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1 Introduction

The paper contributes to the nonlinear arbitrage-free pricing theory, which arises in a natural way
due to the salient features of real-world trades, such as: trading constraints, differential funding
costs, collateralization, counterparty credit risk, and capital requirements. Our aim is to extend in
several respects the nonlinear hedging and pricing approach developed in El Karoui and Quenez
[27] and El Karoui et al. [26] who used a BSDE approach, by accounting for the complexity of over-
the-counter financial derivatives and specific features of the trading environment after the global
financial crisis. This work builds also upon the earlier paper by Bielecki and Rutkowski [8] where,
however, the important issue of no-arbitrage was not studied in depth. The paper is structured as
follows:

• In Section 2, we introduce self-financing trading strategies in the presence of differential
funding rates and adjustment processes. We consider general contracts with cash flow streams,
rather than simple contingent claims with a single payoff either at the contract’s maturity
or upon early exercise. We also introduce in Section 2.9 the concepts of local and global
valuation problems. This distinction is crucial since it demonstrates that results obtained in
Sections 3 and 4 are capable of covering also financial models and valuation problems that
cannot be addressed through classical BSDEs, which are nowadays commonly used to deal
with nonlinear financial markets.

• Section 3 is devoted to a comprehensive examination of the issue of existence of arbitrage
opportunities for the hedger and for the trading desk in a nonlinear trading framework and
with respect to a predetermined class of contracts. We introduce the concept of no-arbitrage
with respect to the null contract and a stronger notion of no-arbitrage for the trading desk.
We then proceed to the issue of unilateral fair valuation of a given contract by the hedger who
is endowed with an initial capital. We examine the link between the concept of no-arbitrage
for the trading desk and the financial viability of prices computed by the hedger.

• In Section 4, we propose and analyze the concept of a regular market model, which can be
seen as an extension of the notion of a nonlinear pricing system, which was introduced by
El Karoui and Quenez [27]. The goal is to identify a class of nonlinear markets, which are
arbitrage-free for the trading desk and, in addition, enjoy the desirable property that if a
given contract can be replicated, then the cost of replication is also the fair price for the
hedger.

• Section 5 focuses on replication of a contract in a regular market model. We propose four
alternative definitions of no-arbitrage prices, namely, the gained value, the ex-dividend price,
the exit price, and the offsetting price. Generally speaking, it is not expected that these prices
will coincide, since they correspond to different valuation problems for the hedger. However,
when the trading arrangements in the underlying model are such that the valuation problem
is local then, under some suitable technical conditions, we show that the gained value and
the ex-dividend price coincide.

• In Section 6, we present a BSDEs approach to the valuation and hedging and we give examples
of BSDEs for the gained value and the ex-dividend price. Finally, we briefly address in
Section 7 the issue of valuation adjustments in linear and nonlinear markets and we make
some comments on the prevailing market practice of performing separate computations of the
so-called ‘clean price’ and the ‘total valuation adjustment’, and subsequently adding them to
obtain the full price charged to customers.

Although we focus on the issue of fair unilateral valuation from the perspective of the hedger,
it is clear that identical definitions and valuation methods are applicable to his counterparty as
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well. Hence, in principle, it is possible to use our results to examine the interval of fair bilateral
prices in a regular market model. Particular instances of such unilateral and bilateral valuation
problems were previously studied in Nie and Rutkowski [40, 41, 43] where it was shown that a
non-empty interval of either fair bilateral prices or bilaterally profitable prices can be obtained in
some nonlinear markets for contracts with either an exogenous or an endogenous collateralization.
It should be acknowledged that there exists a vast body of literature devoted to valuation and
hedging of financial derivatives under differential funding costs, collateralization, the counterparty
credit risk and other trading adjustments (see, for instance, Bichuch et al. [4], Brigo and Pallavicini
[11], Brigo et al. [9, 10], Burgard and Kjaer [12, 13], Crépey [17, 18], Mercurio [39], Pallavicini et al.
[45, 44], and Piterbarg [47]). In view of limited space, we cannot present here these works in detail.
Let us only mention that most of these papers deal with linear markets with credit risk (possibly
also with differential funding rates), whereas the general theory developed in this work aims to
address problems where the emphasis is put on a nonlinear character of valuation in markets with
imperfections. In contrast, Albanese et al. [1], Albanese and Crépey [2], and Crépey et al. [20]
propose to address the issue of valuation adjustments through an alternative approach, which is
based on the global valuation paradigm referencing to the balance sheet of the bank, its internal
structure, and long-term interests of bank’s shareholders. The issue of nonlinearity of trading does
not appear in their approach, since the classical hedging arguments are no longer employed to
determine the value of a new contract, which is added to the existing portfolio of bank’s assets.
For further comments on some of the above-mentioned papers, we refer to Section 7.

2 Nonlinear Market Model

We start by re-examining and extending the nonlinear trading setup introduced in Bielecki and
Rutkowski [8]. Throughout the paper, we fix a finite trading horizon date T > 0 for our market
model. Let (Ω,G,G,P) be a filtered probability space satisfying the usual conditions of right-
continuity and completeness, where the filtration G = (Gt)t∈[0,T ] models the flow of information
available to the hedger and his counterparty. For convenience, we assume that the initial σ-field
G0 is trivial. All processes introduced in what follows are implicitly assumed to be G-adapted and,
as usual, any semimartingale is assumed to be a càdlàg process. Let us introduce the notation for
the prices of all traded assets in our model.

Risky assets. We denote by S = (S1, . . . , Sd) the collection of the ex-dividend prices of a family of
d risky assets with the corresponding cumulative dividend streams D = (D1, . . . ,Dd). The process
Si represents the ex-dividend price of any traded security, such as, stock, sovereign or corporate
bond, stock option, interest rate swap, currency option or swap, credit default swap, etc.

Funding accounts. We denote by Bi,l (resp. Bi,b) the lending (resp. borrowing) funding account
associated with the ith risky asset, for i = 1, 2, . . . , d. The financial interpretation of these accounts
varies from case to case. For an overview of trading mechanisms for risky assets, we refer to Section
2.6. In the special case when Bi,l = Bi,b, we will use the notation Bi and we call it the funding
account for the ith risky asset.

Cash accounts. The lending cash account B0,l and the borrowing cash account B0,b are used
for unsecured lending and borrowing of cash, respectively. For brevity, we will sometimes write
Bl and Bb instead of B0,l and B0,b. Also, when the borrowing and lending cash rates are equal,
the single cash account is denoted by B0 or, simply, B. Note, however, that since an unlimited
borrowing/depositing of cash in the bank account is not a realistic feature of a trading model, it is
not assumed in what follows.
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For brevity, we denote by B = (Bi,l, Bi,b, i = 0, 1, . . . , d) the collection of all cash and funding
accounts.

2.1 Contracts with Trading Adjustments

We will consider financial contracts between two parties, called the hedger and the counterparty.
In what follows, all the cash flows will be viewed from the prospective of the hedger, with the
convention that a positive cash flow means that the hedger receives the corresponding amount, and
a negative cash flow meaning that the hedger makes a payment. A bilateral financial contract (or
simply a contract) is given as a pair C = (A,X ) where the meaning of each term is explained below.

A stochastic processes A represents the cumulative cash flows from time 0 till the contracts’s
maturity date, which is denoted as T . In the financial interpretation, the process A is assumed
to model the cumulative (promised) cash flows of a given contract, which are either paid out from
the hedger’s wealth or added to his wealth via the value process of his portfolio of traded assets
(including positive or negative holdings of cash, that is, lent or borrowed money). Note that
the price of the contract C exchanged at its initiation (that is, at time 0) is not included in A.
For example, if the contract stipulates that the hedger will ‘receive’ the (possibly random and of
arbitrary signs) cash flows a1, a2, . . . , am at times t1, t2, . . . , tm ∈ (0, T ], then A is given by

At =

m∑

l=1

1[tl,∞)(t)al.

