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THE LINEAR-QUADRATIC CONTROL PROBLEM REVISITED*

TOMASZ R. BIELECKI*

Abstract. A long-run, average-cost, stochastic, linear-quadratic control problem that incorpo-
rates different time scales is considered. The system dynamics and the cost functional are modeled
with the help of a locally square-integrable semimartingale process with independent increments and
the corresponding predictable quadratic variation process. The solution of the control problem is
given in terms of the solution of certain system of algebraic and differential Riccati equations. The
model considered here embodies as particular cases the "traditional" continuous-time and discrete-
time linear quadratic control problems, and is applicable, for example, to certain hybrid control
problems that cannot be treated using existing control methods.
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1. Introduction. In recent years there has been growing interest in develop-
ing a unified approach to control and identification problems for both discrete and
continuous-time scales. In Middleton and Goodwin (1990), the unified approach to
control and estimation is presented via the so-called "generalized transform." In spite
of its many advantages, the method is not capable of handling the problems that
"live" in continuous and discrete time simultaneously or stochastic control problems
involving the continuous-time scale, for example. This paper provides a way of look-
ing at some of these problems via the stochastic calculus for locally square-integrable
semimartingales.

In this paper we consider a long-run, average-cost, stochastic, linear-quadratic
control problem that incorporates different time scales. The system dynamics and the
cost functional are modeled with the help of a locally square-integrable semimartingale
process with independent increments and the corresponding predictable quadratic
variation process. The situation considered here is not, of course, ’:the most general"
one. But it is general enough to produce as particular cases the traditional continuous-
time (e.g., Davis, 1977) and discrete-time (e.g., Hall and Heyde, 1980) linear-quadratic,
stochastic control problems with the average cost per unit of time criterion. The results
obtained in the paper follow from an application of the powerful general theory of
random processes (Dellacherie and Meyer, 1975, 1980, 1983; Jacod, 1979; Jacod and
Shiryayev, 1987; Lipster and Shiryayev, 1989; Protter, 1990, among others). We
emphasize that the asymptotic results obtained here are essentially due to the strong
law of large numbers type property for semimartingales (see Lipster and Shiryayev,
1989, for example). The L2-ergodic type results for martingales, discussed by Sundar
(1989), may be useful in the study of the control problem with the expected long-run
average cost, which is not included here.

The solution of the control problem considered in this paper is given in terms of
the solution to the system of algebraic and differential Riccati equations (3.1). The-
orem 3.1 concerning the existence and uniqueness of the solution for system (3.1) is
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interesting in itself. At the very least it interprets the relationship between the alge-
braic Riccati equations corresponding to continuous and discrete time, as indicated in
Remark 3.2 and in 6. The "classical" relationship between continuous- and discrete-
time Riccati equations resulting from time discretization is reconfirmed by limiting
analysis of equations (3.1) (see 6).

We were inspired to consider a control problem incorporating different time scales
by some work on the semimartingale regression problem (Christopeit, 1986; LeBreton
and Musiela, 1988), where the time scales are modeled in terms of the predictable qua-
dratic variation process of a semimartingale. Control problems involving continuous-
time semimartingale dynamics were considered before in Foldes (1990), for example.
To the best of our knowledge, linear quadratic (LQ) control problems incorporat-
ing both continuous- and discrete-time scales in the system dynamics have not been
considered in the literature before.

Although we consider here only the ergodic linear-quadratic control problem,
the modeling methodology presented in this paper is applicable to a wider spectrun
of control problems. As a direct control application we see an application of our
methodology to a class of hybrid control problems which are attracting more and
more interest (see, e.g., Elliot and Sworder, 1992). A simple example of a hybrid
control problem that can be treated by methods presented in this paper is given in

7. In this paper we treat neither a finite-time horizon problem, nor an infinite-time
horizon with a discounted cost criterion. These are for future research.

