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A new approach to modeling credit risk, to valuation of defaultable debt and to pricing of credit
derivatives is developed. Our approach, based on the Heath, Jarrow, and Morton (1992) methodol-
ogy, uses the available information about the credit spreads combined with the available information
about the recovery rates to model the intensities of credit migrations between various credit ratings
classes. This results in a conditionally Markovian model of credit risk. We then combine our model
of credit risk with a model of interest rate risk in order to derive an arbitrage-free model of default-
able bonds. As expected, the market price processes of interest rate risk and credit risk provide a
natural connection between the actual and the martingale probabilities.
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1. INTRODUCTION

Let B(t,T) and Dc, (¢, T) denote time ¢ prices of default-free and default-risky (or
defaultable) zero coupon bonds maturing at time 7', respectively. The default-free bond
pays $1 at time 7. The default-risky bond is assumed to pay at time 7 an amount
called the recovery payment which is less than $1. (The meaning of the subscript C;
in the notation Dc, (¢, T') will be explained later in the text.) For the simplicity of the
exposition in this paper we focus on the recovery scheme in which the recovery payment
is received by the holder of the defaultable bond at the maturity time of the bond; this
is commonly referred to as the fractional recovery of par. Of course, if the defaultable
bond does not default prior to or on the maturity date, then it pays $1 at maturity. We
are concerned with modeling of the dynamics for the price process D¢, (¢, T), as well as
with relating B(¢, T') and Dc, (¢, T). To this end, we first derive a credit risk model—
that is, a model for probabilities of credit default, and (i) probabilities of migrations
between various credit rating classes. Our credit risk model takes into account available
data regarding: (ii) credit spreads and (iii) recovery payments for various credit rating
classes. Using this credit risk model we then construct an arbitrage-free model for the
price processes B(¢t, T') and D¢, (t, T).
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126 T. R. BIELECKI AND M. RUTKOWSKI

There are several existing models for the defaultable term structure in which credit
rating classes appear in an explicit way (see, e.g., Arvanitis, Gregory, and Laurent 1999;
Duffie and Singleton 1998; Huge and Lando 1998; Jarrow, Lando, and Turnbull 1997;
Lando 1998; or Thomas, Allen, and Morkel-Kingsbury 1998). Apparently all the above
references fail to account for at least one of the above-itemized characteristics ((i), (ii),
or (iii)) of risky debt. In this paper, we make an attempt to create a credit risk model that
accounts for all three of these fundamental aspects. Our research was partially motivated
by the results of Schonbucher (1998) (see also Duffie 1994 for related studies).

2. MULTIPLE RATINGS CREDIT RISK MODEL

We make the following standing assumptions.

Condition B.1. We are given a d-dimensional standard Brownian motion ¥, defined
on the underlying real-world probability space (€2, [F,P) which is endowed with the
filtration IF = (F)se0, 74

Condition B.2. For any fixed maturity 7 < T*, the default-free instantaneous forward
rate f(t,7T) satisfies!

2.1) df ¢, T)=a@, T)dt+o(t, T) -dW,,
where « and o are adapted stochastic processes with values in R and R, respectively.
Conditions B.1 and B.2 are the standard assumptions of the Heath, Jarrow, and Morton

(1992) approach to term structure modeling. By definition, the price of a T-maturity
default-free zero coupon bond thus equals

T
2.2) B, T):= exp(—/ f@t,u) du), Viel0, T]
t

2.1. Default-Free Term Structure

For the reader’s convenience, we quote the following well-known result (see Heath
et al. 1992),

LEMMA 2.1. The real-world dynamics of the default-free bond price B(t, T) are
2.3) dB(t,T) =B, T)(a(t, T)dt +b(,T)-dW,),
where
a(t,T) = f@t,t) —a*(t, T) + L lo*(t, T, b(t,T) = —o*(, T),

and

T T
a*(t, T) = / alt,u)du, o*(t, T) = / o(t,u)du.
t t

! See Heath et al. (1992) for technical assumptions.
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MULTIPLE RATINGS MODEL OF DEFAULTABLE TERM STRUCTURE 127

We assume, as is customary, that one may also invest in the risk-free savings account
B, which corresponds to the short-term interest rate 7, = f(z,¢). In view of (2.3), the
discounted bond price Z(¢t,T) = B, ! B(t, T') satisfies under P

dZ,T)=Z(, T) ((%lb(t, ))? - o*(t, T)) dt +b(t, T) -dW,) :

The following condition is known to exclude arbitrage across default-free bonds for all
maturities 7 < T*, as well as between default-free bonds and the savings account.

