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Abstract: This paper develops a continuous time portfolio optimization model where the mean 
returns of individual securities or asset categories are explicitly affected by underlying economic 
factors such as dividend yields, a firm's ROE, interest rates, and unemployment rates. The factors 
are Gaussian processes, and the drift coefficients for the securities are aEne hnctions of these 
factors. We employ methods of risk sensitive control theory, thereby using an infinite horizon 
objective that is natural and features the long run growth rate, the asymptotic variance, and a 
single risk aversion parameter. Even with constraints on the admissible trading strategies, it is 
shown that the optimal trading strategy has a simple characterization in terms of the factor levels. 
For particular factor levels, the optimal trading positions can be obtained by solving a quadratic 
program. The optimal objective value, as a hnction of the risk aversion parameter, is shown to be 
the solution of a partial differential equation. A simple asset allocation example, featuring a 
Vasicek-type interest rate which affects a stock index and also serves as a second investment 
opportunity, illustrates how factors which are commonly used for forecasting returns can be 
explicitly incorporated in a portfolio optimization model. 



1 Introduction 

The application of mathematics in the world's financial markets has had some great successes, as 
exemplified by the crucial role played by mathematics in the derivatives industry. On the other 
hand, and with the exception of standard statistical methods, the application of mathematics to 
portfolio management problems has been a disappointment. Portfolio management is a natural 
situation for optimization models, and yet practitioners rarely use any such models. 

A lack of practitioner familiarity with optimization models does not seem to be an explanation 
for this, because a wide variety of models, ranging from the simple yet robust Markowitz single 
period model to highly sophisticated continuous time models, is readily available. A possible 
explanation is a lack of a realistic model that are simple enough to permit calculation of practical 
optimal solutions, but this also seems unlikely. A much more likely explanation is the statistical 
difficulty in estimating all the parameters used by these models. In particular, it seems to be very 
difficult to make good estimates of the mean returns (or their continuous time counterparts). For 
example, solving the Markowitz model with real data usually leads to foolish solutions where you 
put all your money in only a few securities. You can add a number of artificial constraints (e.g., 
never put more than 3% of your capital in a single security), but then the ad hoc constraints will 
probably have a greater bearing on the solution than the underlying economic objective. 

Whatever the explanation, the fact remains that practitioners rarely use optimization models. 
Instead, they channel their energy into making statistical forecasts of security prices, that is, into 
making statistical estimates of mean returns. In the case of individual stocks, these forecasts are 
developed from factors such as priceearnings ratios, dividend yields, accounting ratios such as the 
return on equity, and so forth. In the case of asset categories, these forecasts are based on similar 
measures as well as macroeconomic factors such as idation, unemployment and interest rates. In 
the end, practitioners take their forecasts and, using little more in the way of tools than common 
sense, reach their tinal decisions about how to allocate their funds among the securities or asset 
categories '. 

Meanwhile, most optimization models developed for portfolio management tend to have the 
opposite orientation. The parameters related to mean returns, volatilities, and correlations are 
the starting point of the analysis, whereas for the practitioners the estimated mean returns will 
come near the end of the analysis. There is no explicit attention given to the uncertainty about 
these ~arameter estimates or to their oricins. Instead, the emphasis is on characterizing the o~timal - - - 
trading strategies under a variety of assumptions about the investor's preferences and the underlying 
securitv prices. Furthermore, and this is especiallv true for continuous time models with constraints - - 
and a practical number of securities or a.& categories, these dynamic models tend to be intractable 
from the computational standpoint. Whether one takes a PDE approach or uses a more modern 
approach using convex optimization theory and risk neutral probability measures (see [12], [21], 
[22]), there is little hope for using existing optimization models to solve practical portfolio problems 
that will be of interest to practitioners. 

'Note for future consideration that an implicit feature of the practitioner's "philosophy" is the notion that ran- 
domness of the underlying factors will lead to mean return estimates which also evolve in a random manner. 



The purpose of this paper is to develop a new kind of portfolio optimization model that is more 
compatible with financial practice. The key idea is to explicitly incorporate in the model stochastic 
factors such as accounting ratios, dividend yields, and macroeconomic measures. These underlying 
factors will explicitly d e c t  the mean returns of the securities or anset categories, thereby resulting 
in a complex model which captures the dependence of security prices on the underlying factors. 
While this approach does not circumvent the statistical difficulties of making good estimates, it 
sheds better light on this problem, because the variables which are used to forecast ret- now 
reside within the model. Both the estimation and optimization parts of the portfolio management 
process can be addressed in an integrated fashion. 

Since our aim is to develop a model that has good potential for practical use, it is necessary that 
we pay attention to three considerations: realism, practicalities, and computational tractability. 
By "realism" we mean that the securities and factors are modeled in a realistic way. This will 
be accomplished with a continuous time approach, using standard stochastic calculus models of 
security prices and factors. By "practicalities" we mean that the model must be capable of handling 
a moderate number of securities, say several dozen or more. Moreover, the model must be able to 
handle at least several factors per security. And it is desirable to include constraints on the trading 
strategy, such as short sales restrictions, borrowing restrictions, and upper bounds on the positions 
in individual securities. 

The third desired feature of our model, "computational tractability," requires some discussion. 
The common objective in the literature for portfolio optimization models is to maximize expected 
utility of capital at the end of a finite planning horizon. The resulting optimal trading strategies 
will usually be time-dependent for a general utility function, in which case the computational 
difficulties may be great. The alternative, adoption of an infinite horizon optimization objective, 
offers the possibility of stationary policies being optimal and thus of less severe computational 
difficulties. In addition, an infinite horizon optimization objective model frequently sewes as a 
good approximation to practical decision making situations with finite but relatively long planning 
horizons. However, the choice of W t e  horizon criteria is quite limited. In fact, the only such 
criterion that has been widely studied for portfolio management purposes is that of maximizing the 
portfolio's long-run expected growth rate (i.e., the log utility). This criterion is not conservative 
enough for most investors, and investors vary widely in regard to their attitudes about risk. What 
is needed is an infinite horizon criterion which depends upon one or more risk aversion parameters. 

For a candidate criterion, let V(t) denote the time-t value of a portfolio and consider the 
objective of maximizing the quantity 

liminf(l/-y)t-'ln~(v(t))~, -y < 1 , -y # 0. 
t-m 

This was used by 1111 and [5] to study a classical portfolio problem under a drawdown constraint. 
Note that letting 7 + 0 this becomes, in the limit, the same as the objective of maximizing the 
portfolio's long-run expected growth rate (the Kelly criterion), whereas for -y > 0 it is not clear how 
to meaningfully interpret this criterion, although it resembles expected utility with an isoelastic or 
power utility function. 