The paper is organized as follows. In 2 we describe the noise process. Section
3 introduces a system of differential-algebraic Riccati equations that plays a central
role in characterization of the optimal controls (as expected). The system of those
equations reduces to the well-known algebraic Riccati equations corresponding to the
continuous-time or discrete-time linear-quadratic control problems under appropriate
parametrization. Section 4 formulates a semimartingale driven linear-quadratic con-
trol problem and provides a solution to it. In 5 we point out how our control problem
relates to some other problems considered before in the literature. Section 6 contains
three limiting results. One of them reconfirms the classical relationship between con-
tinuous and discrete Riccati equations resulting from time discretization. Moreover
the result indicates that our approach allows for a "partial" time discretization, that
is, time discretization with respect to only some of the coraponents of the state vector.
The other two limiting results analyze the effect on the control system of vanishing
discrete components (k3 0) and continuous components (k 0), respectively. In
7 we provide a simple but illustrative example of a hybrid control problem and solve
it by our method. A few final remarks are formulated in 8.

Much of the notation used in the paper is taken from Jacod and Shiryayev (1987).
"T" denotes the transposition of a matrix.

2. The noise process. In this section we shall describe the noise process Z
{Zt, t >_ 0} that will be appearing in the dynamics equation of the control model. We
begin with the following assumption about Z.

Assumption A1. Z is an n-dimensional locally square-integrable semimartingale
(Jacod and Shiryayev (1987), Def. II.2.27) and a process with independent increments.
The underlying stochastic basis is (,9, F, P) and it is supposed to satisfy the usual
conditions.

Let J denote the set of fixed times of discontinuity of Z, that is, J {t _> 0
P(AZt : 0) > 0}, where AZt := Zt- Zt- is the jump of Z at time t, (AZ0 0).
As usual {B, C, } will denote a triplet of predictabl.e characteristics of Z with regard
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to some truncation function h. According to Theorem II.4.15 of Jacod and Shiryayev
(1987) we also have, under A1, that the characteristics of Z are deterministic processes
and J {t >_ 0 ({t} x R) > 0}. We will denote the stochastically continuous and
stochastically discontinuous components of Z by 2, and 2 respectively. This means
that

t= AZs and2t=Zt-t, t>_O.
O<s<_t

sEJ

From Proposition II.1.16 of Jacod and Shiryayev (1987) we know that d is countable.
Denote elements of J by j,, n E I, where I is a countable index set. Also let e, Zjn,
n E I, so that {e},Ei is the embedded random sequence. Because of the control
problem we will treat in 4 we introduce the following two assumptions.

Assumption 12. (a) I N* {1,2, 3,... }; (b) jn en, e > O, n N*.
Assumption A3. Both Z and {en}eN* have stationary increments.
Assumption A2(b) is not essential for the control-theoretic considerations to fol-

low. It will be used to simplify the presentation.
We will keep the usual notation for the measure of jumps of Z #z. From the

above stated assumptions and the results of Jacod and Shiryayev (1987), Chapters I
and II, we infer the following.

PROPOSITION 2.1. Assume A1-A3. Then
(i) the canonical decomposition of Z has the form Z Zo + N1 + N2 + N3 + A, where

N1 := Z is the continuous martingale part of Z, N2 := (zlj (#z_ ) is the
stochastically continuous jump-martingale part of Z, N3 := (zl.]), (#-,) is the
stochastically discontinuous jump-martingale part of Z, and A B+ (z- h(z)) ,,
is a deterministic process.

(ii) the characteristics of Z are Bt bt + (hl), ,, Ct ct and ,(.,dt, dz)
dtK2(dz)lj(t) + K3(dz)lj(t), where b e R", c e L(R, R) and c >_ O, K and
K3 are positive measures on I satisfying ./i({0}) 0, a’d k "--,fl IzI2[4i(dz) <
+ec, 2,3.

(iii) N, N2, and N3 are independent and their .predictable quadratic variation pro-
cesses are given by

c
<N,N2) (zizi)l ,,
<N ,Ng>

for i,j= l,2,... ,n.
Proof. (i) The result follows from (2.30) and (2.39), Chapter II of Jacod and

Shiryayev (1987).
(ii) The result follows from (2.14), (4.16), and the result analogous to Corollary

4.19 of Jacod and Shiryayev (1987) applied to Z and Z, respectively.
(iii) This part of the proposition follows from (2.31) and (4.16) of Jacod and

Shiryayev (1987), Chapter II. []
As usual, we let {N):= trace C, {N} := trace(zzT)ljc, u and (Na} :=

trace(zzT)l. u denote the scalar predictable quadratic variation processes of N1,
Ne, and Na, respectively.