Let (At, 0) denote a basic contract originated at time t with X = 0. Then the only cash flow
exchanged between the counterparties at time t is the price of the contract and thus the remaining
cumulative cash flows of (At, 0) are given as At

u := Au−At for u ∈ [t, T ]. In particular, the equality
At

t = 0 is valid for any basic contract (A, 0) and any date t ∈ [0, T ). All future cash flows al for l
such that tl > t are predetermined, in the sense that they are explicitly specified by the contract
covenants.

As a simple example of cash flows, consider the situation where the hedger sells at time t the
European call option on the risky asset Si. Then m = 1, t1 = T , and the terminal payoff from the
perspective of the hedger equals a1 = −(Si

T −K)+. More generally, for every t ∈ [0, T ), the process
At is given by At

u = −(Si
T −K)+1[T,∞)(u) for every u ∈ [t, T ].

To account for additional features of a particular contract at hand, we find it convenient to pos-
tulate that the cash flows A (resp. At) of a basic contract are complemented by trading adjustments,
which are represented by the processX (resp. X t) given as X = (X1, . . . ,Xn;α1, . . . , αn;β1, . . . , βn).
The role of X is to describe additional clauses of a given contract, such as rehypothecated or seg-
regated collateral, as well as to account for the impact of atypical trading arrangements on the
value process of the hedger’s portfolio. For each adjustment process Xk, the process αkXk repre-
sents additional incoming or outgoing cash flows for the hedger, which are either stipulated in the
clauses of the contract or imposed by a third party (for instance, the regulator). To each process
Xk, k = 1, 2, . . . , n we also specify the remuneration process βk, which is used to determine the
net interest payments (if any) associated with the process Xk. It should be noted that the pro-
cesses X1, . . . ,Xn and the associated remuneration processes β1, . . . , βn do not represent traded
assets, although they impact the dynamics of the value of a portfolio (see (2.4)). It is rather clear
that the processes α and β may depend on the respective adjustment process. Therefore, when
the adjustment process is Y, rather than X , one should write α(Y) and β(Y) in order to avoid
confusion. However, for brevity, we will keep the shorthand notation α and β when the adjustment
process is denoted as X . For further comments on trading adjustment, we refer to Section 2.3 and
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2.4. Last, but not least, we will need to define a suitable modification of the promised cash flows
A resulting from the counterparty credit risk; see Definition 2.8 where the concept of counterparty
risky cumulative cash flows is introduced.

In essence, the unilateral valuation of a given contract is the process of finding at any date t
the range of its fair prices pt, as seen from the viewpoint of either the hedger or the counterparty.
Although it will be postulated that the two parties in a contract adopt the same valuation paradigm,
due to the asymmetry of cash flows, differential trading costs, and possibly also different trading
opportunities, they will typically obtain different ranges for the respective fair unilateral prices
of a bilateral contract. The disparity in unilateral valuation executed independently by the two
parties is a consequence of the nonlinearity of the wealth dynamics in trading strategies, so that it
will typically occur even within the framework of a complete nonlinear market, where the perfect
replication of a contract can be achieved by the counterparties. An important issue of determination
of the range of fair bilateral prices in a general nonlinear framework is left for a future work; for
results on bilateral pricing in specific nonlinear market models, see Nie and Rutkowski [40, 41, 43].

2.2 Self-financing Trading Strategies

The concept of a portfolio refers to the family of primary traded assets, that is, risky assets, cash
accounts, and funding accounts for risky assets. Formally, by a portfolio on the time interval [t, T ],
we mean an arbitrary R3d+2-valued, G-adapted process (ϕt

u)u∈[t,T ] denoted as

ϕt =
(
ξ1, . . . , ξd;ψ0,l, ψ0,b, ψ1,l, ψ1,b, . . . , ψd,l, ψd,b

)
, (2.1)

where the components represent the positions in risky assets (Si,Di), i = 1, 2, . . . , d, cash accounts
B0,l, B0,b, and funding accounts Bi,l, Bi,b, i = 1, 2, . . . , d for risky assets. It is postulated throughout
that ψj,l

u ≥ 0, ψj,b
u ≤ 0 and ψj,l

u ψ
j,b
u = 0 for all j = 0, 1, . . . , d and u ∈ [t, T ]. If the borrowing and

lending rates are equal, then we write ψj = ψj,l + ψj,b. It is also assumed throughout that the
processes ξ1, . . . , ξd are G-predictable.

We say that a portfolio ϕ is constrained if at least one of the components of the process ϕ is
assumed to satisfy some explicitly stated constraints, which directly affect the choice of ϕ. For
instance, we will need to impose conditions ensuring that the funding of each risky asset is done
using the corresponding funding account. Another example of an explicit constraint is obtained
when we set ψ0,b

u = 0 for all u ∈ [t, T ], meaning that an outright borrowing of cash from the account
B0,b is prohibited. For examples of markets with various kinds of portfolio constraints, we refer to
Carassus et al. [14], Fahim and Huang [28], Karatzas and Kou [32, 33], and Pulido [48] and the
references therein. The concept of a constrained portfolio should be contrasted with the notion
of admissibility of a trading strategy that may involve some additional conditions imposed on the
wealth process and thus indirectly also on the class of admissible processes ϕ (see Definition 3.2).
Note that portfolio constraints are not a matter of choice, since they are due to genuine real-life
restrictions imposed on traders. This should be contrasted with the idea of admissibility of a trading
strategy, which is a mathematical artifact needed to preclude unrealistic arbitrage opportunities
(like doubling strategies), which may be present within a stochastic model when continuous trading
is allowed. Note in this regard that there is no need to be concerned with the admissibility under
the realistic assumption that only a finite number of trading times is available to traders.

We are now in a position to state some standard technical assumptions underpinning our further
developments.

Assumption 2.1. We work throughout under the following standing assumptions:
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(i) for every i = 1, 2, . . . , d, the price Si of the ith risky asset is a semimartingale and the
cumulative dividend stream Di is a process of finite variation with Di

0 = 0;

(ii) the cash and funding accounts Bj,l and Bj,b are strictly positive and continuous processes of

finite variation with Bj,l
0 = Bj,b

0 = 1 for j = 0, 1, . . . , d;

(iii) the cumulative cash flow process A of any contract is a process of finite variation;

(iv) the adjustment processes Xk, k = 1, 2, . . . , n and the auxiliary processes αk, k = 1, 2, . . . , n
are semimartingales;

(v) the remuneration processes βk, k = 1, 2, . . . , n are strictly positive and continuous processes
of finite variation with βk0 = 1 for every k.

In the next definition, the Gt-measurable random variable xt represents the endowment of the
hedger at time t ∈ [0, T ) whereas pt, which at this stage is an arbitrary Gt-measurable random
variable, stands for the price at time t of Ct = (At,X t), as seen by the hedger. Recall that At

denotes the cumulative cash flows of the contract A that occur after time t, that is, At
u := Au −At

for all u ∈ [t, T ]. Hence At can be seen as a contract with the same remaining cash flows as the
original contract A, except that At starts and is traded at time t. By the same token, we denote by
X t the adjustment process related to the contract At. Let C be a predetermined class of contracts.
As expected, it is assumed throughout that the null contract N = (0, 0) is traded in any market
model at any time t, that is, N ∈ C t for every t ∈ [0, T ) (see Assumption 3.1).

