategy h0(·) is optimal for(P0), and

J0(v, x; h0(·)) = lim
t→∞ t−1 Eh0(·)[ln V(t)|V(0) = v, X(0) = x] = ρ(0). (5.3)

(b) The constantρ(0) is unique.

Proof. Fix an arbitrary admissible strategyh(·) and(v, x) ∈ (0,∞) × Rn. Applying
Ito’s formula tov0 and using (2.5) and (5.2) we get

v0(X(t))− v0(v)

=
∫ t

0

[
(b+ Bx)′ gradx v0(X(s))+ 1

2

n∑
i, j=1

∂2v0(X(s))

∂xi ∂xj

n+m∑
k=1

λikλjk

]
ds

−
∫ t

0
grad′x v0(X(s))3dW(s)

≤ tρ(0)+
∫ t

0
[ 1

2h′(X(s))66′h(X(s))−h′(X(s))(a+AX(s))] ds

−
∫ t

0
grad′x v0(X(s))3dW(s), t ≥ 0. (5.4)
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Under the strategyh(·) the capital processV(t) is the geometric Brownian motion (see,
e.g., p. 361 of [18])

V(t) = v·exp

{
−
∫ t

0
[ 1

2h′(X(s))66′h(X(s))− h′(X(s))(a+ AX(s))] ds

+
∫ t

0
h′(X(s))6 dW(s)

}
, t ≥ 0.

Therefore, we obtain from (5.4)

Eh(·)[v0(X(t))|V(0) = v, X(0) = x] − v0(v)

≤ tρ(0)+ ln v − Eh(·)[ln V(t)|V(0) = v, X(0) = x], t ≥ 0. (5.5)

Now, it follows from the proof of Lemma 5.1 thatv0(x) is a quadratic function. Since
the factor processX(t) is ergodic (becauseB is stable) then it can be shown (see, e.g.,
[4]) that for all (v, x) ∈ (0,∞)× Rn and for allh(·) ∈ H we have that

lim
t→∞

(
1

t

)
Eh(·)[v0(X(t))|V(0) = v, X(0) = x] = 0. (5.6)

It follows from the results of Section 5.5 in [1] thath0(·) is an admissible strategy. Thus,
applying Ito’s formula tov0(x) we obtain from (5.2)

v0(X(t))− v0(v)

=
∫ t

0

[
(b+ Bx)′ gradx v0(X(s))+ 1

2

n∑
i, j=1

∂2v0(X(s))

∂xi ∂xj

n+m∑
k=1

λikλjk

]
ds

−
∫ t

0
grad′x v0(X(s))3dW(s)

= tρ(0)+
∫ t

0
[ 1

2h′0(X(s))66
′h0(X(s))− h′0(X(s))(a+ AX(s))] ds

−
∫ t

0
grad′x v0(X(s))3dW(s), t ≥ 0. (5.7)

Thus

Eh0(·)[v0(X(t))|V(0) = v, X(0) = x] − v0(v)

= tρ(0)+ ln v − Eh0(·)[ln V(t)|V(0) = v, X(0) = x], t ≥ 0. (5.8)

The result in (a) follows now from (5.5), (5.6), and (5.8).
Uniqueness ofρ(0) follows from its stochastic representation in (5.8).

Remark 5.2. When66′ is positive definite, the optimal strategyh0(·) agrees with the
one derived by Karatzas (see (9.19) in [15]).

In order to relate the risk-sensitive problems(Pθ ), θ > 0, and the risk-null problem
(P0) we need the following result:
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Lemma 5.2. The constantsρ(θ), θ > 0, in the solutions to(2.8) converge to the
constantρ(0) in the solution to(5.2)whenθ converges to zero.

Proof. See the Appendix.

We now have the following proposition, which says that the optimal objective values
for problems(Pθ ) converge to the optimal objective value for the risk-null problem(P0)

when the risk-aversion parameter decays to zero:

Proposition 5.2. Assume(A3) and(C1)–(C3).Then

lim
θ↓0

max
h(·)∈H

[
lim

t→∞

(−2

θ

)
t−1 ln Eh(·)[e−(θ/2) ln V(t)|V(0) = v, X(0) = x]

]
= max

h(·)∈H

[
lim

t→∞ t−1 Eh(·)[ln V(t)|V(0) = v, X(0) = x]
]
. (5.9)

Proof. It follows from Corollary 2.1 and Theorem 2.1 that the left-hand side of (5.9)
is equal to limθ↓0 ρ(θ). Proposition 5.1 implies that the right-hand side of (5.9) is equal
to ρ(0). This proves the result in view of the Lemma 5.2.