Rema’rk 2.1. From now on we will assume (without loss of generality) that A 0
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and Z0 =0.
COROLLARY 2.1. Under conditions of Proposition 2.1 we have

iNl}t t. trace c,

(N2}t k2 for >_ 0, and

(N3)t n./3, t E]cn, c(n / 1)] n _> 0,

(N:)0 =0.

Remark 2.2. In fact, NI is a Wiener process.

3. The Riccati equations. In this section we let A,B L(R,Rn), E
L(R", R), and F L(R, R). Also let QI Q2 d L(Rn, Rn), -,1 d .L(/rn,
R2 E L(R,R), and Q,Q >_ O, R,R>0.

In Definition 3.1 below we recall the concepts of Hurwitz and Schur stability of a
matrix, which we shall respectively call c- and d-stability with reference to "continu-
ous" and "discrete" time.

DEFINITION 3.1..A quadratic matrix M is called d-stable iff its spectrum is con-
tained in an open unit disk. A quadratic matrix N is called c-stable iff its spectru’m is
contained in the complex left open half-plane.

DEFINITION 3.2.
(a) A pair (B,F) is called d-stabilizable iff there exists .H e L(R", Rk) so that B +

FH is d-stable. A pair (B, F) is said to be dT-stabilizable iff there exists H
.L(Rk, R) so that B + HF is d-stable.

(b) A four-tuple (A, E, B, F) ,is called cd-stabilizable iff there exist H1 L(Rn, R
and H2 L(R, R) so that A(HI, H2) is d-stable, where

A(.H, H) :: eA+EH’ (B + FH).
DEFINITION 3.3. A .four-tuple (A,Q,B,Q) is called cd-detectable iff (Bed,

v/BTeAQleAB + Q) is dT-stabilizable.
Remark 3.1. Note that if (eA, v/ArQeA) is dT-stabilizable then (eA, v/-), is

dT-stabilizable and consequently (x/-Q, A) is c-detectable, which means that there is
a, matrix. H such that AT + v/T H is tiT-stable.

Proof. This follows from the fact that Ker(v/) Ker(M) for any symmetric,
nonnegative semidefinite matrix M and from Proposition 3.1 in Vonham (1979).

In what follows we will require more notation. Let > 0. Let Pt [0,
L+(Rn, R) be a continuous function, where "+" denotes nonnegative semidefinite-
hess. Next define
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and

A(,(),) L(R, Rn) L(R",R)

given by

Consider the following system of Riccati equations, which we will call a cd-Riccati
equation:

(3.1) Pt Q1 + ATpt + PtA PtER- ET

Po t e [o,

Observe that

(3.2) PC ev(()’)/ee(()’) + 8(’p(), e).

Therefore the first equation in (3.1) can equivalently be written as

(3.3) (B+FL2(T)(e),e))Tp(B+.F.L2(7)(e), e))+Q2+LT(7)(e), e)R2L2(IP(e),e) R.

Remark 3.2.
(a) If we assume that B=l, or B I, F=0, Q2 =0, andPt const,

then (3.1) reduces to the following algebraic Riccati equation;

(c-ARE)
0 Q + AT.R + RA- RER-{1ETR,
Pt- R, te [0,

We call the above equation c-ARE because it is related to the continuous-time
linear-quadratic control problem (see Davis (1977), p. 185).

(b) If we assume that A 0, E 0, Q1 0, and e 1 then (3.1) reduces to the
following algebraic Riccati equation,

R BT[R-- RF(FTRF + R2)-FTR]B + Q2,

(d-ARE)
Pt=R, e [0,1].

Ve call the above equation d-ARE since it is related to the discrete-time linear-
quadratic control problem (see Bertsekas (1976), p. 355).
In Theorem 3.1 below we shall consider equations (3.1) for e 1 only. The result

is true for any e > 0, as can be easily deduced from the proof of the theorem. We will
use a simplified notation by omitting e from the above definitions. So, for example,
we will write 7) instead of 7)(1), L instead of _L(P(1), 1), AT instead A(7(),), etc.

We note that Theorem 12.2 of Wonham (1979) and Proposition on page 75 of
Bertsekas (1977) are special cases of Theorem 3.1.

THEOREM 3.1. Let e 1. Assume that (A, E,B,F) is cd-stabilizable and (A, Q,
B, Q2) is cd-detectable. Then there exists the ’unique solution ([, ) to (3.1) such that
[ >_ O, Pt >_ 0 for t [0, 1], and 4(1,) ’is d-stable, where/,i ’= L(73), 1, 2.