Condition M.1. There exists an adapted R?-valued process y such that

Ep J exp / yu-qu—§/ valdu | b =1,
0 0

and for any maturity T < 7* we have
(@, T) = 3l0*@. D> —a*¢, T) - 1.

Let y be some process satisfying Condition M.1. Then the probability measure P*,
given by the formula

dP* T* 1 r*
7P = exp (/0 Vu - dWy — 5/0 Iyulzdu> , P as.,

is a spot martingale measure for the default-free term structure—that is, the equivalent
martingale measure corresponding to the choice of the savings account as the numéraire
asset. Moreover, if we define a Brownian motion W* under P* by setting

¢
W,*=W,—/ Yudu, Vit el0,T*],
0

then, for any fixed maturity 7 < T, the discounted price of a default-free bond satisfies
under P*

2.4) dZ(t,T)=Z¢,T)b(t,T)-dW/}.

We shall assume from now on that the process y is uniquely determined, so that the
default-free bonds market is complete.? Formally, this means that any default-free con-
tingent claim can be priced through risk-neutral valuation formula under the probability
P*. It should be stressed, however, that this remark does not apply to defaultable claims
since they may fail to be tradable securities under the spot martingale measure P*, in
general.

% Strictly speaking, this assumption is not required for our further development.
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128 T. R. BIELECKI AND M. RUTKOWSKI

2.2. Predefault Term Structure with Multiple Ratings

We assume that the set of rating classes is = {1, ..., K}, where the class K cor-
responds to the default event. For any i = 1, ..., K, we write §; € [0, 1) to denote the
corresponding recovery rate. By assumption, §; is the fraction of par paid at a bond’s
maturity for a bond currently in the ith rating class which defaults. This means that if
the bond defaults at time ¢t < T when it is in class 7, then it pays a fixed [nonrandom]
recovery payment §; < 1 at time 7.

In this section, we consider a default-free term structure, as well as K — 1 different
defaultable term structures. Notice that the case where K = 2 corresponds to a more
traditional credit risk modeling where the credit migrations between various credit classes
are neglected and only the possibility of default is taken into consideration. We make
the following assumption.

Condition B.3. For any fixed maturity 7 < T*, the instantaneous forward rate g; (¢, T),
corresponding to the rating class i = 1, ..., K satisfies under P

2.5) dgi(t,T) = a;(t, T)dt + 0;(t, T) - dW,,

where «;(-, T) and o;(-, T) are adapted stochastic processes with values in R and R?,
respectively. We further assume that

2.6) gxk—1, T) > gx20,T)>---> g, T)> f(t, ).

REMARK 2.1. The inequalities (2.6) characterize various credit classes. For example,
in a single-factor framework, if the volatilities o; (¢, T') are equal across the various credit
classes, then these inequalities will be enforced by assuming

Q@.7) k-1, T) > ag_a(t,T) > - >a1(t, T) > a(t, T).

General conditions on the coefficients of the above models of instantaneous forward rates
that would imply (2.6) need to be determined.

We set
T
2.8) D;(z,T) :=exp (—/ gz, u)du)
t
fori =1,..., K — 1. Analogously as in the case of the process B(f, '), we obtain the
following formulas for the processes D;(¢,T),i=1,... , K —1,
2.9 dD;(t,T) = Di(¢t,T)(a;(t, T)dt + b; (¢, T) - dWy),
where

2.10)  a(t,T) =g, t) —alt, T) + 5 lof(t, D, bi(t,T) = —o*(t, T),

and

T T
af (¢, T) =/ o;(t, u)du, o, T) =/ o;(t, u)du.
t t
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MULTIPLE RATINGS MODEL OF DEFAULTABLE TERM STRUCTURE 129

Condition M.2. Let y be the stochastic process introduced in Condition M.1. For
i=1,...,K —1, the process };, which is given by the formula

(21D k(@) :=a;t,T) - [, ) +0:;(t,T) - 11, Viel0,T],
does not depend on the maturity 7.