However, suppose this expression is rewritten as 



where B > -2,B # 0. Substituting C(t) = lnV(t) enables one to establish a connection with the 
recently developed literature on risk sensitive optimal control (e.g., see Whittle [23]), where C(t) 
plays the role of a cumulative cost. This means that if we adopt, as we shall, the objective of 
maximizing Je, then many of the techniques that have recently been developed for risk sensitive 
control can potentially be applied to ow portfolio management problem. 

Moreover, as is well understood in the risk sensitive control literature, a Taylor series expansion 
of Je about 0 = 0 yields 

Hence Je can be interpreted as the long-run expected growth rate minus a penalty term, with an 
error that is proportional to 9. hthermore, the penalty term is proportional to the asymptotic 
variance, a quantity that was studied by (151 in the case of a conventional, multivariate geometric 
Brownian motion model of securities. The penalty term is also proportional to 0, so 0 should 
be interpreted as a risk sensitivity parameter or risk aversion parameter, with B > 0 and B < 0 
correspondiig to risk averse and risk seeking investors, respectively. The special case of B = 0 
will thus be referred to as the risk neutral m e .  In this case the criterion J o  is the classical Kelly 
criterion. that is 

Note that Je has the form of the large-deviations type functional for the capital process V(t). 
Consequently, in the risk averse case maximizing Je protects an investor interested in maximizing 
the expected growth rate of the capital against large deviations of the actually realized rate from 
the expectations. 

Some insight into ow risk sensitive criterion can be obtained by considering the case where the 
process V(t) is a simple geometric Brownian motion with parameters p and a. A simple calculation 
gives 

so the approximation mentioned above is, in this case, exact. 

This paper is not the first to apply a risk sensitive optimality criterion to a financial problem. 
Lefebre and Montulet [17] studied a model for a firm's optimal mix between liquid and non-liquid 
assets; the calculus of variations approach was used to derive an explicit expression for the optimal 
division. Fleming [7] used risk sensitive methods to obtain two kinds of asymptotic results. In the 
first he considered a conventional, k i t e  horizon portfolio model and studied certain limits as the 
coefficient of risk aversion diverges to W t y .  In the second he studied the long-term growth rate 
for conventional modles with transaction casts and HARA utility functions. 

In summary, in this paper we will develop a portfolio optimization model that is highlighted 
by two features. First, stochastic, economic factors such as dividend yields, accounting ratios, and 
macroeconomic variables which can be used for estimating mean returns of securities and asset 
categories will be explicitly incorporated in the model. Second, the objective will be to maximize 
the risk sensitive criterion Je that was introduced above. A precise formulation of ow model as 



well as the main results will all be found in Section 2. Various preliminary and auxiliary results are 
located in Section 3, while Section 4 has the principal arguments and proofs of our main results. 

Sections 2 - 4 are all for the case where the risk aversion parameter 0 > 0. As already mentioned, 
the case 0 = 0 is of considerable importance, because it corresponds to log utility and the objective 
of maximizing the portfolio's long run expected growth rate. This is the subject of Section 5. As 
will be seen, when our model has no factors it collapses to a well-studied, complete model, but when 
factors are included our model is incomplete and our expected growth rate maximization results 
are new. 

Section 6 is devoted to a special case of a simple asset allocation model featuring a Vasicek 
type spot interest rate and a stock index that is affected by the level of interest rates. The investor 
must decide how to divide up his or her capital among the two asset categories. Not only does this 
example illustrate the main ideas of Sections 2 and 5, but it should also be of independent interest 
to financial economists. In fact, it was motivated by and resembles somewhat the model studied 
by [41. 

In Section 7 we provide some final remarks and some thoughts about future research. 

Our paper concludes with two Appendices. In Appendii 1 we prove lemma 5.1. In Appendii 
2 we provide some additional, interesting insight into the nature of risk-sensitive optimality in the 
context of dynamic asset management. 

2 Formulation of the problem and the main results 

We will consider a market consisting of m 2 2 securities and n 2 1 factors. The set of the securities 
may include stocks, bonds, cash and derivative securities, as in (41 for example. The set of factors 
may include dividend yields, price-earning ratios, short-term interest rates, the rate of idation, 
etc., as in [20] for example. 

Let (a, {3t),3,  P) be the underlying probability space. Denoting by Si(t) the price of the i-th 
security and by Xj ( t )  the level of the j-th factor at time t ,  we consider the following market model 
for the dynamics of the security prices and factors: 

where W ( t )  is a Pfn valued standard Brownian motion process with components Wk( t ) ,  X ( t )  
is the R" valued factor process with components Xj ( t ) ,  and the market parameters a, A, C := 
[a i j ] ,  b, B,  A := [ X i j ]  are matrices of appropriate dimensions. It is well known that a unique, 
strong solution exists for (2.1), (2.2), and that the processes Si(t) are positive with probability 1 
(see e. g. [14], chapter 5).  

Let := u((S(s) ,  X ( s ) ) ,  0  5 s 5 t ) ,  where S(t )  = (S l ( t ) ,  Sz(t) ,  . . . , Sm(t) )  is the security 
price process. Let h(t)  denote an R" valued investment process whose components are h ( t ) ,  i = 
1,2 ,..., m. 



Definition 2.1 An investment process h( t )  w admissible if the following conditions are satisfied: 

(i) h( t )  takes values in a given measumble subset x of IZm, and CZ1 h,(t) = 1, 

(ii) h( t )  w measumble, &adapted, 

(iii) P[J; hl(s)h(s)  ds c oo] = 1, for all finite t 2 0. 
The class of admissible investment stmtegies will be denoted by 7-1. 

Let now h( t )  be an admissible investment process. Then there exists a unique, strong, and 
almost surely positive solution V ( t )  to the following equation: 

where ~ ( x )  is the i-th coordinate of the vector a + Ax for x E R". The process V ( t )  represents 
the investor's capital at time t, and h+(t) represents the proportion of capital that is invested in 
security i, so that h+(t)V(t)/Si( t)  represents the number of shares invested in security i, just as in, 
for example, Section 3 of [13]. 