Proof. See Appendix 1.



1430 TOMASZ R. BIELECKI

4. Linear-quadratic stochastic control problem. We begin with introduc-
ing the dynamics of the controlled process first"

dxt (Axt_ + Evt_)d(M}t + (Bxt_ + Fut_)d(N}t
(4.1) + dZt, xo x, >_ O,

where M N1 + N2, N Na. The admissible control processes u. := {ut, > 0} and
v. := {vt, t >_ 0} are supposed to satisfy the following conditions:

They are non-anticipating w.r.t. Z,
There exists a weak semimartingale solution to (4.1) in the sense of Jacod (1979)
Chap. XIV,
limt_. 0, a.s.,

2 II)ds < +ec a.s.
The class of admissible controls is denoted by Na. The cost functional will be given
in terms of (T 2 0)

We want to show the existence and characterization of optimal controls, that is,
admissible controls u. and v. such that for all v., u. E b/ha and z E R it holds that

C(vO., o., x) _< C(v., u., x),

where

C(v. u.,x)’= lim
1

TocCT(v., U.,X).

In the above description of the control problem we have supposed A, B
e n(n,n), , e n(n,n"), , nd : re in L(n",n), nd (?,): >_ 0,
e L(R", Rm), e n(Rk, Rk), and /1,/ > 0. Throughout this section we let

kl k + trace c, A := klA, E kE, B kaB + I, F kaF, Q1 "= kQ,
Q2 "= kaQ, R klR1, and R2 := k3R. The following assumptions will be used.

Assumption A4. (A, E, B, F) is cd-stabilizable.
Assumption Ah. (A, Q1, B, Q9.) is cd-detectable.
Fix e > 0. Let (R, P) denote the solution to (3.1) with t substituted with k3t and

/St changed to kn.kat, t e [0, el. Define 1-it ’[0, ec) L(Rn, Rn) by

1-I+ P(_)k, s E [0, e), n 0, 1, 2,

Remark 4.1. Note that

AT ( Afit -kaP(en-t)k. -Q1 P(.n-t)aa en-t)ta

+ (n--t)kaER’lETf)(n-t)k3
-Q1- AT[It l-IrA + [ItER-IETI-It
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for E [en, e(’n -+- 1)), n 0, 1,2,
Also let/ := _-1 y) Yltd; _-1 f) ff:tkadt. Define controls (u., v.) by

(4.2) vt atxt, ut := .Agxt,

where

t -R-IETI-It, A2 :=-(F’r’IIoF + R2) -1FTI-IoB

min [xTIltEv -t- vTET.[Itx + vTR1 v] xT’[ItER-IETIItx --xTl-ItEtx
vER

where the minimuIn is realized by

For each x E R

min [u7"FrHoBx + X
TBTIIOFu + .uTFTIIoFu + U

T

uE R

xTBTHoF(FTIIoF + R2)- IFTIloBx
3gTA(FTHoF + R2)A,ex

and the minimum is realized by

0u A2x.

Step 2. Now let (v., u.) /[ad be an arbitrary pair of admissible controls. From
Lemina A.3.1 of Appendix 3 it follows that (v.,u.) /dad. Consider the function
V’[0, Cx:)) R --+ R given by

V(t, z) xrIItz.
Upon application of Ito’s rule for semimartingales (Jacod and Shiryayev (1987), Thm. 1.4.57)
to V we obtain, for > 0,

(4.a)

/0xTl-Itxt xTl-Iox T [IsXs_. --+ ._ Xs 1-is "Ys- q- xT’ s- fi"rII x- .+ y.s-T-./T I-Is- xs-

vt

for > O.
We will need one more assumption.
Assumption A6. f
THEOREM 4.1. Suppose assumptions A1--A6 are satisfied. Then we have the

following:
(a) The definitions (4.2) are correct: there exists a unique, strong, semimartingale

solution to (4.1) with (v., u.) in place of (v., u.),
(b) The controls (v.,u.) are optimal,

(c) C(v., u., x) e- trace(c + kI)P + e-1trace kaHo for all x R.
Proof. (a). It is enough to note that {M)and (N} are special semimartingales

and apply Theorem V.3.7 of Protter (1990).
(b). } will use the standard comparison method.
Step 1. Let us first observe the following:
For allxR andt>0
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T 1-1 lts---+ T TI-I Z+ [Sn.-.- +-+

+ 2 XsT- H-dZs + xT_ dHsx.-
+ +

+ trace - cds
+

O<st
sJ

X X

z_-z- (BZn- + Fu-.