REMARK 2.2. Note that the above assumption is in the spirit of the Heath et al. (1992)
assumption that the market price of the interest rate risk process y does not depend on T'.
If we assume that for every i we have 0;(¢, T) = o (¢, T) then };(¢) = gi (¢, £)— f(¢,£). In
this case in view of (2.7) we also have that };(¢) > Ofori = 1, ..., K. It is worthwhile to
stress, however, that neither the strict positivity of };’s nor their independence of maturity
T are necessary requirements for our further developments.

From now on, we make standing assumptions M.1 and M.2. It is easily seen that under
a martingale measure P* processes Z;(¢,T) = B,” 1D,-(t, T) satisfy

2.12) dZ;t,T) = Zi(t, T) (k) dt + bi(¢, T) - dW})..

Let us observe that the processes D;(t, I') do not represent price processes of traded
securities. D; (¢, T) should be interpreted as a conditional price at time ¢ of the defaultable
zero coupon bond, given that the bond has not defaulted yet (by the time ¢) and is
currently in the credit rating class i. In particular, the processes Z;(¢t, T) may fail to
be (local) martingales under the measure P*. Our goal is to construct a genuine price
process for a defaultable bond. Such a process will naturally take account of jumps
between various rating classes. On the other hand, the jump intensities will appropriately
account for credit spreads y; (¢, T) := gi(t,T) — f(t, T), through the dynamics (2.3)
and (2.9) as well as the recovery rates. We achieve this goal by enlarging the underlying
probability space and, in particular, by constructing a new probability measure, denoted
by Q*, under which both the discounted price process of the default-free bond and the
discounted price process of the defaultable bond follow martingales. An important role
in our derivation is played by a conditionally Markov process which we interpret as the
credit migration process. We shall now briefly discuss relevant properties of this process
(we refer to Bielecki and Rutkowski 1999 for proofs and the technical details).

2.3. Credit Migration Process

We introduce a conditionally Markov chain, denoted C!, on the state space X =
{1,..., K}. The state K represents the default. The formal construction of C 1 is done by
means of enlargement of the underlying probability space (2, F, P*). Suitable extensions
of F and P* are denoted by F and Q*, respectively. It should be stressed that the P*-
Wiener process W* follows a standard Wiener process under Q* with respect to the
filtration F.

The conditional infinitesimal generator under Q* of C! at time ¢, given the o-field
Fi, is -

h, 1(2) h k@
(2.13) A= k-1 o lk-1, k(@)
0 0
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130 T. R. BIELECKI AND M. RUTKOWSKI

where I; ; (¢) = — Z#i L j@e)fori=1,...,K—1, and where I; ; are adapted, strictly
positive processes (satisfying some mild boundedness and integrability conditions). This
means that if for a real-valued function f on K we denote

(2.14) Acf@Y = ki j O FG),
jek

then we have the following result (see Bielecki and Rutkowski 1999).

PROPOSITION 2.1. For every real-valued function f on K the process M/, given by
the formula

t
Mf=f(C,1)—/ Auf(Chdu,  VieR,,
0

is an ]F-martingale.

Let us denote H;(t) = ﬂ{C}:t} fori=1,...,K.Foranyi =1,...,K—1 and

Jj # i, we introduce an ]F‘-adapted process
t
(2.15) M; () = H; j(t) — /O b Hwdu,  Yie0,T),

where H; ;(t) represents the number of transitions from i to j by C! over the time
interval (0, ¢t]. It follows from Proposition 2.1 (see Bielecki and Rutkowski 1999) that
M; ;(¢) follows a local martingale on the enlarged probability space (€, F, Q*). This
property, combined with the consistency condition (2.23) that is imposed below on the
intensities 1; ;, will provide our model of defaultable term structure with arbitrage-free
features.

REMARK 2.3.  As demonstrated in Bielecki and Rutkowski (1999), for any fixed ¢ the
transition probability matrix P(¢, u), u > ¢, for the migration process C 1 satisfies the
forward Kolmogorov equation

dP(t,u)

= = Pa.wEq (M| F vo(c)

with the initial condition P(¢, 1) = Id, where 1d is the identity matrix.