The following result characterizes the portfolio expected growth rate corresponding
to the optimal investment strategy for the risk-aversion levelθ > 0.

Lemma 5.3. Assume(A3) and (C3). Fix θ > 0. Let Hθ (x) be as in Theorem2.1 and
assume that Hθ (x) is a linear function and that

lim
‖x‖→∞

[ 1
2 Hθ (x)

′66′Hθ (x) − Hθ (x)
′(a+ Ax)] = −∞. (5.10)

Consider the equation

ρθ = (b+ Bx)′ gradx vθ,0(x)+ 1
2

n∑
i, j=1

∂2vθ,0(x)

∂xi ∂xj

n+m∑
k=1

λikλjk

− [ 1
2 Hθ (x)

′66′Hθ (x) − Hθ (x)
′(a+ Ax)], (5.11)

vθ,0(x) ∈ C2(Rn), lim
‖x‖→∞

vθ,0(x) = ∞, ρθ = const.

Then there exists a solution(ρθ , vθ,0) to the above equation, the constantρθ is unique,
and we have

J0(v, x; hθ (·)) = ρθ (5.12)

for all (v, x) ∈ (0,∞)× Rn, where hθ (·) is defined as in(2.6).

Proof. The proof is analogous to the proofs of Lemma 5.1 and Proposition 5.2 and
therefore is omitted.

It can be demonstrated that condition (5.10) is sufficient but not necessary.
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Remark 5.3. The results of Bensoussan and Frehse [2] can be used in order to prove that
(5.2) admits a solution for generalK0(x), as defined in (2.5), if one relaxes smoothness
requirements forv0(x) (e.g.,v0(x) is only assumed to belong to an appropriate Sobolev
class). Then the generalized Ito lemma [20] can be used to obtain a result analogous to
Proposition 5.1. In a future paper we shall endeavor to extend Lemma 5.1 and the other
results of this section to the case whereKθ (x) is not necessarily a quadratic function.

6. Up-Side Chance and Down-Side Risk

In this section we present a simple example which provides yet another justification of the
superiority of the risk-sensitive criterion over the (classical) log-utility one. Specifically,
for the example considered here we demonstrate that the asymptotic ratio of “up-side
chance” to “down-side risk” is maximal for someθ positive.

We consider a model of an economy where the mean returns of the stock market are
affected by the level of interest rates. Consider a single risky asset, say a stock index,
that is governed by the SDE

dS1(t)

S1(t)
= (µ1+ µ2r (t))dt + σ dW1(t), S1(0) = s,

where the spot interest rater (·) is governed by the classical “Vasicek” process

dr(t) = (b1+ b2r (t))dt + λdW2(t), r (0) = r > 0.

Hereµ1, µ2, b1, b2, σ, andλ are fixed, scalar parameters, to be estimated, whileW1

andW2 are two independent Brownian motions. We assumeb1 > 0 andb2 < 0 in all
that follows.

The investor can take a long or short position in the stock index as well as borrow or
lend money, with continuous compounding, at the prevailing interest rate. It is therefore
convenient to follow the common approach and introduce the “bank account” process
S2, where

dS2(t)

S2(t)
= r (t)dt.

Thus S2(t) represents the time-t value of a savings account whenS2(0) = 1 dollar
is deposited at time 0. This enables us to formulate the investor’s problem as in the
preceding sections, for there arem= 2 securitiesS1 andS2, there isn = 1 factorX = r,
and we can setb = b1, B = b2, a = (µ1,0)′, A = (µ2,1)′,3 = (0,0, λ), and

6 =
(
σ 0 0
0 0 0

)
.

With only two assets it is convenient to describe the investor’s trading strategy in terms of
the scalar-valued functioñHθ (r ),which is interpreted as the proportion of capital invested
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in the stock index, leaving the proportion 1− H̃θ (r ) invested in the bank account. Thus
here we haveHθ (r ) = [ H̃θ (r ),1− H̃θ (r )]. We suppose for simplicity that there are
no special restrictions (e.g., short sales constraints, borrowing restrictions, etc.) on the
investor’s trading strategy, so the investment constraint setχ is taken to be the whole
real line.