+

+ Ln - +-+

sJC

ro H z}+ trace cds
+

T

+

FrBz- + FrF-+ [x BTHF’u- + u_ u_
+

d<N}+ s- Xs-

r Frs]dNs + 2 r

__
dZ

+ +

+ dNyHdN
+
9

i=1

Note that from Step 1 it follows that I 0 and I 0, t 2 0. As in Theorem g.6.1

of Lipster and Shiryayev (1989) we have

[ (zTHz)Ij , (pz ")t + (zTnz).l. * "t

and note that in view of A6 the process t := (zTHz)lg * (pz P)t is a locally
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square-integrable martingale with predictable quadratic variation process

(}t (zTHz)l.dsK’2(dz).

Taking the above remarks into account we obtain from (4.2) the following, t > 0,

(4.4) x rIoz +
>_ (zTrIz)lJ * ’t + trace IIs-c ds

+ dNTrIdNs ./ t + pt + (t, a.s.,
+

where
7" Frl-is]dNsPt 2 [x.sT_ BTIIs + us-

+

and t := 2 f+ z_T II- dz are locally, square-integrable martingales. Since (1-It)t>0_ is

ZTperiodic we have limt__, 7 IIz) 1 dc *’t e-1 k2trace and limt_, Z f2+ trace II.- cds
e trace Pc. Applying ergodic theorem to opt f+ dNTIIdNs we get limtoc yqt
e-lka trace II0, a.s. Also, it follows from the results of Lipster and Shiryayev (1989),
2.6, that limt_,c -t limt_ pt limt_ t 0, aos. Therefore from (4.4) we
conclude that

(4.5) C(v., u.,x) >_ e-ltrace (c + k2I) + e-lkri0, a.s.

Using considerations analogous to the ones above, it is straightforward to show that

(4.6) C(v.,u.,x) e--trace (c + kI)’ + e-kH, a.s.

This concludes the proof of (b).
(c). This result follows from (,.4.5) and (4.6). !i

5. Some special cases. In this section we will shortly demonstrate that Theo-
rem 4.1 encompasses solutions to some "classical" stochastic linear-quadratic control
problems.

Case 1 (continuous time system driven by Wiener process). Using our notation
this case corresponds to

k2--O, k3 =0.

For a problem of this type see, for example, Davis (1977).
Case 2 (continuous time system driven by Wiener and Poisson processes). This

corresponds to

ka 0, N2 equivalent, to a Poisson process.

Note that in case of a Poisson process Assumption A6 is automatically satisfied. For
a problem of this type see, for example, Wonham (1970).

Case 3 (continuous time system driven by a Poisson process). This case corre-
sponds to

c 0 and k3 0, N equivalent to a Poisson process.

For a more general model of this type (including the multiplicative noise components)
see, for example, Li and Blankenship (1986).
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Case 4 (discrete time system driven by a sequence of independent random vari-
ables). In our terminology this case corresponds to

C--0, k2 0.

For a problem of this type see, for example, Hall and Heyde (1980).
6. Three limiting results. Let us consider equations (3.1) with A, B,E, F,

Q2, R1, R2 as in 4. We also require that k3 is changed to ek3 in the definitions of
B, F, Q2, and R2, that time index t is substituted with k3t, and that tbt is changed to

In this section we shall analyze the behavior of equations (3.1) in the present
setting when (i) e tends to 0, (ii) k3 tends to zero, and (iii) kl tends to zero. Note that
the first case corresponds to "increasing frequency of the discrete time comFonent." A
"classical" prototype of it has been considered before in the context of approximating
of a continuous-time linear-quadratic problem with a sequence of discrete-time linear-
quadratic problems (see Whittle, 1983, Ex. 1, p. 209, for example). The second
case corresponds to vanishing of the discrete-time component, and the third case
corresponds to vanishing of the continuous-time component of the system.