We find it useful (and of practical importance) to introduce a process C2 representing
the previous rating of the defaultable bond. Formally, we set C,2 = Ci(,)_, where u(t) =
sup{u <t : Cl # C}} (by convention, sup@ = 0, therefore C? = C} if C! = C} for
every u € [0, ¢]). In words, u(¢) is the time of the last jump of C 1 before (and including)
time ¢, so that C? represents the last state of C! before the current state C}. The price
process of the defaultable bond will be defined in terms of the process C = (C!, C?)
and the predefault term structure by means of the following formula:

(2.16) Dc,(t,T) = ]].{CtlaéK} DCtl ¢, 7))+ 5012 ]]'{C}:K} B, T).

The above formula appears to be quite intuitive. The mathematical details behind its
formal derivation, as well as some of its important consequences, are given in the next
section.
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MULTIPLE RATINGS MODEL OF DEFAULTABLE TERM STRUCTURE 131

2.4. Defaultable Term Structure

In this section we use the migration process C! about which we shall additionally
assume that the intensities I; ;’s satisfy the consistency conditions (2.23).

For the reader’s convenience, we first examine the case when K = 3. Recall that
this means that the state i = 3 is the state of default, and that there are two distinct
credit classes labeled as 1 and 2. We assume that the defaultable bond is in any of these
two credit classes at the initial time ¢+ = 0; that is, C} = 1 or C} = 2. Without loss
of generality we also assume that C& = C%. Thus, we assume that Cy = (C(l,, C%) €
{(1, 1, (2, 2)}, so that H,(0) + F>(0) = l{C&:l) + 1(0&:2} = 1. We also observe that
fori, j=1,2,i# j, and for all ¢ € [0, T] we have

2.17) Hi(t) = H;(0)+ H; ;(t) — H; ;j(t) — H; 3()
and
2.18) H; 3(t) = ]l{C,'=3, =i}

Next, we define an auxiliary process Z(t, T), which follows an F-local martingale under
Q*, by setting
dZ(t,T) = (224, T) — Z1(t, T)) dMy,2(t) + (Z1(t, T) — Z2(t, T)) dMy 1 (1)
+GZ@, T)— Z1(t,T)) dM,3(1) + (82Z(t, T) — Z2(¢, T)) d M3, 3(¢)
+ (H(OZ1@, TYb1 (¢, T) + Hy (1) Zo(t, TYb2(t, T)) - AW/
+ (81 Hy,3() + 82 Ha, 3(1)) Z(t, T)b(t, T) - AW}

with the initial condition
(2.19) Z(0,T) = H(0)Z1(0, T) + H2(0)Z2(0, T).
Using (2.15), we arrive at the following representation for the dynamics of VAN S)

dZ(t,T)=Z,(t,T) (dH2 1 (t) — dHy 2(t) — dH1 3(0)) + Hi(1)dZ1(t, T)

+ Zo(t, T) (dHyi 2(t) —d Ha, ((t) — d o, 3(t)) + Ho(t)d Zo(t, T)

+ Z(t, T)(81dHy,3(t) + 82d H 3(1))

+ (81 Hy, 3(t) + 82 Hy, 3(t)) dZ(t, T)

=20 (220, T) — Z1(t, T) + 1 3(0) (81 2., T) — Z,(¢, T))
+h@®)Z:@¢, T)1Hi(¢) dt

— @14, T) =220, 7)) +1,3(0) (522, T) — Z2(t, T))
+h(6)Z2(t, T)1Ha(t) dt.

To construct an arbitrage-free model of the defaultable term structure consistent with the
dynamics (2.12) of predefault bond prices, it is indispensable to specify the matrix A in
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a judicious way. We postulate that the entries of A are chosen in such a way that the
equalities
h,2() (Z2(t, T) — Z:(2, T))
+h,3() 12, T) - Z:1t, T + (2,1, T) =0,
b 1) (21, T) — 226, T))
+1.3(0) (822, T) — Z2(t, 7)) + (1) 22, T) =0,

(2.20)

are satisfied for all z € [0, T'].