It should be noted that the prices pt for contracts belonging to the class C are yet unspecified
and thus there is a certain degree of freedom in the foregoing definitions. Note also that we use the
convention that

∫ u
t :=

∫
(t,u] for any t ≤ u.

Definition 2.2. A quadruplet (xt, pt, ϕ
t, Ct) is a self-financing trading strategy on [t, T ] associated

with the contract C = (A,X ) if the portfolio value V p(xt, pt, ϕ
t, Ct), which is given by

V p
u (xt, pt, ϕ

t, Ct) :=

d∑

i=1

ξiuS
i
u +

d∑

j=0

(
ψj,l
u B

j,l
u + ψj,b

u Bj,b
u

)
(2.2)

satisfies for all u ∈ [t, T ]

V p
u (xt, pt, ϕ

t, Ct) = xt + pt +Gu(xt, pt, ϕ
t, Ct), (2.3)

where the adjusted gains process G(xt, pt, ϕ
t, Ct) is given by

Gu(xt, pt, ϕ
t, Ct) :=

d∑

i=1

∫ u

t
ξiv (dS

i
v + dDi

v) +

d∑

j=0

∫ u

t

(
ψj,l
v dBj,l

v + ψj,b
v dBj,b

v

)

+
n∑

k=1

αk
uX

k
u −

n∑

k=1

∫ u

t
Xk

v (β
k
v )

−1 dβkv +At
u.

(2.4)

For a given pair (xt, pt), we denote by Φt,xt(pt, C
t) the set of all self-financing trading strategies on

[t, T ] associated with the contract C.

When studying the valuation of a contract Ct for a fixed t, we will typically assume that the
hedger’s endowment xt is given and we will search for the range of hedger’s fair prices pt for Ct.
Therefore, when dealing with the hedger with a fixed initial endowment xt at time t, we will
consider the following set of self-financing trading strategies Φt,xt(C ) = ∪C∈C ∪pt∈Gt

Φt,xt(pt, C
t).

Note, however, that the definition of the market model does not assume that the quantity xt is
predetermined.
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Definition 2.3. The market model is the quintuplet M = (S,D,B,C ,Φ(C )) where Φ(C ) stands
for the set of all self-financing trading strategies associated with the class C of contracts, that is,
Φ(C ) = ∪t∈[0,T ) ∪xt∈Gt

Φt,xt(C ).

In principle, the market model defined above exhibits nonlinear features, in the sense that
either the portfolio value process V p(xt, pt, ϕ

t, Ct) is not linear in (xt, pt, ϕ
t, Ct) or the class of all

self-financing strategies is not a vector space (or, typically, both). Therefore, we refer to this setup
as to a generic nonlinear market model. In contrast, by a linear market model we will understand
in this paper the version of the model defined above in which all trading adjustments are null
(i.e., Xk = 0 for all k = 1, 2, . . . , n), there are no differential funding rates (i.e., Bj,b = Bj,l for
all j = 0, 1, . . . , d) and no portfolio constraints are imposed. In particular, in the linear market
model the class of all self-financing trading strategies is a vector space and the value process
V p(xt, pt, ϕ

t, Ct) is a linear mapping in (xt, pt, ϕ
t, Ct). Note, however, that the last property is

usually lost when an admissibility condition is imposed on the class of trading strategies since,
typically, a trading strategy is deemed to be admissible if it its discounted wealth is bounded from
below or nonnegative (hence the class of admissible trading strategies is no longer a vector space).

To alleviate notation, we will frequently write (x, p, ϕ, C) instead of (x0, p0, ϕ
0, C0) when working

on the interval [0, T ]. Note that (2.2)–(2.4) yield the following equalities for any trading strategy
(x, p, ϕ, C) ∈ Φ0,x(C )

V p
0 (x, p, ϕ, C) =

d∑

i=1

ξi0S
i
0 +

d∑

j=0

(
ψj,l
0 B

j,l
0 + ψj,b

0 Bj,b
0

)
= x+ p+

n∑

k=1

αk
0X

k
0 . (2.5)

Recall that in the classical case of a frictionless market, it is common to assume that the initial
endowments of traders are null. Moreover, the price of a derivative has no impact on the dynamics
of the gains process. In contrast, when portfolio’s value is driven by nonlinear dynamics, the initial
endowment x at time 0, the initial price p and the adjustment cash flows of a contract may all
affect the dynamics of the gains process and thus the classical approach is no longer valid.

2.3 Funding Adjustment

The concept of the funding adjustment refers to the spreads of funding rates with regard to some
benchmark cash rate. In the present setup, it can be defined relative to either Bl or Bb. If the
lending and borrowing rates are not equal, then (2.3) can be written as follows

V p
t (x,p, ϕ, C) = x+ p+

d∑

i=1

∫ t

0
ξiu (dS

i
u + dDi

u) +
n∑

k=1

αk
tX

k
t +At

+

d∑

j=0

∫ t

0

(
ψj,l
u dB0,l

u + ψj,b
u dB0,b

u

)

−
n∑

k=1

∫ t

0

(
(Xk

u)
+(B0,l

u )−1 dB0,l
u − (Xk

u)
−(B0,b

u )−1 dB0,b
u

)

+

d∑

i=1

∫ t

0

(
ψi,l
u

(
(B̂i,l

u − 1) dB0,l
u +B0,l

u dB̂i,l
u

)
+ ψi,b

u

(
(B̂i,b

u − 1) dB0,b
u +B0,b

u dB̂i,b
u

))

−
n∑

k=1

∫ t

0

(
(Xk

u)
+(β̂k,lu )−1 dβ̂k,lu − (Xk

u)
−(β̂k,bu )−1 dβ̂k,bu

)
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where B̂j,l/b := Bj,l/b(B0,l/b)−1 and β̂k,l/b := βk(B0,l/b)−1. The quantity

γt :=

d∑

i=1

∫ t

0

(
ψi,l
u

(
(B̂i,l

u − 1) dB0,l
u +B0,l

u dB̂i,l
u

)
+ ψi,b

u

(
(B̂i,b

u − 1) dB0,b
u +B0,b

u dB̂i,b
u

))

−
n∑

k=1

∫ t

0

(
(Xk

u)
+(β̂k,lu )−1 dβ̂k,lu − (Xk

u)
−(β̂k,bu )−1 dβ̂k,bu

)

is called the funding adjustment. If the borrowing and lending rates are equal, then the expression
for the funding adjustment simplifies to

γt =

d∑

i=1

∫ t

0
ψi
u

(
(B̂i

u − 1) dB0
u +B0

u dB̂
i
u

)
−

n∑

k=1

∫ t

0
Xk

u(β̂
k
u)

−1dβ̂ku.

When the cash account B0 is used for funding and remuneration for adjustment processes, that is,
when Bi = B0 for i = 1, 2, . . . , d and βk = B0 for k = 1, 2, . . . , n, then the funding adjustment
vanishes, as was expected.

2.4 Financial Interpretation of Trading Adjustments

In this study, we will devote significant attention to terms appearing in the dynamics of V p(x, ϕ,A,X ),
which correspond to the trading adjustment process X .

Definition 2.4. The stochastic process ̟ =
∑n

k=1̟
k, where for k = 1, 2, . . . , n,

̟k
t := αk

tX
k
t −

∫ t

0
Xk

u(β
k
u)

−1 dβku (2.6)

is called the cash adjustment.