Case i. Assume A4 and A5. Also assume that (A + k3/, [E F]) and (AT +
k3T, v/Q1 + Q2) are c-stabilizable pairs. Denote by (R(, kl, k3), 7)(, k, k3)) the
solution to (3.1). Then, using (3.1).-(3.3) and some algebra, it can be shown that

(6.1) lim(R(e, k, k) P(e k, k)) (P(0, k, k3) .P(0, k,, k3))
e--O

where P(O, ,) is the solution to

(6.2) Q + Q2 + (A + kn)TP + P(A + k3/)
o )I.0 R F]Tp 0

Example (partial time discretization). Here n 2, m k kl k3 1. We
also let

0

(qo (oQ
0

Q
0

R1 rl, R2 r2

o)
q2

This parametrization corresponds, for example, to a partial time discretization, with
time step e, of the following control problem (here we are using notation x(t) and u(t)
instead of xt and ut):

(6.3) Minimize

lim T- (x(t) x2(t)) q 0 xl(t) +(u (t), u2(t)) r
T-cx 0 q2 x2(t) 0

subject to

dxl (t) (ax (t) + bx2(t))dt + eu (t)dt + dWl (t),
dx,.(t) (cxl(t) + dx2(t))dt + fu(t)dt + dw2(t),

r2 u2(t)



THE LINEAR-QUADRA’rIC CONTROL PROBLEM REVISITED 1435

where wl and w2 are standard one-dimensional Brownian motions.
In this case "partial time discretization" means time discretization with respect

to the second state component x,,2(t). The partially time-discretized problem is

Minimize

T N

T.-lim T-l[ (qlx,(t) + rlu (t) 2) dt+ e- N.--.oolim N-1 (eqx, (n) + eru,(n))

subject to

dx,(t) (ax,(t) + bxe,(n))dt + eu (t)dt + dw (t),
t +

x,(n + 1) eCXl,(en) + ( + 1)dx,(n) + eu,(n) + (w(e( + 1)) we(en))
n O, 1,2,....

Here, the limiting equation (6.2) coincides with the algebraic Riccati equation corre-

sponding to the original problem (6.3).
We believe that our methodology will allow for time discretization of continuous-

time control problems using various time steps for various components of state vector,
if necessary.

Case ii. Assume A4 and A5. Then

(6.4) a01im(R(e,k,k3), P(, k, k3))= (P(e,k,O), P((, kl, 0))

where P(e, k, 0) {Pt P(e, k, 0), e [0, el} and P(e, kt, 0) is the solution of

(6.5) 0 Q .- ATp + PA- PER-ETP
Case iii. Assume A4 and A5. Then

(6.6) lim (R(e k,k3) (e k,ka))= (P(,0 k) (e, 0 k3))
kl0

where P(e, 0, ka) {Pt P(e, O, k3), [0, el} and P(e, 0, k3) is the solution to

(6.7) P BT[P PF(FTpF + R)-FTP]B + Q. A simple hybrid control problem. Consider the following special form of
the control problem considered in 4.

System dynamics

d d + dw, [, + 1),
y,.+ =U,+u +., =0,1,,...

where x,n R, (’w)0 is a. standard Brownian motion in R, and ()=0 is
an independently and identically distributed (i.i.d.) sequence of Gaussin random
variables with mean zero and variance one.

Cost functional

(g (x y)) lim T- (x+)dt

where t , E In, n + 1).
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The point here is that a continuous-time subsystem corresponding to at is con-
trolled via a discrete-time subsystem corresponding to y. Using results of 4 we
compute optimal controls

and the optimal cost

+ /3o
Yn, n=0.1 2u.,

2 + v/-i3

29+ 3v3C(’(x’Y))--
18

8. Concluding remarks. We refer to the control problem considered in 4 as
to the "backward problem." The "forward problem" for which the cost functional is
given in terms of

can be studied in the similar way as the "backward problem."
Our formulation of the linear-quadratic stochastic control problem does not allow

for a direct consideration of a deterministic linear-quadratic control problem, one of
the reasons being that the time scales in (4.1) would vanish for k 0 nd/or k3 0.
An obvious reparanetrization will allow for including a deterministic situation in the
model (4.1) as well. We have not done that in order to keep the calculations easy.
Note that equations (3.1) are serving both deterministic and stochastic situations, as
in the "classical" case.