REMARK 2.4. Suppose that the recovery rates §; = §; = 0. In this case, we postulate
that the entries of A satisfy

{ b, 2(0)(A — D21 () + 11,3(8) =h (),
b, 1)1 — Di2@®)) +1,3(¢) =h(2),

where we set D;;(¢) = Z;(¢,T)/Zj(t,T) = D;i(t,T)/D;(t, T). Notice that the coeffi-
cients ; ;(¢) are not uniquely determined. We may take, for instance, I;, 2(#) =1, 1(¢) =
0 (no migrations between classes 1 and 2) to obtain 1; 3(2) = Li(¢) and 17, 3(t) = (),
but other choices are also possible. Notice also that we cannot set 11 3(2) =1, 3(:) =0
(no default possible) since we would then have either t; 2(f) < Oorlz ;(¢) < 0. Suppose,
on the contrary, that 8§; 4+ d; > 0. In this case, we have

{ b, 2001 — Doy (2)) + 11, 3()(1 — 81d31 (1)) = 11 (8),
b 10)(1 — D12(8)) + 12, 3()(1 — 82d32(2)) = ba(2),

where d;;(t) = Z(t, T)/Z,(¢, T) = B(t, T)/D;t, T).

REMARK 2.5. Calibrating our model to market data, which in particular involves spec-
ification of the matrix A, is currently under investigation.

Let us return to the analysis of the process VA (¢, T). Under (2.20), A (¢, T) satisfies

d2(t,T) := (Z2(t, T) — Z1(t, 1)) dHy 2(8) + (Z1(t, T) — Z2(t, T)) d Hp, 1 (1)
+ @12, T)— Z1(t, 1)) dHy,3() + (82Z(t, T) — Z2(t, T)) d Hz,3(1)
+H\ ()dZ1(t, T) + Hy(t1)dZo(t, T) + (81 H1,5(t) + 82 o, 3(1)) dZ(t, T)

with the initial condition (2.19). This representation of the process Z(t, T), combined
with (2.17) and (2.18), results in the following important formula:

26,7y = Loy 21, T) + Lici_y) 22, T) + (81Hy,3() + 82H,3(0) Z(¢, T).
Put another way,

(2.21) ¢, 1) = Lictuy Zo1 0, T) + 82 L1 3y 22, T).
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Finally, we introduce the price process of a T-maturity defaultable bond by setting
(compare with (2.16))

We are in a position now to examine the general case. For any K > 3, we define the
process Z(t, T') by setting

K-1
dZ(t,Ty:= > (Z;¢t,T) = Zi(t, T)) dM; j()
i, j=1,i#j
K-1
+ Y GZ, T)— Zit, T)) dM;, k(¢)
i=1
K-1
+ 3 Hi(®)Zit, T)bi(t, T) - dW}
i=1
K-1
+ ) 8iH, k(OZ(t, T)b¢, T) - dW}
i=1

with the initial condition

K—-1
Z0,T) =Y H(0)Z;0, T).

i=1

We shall now generalize the consistency condition (2.20).

Condition M.3. The following equalities are satisfied foralli, j=1,... ,K—1,i #
J, and for every t € [0, T]:

(2.23) b0 (Z;¢,T) - Zit, T))
+ k@) G Z¢, T) - Z;(¢t, T) + () Z;¢, T) = 0.

Under the assumption above, the process Z@, T is easily seen to satisfy

K-1
dZ@,Ty= Y (Z;t,T)~ Zi(t,T)) dH; ;)
i, j=1,i#j
K—1
+ Z (&Z@, T)— Zi(t,T)) dH;, k(@)

i=1
K-1 K1
+) H(NdZit, TY+ Y 8 H, x(t)dZ(t, T).

i=1 i=1

The following lemma can be proved along lines similar to those for the case of K = 3,
therefore its proof is omitted.
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LEMMA 2.2, Under (2.23), the process Z (t, T') satisfies

K-1
261 =Y (Ligay 206 D) + 8 H, k02, T))

i=1
or, equivalently,

(2.24) 20,7y = Ligrugy Zcr (6 T + 8c2 L o) 22, T).

Moreover, the process z (t, T) is the unique solution of the SDE,

K-1
aze.n =Y (2.1 - H®O26-,T)) dM; ;)
i, j=1,i#j

K-1
+>° (820, 7) - H0Ze-,T)) dM, k)
i=1

+SN H®OZ¢, Tbit,T) - dW) + Hx(t)2(¢, T)b(t, T) - dW}
1

>

i

with the initial condition 2(0, T) = %51 H,(0)Z, (0, T).
As expected, to define the price of a 7-maturity defaultable bond we set
(2.25) De,(t,T) = B, Z(t, T) = Lie1 ) Dea 6, T) + 82 Ly gy B2, T).