In general, the financial interpretation of the cash adjustment term ̟k is as follows: the term
αk
tX

k
t represents the part of the kth adjustment that the hedger can either use for his trading

purposes when αk
tX

k
t > 0 or has to put aside (for instance, pledge to his counterparty as a collateral

or hold in a separate account as a regulatory capital) when αk
tX

k
t < 0. Formally, the quantity

−Xk
t (β

k
t )

−1 can be seen as the number of “shares” of the remuneration process βk that the hedger
should hold at time t in order to cover interest payments associated with the adjustment process
Xk. Hence the integral

∫ t
0 X

k
u(β

k
u)

−1 dβku represents the cumulative interest either paid or received
by the hedger due to the presence of the kth trading adjustment.

Let us illustrate a few alternative interpretations of cash adjustments given by (2.6). We
hereafter write X̂k = (βk)−1Xk.

• Let us first assume that αk
t = 1, for all t. The term Xk

t −
∫ t
0 X̂

k
u dβ

k
u indicates that the cash

adjustment ̟k is affected by both the current value Xk
t of the adjustment process and by the

cost of funding of this adjustment given by the integral
∫ t
0 X̂

k
u dβ

k
u. Such a situation occurs,

for example, when Xk represents the capital charge or the rehypotecated collateral. The
integration by parts formula gives

̟k
t = Xk

t −

∫ t

0
X̂k

u dβ
k
u = Xk

0 +

∫ t

0
βku dX̂

k
u , (2.7)

where the integral
∫ t
0 β

k
u dX̂

k
u has the following financial interpretation: X̂k

u is the number of
units of the funding account βku that are needed to fund the amount Xk

u of the adjustment
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process. Hence dX̂k
u is the infinitesimal change of this number and βku dX̂

k
u is the cost of this

change, which has to be absorbed by the change in the value of the trading strategy. Observe
that the term βku dX̂

k
u may be negative, meaning that a cash relieve situation is taking place.

• In the special case when αk
t = 1 and βkt = 1 for all t, we obtain ̟k

t = Xk
t for all t. We

deal here with the cash adjustment Xk on which there is no remuneration since manifestly∫ t
0 X̂

k
u dβ

k
u = 0. This situation may arise, for example, if the bank does not use any external

funding for financing this adjustment, but relies on its own cash reserves, which are assumed
to be kept idle and neither yield interest nor require interest payouts.

• Let us now assume that αk
t = 0 for all t. Then the term ̟k

t = −
∫ t
0 X̂

k
u dβ

k
u indicates

that the cash value of the adjustment Xk does not contribute to the portfolio value. Only
the remuneration of the adjustment process Xk, which is given by the integral

∫ t
0 X̂

k
u dβ

k
u,

contributes to the portfolio’s value. This happens, for example, when the adjustment process
represents the collateral posted by the counterparty and kept in the segregated account.

The above considerations lead to the following lemma, which gives a convenient representation
for the cash adjustment process when αk is equal to either 1 or 0. In most practical situations,
a general case can also be dealt with using Lemma 2.5 and a suitable redefinition of adjustment
processes.

Lemma 2.5. Let the non-negative integers n1, n2, n3 be such that n1 + n2 + n3 = n. If αk = 1 for
k = 1, 2, . . . , n1 + n2, β

k = 1 for k = n1, n1 + 1, . . . , n1 + n2 and αk = 0 for k = n1 + n2, n1 + n2 +
1, . . . , n1 + n2 + n3, then the cash adjustment process ̟ satisfies, for all t ∈ [0, T ],

̟t =

n1∑

k=1

Xk
0 +

n1∑

k=1

∫ t

0
βku dX̂

k
u +

n1+n2∑

k=n1+1

Xk
t −

n1+n2+n3∑

k=n1+n2+1

∫ t

0
X̂k

u dβ
k
u. (2.8)

2.5 Wealth Process

Let (x, p, ϕ, C) be an arbitrary self-financing trading strategy. Then the following natural question
arises: what is the wealth of a hedger at time t, say Vt(x, p, ϕ, C)? It is clear that if the hedger’s
initial endowment equals x, then his initial wealth equals x + p when he sells a contract C at the
price p at time 0. By contrast, the initial value of the hedger’s portfolio, that is, the total amount of
cash he invests at time 0 in his portfolio of traded assets, is given by (2.5) meaning that the trading
adjustments at time 0 need to be accounted for in the initial portfolio’s value. However, according
to the financial interpretation of trading adjustments, they have no bearing on the hedger’s initial
wealth and thus the relationship between the hedger’s initial wealth and the initial portfolio’s value
reads

V0(x, p, ϕ, C) = V p
0 (x, p, ϕ, C) −

n∑

k=1

αk
0X

k
0 .

Analogous arguments can be used at any time t ∈ [0, T ], since the hedger’s wealth at time t should
represent the value of his portfolio of traded assets net of the value of all trading adjustments
(see (2.10)). Furthermore, one needs to focus on the actual ownership (as opposed to the legal
ownership) of each of the adjustment processes X1, . . . ,Xn, of course, provided that they do not
vanish at time t. Although this general rule is cumbersome to formalize, it will not present any
difficulties when applied to a particular contract at hand.

For instance, in the case of the rehypothecated cash collateral (see Section 2.7.1), the hedger’s
wealth at time t should be computed by subtracting the collateral amount Ct from the portfolio’s
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value. This is consistent with the actual ownership of the cash amount delivered by either the
hedger or the counterparty at time t. For example, if C+

t > 0 then the legal owner of the amount
C+
t at time t could be either the holder or the counterparty (depending on the legal covenants

of the collateral agreement) but the hedger, as a collateral taker, is allowed to use the collateral
amount for his trading purposes. If there is no default before T , the collateral taker returns the
collateral amount to the collateral provider. Hence the amount C+

t should be accounted for when
dealing with the hedger’s portfolio, but should be excluded from his wealth. In general, we have
the following definition of the wealth process.

Definition 2.6. The wealth process of a self-financing trading strategy (xt, pt, ϕ
t, Ct) is defined, for

every u ∈ [t, T ], by

Vu(xt, pt, ϕ
t, Ct) := V p

u (xt, pt, ϕ
t, Ct)−

n∑

k=1

αk
uX

k
u (2.9)

or, more explicitly,

Vu(xt, pt, ϕ
t, Ct) =

d∑

i=1

ξiuS
i
u +

d∑

j=0

(
ψj,l
u B

j,l
u + ψj,b

u Bj,b
u

)
−

n∑

k=1

αk
uX

k
u . (2.10)

Let us observe that there is a lot of flexibility in the choice of the adjustment processes Xk and
corresponding processes αk. However, we will always assume that these processes are specified such
that the above arguments of interpreting the actual ownership of the capital and thus also of the
wealth process V (x, p, ϕ,A,X ) hold true.

As an immediate consequence of Definitions 2.2 and 2.6, it follows that the wealth process V of
any self-financing trading strategy (xt, pt, ϕ

t, Ct) admits the dynamics, for u ∈ [t, T ],

Vu(xt, pt, ϕ
t, Ct) = xt + pt +

d∑

i=1

∫ u

t
ξiv d(S

i
v +Di

v) +

d∑

j=0

∫ u

t

(
ψj,l
v dBj,l

v + ψj,b
v dBj,b

v

)

−
n∑

k=1

∫ u

t
Xk

v (β
k
v )

−1 dβkv +At
u.

(2.11)

One could argue that it would be possible to take equations (2.10) and (2.11) as the definition of
a self-financing trading strategy and subsequently deduce that equality (2.3) holds for the portfolio’s
value V p(x, p, ϕ, C), which is then given by (2.9). We contend this alternative approach would not
be optimal, since conditions in Definition 2.2 are obtained through a straightforward analysis of
the trading mechanism and physical cash flows, whereas the financial justification of equations
(2.10)–(2.11) is less appealing.