It is still an open. question under wht nontrivial conditions on the parameters
there exists a stationary distribution for (x)to. have some preliminary results
for the noncontrolled case corresponding to the one considered by Zabczyk (1983).

In a subsequent pper we shall consider implications of the approach taken here for
control and identification of general (multiple time scales) ARMA models represented
via a certain integral transform that is given in terms of the predictable quadratic
vriation process of the driving semimartingale noise.

Acknowledgments. I would like to thank the referees for their valuable re-
marks, which helped me improve the first version of the manuscript.

Appendix 1. In this appendix we prove Theorem 3.1. We will need the following
three technical results, which are counterpnrts of Theorem 3.6 ii) and Lemmas 12.1
and 12.2 of Wonham (1979).

LEMMA A. 1.1. If Q o and B is d-stable then the equation

has a unique solution R and R

_
O.

P oof. I:--I
LEMMA A.1.2 (d-Liapunov criterion). Suppose R >_ 0, Q >__ 0, (B, v/Q) is dT-

stabilizable and BTRB + Q R. Then B is d-stable.
Proof. We have

k-1

+ >_ 0.
i=0
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.Assume B is not d-stable and let A be an eigenvalue of B with IAI _> 1, and X the
k-1 2icorresponding eigenvector. We have XTRX I,I2kXTRX + i=0 I’ll Ilv/-Q 2112.

This means that IA and ,-X 0. Let K be a matrix such that B + Kx/-Q
is d-stable. We see that A and X are respectively an eigenvalue and corresponding
eigenvectors of B + Kx/-Q. This is a contradiction. [i]

LEMMa A.1.3. Assume that the four-tuple (A, Q1, B, Q2) is cd-detectable. Let
G’[0, 1] L(.Rn,.R’) be continuous. Let G := f2 Gsds and M > O, N > O, >_ 0,
L be arbitrary matrices of appropriate dimensions. Then the pair

(B + L)e(A+a)

Qe + LTNL + + (B + .L)T e.f(A+GI-)Tds(Q1 + GT_._tMGI_t)eJ (A+GI )dsdt

V/’(B + L))
is dT-stabilizable.

Proof. It will be shown in Lemma A.2.1 of Appendix 2 that

Ker eJ’(A+a)Tds[@ + GMGt]ef(A+G)dsdt

C Ker eAr (Q + aMat)dte.
Therefore we have the following chain of inclusions,

Ker@Q + LTNL +

+(B + L)r ef(A+at-)Tds(Q1 + GTl_tMGl_t)eft(A+al-)dsdt (t? + .L)

C Ker + LTNL + BeATQleAB + (B + L)reAr GTtMGtdteA(B + L)

f

C Kerv/Q. + BTeATQleAB Ker(-L) Ker(eAB eA+Gt)

C Ker(v/Q: + .BreAQeAB eA+aL + cAB- eA+aB).

Let K be such that cAB + Kv/Qe + BTeAQeAB is d-stable. In view of the above
inclusions we conclude that there exists matrix K such that

eA+a(B + L)

+ + +

+(B + L)T e,ftl(A+G-)Tds(Q1 + G_tMG_t)ef(A+a-ddt (B + .L)

cab + K/Q + BTeArQeAB. [1

Proof of Theorem 3.1.
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Step 1. Let R _> 0. Consider the control problem

J(xo, R) min J (xo, u, v. R)
U.

where

subject to

x1 Bxo +
lt Ayt -t-Evt,
Yo x., [0, 1].

It can be easily verified that

J(xo, .) x[BTPIB + Q2 BT.PIF(FT P1F + R2)-IFTpB]xo,

and the optfinal controls are

t [0,
u* L(7))xo,

where 79 corresponds to R in the sense that, 7) Pt, E [0, 1] solves the differential
equation in (3.1) with P0 R.

Step 2. (a) Choose L := {Lt1, t E [0, 1]} and L so that A(LI,L)is d-stable.
Here L := f01 dt.
(b) Having chosen (L), L),..., (L,L), obtain R 2 0 from (use Lemma A.1.1)

MT(L,.L)RaM(L, L) + e (A+L )Tat

[Q + (._s)rR_]ef(a+L-’)dtds + Q + (L)TRL R.
In the above L fo ,tdt. Note that with regard to the control problem of Step
1 we have xRkxo J(xo, u, v., R), where

u Lxo, v f-Yt, [0, 1].