In this paper we shall investigate the following family of risk sensitized optimal investment 
problems, labeled as ( P e )  : 

for 0 E (0, m), maximize the risk sensitized expected growth mte 

over the class of all admissible investment processes h(.), 

subject to (2.2) and (2.31, 

where E is the expectation with respect to P. The notation E ~ ( ' )  emphasizes that the expectation 
is evaluated for process V ( t )  generated by (2.3) under the investment strategy h( t ) .  

Remark 2.1 As mentioned i n  the introduction, the positive value of the risk sensitivity pammeter 
0 cornsponds to a risk averse investor. The techniques wed in thw paper can also be used to study 
problems (Pe )  for negative values of 0, corresponding to risk seeking investors. The risk neutml 
m e ,  for 0 = 0,  will be studied i n  section 5 as the limit of the risk averse situation when the risk 
sensitivity pammeter 0 goes to zero. 

Before we can present the main results contributed by this paper, we need to introduce the 
following notation, for 0 2 0 and x E R" : 

Ke(x )  := hEXf$h=l [(1/2)(0/2 + l)hlCC1h - hl(a + Ax)] .  (2.5) 

We also need to introduce the following assumptions: 

Assumpt ion  ( A l )  The investment constmint set x sati.$es one of the following two conditions: 

(a) x = Rn, or 

(b) x = { h  E R" : hli 5 hi 5 hzi, i = 1,2,. . . , m ) ,  where hl, < hzi are finite constants. 



Assumpt ion  ( A 2 )  For 8 > 0, 
lim K ~ ( x )  = -00. 

1l~11-+- 

Assumpt ion  (A3) The matrix AA' is positive definite. 

Remark  2.2 

(i) Note that if CC' w positive definite, then assumption (AS) is implied by assumption (Al)(a). 

(ii) These assumptions are suficient for the mults below to be true, but, M will be seen for the 
ezample mnsidered in section 6, Assumption (A.2) is not necessary, i n  general. 

Theorems 1 and 2 below contain the main results of this paper. 

T h e o r e m  2.1 Assume (A1)-(A3). Fix 8 > 0. 

Let He(x) denote a minimizing selector in (2.5), that is, 

is optimal sure i n  the sense of Foldes (see [lo]). That is, letting for each s 2 0 

G ( v ,  x ;  h(.))  := (-~/~)I~E~(')[V-~/~(T)~V(O) = v ,  X(0)  = X I ,  
we have 

Corollary 2.1 The investment process he(t) is optimal for problem (Pe),  that is 

T h e o r e m  2.2 Assume (A1)-(A3), fi 8 > 0, and consider problem Pe. Let b ( t )  be as in theorem 
2.1. Then 

(a) For all v > 0 and x E H" we have 

Je(v, x ;  he(.)) = lim (-2/8)t-'ln E"() [ e - ( e f 2 ) ' n V ( t ) l ~ ( ~ )  = v ,  X (0 )  = x] =: p(8). 
t-00 

@I) The constant p(8) i n  (a) is the unique non-negative constant, which is a part of the solution 
(p(O), v ( x ;  8))  to the following equation: 



V ( Z )  E C 2 ( ~ " ) ,  lim v ( x )  = oo 
1141+m 

p = m t .  

The key point of the &st equality in (a) is, of course, that the optimal objective value is given by an 
ordinary lim rather than the liminf as in (2.4). The key point of the second equality in (a) is that 
the optimal objective value does not depend on either the initial amount of the investor's capital 
( v )  or on the initial values of the underlying economic factors ( x ) ,  although it depends, of course, 
on the investor's attitude towards risk (encoded in the value of 0 ) .  The key point of (b) is that the 
optimal objective value is characterized in terms of the equation (2.8). It is important to observe 
that for the problem studied in this paper the part v ( x ; 0 )  of the solution to (2.8) is a classical, 
smooth solution of a pde. This is mainly because the difhrsion term in the factor equation (2.2) 
is non-degenerate. For more general formulations, viscosity solutions may have to be considered. 
The example in Section 6 illustrates how to solve the system (2.8). 

3 Auxiliary results 

In this section we shall formulate several technical results that will be needed later. Let K ( x )  be a 
real valued function on R". Throughout this section it will be assumed that K ( z )  has the following 
properties: 

Assumption (Bl) 

(a) K ( 4  5 0, 

(a) l imllz l l -mK(~) = - 0 3 9  

(c) 1K(x)1 5 c(1 + 11~11~), when c w a positive constant, 

(d) Let Ki C R", i = 1 , 2 , .  . . , I ,  I finite, be disjoint, open sets, such that u,!=~ Ki = R", where 
Ki  w the closure of K i .  Then K ( x )  w smooth on each of the Ki  's, 

(e) K ( z )  w locally Lipschitz on R". 

We begin by considering the following Cauchy problem: 



for t E (0, T), T < oo, and x E R". For the convenience of the reader we proceed with a construction 
of the classical solution to (3.1), closely following [16] chapter N. Let 

K ( x , € , t , ~ )  := (b+Bz)'grad,Zo(x-€,E, t ,~ )+K(x)Zo(x -LE,  t , r ) ,  (x,E) E R", 0 5 T < t 5 T. 
(3.2) 

where Zo(z - ( , ( ,  t ,  T )  is defined as in (IV.11.2) of [16], that is: 

for (x , { )  E R", 0 5 T < t 5 T ,  and where A('d) is the (i, j)'th element of the matrix inverse to 
AA'. 

The following estimate easily follows from the above definition and the condition (Bl)(c): 

for some positive constants cl, q independent of (x,<, t , ~ ) ,  and a E (0 , l ) .  This is the estimate 
(IV.11.17) in [16], and it implies that (compare (IV.11.25) in [16]) 

for m 2 1, where 

Owing to (3.4) we can now define (as in (lV.11.23) of [16]) 

and derive the estimate (compare (IV.11.26) of [16]) 

Let now Z(x,  t ,  t , r )  be given as in (11.13) of 1161 for x, 5 E Rn and 0 5 T < t 5 T ,  that is: 

(3.7) 

Define 



Using the above estimates and the formulas (11.8), (11.9) on page 358 of [16], it follows that 

g E ~ ' ~ ~ ( ( 0 ,  T ) ,  R") n C([O, TI ,  Rn). (3.9) 

and 
cl+a/Z,Z+a ((O,Th Br) n C([O,Tl, R"), (3.10) 

where B, = {x E R" : llzll < r ) ,  and r > 0 is arbitrary. In addition, we also have (see the 
discussion in section N.14 of [16]) that g is a solution to the Cauchy problem (3.1). Finally, using 
the Feynmann-Kac formula (see e. g. [14]) we obtain the following stochastic representation for g: 

g(t, Z )  =  ex K ( X ( ~ ) ) ~ ~ ~ X ( O )  = z ] ,  (3.11) 

where X ( t )  is our factor process. Since every smooth solution for the Cauchy problem (3.1) has the 
above representation, then g is the unique solution to the problem (3.1). In view of the conditions 
(Bl ) (a) , (c ) ,  the representation (3.11) implies the following estimates for g: 

Let us now tix 0 > 0 and define 

ue,T(t, z )  := -(2/0)ln g(t ,  z ) ,  ( t ,  z )  E [0, TI x R". (3.14) 

The following lemma summarizes properties of Ue,T that we will need. 