In order to simplify the calculations that follow we reduce our Vasicek model to the
case that corresponds to the classical Merton [23] model of 1971 by assuming that

µ2 = 0, b1 = b2 = λ = 0, µ1 > r.

Observe that we have assumed a constant spot rate (that is,r (t) = r for all t) and a
constant rate of return (µ1) on the stock index. We thus have a very conventional, two-
asset model. Our assumptions are imposed in order to simplify the following development
of a new interpretation of the risk-sensitive optimality criterion. In particular, we analyze
dependence onθ ≥ 0 of the following quantity:

R(θ) := lim
t→∞

(
1

t

)
ln

Phθ (·)((1/t) ln V(t) > ρ(0))

Phθ (·)((1/t) ln V(t) < r )
.

To interpret this quantity, using the strong law of large numbers for the Brownian motion
process it can easily be shown that, under the parametrization considered here,

ρθ := lim
t→∞

(
1

t

)
Ehθ (·)[ln V(t)|V(0) = v] = lim

t→∞

(
1

t

)
ln V(t), Phθ (·) a.s.,

for all v ∈ (0,∞) and θ ≥ 0. In particular,ρ0 = ρ(0) = 1
2((µ1− r )2/σ 2) + r is

the maximal (expected) growth rate of the investor’s portfolio. Thus the quantityR(θ)
above can be interpreted as the asymptotic, logarithmic ratio of the chance that the actual
growth rate of the investor’s portfolio under the strategyhθ (·) = [h̃θ (·),1− h̃θ (·)]′ will
exceed the maximal limit, to the risk that the growth rate will fall below the spot rate.

It is interesting to see which value ofθ ≥ 0 maximizesR(θ). Toward this end we
first note that in the current situation we have

h̃(t) = Hθ (r ) := µ1− r

σ 2

for all t ≥ 0. Thus, underhθ (·), we have(
1

t

)
ln V(t) = µ1Hθ (r )+ (1− Hθ (r ))r − 1

2 H2
θ (r )σ

2+ Hθ (r )
W1(t)

t
.

Consequently (using (1.1.4) of [8]) we obtain

R(θ) = inf

{
x2

2
: x ∈ 3(θ)

}
− inf

{
x2

2
: x ∈ 0(θ)

}
,
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where

3(θ) :=
(
∞,− 1

2(µ1− r )
θ + 1

θ/2+ 1

)
and 0(θ) :=

(
1

8

θ2(µ1− r )

θ/2+ 1
,∞

)
.

Thus

R(θ) = 1

4

(µ1− r )2

(θ/2+ 1)2

[
(θ + 1)2− θ

4

16

]
.

Finally we see thatR(θ) is maximized over [0,∞) by θ∗ = 2. This means that the ratio
of up-side chanceto down-side riskis maximized if the investor maximizes the growth
of −(1/t) ln E(1/V(t))!

7. Future Research

It is important to study risk-sensitive investment problems with partial information. Typ-
ically, the values of the market parametersa, A, 6, b, B, and3 are not known to an
investor. So how should our model be implemented? One possibility is that the investor
obtains initial estimates of the market parameters based on historical time series, and
then holds onto these estimates throughout the entire future investment horizon. A poten-
tially better approach for the investor would be to select her or his investment decisions
adaptivelybased on currently available market information and the optimal decision
strategies (perhaps the ones developed in this paper). This means that the estimates of
market parameters are updated as time goes by and new market information is acquired,
and subsequently the updated estimates are used instead of the “true” values of those
market parameters in the formulas for optimal risk-sensitive investment rules. Adaptive,
risk-sensitive investment rules should be investigated in the future, based on the results
presented in this paper as well as some of the ideas developed in [3], [5], and [31]. The
guiding rule should be to develop a simple estimation scheme for the model parameters
which, when combined with (2.5), should lead to the development of practical, feasible
algorithms for real-time dynamic asset management. The incorporation of partial state
observation (imprecise measurements of the security prices and/or of the factor levels)
is another desirable research objective.