Clearly, the wealth processes of a self-financing trading strategy is characterized in terms of
two equations (2.10) and (2.11). Observe that, using (2.10), it is possible to eliminate one of the
processes ψj,l or ψj,b from (2.11) and thus to characterize the wealth process in terms of a single
equation. One obtains in that way a (typically nonlinear) BSDE, which can be used to formulate
various valuation problems for a given contract.

2.6 Trading in Risky Assets

Note that we do not postulate that the processes Si, i = 1, 2, . . . , d are positive, unless it is explicitly
stated that the process Si models the price of a stock. Hence by the long cash position (resp. short
cash position), we mean the situation when ξitS

i
t ≤ 0 (resp. ξitS

i
t ≥ 0), where ξit is the number of

hedger’s positions in the risky asset Si at time t.
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2.6.1 Cash Market Trading

For simplicity of presentation, we assume that Si
t ≥ 0 for all t ∈ [0, T ]. Assume first that the

purchase of ξit > 0 shares of the ith risky asset is funded using cash. Then, we set ψi,b
t = 0 for all

t ∈ [0, T ] and thus the process Bi,b becomes irrelevant. Let us now consider the case when ξit < 0.
If we assume that the proceeds from short selling of the risky asset Si can be used by the hedger
(this is typically not true in practice), we also set ψi,l

t = 0 for all t ∈ [0, T ], and thus the process
Bi,l becomes irrelevant as well. Hence, under these stylized cash trading conventions, there is no
need to introduce the funding accounts Bi,l and Bi,b for the ith risky asset. Since dividends Di are
passed over to the lender of the asset, they do not appear in the term representing the gains/losses
from the short position in the risky asset. In the simplest case of no market frictions and trading
adjustments, and with the single risky asset S1, under the present short selling convention, (2.3)
becomes

V p
t (x, p0, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS

1
u + dD1

u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
+At.

More practical short selling conventions for risky assets are discussed in the foregoing subsections.

2.6.2 Short Selling of Risky Assets

Let us now consider the classical way of short selling of a risky asset borrowed from a broker. In
that case, the hedger does not receive the proceeds from the sale of the borrowed shares of a risky
asset, which are held instead by the broker as the cash collateral. The hedger may also be requested
to post additional cash collateral to the broker and, in some cases, he may be paid interest on his
margin account with the broker.1 To represent these trading arrangements for the ith risky asset,
we set ψi,l

t = 0, αi
t = αi+d

t = 0 and

Xi
t = −(1 + δit)(ξ

i
t)

−Si
t , Xi+d = δit(ξ

i
t)

−Si
t

where βit specifies the interest (if any) on the hedger’s margin account with the broker, δit ≥ 0
represents an additional cash collateral, and βi+d specifies the interest rate paid by the hedger for
financing the additional collateral. Let us assume, for instance, that there is only one risky asset,
S1, which is either sold short or purchased using cash as in Section 2.6.1. Then we obtain the
following expression for the portfolio value

V p
t (x, p, ϕ, C) = (ξ1t )

+S1
t + ψ0,l

t B0,l
t + ψ0,b

t B0,b
t (2.12)

whereas equation (2.3) becomes

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS

1
u + dD1

u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
+At

+

∫ t

0
(β1u)

−1(1 + δ1u)(ξ
1
u)

−S1
u dβ

1
u −

∫ t

0
(β2u)

−1δ1u(ξ
1
u)

−S1
u dβ

2
u.

(2.13)

In particular, if there is no specific interest rate for remuneration of an additional collateral, then
we set X2 = 0 and thus the last term in (2.13) should be omitted. It is worth noting that (2.12)
can be seen as a special case of the following extended version of (2.2)

V p
u (xt, pt, ϕ

t, Ct) :=

d∑

i=1

hi(ξ
i
u)S

i
u +

d∑

j=0

(
ψj,l
u B

j,l
u + ψj,b

u Bj,b
u

)

1The interested reader may consult the web pages http://www.investopedia.com/terms/s/shortsale.asp and
https://www.sec.gov/investor/pubs/regsho.htm for more details on the mechanics of short-sales.

http://www.investopedia.com/terms/s/shortsale.asp
https://www.sec.gov/investor/pubs/regsho.htm
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with d = 1 and h1(x) = x+ for x ∈ R.

2.6.3 Repo Market Trading

Let us first consider the cash-driven repo transaction, the situation when shares of the ith risky
asset owned by the hedger are used as collateral to raise cash.2 To represent this transaction, we
set

ψi,b
t = −(Bi,b

t )−1(1− hi,b)(ξit)
+Si

t , (2.14)

where Bi,b specifies the interest paid to the lender by the hedger who borrows cash and pledges the
risky asset Si as collateral, and the constant hi,b represents the haircut for the ith asset pledged.

A synthetic short-selling of the risky asset Si using the repo market is obtained through the
security-driven repo transaction, that is, when shares of the risky asset are posted as collateral by
the borrower of cash and they are immediately sold by the hedger who lends the cash. Formally,
this situation corresponds to the equality

ψi,l
t = (Bi,l

t )−1(1− hi,l)(ξit)
−Si

t , (2.15)

where Bi,l specifies the interest amount paid to the hedger by the borrower of the cash amount
(1− hi,l)(ξit)

−Si
t and h

i,l is the corresponding haircut.
If only one risky asset is traded and transactions are exclusively in repo market, then we obtain

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS

1
u + dD1

u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)

+

∫ t

0

(
(B1,l

u )−1(1− h1,l)(ξ1u)
−S1

u dB
1,l
u − (B1,b

u )−1(1− h1,b)(ξ1u)
+S1

u dB
1,b
u

)
+At.

(2.16)

In practice, it is reasonable to assume that the long and short repo rates for a given risky asset
are identical, that is, Bi = Bi,l = Bi,b. In that case, we may and do set ψi

t = (1 − hi)(Bi
t)

−1ξitS
i
t ,

so that equations (2.14) and (2.15) reduce to just one equation

(1− hi)ξitS
i
t + ψi

tB
i
t = 0. (2.17)

According to this interpretation of Bi, equality (2.17) means that trading in the ith risky asset is
done using the (symmetric) repo market and ξit shares of a risky asset are pledged as collateral at
time t, meaning that the collateralization rate equals 1. Under (2.17), equation (2.16) reduces to

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS

1
u + dD1

u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)

−

∫ t

0
(B1

u)
−1(1− h1)ξ1uS

1
u dB

1
u +At.

(2.18)

2.7 Collateralization

We consider the situation when the hedger and the counterparty enter a contract and either receive
or pledge collateral with value denoted by C, which is assumed to be a semimartingale. Generally
speaking, the process C represents the value of the margin account. We let

Ct = X1
t +X2

t (2.19)

2We refer to https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr529.pdf for a detailed de-
scription of mechanics of repo trading.

https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr529.pdf


14 T.R. Bielecki, I. Cialenco and M. Rutkowski

where X1
t := C+

t = Ct1{Ct≥0}, and X
2
t := −C−

t = Ct1{Ct<0}. By convention, the amount C+
t is

the cash value of collateral received at time t by the hedger from the counterparty, whereas C−
t

represents the cash value of the collateral pledged by him and thus transferred to his counterparty.
For simplicity of presentation and consistently with the prevailing market practice, it is postulated
throughout that only cash collateral may be delivered or received (for other collateral conventions,
see, e.g., Bielecki and Rutkowski [8]). According to ISDA Margin Survey 2014, about 75% of non-
cleared OTC collateral agreements are settled in cash and about 15% in government securities.
We also make the following natural assumption regarding the value of the margin account at the
contract’s maturity date.