Lemma 3.1 Assume (A2) and (Bl) .  Then the function  us,^ defined by (3.14) enjoys the following 
properties: 

(a) ue,T 2 0,  

(b) * 2 0, 

(c) u8.r- w the only, non-negative, cla.vsica1 solution of 

f o r ( t , z ) ~ ( O , T ]  x R " .  

(d) ue,T(t ,z)  is three times continuously diffetentiable in z on U L ~ K ~ .  



Proof. Properties (a),  (b),  and (c)  are obvious consequences of (3.12)-(3.14) and the fact that 
g( t ,x )  is the unique solution to (3.1). The property (d)  follows since K ( x )  is smooth on u,!=~K~. I 

In view of the above lemma and the fact that gradZug,T and are continuous, we can now 
apply the argument used in the proof of Lemma 1.5 of Nagai [19] in order to obtain the following 
important estimate (compare (1.28) in [19]): 

where 7, KT,.,, and L,,., are some positive constants that are independent o f t  and T .  

We want to extend the solution uep( t ,  x) from [0, T ]  x R" to [O, co) x R". Towards this end, 
following the argument of the section 1.4 in Nagai 1191 with u ~ ( t ,  x )  = ul ( t ,  X )  = uz(t ,  z )  = ug,.r(t, z )  
on [0, T]  x BR (using the notation of [19]), we arrive at the following result (compare Theorem 1.1 
in [19]): 

Lemma 3.2 Assume (A2) and (Bl ) .  Then, 

(a) The equation 

has a non-negative solution ue E C112((0, co),  Rn)  il C([O, oo), Rn).  ue is an extension of U~ ,T  to 
lo, 00) x R", 

(b)  % 2 0, 

for some positive constants 7, Kr,., and LrP7 that are independent o f t .  

We see now that Theorem 3.4 of Nagai [19] applies in our context. We state the version of this 
theorem, appropriate for the situation considered here, as 

Lemma 3.3 Assume (A2) and (B1). Then 

(a) As t -t w 

the function ue(t ,  x) - q ( t ,  0 )  converges to a function v . ( z )  i n  Wit,, and uniformly on each 
compact subset of Rn, 

the function 9 converges to a constant pe, 



@) The pair (ve,pe) w the unique solution to equation (ve w unique up to an additive constant) 

~ ( x )  E @ ( R ~ ) ,  lim v ( z )  = oc 
11.11-+w 

p = c a s t .  

Since converges to a constant pe, we thus have an obvious 

Corollary 3.1 
lim ue(t9 4 = 
t-m t 

4 Proofs of the main results 

In this section we verify validity of the results stated in section 2. Assumptions (A1)-(A3) are 
supposed to hold throughout the section. 

Fi 8 > 0 and consider the following Bellman-Hamilton-Jacobi equation 

for t > 0, x E F, v > 0, where 

We shall seek a solution to the equation (4.1) in the form 

=,  v; 8)  = v - ( e / 2 ) e - ( 0 / 2 ) ~ ( t ~ ; 0 ) ,  (4.2) 

for some suitable function U(t ,  x; 8) .  To this end, let us consider first the following two equations 



a w ,  2) - -  - 
at 

+ 
- 

U(0,x)  = 

and 

a q t ,  X )  - -  - 
at 

+ 
- 

O(0,x)  = 

where 

and Ke(z )  and Ke are defmed in (2.5) and (2.9), respectively. We now have the following 

Proposition 4.1 The constant KO is finite, and the function K ~ ( x )  satisfies assumption (B1). 

Proof. Invoking the results from section 5.5 of Bank et al. [I] we conclude that Ke(z )  satisfies 
conditions (c) and (d) of the assumption (B l ) .  In view of this and the ansumption (A2),  we see 
that the constant Ke is finite, and that K ~ ( x )  satisfies conditions (a )  - (d) of the assumption (B l ) .  
Condition (e) is satisfied in view of the problem (ll)(a) in [8]. I 

From the above proposition and from lemma 3.2 it follows that there exists a non-negative 
classical solution u ( t ,  x; 8 )  to equation (4.4). Now, by letting 

we see that U(t ,  x;  8) is a classical solution to equation (4.3). We thus have the following 

Proposition 4.2 Let @(t,  x ,  v; 8)  be as in  (@), with U( t ,  x;  8) as in (4.5). Then @(t,  z, v ;  0) is a 
classical solution to the Bellman-Hamilton-Jacob; equation (4.1). 

Proof. The result follows by direct inspection. I 

We proceed with the statement and proof of a verification result, from which theorem 2.1 and 
corollary 2.1 follow immediately: 



Proposition 4.3 Let @g(t, z ,  v )  denote any classical solution to (4.1). For each h(.) E 7-1 we have 

@e( t , z ,v )  5 E ~ ( . ) [ V ( ~ ) - ( ~ / ~ ) I V ( O )  = V ,  X(0)  = x] ,  t 2 0, ( x , v )  E Rn x (0, m), (4.6) 

For he(-) defined in (2.6) we have 

Proof. The results are clearly true for t = 0. 

Fi t > 0 and a strategy h(- )  E 7-1. Applying Ito formula to 'Pe(s, z ,  v )  = @e(t -s, z ,  V )  for 0 5 s 5 t ,  
we get for each sficiently small E > 0 the following equality 

E ~ ( ' ) [ @ ~ ( E ,  X ( t  - c) ,  V ( t  - E) )~V(O)  = v ,  X (0 )  = Z ]  - @e(t, Z , V )  = 

@(')[lt ~ * ) h ( r ,  X ( t  - r ) ,  V(t  - r))drlV(O) = v ,  X(0)  = r] (4.8) 

for all z E Rn and v > 0, where ~ ~ ( . ) @ g ( s , X ( s ) ,  V ( s ) )  is defined similarly as L ~ @ ~ ( s ,  X ( s ) ,  V ( s ) )  
with h( s )  substituting for h. 