Further, it is important to study the risk-sensitive optimal portfolio selection prob-
lem for a generalization of the basic market model that we introduced in Section 2.
Specifically, one should relax the linearity assumption on the drift coefficients and also
allow for dependence on factors of the diffusion coefficients in the market SDEs. Thus
these equations would take the following form:

dSi (t)

Si (t)
= µi (X(t))dt +

m+n∑
k=1

σik(X(t))dWk(t),

Si (0) = si , i = 1,2, . . . ,m

(7.1)

d X(t) = B(X(t))dt +3(X(t))dW(t), X(0) = x, (7.2)
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where, as before,W(t) is anRm+n-valued standard Brownian motion process with com-
ponentsWk(t), and the market functionsµ(x) := [µi (x)]1×m,6(x) := [σik(x)]m×(m+n),
B(x), and3(x) are such that a unique strong solution exists to the above equations. Fi-
nally, it would be desirable to relax the assumption about the lack of correlation between
residuals in the security prices and factor equations, that is, to drop the requirement that
6(x)3′(x) is the zero matrix.

Appendix. Proof of Lemmas 5.1 and 5.2

Proof of Lemma5.1. Consider the equation

∂V(t, x)

∂t
= (b+ Bx)′ gradx V(t, x)+ 1

2

n∑
i, j=1

∂2V(t, x)

∂xi ∂xj

m+n∑
k

λikλjk − K0(x),

V(0, x) = 0,

(8.1)

for x ∈ Rn andt > 0. It can be easily verified that a solutionV0(t, x) to (8.1) exists and
is given by

V0(t, x) = 1
2x′P0(t)x +Q0(t)x + G0(t), (8.2)

provided the functionsP0(t),Q0(t) andG0(t) satisfy the ordinary differential equations:

Ṗ0(t) = B′P0(t)+ P0(t)B− K1(0), P0(0) = 0, (8.3)

Q̇0(t) = B′Q0(t)+ b′P0(t)− K2(0), Q0(0) = 0, (8.4)

Ġ0(t) = b′Q0(t)+ 1
2 tr(P0(t)33

′)− K3(0), G0(0) = 0, (8.5)

for t > 0. Now, it is well known (see, e.g., [30] and [29]) that there exists a unique,
nonnegative definite solution to the Lyapunov equation (8.3), given by

P0(t) = −
∫ t

0
S′(t − s)K1(0)S(t − s)ds, t ≥ 0, (8.6)

where

S(t) := exp{Bt}, t ≥ 0. (8.7)

The other two differential equations are standard, so, indeed, there exists a unique solution
to (8.3)–(8.5). Moreover, sinceB is stable there exist limits

P0 := lim
t→∞P0(t), Q0 := lim

t→∞Q0(t), (8.8)

andP0 is nonnegative definite. Lettingt →∞ in (8.3)–(8.5) we thus have (also compare
Section 12.4 of [29])

0= B′P0+ P0B− K1(0), (8.9)

0= B′Q0+ b′P0− K2(0), (8.10)

ρ(0) := lim
t→∞ Ġ0(t) = b′Q0+ 1

2 tr(P033
′)− K3(0). (8.11)

It can be easily verified now that the constantρ(0) defined here and the functionv0(x) :=
1
2x′P0x +Q0x satisfy (5.2). This completes the proof of Lemma 5.1.
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Proof of Lemma5.2. Fixθ > 0 and consider the following equation (which is the same
as (4.3)):

∂V(t, x; θ)
∂t

= (b+ Bx)′ gradx V(t, x; θ)

− θ

4

n∑
i, j=1

∂V(t, x; θ)
∂xi

∂V(t, x; θ)
∂xj

m+n∑
k

λikλjk

+ 1
2

n∑
i, j=1

∂2V(t, x; θ)
∂xi ∂xj

m+n∑
k

λikλjk − Kθ (x),

V(0, x; θ) = 0,

(8.12)

for x ∈ Rn and t > 0. Because of Assumption (C1), it can be easily verified that a
solutionV0(t, x; θ) to (8.12) exists and is given by

V0(t, x; θ) = 1
2x′Pθ (t)x +Qθ (t)x + Gθ (t), (8.13)

provided the functionsPθ (t),Qθ (t), andGθ (t) satisfy the ordinary differential equations:

Ṗθ (t) = B′Pθ (t)+ Pθ (t)B− θ
2
Pθ (t)33′Pθ (t)− K1(θ), Pθ (0) = 0, (8.14)

Q̇θ (t) =
(

B− θ
2
Pθ (t)33′

)′
Qθ (t)+ b′Pθ (t)− K2(θ), Qθ (0) = 0, (8.15)