The following result is thus an immediate consequence of the properties of the auxiliary
process Z(¢, T).

PRrOPOSITION 2.2. The dynamics of the price process D¢, (t, T') under the risk-neutral
probability Q* are

K—1
dDc,(t,T) = Z (D¢, T) — D¢, T)) dH; ;1)

i, j=1i#j
K-1

+ (8B, T) — Di(t, T)) dH; k(1)
i=1
K-1 K-1

+ 3 Hi(0)dDit, T) + Y 8 Hy k() dB(t, T) + r Dc, (¢, T) dt,

i=1 i=1
where the differentials dB(t, T) and d D;(t, T) are given by the formulas
dB(t,T)= B¢, T) (r, dt+ b1, T)- dW,*)
and

dDi(t,T) = Di(t, T) ((re + () dt + b; (¢, T) - dW[) .
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The next proposition shows that the process Dc, (¢, T), formally introduced through
(2.25), can be given an intuitive interpretation in terms of default time and recovery rate.
To this end, we make the following technical assumption.

Condition M.4. The process 7@, T), given by (2.24), follows an ]F‘—martingale (as
opposed to a local martingale) under Q*.

The main result of this section holds under assumptions B.1-B.3 and M.1-M.4.

THEOREM 2.1. Foranyi=1,...,K — 1, let § € [0, 1) be the recovery rate for a
defaultable bond that belongs to the ith rating class at time of default. The price process
D¢, (¢, T) of a T-maturity defaultable bond equals, for any ¢ € [0, T},

T

T
+5C'2]l{ctl=K} exp (—/ f(t,u)du),
!

or, equivalently,

T
227 Dc,(t, Ty=B@.T) {]]-(C,‘;éK} exp (—/{ Yel (t,u) du) + SC,Z ]l(C}:K}} ,

where y;(t, u) = g;i(t, u) — f(t, u) is the ith credit spread. Moreover, D¢, (¢, T) satisfies
the following version of the risk-neutral valuation formula:

(2.28) De,(t, T) = BEgr (8c2 B Lirzn) + B7 ' Lir<ny | F2),

where T is the default time; that is, Tt = inf {t € R, : C,l = K}. The last formula can
also be rewritten as

2.29) De,t,T) = B@, ) Eq; (33 Lirza + Lir<n | 7).

where Qr is the T-forward measure associated with Q* through

dQr 1 *
(2.30) i~ BO.T)Br' Q* as.

Proof. The first formula (2.26) is an immediate consequence of (2.25) combined
with (2.2) and (2.8). For the second, notice first that in view of the second equality
in (2.25) and the definition of z, the process Dc,(t, T) satisfies the terminal condition
Dc, (T, T) = 8C% 1ir>7} + L{7<r). Furthermore, using the first equality in (2.25), we

deduce the discounted process B, 1DCr (¢, T) equals Z (¢, T), so that it follows an F-
martingale under Q*. Equality (2.28) is thus obvious. Formula (2.29) is also easy to
establish. 0
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2.5. Market Prices of Interest Rate and Credit Risk

Let us fix a horizon date T*. We shall now change, using the general version of
Girsanov’s theorem, the measure Q* to the equivalent probability measure Q. In financial
interpretation, the probability measure Q plays the role of the real-world probability
in our model. For this reason, we postulate that the restriction of QQ to the original
probability space €2 necessarily coincides with the underlying probability P. To this end,
we set

dQ
ag-ls =1Lo
where the Q*-local positive martingale L is given by the formula

st = _Ltyt . th* + Lt_dMg,

where in turn the Q*-local martingale M equals

AM; = (@i j©) = DdM; (1) =Y (¢i, ;@) — 1) (dH ;) — b, j(OH () dt),
i#j i#j

and, for any i # j, we denote by ¢; ; an arbitrary nonnegative F-predictable process
such that
T*
@i, j (DA, j(t)dt < o0, Q* as.