Assumption 2.7. The G-adapted collateral amount process C satisfies CT = 0.

Typically this means that the collateral process C will have a jump at time T from CT− to 0.
The postulated equality CT = 0 is simply a convenient way of ensuring that any collateral amount
posted is returned in full to the pledger when the contract matures, provided that default events
have not occurred prior to or at maturity date T . As soon as the default events are also modeled,
we will need to specify closeout payoffs (see Section 2.8.1).

Let us first make some comments from the hedger’s perspective regarding the crucial features of
the margin account. The financial practice may require to hold the collateral amounts in segregated
margin accounts, so that the hedger, when he is a collateral taker, cannot make use of the collateral
amount for trading. Another collateral convention mostly encountered in practice is rehypothecation
(around 90% of cash collateral of OTC contracts are rehypothecated), which refers to the situation
where the hedger may use the collateral pledged by his counterparties as collateral for his contracts
with other counterparties. Obviously, if the hedger is a collateral provider, then a particular
convention regarding segregation or rehypothecation is immaterial for the dynamics of the value
process of his portfolio. We refer the reader to Bielecki and Rutkowski [8] and Crépey et al. [19]
for a detailed analysis of various conventions on collateral agreements. Here we will examine some
basic aspects of collateralization (sometimes also called margining) in our context.

In general, the cash adjustments due to collateralization are

̟C
t := α1

tC
+
t − α2

tC
−
t −

∫ t

0
(β1u)

−1C+
u dβ

1
u +

∫ t

0
(β2u)

−1C−
u dβ

2
u, (2.20)

where the remuneration processes β1 and β2 determine the interest rates paid or received by the
hedger on collateral amounts C+ and C−, respectively. The auxiliary processes α1 and α2 intro-
duced in (2.20) are used to cover alternative conventions regarding rehypothecation and segregation
of margin accounts. Note that we always set α2

t = 1 for all t ∈ [0, T ] when considering the portfolio
of the hedger, since a particular convention regarding rehypothecation or segregation is manifestly
irrelevant for the pledger of collateral.

2.7.1 Rehypothecated Collateral

As it is customary in the existing literature, we assume that rehypothecation of cash collateral
means that it can be used by the hedger for his trading purposes without any restrictions. To cover
this stylized version of a rehypothecated collateral for the hedger, it suffices to set α1

t = α2
t = 1

for all t ∈ [0, T ], so that for the hedger we obtain α1
tX

1
t + α2

tX
2
t = Ct. Consequently, the cash

adjustment corresponding to the margin account equals

̟t = ̟1
t +̟2

t =
2∑

k=1

(
Xk

0 +

∫ t

0
βku dX̂

k
u

)
. (2.21)
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2.7.2 Segregated Collateral

Under segregation, the collateral received by the hedger is kept by the third party, so that it cannot
be used by the hedger for his trading activities. In that case, we set α1

t = 0 and α2
t = 1 for all

t ∈ [0, T ] and thus α1
tX

1
t +α

2
tX

2
t = −C−

t . Hence the corresponding cash adjustment term ̟ equals

̟t = ̟1
t +̟2

t = X2
0 −

∫ t

0
X̂1

u dβ
1
u +

∫ t

0
β2u dX̂

2
u. (2.22)

2.7.3 Initial and Variation Margins

In market practice, the total collateral amount is usually represented by two components, which
are termed the initial margin (also known as the independent amount) and the variation margin. In
the context of self-financing trading strategies, this can be easily dealt with by introducing two (or
more) collateral processes for a given contract A. It is worth mentioning that each of the collateral
processes specified in the clauses of a contract is usually subject to a different convention regarding
segregation and/or remuneration.

2.8 Counterparty Credit Risk

The counterparty credit risk in a financial contract arises from the possibility that at least one of
the parties in the contract may default prior to or at the contract’s maturity, which may result in
failure of this party to fulfil all their contractual obligations leading to financial loss suffered by
either one of the two parties in the contract. We will model defaultability of the two parties to the
contract in terms of their default times. We denote by τh and τ c the default times of the hedger
and his counterparty, respectively. We require that τh and τ c are non-negative random variables
defined on (Ω,G,G,P). If τh > T holds a.s. (resp. τ c > T , a.s.) then the hedger (resp. the
counterparty) is considered to be default-free in regard to the contract under study. Hence the
counterparty risk is a relevant aspect for the contract maturing at T provided that P(τ ≤ T ) > 0
where τ := τh ∧ τ c is the moment of the first default.

From now on, we postulate that the process A models all promised (or nominal) cash flows of
the contract, as seen from the perspective of the trading desk without accounting for the possibility
of defaults of trading parties. In other words, A represents cash flows that would be realized in
case none of the two parties has defaulted prior to or at the contract’s maturity. We will sometimes
refer to A as to the counterparty risk-free cash flows and we will call the contract with cash flows
A the counterparty risk-free contract. The key concept in the context of counterparty risk is the
counterparty risky contract, which will be examined in the foregoing subsection.

2.8.1 Closeout Payoff

Recall that τ denotes the moment of the first default. On the event {τ <∞}, we define the random
variable Υ as

Υ = Qτ +∆Aτ −Cτ , (2.23)

where Q is the Credit Support Annex (CSA) closeout valuation process of the contract A, ∆Aτ =
Aτ − Aτ− is the jump of A at τ corresponding to a (possibly null) promised bullet dividend at τ ,
and Cτ is the value of the collateral process C at time τ . In the financial interpretation, Υ+ is
the amount the counterparty owes to the hedger at time τ , whereas Υ− is the amount the hedger
owes to the counterparty at time τ . It accounts for the legal value Qτ of the contract, plus the
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bullet dividend ∆Aτ to be received/paid at time τ , less the collateral amount Cτ since it is already
held by either the hedger (if Cτ > 0) or the counterparty (if Cτ < 0). We refer the reader to
Section 3.1.3 in Crépey et al. [19] for the detailed discussion of the specification of Υ.

One of the key financial aspects of the counterparty credit risk is the closeout payoff, which
occurs if at least one of the parties defaults either before or at the maturity of the contract. It
represents the cash flow exchanged between the two parties at the first-party-default time. The
following definition of the closeout payoff, as usual given from the perspective of the hedger, is
taken from Crépey et al. [19]. The random variables Rc and Rh taking values in [0, 1] represent
the recovery rates of the counterparty and the hedger, respectively.

Definition 2.8. The CSA closeout payoff K is defined as

K := Cτ + 1{τc<τh}(RcΥ
+ −Υ−) + 1{τh<τc}(Υ

+ −RhΥ
−) + 1{τh=τc}(RcΥ

+ −RhΥ
−). (2.24)

The counterparty risky cumulative cash flows process A♯ is given by

A♯
t = 1{t<τ}At + 1{t≥τ}(Aτ− + K), t ∈ [0, T ]. (2.25)

Let us make some comments on the form of the closeout payoff K. First, the term Cτ is due to
the fact that the legal title to the collateral amount comes into force only at the time of the first
default. The three terms appearing after Cτ in (2.24) correspond to the CSA convention that the
cash flow at the first default from the perspective of the hedger should be equal to Qτ +∆Aτ . Let
us consider, for instance, the event {τc < τh}. If Υ

+ > 0, then we obtain

K = Cτ +Rc(Qτ +∆Aτ − Cτ ) ≤ Qτ +∆Aτ ,

where the equality holds whenever Rc = 1. If Υ− > 0, then we get

K = Cτ − (−Qτ −∆Aτ + Cτ ) = Qτ +∆Aτ .