Ġθ (t) = b′Qθ (t)+ 1
2 tr(Pθ (t)33′)− θ

4
Qθ (t)33′Qθ (t)

− K3(θ), Gθ (0) = 0, (8.16)

for t > 0. Now, it is well known (see, e.g., [30] and [29]) that there exists a unique,
nonnegative definite solution to the Riccati equation (8.14), given by

Pθ (t) = −
∫ t

0
S′(t − s)

[
K1(θ)+ θ

2
Pθ (s)33′Pθ (s)

]
S(t − s)ds, t ≥ 0, (8.17)

whereS(t) is as in (8.7). Thus there exists a unique solution to (8.14)–(8.16). Moreover,
sinceB is stable there exists a nonnegative definite limit

Pθ := lim
t→∞Pθ (t). (8.18)

We now consider still another differential equation:

˙̄Qθ (t) =
(

B− θ
2
Pθ33′

)′
Q̄θ (t)+ b′Pθ (t)− K2(θ), Q̄θ (0) = 0. (8.19)

It is well known (see, e.g., Lemma 10 of [6]) that the convergence in (8.18) is exponen-
tially fast, that is, there exist positive constantsδ1 andδ2 such that

‖Pθ − Pθ (t)‖ ≤ δ1e−δ2t , t ≥ 0. (8.20)
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Lemma 4.2 in [14] and (8.15) imply that

sup
t≥0
‖Qθ (t)‖ <∞. (8.21)

Now note that the differencẽQθ (t) := Qθ (t)− Q̄θ (t) satisfies the equation

˙̃Qθ (t)=
(

B− θ
2
Pθ33′

)′
Q̃θ (t)− θ

2
((Pθ (t)−Pθ )33′)′Qθ (t), Q̃θ (0)=0. (8.22)

SinceB is stable, thenB− (θ/2)Pθ33′ is also stable (the easy proof is omitted). Thus,
it follows from (8.20)–(8.22) and Lemma 4.2 in [14] that

lim
t→∞‖Q̃θ (t)‖ = 0. (8.23)

In view of the above, we have

lim
t→∞Qθ (t) = Qθ , (8.24)

whereQθ := limt→∞ Q̄θ (t), which exists by virtue of (8.19) and the fact thatB −
(θ/2)Pθ33′ is stable. Lettingt →∞ in (8.15) we thus have

0=
(

B− θ
2
Pθ33′

)′
Qθ + b′Pθ − K2(θ), (8.25)

in which case

ρ(θ) := lim
t→∞ Ġθ (t) = b′Qθ + 1

2 tr(Pθ33′)− θ
4
Qθ33′Qθ − K3(θ). (8.26)

It is left to the reader to verify that this constantρ(θ) and the function

v(x; θ) := 1
2x′Pθx +Qθx

satisfy (2.8).
To complete the proof it suffices to show that the following convergences hold

uniformly with respect tot ≥ 0:

lim
θ↓0
Pθ (t) = P0(t) (8.27)

and

lim
θ↓0
Qθ (t) = Q0(t). (8.28)

This is because these uniform limits imply

lim
θ↓0
Pθ = P0, lim

θ↓0
Qθ = Q0 (8.29)

which, together with (8.11) and (8.26), give the desired result.
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To demonstrate that the limits in (8.27) and (8.28) exist uniformly int ≥ 0, we first
observe that from (8.6) and (8.17) we obtain

Pθ (t)− P0(t) =
∫ t

0
S′(t − s)(K1(0)− K1(θ))S(t − s)ds

− θ
2

∫ t

0
S′(t − s)Pθ (t)33′Pθ (t)S(t − s)ds, (8.30)

for all t ≥ 0. Thus

‖Pθ (t)− P0(t)‖ ≤ c1‖K1(0)− K1(θ)‖ + c2θ, t ≥ 0, (8.31)

for some positive constantsc1 andc2 independent oft . Next, observe from (8.4) and
(8.15) that the function̂Qθ (t) := Qθ (t)− Q0(t) satisfies the equation

˙̂Qθ (t) = B′ Q̂θ (t)− θ
2
Pθ (t)33′Qθ (t)− (K2(θ)− K2(0))

+ b′(Pθ (t)− P0(t)), Q̂θ (0) = 0, (8.32)

for t > 0. Thus,

‖Q̂θ (t)‖ ≤ c3θ + c4‖K2(θ)− K2(0)‖ + c5‖K1(θ)− K1(0)‖, t ≥ 0, (8.33)

for some positive constantsc3–c5 independent oft .
The proof of Lemma 5.2 is now complete.
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