It follows from (4.1) that the expression on the right hand side of (4.8) is non-negative. Thus, 
letting c go to zero, we obtain (4.6). 

It follows from the results of section 5.5 in Bank et al. [I]  that Hs(z )  (defined in Theorem 2.1) 
is a piece-wise afline function on R". Thus he(.) is an admissible strategy, and the conclusion (4.7) 
follows since the right hand side of (4.8) is equal to zero for h(.) = he(.). I 

We are ready now to prove theorem 2.1. 

Proof. of Theorem 2.1 

Let @(t,  z ,  v ;  0)  be as in (4.2), with U( t ,  z ;  0)  as in (4.5). Then it follows from propositions 4.2 and 
4.3 that @(t, z ,  v ;  13) is the unique solution to the Bellman-Hamilton-Jacobi equation (4.1), and that 
it satisfies (4.6) and (4.7). This implies (2.7). I 

It remains to demonstrate theorem 2.2. 

Proof. of Theorem 2.2 As in the proof of theorem 2.1 we first observe that @(t,  z ,  v ;  0 )  is the 
unique solution to (4.1). Thus U( t ,  z.v; 0 )  is the unique non-negative solution to (4.4), and we have 

- (2 /0)h@(t ,  z, v;  0)  = h v  + U( t ,  x ;  0)  - tKg, (4.9) 

for ( t ,  z , v )  E [O, m) x Iln x (0,  m ) .  Applying lemma 3.3 and corollary 3.1 to the equations (2.8) 
and (4.4) we conclude that 

U( t ,  2; 9 )  lim ----- = 
t-m t p(0) + Kg. (4.10) 

The conclusions of theorem 2.2 follow now from (4.9) and (4.10) since @(t, z, v;  8) satisfies (4.6) 
and (4.7). I 



5 Risk neutral problem (8  = 0) 

In this section we are going to study limit when I9 1 0 of the problems Po. This leads to consideration 
of the classical problem of maximizing the portfolio's expected g~owth rate, or the g~owth rate of 
the log-utility function (see e.g.[12]). We label this problem as Po,  and formulate as follows: 

maximize the q e c t e d  growth mte 

Jo(v, z ;  h(.)) := limi&tt-' Eh(') [lnV(t)lV(O) = v, X (0 )  = x]  (5.1) 

over the class of all admissible investment processes h(.), 

subject to (2.2) and (2.3). 

We intend to establish a relationship between the risk neutral pmblem Po and the risk sensitive 
problems Po, I9 > 0. T o m &  this end let us consider the following equation 

and introduce the following assumption 

Assumption C1 

We now have the following two results, 

Lemma 5.1 Assume (Al ) ,  (A3) and (Cl) .  Then there &ta a solution pair (p(O),vo) to the 
equation (5.2). 

Proof. See Appendix 1. I 

Proposition 5.1 Let Ho(x) be a minimizing selector on the right hand side of (5.2). Define a 
stmtegy b(.) as in (2.6) with 0 replacing 8. If (p(O),%) w a solution to (5.2) then we have 

Jo(v, x;  b ( . ) )  = p(0) - l i E ~  t-' Eh0(.) [v0(X(t)) lV(0) = v ,  X ( 0 )  = x].  (5.3) 



Proof.  It follows from the results of section 5.5 in Bank et al. [ I ]  that b(.) is an admissible 
strategy. Applying Ito formula to w ( x )  we obtain 

Under the strategy b(.) the capital process V ( t )  is the geometric Brownian motion ( ~ e  e.g. (141, 
p. 361) 

Therefore, we obtain from (5.4) 

E~(') [vo(X(t))lV(O) = v ,  X (0 )  = x] - w ( v )  
= tp(0) + lnv - E~o( . )  [lnV(X(t))lV(O) = v,X(O) = X I ,  t 2 0, 

which proves (5.2). 1 

Before we state our next result we need to introduce 

Assumpt ion  C2 For each solution (p(O), w )  of the equation (5.2), and each h(.) E H we assume 
that 

l i ~ n . f ( l / t ) ~ ~ ( ' )  [vo(X( t ) ) (V(0)  = v ,  X (0 )  = x] = 0. 

In addition, we assume that liminf can be replaced with lim i n  this equality when h(.) = he(.). 

Remark 5.1 Assumption C2 will most likely be satisjied in case the factor process X ( t )  w stable 
(B w negative definite). In the next section we shall study an ezample of a m r k e t  situation for 
which this assumption holds. 

Proposit ion 5.2 Let (p(O), w )  be a solution of (5.2). Assume C2. Then, the following conclwions 
hold. 

(a) The stmtegy b ( . )  is optimal for Po, and 

J o ( v , z ; ~ ( . ) )  = kixt-' E~“(') [hV( t ) (V(O)  = v,X(O) = x]  = p(0). (5.6) 

(b) The constant p(0) w unique. 



Proof. Fix an arbitrary admissible strategy h(.). Applying Ito formula to u,-, and using (5.2) 
we get 

Thus we conclude that 

Eh(') [wo(X(t))lV(O) = v ,  X(0)  = x] - ~ ( z )  

5 tp(0) - E"(.) [hV(X(t ) ) lV(O) = v ,  X(0 )  = z], t 2 0. (5.8) 

This proves (a) in view of the assumption C2 and the results of proposition 5.1, since h(.) was 
selected arbitrarily. Uniqueness of p(0) follows from its stochastic representation in (5.6). 1 

Remark 5.2 (a) Note that assumption C2 is not needed to prove optimality of ho(.) in psoposition 
5.2, only that the liminf is actually an ordinaq lim equal to p(0). 
0) In m e  when CC' is positive definite the optimal strategy k(.) agrees with the one derived by 
Karatma (see (9.19) in [12]). 

In order to relate the risk sensitive problems Pe, 0 > 0 and the risk-neutral problem Po we need 
to introduce the following assumption: 

Assumption C3 The constants p(0), 0 > 0, in the solutions to equation (2.8) wnverge,to the 
constant p(0) in the solution to equation (5.2) when 0 converges to zero. 

Remark 5.3 Assumption C3 is quite natural. It is s a t i s w  for the ezample considered in section 
6. We believe that it is satisfied for equations (2.8) and (5.2) in the general fnamework of this 
paper, but we are unable to verih this at this time. 