Finally, if Υ = 0, then K = Cτ = Qτ + ∆Aτ . Similar analysis can be done on the remaining two
events in (2.24).

Remark 2.9. Of course, there is no counterparty credit risk present under the assumption that
P(τ > T ) = 1. Let us consider the case where P(τ > T ) < 1. We denote by P e

t the counterparty
risk-free ex-dividend price of the contract at time t. If we set Rc = Rh = 1, then we obtain

A♯
τ = Aτ +Qτ .

Hence the counterparty credit risk is still present, despite the postulate of the full recovery, unless
the legal value Qτ perfectly matches the counterparty risk-free ex-dividend price P e

τ . Obviously, the
counterparty credit risk vanishes when Rc = Rh = 1 and Qτ = P e

τ , since in that case the so-called
exposure at default (see Section 3.2.3 in Crépey et al. [19]) is null.

2.8.2 Counterparty Credit Risk Decomposition

To effectively deal with the closeout payoff in our general framework, we now define the counterparty
credit risk (CCR) cash flows, which are sometimes called CCR exposures. Note that the events
{τ = τh} = {τh ≤ τ c} and {τ = τ c} = {τ c ≤ τh} may overlap.
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Definition 2.10. By the CCR processes, we mean the processes CL,CG and RP where the credit
loss CL equals

CLt = −1{t≥τ}1{τ=τc}(1−Rc)Υ
+,

the credit gain CG equals

CGt = 1{t≥τ}1{τ=τh}(1−Rh)Υ
−,

and the replacement process is given by

CRt = 1{t≥τ}(Aτ −At +Qτ ).

The CCR cash flow is given by ACCR = CL+ CG+ CR.

It is worth noting that the CCR cash flows depend on the processes A,C and Q. The next
proposition shows that we may interpret the counterparty risky contract as the basic contract A,
which is complemented by the collateral adjustment process X = (X1,X2) = (C+,−C−) and the
CCR cash flow ACCR. In view of this result, the counterparty risky contract (A♯,X ) admits the
following formal decompositions (A♯,X ) = (A,X ) + (ACCR, 0) and (A♯,X ) = (A, 0) + (ACCR,X ).

Proposition 2.11. The equality A♯
t = At +ACCR

t holds for all t ∈ [0, T ].

Proof. We first note that

K = Cτ + 1{τc<τh}(RcΥ
+ −Υ−) + 1{τh<τc}(Υ

+ −RhΥ
−) + 1{τh=τc}(RcΥ

+ −RhΥ
−)

= Cτ − 1{τc≤τh}(1−Rc)Υ
+ + 1{τh≤τc}(1−Rh)Υ

− +Υ

= Qτ +∆Aτ − 1{τc≤τh}(1−Rc)Υ
+ + 1{τh≤τc}(1−Rh)Υ

−,

where we used (2.23) in the last equality. Therefore, from (2.25) we obtain

A♯
t = 1{t<τ}At + 1{t≥τ}(Aτ− + K) = 1{t<τ}At + 1{t≥τ}(Aτ −∆Aτ + K)

= At∧τ + 1{t≥τ}(K−∆Aτ ) = At + (At∧τ −At) + 1{t≥τ}(K−∆Aτ )

= At + 1{t≥τ}

(
Aτ −At +Qτ − 1{τc≤τh}(1−Rc)Υ

+ + 1{τh≤τc}(1−Rh)Υ
−
)
,

which is the desired equality in view of Definition 2.10.

Proposition 2.11 shows that cash flows of the counterparty risky contract can be formally
decomposed into the counterparty risk-free component (A1,X 1) = (A,X ) and the CCR component
(A2,X 2) = (ACCR, 0). This additive decomposition of the contract’s cash flows may be employed
in pricing of a counterparty risky contract. For instance, one could attempt to compute the price
of the contract (A♯,X ) using the following tentative decomposition

price (A♯,X ) = price (A,X ) + price (ACCR, 0) = counterparty risk-free price + CCR price.

It is unlikely that this procedure would result in an overall arbitrage-free valuation of the coun-
terparty risky contract in a nonlinear framework since, as we argue in Section 6, the additivity of
ex-dividend prices obtained by solving nonlinear BSDEs fails to hold, in general.
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2.9 Local and Global Valuation Problems

Market adjustments, represented in our framework by the process X , may in fact depend both on
the cash flow process A and the trading strategy ϕ. By the same token, the trading strategy ϕ will
typically depend on the trading adjustments. So, a feedback effect between ϕ and X is potentially
present in our trading universe and, of course, this feature should be properly accounted for in
valuation and hedging. Furthermore, it is important to distinguish between the case where the
above-mentioned dependence is only on the current composition of the hedging portfolio and/or
the current level of the wealth process and the case, where this dependence extends to the history
of a hedging strategy. If a contract (A,X ), the cash and funding accounts, and the prices of risky
assets do not depend on the strict history (i.e., the history not including the current values of
processes of interest) of a hedger’s trading strategy ϕ and the wealth process V (ϕ), then we say
that a valuation problem is local; otherwise, it is referred to as a global valuation problem. In view
of (2.11), the distinction between local and global valuation problems can be formalized as follows.

Definition 2.12. A valuation problem is said to be local if Xk
t = vk(t, Vt(ϕ), ϕt) and dβkt =

wk(t, Vt(ϕ), ϕt) dt for some G-progressively measurable mappings vk, wk : Ω× [0, T ]×R3(d+1) → R

for every k = 1, 2, . . . , n. A valuation problem is said to be global if Xk
t = v̄k(t, V·(ϕ), ϕ·) and dβ

k
t =

w̄k(t, V·(ϕ), ϕ·) dt for some G-non-anticipative functionals v̄k, w̄k : Ω×[0, T ]×D([0, T ],R3(d+1)) → R

for every k = 1, 2, . . . , n where D([0, T ],R3(d+1)) is the space of R3(d+1)-valued, G-adapted, càdlàg
processes on [0, T ].

As one might guess, solutions to the two valuation problems will always coincide at time 0 but,
in general, they may have very different properties at any date t ∈ (0, T ). In particular, they will
typically correspond to different classes of BSDEs: local problems correspond to classical BSDEs,
whereas global ones can be dealt with through generalized BSDEs, which were introduced in the
recent work by Cheridito and Nam [16] (see also Zheng and Zong [51]). It is important to stress
that the distinction between the local and global problems is not related to the concept of path-
independent contingent claims or the Markov property of the underlying model for primary risky
assets. It is only due to the above-mentioned (either local or global) feedback effect between the
hedger’s trading decisions and the market conditions inclusive of particular adjustments for the
contract at hand.

Example 2.13. As a stylized example of a global valuation problem, let us consider a contract,
which lasts for two months (for concreteness, assume that it is a simple combination of the put and
the call on the stock S1 with maturities equal to one month and two months, respectively). The
borrowing rate for the hedger is set to be 5% per annum, rising to 6% after one month if the hedger
borrows any cash during the first month and it will stay at 5% if he does not. Similarly, the lending
rate initially equals 3% per annum and drops to 2% if the hedger borrows any cash during the first
month. It is intuitively clear that the valuation problem is here global, since its solution on [t, T ]
will depend on the strict history of trading. In contrast, if the trading model has possibly different,
but fixed, borrowing and lending rates, then the valuation problem for any contract will be local,
in the sense introduced above, of course, unless some other trading adjustments will depend on the
strict history of trading.