(c) Obtain 7k+l :: {Pq-1, t E [0, 1]} from

(A.1.1) po../..
and define

Q1 -t- ATptk+, .+ .p-+.l A ptk+1j/1 ./T .ptk+ 1,
=Rk, tE[0,1]

.tk+l "-----iTptk,_ll [0, 1],

L+ :: -(FTPI+F + R2)-’ FTP+B.
Remark A.1.1. In case B I, Q2 0, F 0, and Pt const, t [0, 1], consider

(1.1.1) as

0 Q, + (A + EL)TR + .Rk (A /..EL)+ (LI)TRILI
andL =L1, s [0,1].
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Note that with regard to the control problem of Step 1 we have

xTo (BTp+IB+Q2-BTp:+IF(FTp+IF+R2) -1FTp+IB)xo J(xo, Rk) <_ xTo RkXo
After letting K: "= BTpB + Q2 BTpF(FTpF + R2)-IFTpB we then have

Now note that
Apk./l (Rk) + 7)+, ]k-/.l Rk + Rk.

Therefore, in view of Lemmas A.1.2 and A.1.3 we conclude that A(L+I,L+1) is
d-stable. Obtain Ra+l from

A+ (R+) + g+, R+

and note that

AT(L+’,L+’)(.Rk+ R)A(.L+’,L+’) + ICk+ R R+ R.
Henceforth we have

Thus there exist limits

0<_/- lim Rk,

0_</st= lim Pt, tff [0,1],
k-*

and the pair (,)satisfies (3.1), where {t, e [0,1]}..Again by Lemmas
A.1.2 and A.1.3, we conclude that A(L1, L) is d-stable.

Uniqueness of (R, P) follows from the following argument. Let (R, P) be another
solution to (3.1) such that R 0 and Pt 0, t [0 1]. In view of the control problem
analogous to the one considered in Step 1 we have

+
Therefore it holds that

R,

and since A(L, L) is &stable (Lemmas A.1.2 and A.I.3 again) we obtain that R-R
0. Similarly we get that A(R- ) R- and therefore R- R

Appendix 2.
LEMMA A.2.1. In the notation of .Lemma A.1.3 it holds that

c Ker ea (Q + aMa.)at ea.

Proof. Consider the dynamic system

5ct (A + Gt)xt,
xo O, t [0, 1],
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and the functional

T TI xs (Q1 + Gs MGs)xds.

Note that I 0 implies Gxs 0 for almost all s E [0, 1] and therefore

This implies that

Xo e,(tA)xo Xo ,Ma,(tA)xo 0

for k >_ 0 and almost all t E [0, 1]. Thus we obtain

0 0 (Q, +

Appendix 3.
LEMMA A.3.1. Under the assumptions of Theorem 4.1 the pair of controls (v., u.)

defined in (4.2) is admissible.
Proof. Let (xt)t>_0 be the unique, strong, semimartingale solution to (4.1), under

(v., u.), that exists according to Theorem 4.1(a). It remains to show

(A.3.1)

and

t-lim lt./(i 0 2IlXsll d < +, ..

(A.3.2) lira
1

__,-llxll o, a.s.

It is enough to consider the stochastic sequence {Yn}n>l where Yn :co n > 1
Note that

Y,+I A(A1, A)yn + en,

Yl x_., n >_ 1,

flwhere A1 tdt and

J’n+l(A+E’t eA+EAen :-- e )dtdMs + ANn, n > t.

Since A(A, A2) is d-stable (Theorem 3.1) we conclude, upon applying the strong law
of large numbers for martingales (Lipster and Shiryayev (1989), Thm. 2.6.1), that

lim
[lY"II

=0, a.s.,

which in turn implies (A.3.2).
Since A(A1,A2) is d-stable then there exists a positive definite matrix G such

that

AT (A1, A2)GA(A1, A.) + 21 G
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(compare Lemma A.l.1). Next note that, for n 1,

T Gyn+l T T
Y+ Yn A (A, A)GA(Aa, A2)Yn

T T TGen+ 2y A (A1, A2)Gen + en

<_ yr Gyn Ilyll + 2yT MT (A1, A2)Ge
Ten a.s.+en

Therefore we have

Invoking the law of large numbers for martingales again, we finally obtain.

lira -1 ’k=lfrom which (A.3.1) follows.
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