We now have the following proposition, which says that the optimal objective values for problems 
(Pe) converge to the optimal objective value for the risk neutral problem PO when the risk-aversion 
parameter decays to zero: 

Proposition 5.3 Assume Assume (A1)-(A3) and (C1)-((23). Then, 



Proof. It follows from corollary 2.1 and theorem 2.1 that the left hand side of (5.9) is equal to the 
limelo p(0). Proposition 5.2 implies that the right hand side of (5.9) is equal to p(0). This proves 
the result in view of the assumption C3. I 

The following result characterizes the portfolio expected growth rate corresponding to the optimal 
investment strategy for the risk aversion level 0 > 0 and will be used in section 6. 

Lemma 5.2 Assume (A3). Fix 0 > 0. Let H ~ ( x )  be as in theorem 2.1 and assume that 

lim [(1/2)He(x)'CC1He(x) - He(x)'(a + Ax)] = - w .  
llfll-1- 

Consider the equation 

Then, there exist solution (pe, ve.0) to the above equation, the constant pe, is unique, and w e  have 

JO(V, z; M e ) )  = pe. (5.12) 

for all (v, x) E (0, w )  x R", where he(.) is defined as in (2.6). 

Proof. The proof is analogous to the proofs of proposition 5.2 and therefore is omitted. I 

We shall see in section 6 that the condition (5.10) is sufficient but not necessary. 

6 Example: Asset Allocation With Vasicek Interest Rates 

In this section we present a simple example which not only illustrates the ideas developed in the 
preceding sections, but also is of independent interest in its own right. We study a model of an 
economy where the mean returns of the stock market are affected by the level of interest rates. 
Consider a single risky asset, say a stock index, that is governed by the SDE 

where the spot interest rate r ( . )  is governed by the classical "Vasicek" process 

Here P I ,  p ~ ,  bl,  h, a, and X are fixed, scalar parameters, to be estimated, while Wl and W2 are 
two independent Brownian motions. We assume bl > 0 and h < 0 in all that follows. 



The investor can take a long or short position in the stock index as well as borrow or lend 
money, with continuous compoundig, at the prevailing interest rate. It is therefore convenient to 
follow the common approach and introduce the "bank account" process S2, where 

Thus &(t) represents the time4 value of a savings account when S2(0) = 1 dollar is deposited at 
time-0. This enables us to formulate the investor's problem as in the preceding sections, for there 
are rn = 2 securities Sl and S2, there is n = 1 factor X = r,  and we can set b = bl, B = 9, a = 

( P I ,  O)', A = (P2, I) ' ,  A = (0,0,  A)', and 

With only two assets it is convenient to describe the investor's trading strategy in tenus of the 
scalar valued function He(r), which is interpreted as the proportion of capital invested in the stock 
index, leaving the proportion 1 - He(r) invested in the bank account. We suppose for simplicity 
that there are no special restrictions (e.g., short sales constraints, borrowing restrictions, etc.) on 
the investor's trading strategy, so the investment constraint set x is taken to be the whole real line. 

In view of Theorem 2.1 and Corollary 2.1, the optimal t r a d i i  strategy is easy to work out. 
With (see (2.5)) 

Ke(r) = inf [(1/2)(0/2 + l ) (h ,  1 - h)CC1(h, 1 - h)' - (h,  1 - h)(a + Ar)],  
AER 

it follows that the optimal trading strategy is he(t) = b ( t ) ,  1 -6e(t)11 where b ( t )  = He(r(t)) ,  and 
where 

in which case 

Ke ( r )  = -r - (PI + P2r - 
(0 + 2)a2 . 

It is interesting to note the obvious similarity between this optimal strategy and the well known 
results (see [18] and [12]) for the case of conventional complete models of securities markets and 
power utility functions. In particular, when p2 = 0,  so the mean returns of the stock market are 
independent of the interest rates, the expressions for the trading strategies are identical. Another 
special case of interest is when = 1, so that the "market risk premium" (pl  + p2r - r ) / u  is 
constant. Here the results are somewhat boring, in that He is constant with respect to r and Ke(r) 
is linear in r. 

More interesting is the study of p(0), our measure of performance under the optimal tradiig 
strategy (see Theorem 2.2). In view of (2.8) this is obtained as part of the solution (p ,  v )  of the 
equation 



where v is a unique (up to a constant) function satisfying liml,l,,v(r) = oo. To solve this, we 
conjecture that a solution is obtained with v having the quadratic form 

for suitable constants a, P, and 7. Substituting this and the expression for Ke(r) into (6.1) and 
then collecting terms, we see that the quadratic terms cancel out if and only if 

This quadratic equation in a has two roots, one of which is positive, whiie the other is negative. 
However, the requirement that limlrl,, v(t) = oo is satisfied only for the positive root, so recalling 
our assumption that bz < 0 it follows that for the value of a we should take (for future purposes it 
is convenient to denote the dependence on 0 and A) 

The linear terms on the right hand side of (6.1) cancel if and only if the value of P is 

Thus (6.1) does indeed have a solution with v as indicated; this solution is unique up to the constant 
7, the value of which does not matter. The value of p(0, A) will then equal the remaining terms on 
the right hand side of (6.1), that is, 

Remark 6.1 Note that the above results am valid also in the case when i~ = 1. The assumption 
(A2) is not satisfied in this case since b,-, Ke(r) = oo. 

It is interesting to consider the risk neutral case, because here p(0) will turn out to be the 
long-run expected growth rate under the strategy that is optimal when 0 = 0. Using L'Hospitai's 
rule we compute the limits 

and 



Note that each of the three t e r n  is non-negative. The Vasicek interest rate has a limiting 
distribution with a mean equal to the so-called "mean reversion" level -b l / h ,  which is the first 
t a n .  The second term equals the contribution to the long-run expected growth rate due to tradiig 
in the stock index, assuming the interest rate is the constant mean reversion level. The third term 
equals the contribution to the long-run expected growth rate due to the volatility of the interest 
rate. 

Another quantity of interest is the long-run expected growth rate which results from using the 
strategy b ( t )  that is optimal for a particular value of 0, a quantity that will be denoted by pe(A). 
Of come, po(A) = p(0, A), which is given by (6.5), whereas for 0 > 0 we use lemma 5.2 and obtain 
the quantity @(A) by solving for the constant p and the function v such that limlrl,, v ( r )  = oo 
and 

- ( ~ e ( r ) , l - ~ e ( r ) ) ( a + ~ r ) ] .  