We assume that Eqg«(L7+) = 1, so that the probability measure Q is well defined on
(s”z, .7?1*). It can be verified that under the probability measure QQ the migration process
C! is still a conditionally Markov process, and it has under Q the infinitesimal generator
A, with the entries ii,j(t) = ¢, j(t)A;, ;(t) for every i 5 j and every ¢ € [0, T*]. The
process y (¢, j, resp.) is referred to as the market price of interest rate risk (credit risk,
resp.).

In particular, if the market price for credit risk depends only on the current rating i (and
not on the rating j after a jump) so that ¢; ; = ¢;,; =: ¢; for every j, the relationship
between the intensity matrices under Q and Q* is the following: A, = ®A,, where
@ = diag[¢;] is the diagonal matrix (such a relationship has already been postulated in
Jarrow et al. 1997).

3. APPLICATIONS
3.1. Valuation of Defaultable Coupon Bonds

Consider a default-prone coupon bond with the face value F' that matures at time 7 and
promises to pay coupons ¢; at times 7; (T; < T),i =1,2,...,n. The coupon payments
are only made prior to default. For simplicity we also assume that the recovery payment
is made at maturity 7, in case the bond defaults before or at the maturity. Arbitrage
valuation of such a bond is a straightforward consequence of the results obtained earlier
in this paper. Note that the intensity matrix of the migration process C! may depend both
on the maturity 7 and on the recovery rates §;, i € Z := {1,2,..., K — 1}. We shall
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emphasize this (possible) dependence by writing C((T, é7). In case of zero recovery
we shall write C,(T, 0). Similarly, we find it convenient to emphasize the dependence
of the defaultable bond’s value on the recovery rates by writing D?:fm s & T) (or
DOC{(T_ 0) (¢, T), in case of zero recovery). We postulate that the arbitrage price B.(t, T)
of the coupon bond considered here is given by

n
3.0 B(t,T)=> ;DY 1.0, T + FDZ g 5,(t, T),

i=1

with the usual convention that DOC,(T.- .0) (t, T;) = 0 for ¢t > T;. Notice that the defaultable
bond covenants described above do not necessarily hold (unless a certain monotonicity
of default times is imposed). Also, each zero coupon component of a defaultable coupon
bond has its own ratings process. This means that a defaultable coupon bond is treated
as a portfolio of defaultable zero coupon bonds. An alternative way would be to consider
a particular defaultable coupon bond as a nondivisible asset, and to introduce its own
ratings process.

3.2. Valuation of Credit Derivatives

3.2.1. Default Swaps. Consider first a default swap, as described, for instance, in Duffie
(1999). The contingent payment X is triggered by the default event {C! = K}. It is settled
at time 7, and equals

X= (1 — b2 B(x, T)) Lie<r).

Notice the dependence of the payment X on the initial rating C& through default time
T and recovery rate SC% . We consider two cases. Either (i) the buyer pays a lump sum
at contract’s inception (such a contract is referred to as the default option), or (ii) the
buyer pays an annuity at the fixed time instants ¢, i = 1,2, ... ,m (default swap). In
case (i), the value at time O of a default option is given by the risk-neutral valuation
formula

m0(X) =Eq- (B! (1-38¢2 B, 1)) lie<ry)

In case (ii), the annuity x satisfies

mo(X) =k Eqr (Z B! llu,-«;) .

i=1

3.2.2. Total Rate of Return Swaps. Another important example of a credit derivative is
the rotal rate of return swap (see Das 1998). We take as a reference asset the coupon
bond described above, with the promised cash flows ¢; at times 7;. We assume that its
price process is given by equality (3.1). Suppose the contract maturity is T < T. Further
suppose that the reference rate payments are made by the investor at fixed scheduled
times t; < T ,i=1,2,...,m. The owner of a total rate of return swap is entitled not
only to all coupon payments during the life of the contract, but also to the change in the
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value of the underlying bond paid as a lump sum at the contract’s termination. Then, the
reference rate p to be paid by the investor should be computed from

m n
—1 0
ol (Z B, ]l[Cé<T,az);éKl> = <Dz, T g

i=1 i=1

+Eg (Bf_l (B:(t, T) — B.(0, T))) ’

where T =t AT, and 7 = inf {t=0": C,l(T, d7) = K}. For simplicity, in the left-hand
side of the valuation formula above, as well as in the second term in the right-hand side,
the default time of the underlying coupon bond was assumed to be represented by the
default time of its face value component.