We solve (6.6) in exactly the same way as (6.1), obtaining 

Note that the second and third terms, respectively, of (6.5) and (6.7) diier by the factor 4(0 + 
1) / (0  + 2)2. This factor is strictly leas than one for all 0 > 0,  so p(0, A) > pe(A) for all 0 > 0. Thus 
the optimal expected growth rate when t? = 0 is greater than when 0 is positive, as anticipated. 

Remark 6.2 At this point we want to emphasize one more time that the main advantage of the 
risk-sensitive approach to dynamic asset allocation over the classical log-utility approach is that 
the risk-sensitive apprvach provides an optimal compromise between maaimization of the capital 
q t e d  growth rate and controlling the investment risk, given the investor's attitude towards risk 
encoded in the value of 0. Even though the long-run expected growth rate of the capital under ho(.) 
is greater than under b ( . ) ,  if t? > 0, the asymptotic risk of investment decreases with the increasing 
values of 0 (see the discussion below, as well as our numerical results that conclude this section). 
In  Appendix 2 we demonstrate that the asymptotic ratio of "up-side chance" to "down-side risk" 
is d m a l  for some 0 positive, which provides yet another justification of the superiority of the 
risk-sensitive approach over the log-utility one. 

Still another quantity of interest is (4/0)[pe - p(t?)] which, by equation (1.1) can be interpreted 
as an estimate of the asymptotic variance of l nV( t )  under the strategy that is optimal for the 
particular value of 0. In general, this is a messy formula when expressed in terms of the orig- 
inal data; no simplifications seem pcssible. However, there is interest in computing pl(O, A) := 

le=or because when 0 = 0 the asymptotic variance under the optimal trading strategy will 



be limelo(4/0)[pe - p(e)] = -4p1(0, A). After lengthy, tedious calculations using L'Hospital's rule 
and so forth, we obtained 

Note that each of the three terms is non-positive, as desired. 

Our various calculations can be reconciled with classical d t s  (e.g., see 1181 and [12]) by 
considering various limits as the data parameter A -+ 0. This is because in the long-run when X = 0 
the interest rate is essentially equal to the constant mean reverting value - b l / h ,  in which case the 
drift coefficient in the SDE for the stock index is the constant p1 - pzbl /k .  Hence, for instance, 
we have 

and 

bl 2(e + l)bl - (b1/k)(p2 - 1)12 lim p,g(X) = -- + 
4r (0 + 2)2a2 A-0 

We conclude this section with some numerical calculations that are intended to generate some 
economic intuition about our asset allocation problem. Throughout we envision time units in years 
and set bl = 0.05 and = -1, so the mean reverting interest rate is 5% per annum. We also set 
p1 = 0.1 + ( b l / k ) p 2  so that the stock index's driit coefficient is always 0.1 whenever the interest 
rate is at the mean reverting level. Finally, the volatility parameter for the stock index is always 
taken to be a = 0.2. Thus if the interest rate is fixed at the mean reverting level, then the stock 
index evolves like ordinary geometric Brownian motion and has a long run expected growth rate 
equal of 8% per m u m  and an asymptotic variance equal to 0.04. 

This leaves two unspecified parameters: X and p2. For Figures 1 - 3 we fix X = 0.02 and consider 
the effect of the interest rate sensitivity parameter p2. 

Figure 1 shows three graphs of the function p(0) corresponding to, from top to bottom, respec- 
tively, p2 = -1, p2 = 0, and p2 = 1. The numerical values are expressed as percentages; the value 
of 0 varies between 0 and 6.0. Although the function p(0) involves the factor (p2 - 1 )  raised to the 
first power, it turns out for our chosen parameters that the value of p(0) when = 1 + 6 is not 
much merent when p2 = 1 - 6, for all 6 > 0 and 0 > 0. Hence, roughly speaking, the greater the 
sensitivity of the stock index risk premium (pl + p2r - r ) / u  to the interest rate, the greater the 
optimal objective value p(0). 



Figure 2 shows three graphs of the function pe corresponding to, from top to bottom, respec- 
tively, p2 = -1, p2 = 0,  and = 1. It is interesting to compare these values with 8%, the long run 
expected growth rate of the stock index itself when the interest rate is fixed at the mean reverting 
level. Note that I L ~  enters the equation for pe only as part of the factor (h - I)*.  

Figure 3 shows three graphs of the estimated asymptotic variance corresponding to, from top 
to bottom, respectively, = -1, p2 = 0, and = 1. Plotted is the quantity (4/B)[pe - p(B)], 
with pe and p(B)] expressed as percentages. It is interesting to compare these values with 4.0, the 
asymptotic variance for the stock index itself when the interest rate is fixed at the mean reverting 
level. As with pe, the estimated asymptotic variances are more sensitive to the value of lpa - 11 
than to the value of lp21 itself. 

For Figures 4 - 6 we fix p2 = 0 and study the effect of the interest rate volatility parameter A. 
Figures 4 - 6 show graphs of p(B),pe, and the estimated asymptotic variances, respectively. Each 
figure shows three graphs, corresponding to three different values of X : 0 ,  0.02, and 0.04. In all 
three figures, the bigger the value of A, the bigger the value of the corresponding function. Hence it 
seems that the greater the volatility of the interest rate, the greater the investment opportunities, 
although these opportunities will be accompanied by greater volatilities. 

7 Final remarks and future research 

In the literature, the risk-sensitive control problem is frequently converted to an equivalent zero- 
sum game problem (e.g., see Fleming and McEneaney [9] and the references therein). We did not 
follow the game theoretic approach in this paper, but perhaps it will be interesting for the reader 
to consider how one can approach our problem using a zero-sum game formulation. We shall briefly 
present one possible formulation, and the reader is referred to [9] for comparisons. 

The main observation is that the Hamilton-Jacobi-Bellman equations (4.3) and (2.8) can be 
rewritten as Isaacs equations corresponding to some zero-sum stochastic differential games. Let us 
consider the equation (4.3) first, and rewrite its version with t restricted to the interval [O,T] as 

- sup inf gra$U(t, x, B)k - (l/B)kt(AA')-lk 
kc= (hEx,llh=l) I 

+ (1 /2) (8 /2  + 1) h ' E ' h  - ht(a + AX)] , ( t ,  x )  E (0, Z'l x Rn 

U ( 0 , x )  = 0 ,  x E R". (7.1) 

This equation is an optimality equation corresponding to the zero-sum stochastic differential game 

inf sup I3[AT ( h ~ ( s ) ( ~  + ~ [ ( s ) )  - (812 + 1)(1/2)h'(s)EE1h(s) 
k( , )EK h ( . ) ~ ? i  

+ ( l / ~ ) k ' ( s ) ( ~ ' ) - ~ k ( s ) } d s ~ [ ( ~ )  = x] . 



subject to, 

where K is some suitably defined set of admissible controls k(.) for the minimizing player. 

Similarly, equation (2.8) can be rewritten as 

sup inf grad'v(z)k - (1/0)k1(M1)-'k 
~ E P  (hEx.llh=l) I 
v(z) E C(Rn), lim v(z) = oo 

ll~Il--1~ 
p = const. 

This is an optimality equation corresponding to a zero-sum stochatic Merential game of the form 

inf sup l i m i n f ( ~ - ' ) ~ [ T  {hl(s)(a + AC(S)) - (012 + 1)(1/2)h1(s)EC1h(s) 
k( . )EK h(.)€71 

subject to (7.3). 

The game theoretic perspective on risk sensitive control problems is also closely related to 
so-called robust or Hm control principles (e.g., see [23], [9] for discussions). 

As for future research, it is important to study risk sensitive investment problems with partial 
information. Typically, the values of the market parameters a, A, , C, b, B and A are not known to 
an investor. Therefore, the optimal risk sensitive investment theory developed in this paper cannot 
be directly applied in the practice of dynamic asset management. What are the alternatives then? 
One possibility is that the investor obtains initial estimates of the market parameters based on 
historical time series, and then holds onto these estimates throughout the entire future investment 
horizon. A potentially better approach for the investor would be to adaptively select her or his 
investment decisions based on currently available market information and the optimal decision 
strategies (perhaps the ones developed in this paper). This means that the estimates of market 
parameters are updated as time goes by and new market information is acquired, and subsequently 
the updated estimates are used instead of the "true" values of thaw market parameters in the 
formulas for optimal risk sensitive investment rules. 

It is assumed that security prices and the value6 of the factors can be accurately observed by 
the investor. It is also assumed that the market volatility parameter matrix C is known with 
a reasonably good accuracy. Therefore, as it is clear from (2.5), the investor needs to update 



primarily her or his estimates regarding the immediate return parameters a and A in order to 
compute updated versions of the risk sensitive investment rule He(z) .  

Let He(z; a, A) denote the rule computed from (2.5) (this notation is used in order to emphasize 
its dependence on the parameters a and A). Let also h ( t )  denote the adaptive investment process 
defined by 

where a( t )  and A(t) are estimates of a and A based on market information available through time 
t ,  and X ( t )  is our factor process. 

Let d ( t )  = [1, X(t) l l ,  and let R ( t )  denote the i-th return process corresponding to (2.1), that 
is 

In a future paper we shall investigate adaptive risk sensitive investment strategies based on the 
following estimation scheme: 

@(t )  = / f b ( s ) d ' ( ~ ) d s + Z , , + ~  , 
I,,+' is the ( n  + 1) x ( n  + 1) identity matrix , 

M ( t )  = /' d(s)d'R1(s) , 
0 

W t )  = 1% ( t ) ,  . . . , % $ ) I .  

Mathematical questions that arise here include: 

Asymptotic study of the estimation scheme (7.9). For example, we would like to know whether 
the estimates (7.9) are strongly consistent (i.e. whether they almost surely converge to [a A] 
8s t -+ w). 

Asymptotic study of the adaptive investment process (7.6) corresponding to (7.8). We would 
like to know whether this process is optimal for (Pe) , that is whether 

This is not an unreasonable expectation due to the time averaging in (2.4). 

Analysis of discretization and computational schemes for (7.8). We would like to effectively 
use financial data collected in our data bases. 



In our study of the problems described in this task we intend to use some of the ideas developed 
in [3], [2], and [24] '. 

Note that the estimation scheme (7.8) is a very simple one. This, combined with (2.5) should 
lead to development of practically feasible algorithms for a real-time dynamic asset management, 
as postulated in the Introduction. 

8 Appendix 1: Proof of Lemma 5.1 

9 Appendix 2: Up-side Chance and Down-side Risk 

Let us consider a special case of the price and factor model considered in section 6. SpecXcally, let 
us assume the following 

Observe that we have assumed a constant spot rate (that is, r(t) = r for all t) and a constant 
rate of return (pl) on the stock index. We thus have a very conventional, twwasset model. Our 
assumptions are imposed in order to simplify the following development of a new interpretation of 
the risk sensitive optimality criterion. In particular, we will analyze dependence on 0 2 0 of the 
following quantity, 

To interpret this quantity, using the strong law of large numbers for Brownian motion process 
it can easily be shown that, under the parametrization considered here, 

for all v E ( 0 , ~ )  and 6' 2 0. In particular, p(0) = (1/2)* + r is the maximal (expected) 
growth rate of the investor's portfolio. Thus the quantity R(6') above can be interpreted as the 
asymptotic, logarithmic ratio-of the chance that the actual growth rate of the investor's portfolio 
under the strategy he(.) = [he(.), 1 - he(.)]' will exceed the maximal limit, to the risk that the 
growth rate will fall below the spot rate. 

It is interesting to see which value of 0 2 0 maximizes R(6'). Toward this end let us first note 
that in the current situation we have 

aRsent developments ob- 
tained by the Katuaa Adaptive Control Gmup (see their web page: http:/ /w.matic.Jfo~.cdu/kdaeg~ will also 
be helpful. 



for all t  2 0. Thus, under b(.), we have 

W l ( t )  ( l / t ) l n V ( t )  = plHe(r) + (1 - He(r))r - ( 1 / 2 ) ~ ; ( r ) a '  + H O ( ~ ) - ~ .  (9.3) 

Consequently (using (1.1.4) of Deuschel and Stroock [6]) we obtain 

2 z2 
R(B) = inf {- : x E A(@)} - inf {- : x E I'(B)}, 

2 2 (9.4) 

where A(B) := ( m ,  -i(pl - r ) p )  and I'(B) := ( i - , m ) .  Thus 
2 +1 1 +1 

Finally we see that R(@) is maximized over [0, m )  by 0' = 2. This means that the ratio of up-side 
chance to down-side risk is maximized if the investor maximizes the growth of - ( l / t ) l n ~ & ! ! !  
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