The important issue of replicating strategies for credit derivatives will be treated else-
where.

4. CONCLUDING REMARKS

Let us summarize the content of this work:

(i) Our main objective has been to construct an arbitrage-free model for the prices
of default-free and defaultable debt in the case of multiple credit rating classes.

(ii) As the primitive objects (or data) in our approach we have chosen the default-
free and defaultable instantaneous forward rates, as well as the credit recovery
rates. Our arbitrage-free pricing model for defaultable bonds is constructed so
that it supports these data.

(iii) Our fundamental pricing equation (2.27) represents the price process of the
defaultable debt Dc, (¢, T') in terms of: (a) the price process B(¢, T) of default-
free debt, (b) the credit recovery rates §;’s, (¢) the credit migration process C;,
and (d) the credit spread processes y; (¢, u)’s. This equation is intuitively clear.

(iv) Other useful representations of the price process Dc,(t, T) have also been
derived. Most notably, the equation (2.28) provides a version of the risk-neutral
valuation formula. The process Dc, (¢, T) is represented here in terms of: (a)
the price process B(¢, T') of default-free debt, (b) the credit recovery rates §;’s,
(c) the credit migration process C;, (d) the equivalent martingale measure Q*
and the enlarged filtration IF. Notice that the measure Q* and the filtration F
encompass both the market risk and the credit risk.

(v) The arbitrage-free property of the model is provided by our consistency condi-
tion (2.23). The credit migration intensities 1; ;’s are not uniquely determined
by this condition, in general. Calibration of the model to the statistical data on
credit migrations is supposed to pick up the right solution. Let us finally observe
that the model developed in this section can be accurately referred to in the fol-
lowing cumbersome fashion: the credit-spreads-based HIM-type arbitrage-free
term structure model with multiple ratings.

Copyright © 2000. All rights reserved.



MULTIPLE RATINGS MODEL OF DEFAULTABLE TERM STRUCTURE 139

REFERENCES

ARVANITIS, A., J. GREGORY, and J.-P. LAURENT (1999): Building Models for Credit Spreads,
J. Derivatives 6(3), 27-43.

BieLECKI, T., and M. RuTtkowsklI (1999): Modelling of the Defaultable Term Structure: Con-
ditionally Markov Approach, Working paper.

Das, S. (1998): Credit Derivatives—Instruments; in Credit Derivatives: Trading and Man-
agement of Credit and Default Risk, S. Das, ed. Singapore: J. Wiley, 7-77.

Durrig, D. (1994): Forward rate curves with default risk, Working paper, Stanford University.

DurFIE, D. (1999): Credit swap valuation. Finan. Anal. J., January-February, 73-87.

Durrig, D., and K. SINGLETON (1998): Ratings-Based Term Structures of Credit Spreads,
Working paper, Stanford University.

HeatH, D., R. JaARROW, and A. MorTON (1992): Bond Pricing and the Term Structure of
Interest Rates: A New Methodology for Contingent Claim Valuation, Econometrica 60,
77-105.

Hugg, B., and D. LANDO (1998): Swap Pricing with Two-Sided Default Risk in a Rating-
Based Model, Working paper, University of Copenhagen.

Jarrow, R. A, D. LANDO, and S. M. TUuRNBULL (1997): A Markov Model for the Term
Structure of Credit Risk Spreads, Rev. Financial Stud. 10(2), 481-523.

Jarrow, R. A, and S. M. TurNBULL (1995): Pricing Derivatives on Financial Securities
Subject to Credit Risk. J. Finance 50, 53-85.

Lanpo, D. (1998): On Cox Processes and Credit-Risky Securities, Rev. Derivatives Res. 2,
99-120.

SCHONBUCHER, P. J. (1998): Term Structure Modelling of Defaultable Bonds, Rev. Derivatives
Res. 2, 161-192.

THOMAS, L. C., D. E. ALLEN, and N. MORKEL-KINGSBURY (1998): A Hidden Markov Chain
Model for the Term Structure of Bond Credit Risk Spreads, Working paper, Edith Cowan
University.

Copyright © 2000. All rights reserved.