For instance, if the only adjustment is the variable margin account determined by the hedger’s
valuation and with a constant remuneration rate, then the hedger’s valuation problem is local. Note
that the valuation problem described above can be inherently global even when the stock price is
governed under the real-world probability measure by Markovian dynamics and the contract under
study is a standard call or put option (or any other path-independent contingent claim).



Derivatives Pricing in Nonlinear Models 19

More general instances of local and global valuation problems are presented in Section 6 where
we examine a BSDE approach to the nonlinear markets. Let us mention that most valuation
problems examined in the existing literature are local and thus they can be solved using existing
results for classical BSDEs. In contrast, global valuation problems are much harder to analyze,
since they require to use novel classes of BSDEs (see [16, 51] and the references therein).

3 No-Arbitrage Properties of Nonlinear Markets

The analysis of the self-financing property of a trading strategy should be complemented by the
study of some kind of the no-arbitrage property for the adopted market model. Due to the non-
linearity of a market model with differential funding rates, the question how to properly define
the no-arbitrage property is already a nontrivial matter, even when no additional portfolio con-
straints or trading adjustments are taken into account. Nevertheless, we will argue that it can be
effectively dealt with using some reasonably general definition of an arbitrage opportunity associ-
ated with trading. Let us stress that we only examine here a nonlinear extension of the classical
concept of an arbitrage opportunity and hence the simplest definition of no-arbitrage, sometimes
abbreviated as NA (see, for instance, part (iv) in Definition 2.2 in Fontana [29]), as opposed to
much more sophisticated concepts, such as: NFLVR (no free lunch with vanishing risk), NUPBR
(no unbounded profit with bounded risk, which is also known as the no-arbitrage of the first kind,
that is, NA1) or NIP (no increasing profit). The introduction of more sophisticated no-arbitrage
conditions is motivated by the desire to establish a suitable version of the fundamental theorem
of asset pricing (FTAP), which shows the equivalence between a particular form of no-arbitrage
and the existence of some kind of a “martingale measure” for the discounted prices of primary
assets. Due to the complexity of a general nonlinear market model, it is unlikely that the mar-
tingale technique underpinning the FTAP in the linear setup will also prove useful when working
within the general nonlinear framework (see, however, Pulido [48] who established the FTAP for
a very special, and hence tractable, case of a nonlinear market with short sales prohibitions). In
this paper, we only propose alternative definitions of no-arbitrage in a nonlinear framework and we
give sufficient conditions for the no-arbitrage property of a general nonlinear market model.

3.1 No-arbitrage Pricing Principles

Let us first describe very succinctly the classical valuation paradigm for financial derivatives. In
essence, a general approach to the arbitrage-free pricing hinges, at least implicitly, on the following
arguments:

Step (L.1). One first checks whether a market model with predetermined trading rules and
primary traded assets is arbitrage-free, where the definition of an arbitrage opportunity is a math-
ematical formalization of the real-world concept of a risk-free profitable trading opportunity. In
fact, depending on the framework at hand, several alternative definitions of “no-arbitrage” were
studied (for an overview, see Fontana [29]).

Step (L.2). Given a financial derivative for which the price is yet unspecified, one proposes a
price (not necessarily unique) and checks whether the extended model (that is, the model where
the financial derivative is postulated to be an additional traded asset) preserves the no-arbitrage
property in the sense made precise in Step (L.1).

The valuation procedure outlined above can be referred to as the arbitrage-free pricing paradigm.
In any linear market model (see the comments after Definition 2.3), one can show that the unique
price given by replication (or the range of no-arbitrage prices obtained using the concept of super-
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hedging strategies in the case of an incomplete market) is consistent with the arbitrage-free pricing
paradigm (L.1)–(L.2), although to establish this property in a continuous-time framework, one
needs also to introduce the concept of admissibility of a trading strategy. In particular, the strict
comparison property of linear BSDEs can be employed to show that replication (or superhedging)
will indeed yield prices for derivatives that are consistent with the arbitrage-free pricing paradigm.

Alternatively, a suitable version of the fundamental theorem of asset pricing can be used to show
that the discounted prices defined through admissible trading strategies are σ-martingales (hence,
in fact, supermartingales) under an equivalent local martingale measure. The latter property is
a well known fundamental feature of stochastic integration, so it covers all linear market models.
Obviously, our very brief summary of linear arbitrage-free pricing theory is rather superficial and
we acknowledge that it should be complemented by suitable assumptions on prices of traded assets
and specific definitions of no-arbitrage. For a survey of classical results regarding no-arbitrage
properties of linear market models, we refer to the monograph by Delbaen and Schachermayer [23]
(see also papers by Karatzas and Kardaras [31], Kardaras [34], and Takaoka and Schweizer [50] for
more recent developments).

Let us now comment on the existing approaches to the nonlinear valuation of derivatives, as
first developed by El Karoui and Quenez [27] and El Karoui et al. [26]) and later applied by several
authors to particular financial models or classes on contracts (see, for instance, Bichuch et al. [4],
Brigo and Pallavicini [11], Crépey [17, 18], Dumitrescu et al. [24], Mercurio [39] or Pallavicini et al.
[44, 45]). The most common approach to the valuation problem in a nonlinear framework seems
to hinge, at least implicitly, on the following steps in which it is usually assumed that the hedger’s
initial endowment is immaterial and thus it may be set to zero. In fact, Step (N.1) was explicitly
addressed only in some of the above-mentioned works, whereas in most papers in the existing
literature the authors were only concerned with the issue of finding a replicating or a superhedging
strategy, as briefly outlined in Step (N.2). Also, to the best of our knowledge, the important issue
emphasized in Step (N.3) has been completely ignored up to now, since apparently it was implicitly
taken for granted that the cost of replication, as given by a solution to a suitable BSDE, is a fair
price of the contract.

Step (N.1). The strict comparison argument for the BSDE associated with the wealth dynamics
is used to show that one cannot construct an admissible trading strategy with the null initial wealth
and the terminal wealth, which is non-negative almost surely and strictly positive with a positive
probability (hence the classical no-arbitrage property holds).

Step (N.2). The price for a European contingent claim is defined using either the cost of replication
or the minimal cost of superhedging. A suitable version of the strict comparison property for wealth
processes can be used to show that, for some nonlinear market models, the two pricing approaches
yield the same value for any replicable European claim.

Step (N.3). It remains to check if the tentative price, as given by the cost of replication or selected
to be below the upper bound given by the minimal cost of superhedging, complies with some form
of the no-arbitrage property of the extended market.

We will argue that the question whether the extended nonlinear market model preserves the
no-arbitrage property (of course, according to each particular definition of no-arbitrage is much
harder to resolve than it was the case in the linear framework. Intuitively, this is due to the fact
that trading in derivatives may essentially change the properties of the original nonlinear market,
whereas some version of the FTAP can be used to give a positive answer to the same question in
the linear setup. We propose a partial solution in the nonlinear framework by putting forward in
Section 4.2 the concept of the regular market model (see Definitions 4.9 and 4.14) and we establish
some results on the fair pricing in a regular model (see Propositions 4.11 and 4.15).
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3.2 Discounted Wealth and Admissible Strategies

To deal with the issue of no-arbitrage, we need to introduce the discounted wealth process and
properly define the concept of admissibility of trading strategies. For any x ∈ R, we denote by
B(x) the strictly positive process given by, for all t ∈ [0, T ],

Bt(x) := 1{x≥0}B
0,l
t + 1{x<0}B

0,b
t . (3.1)

Note that if B0,l = B0,b, then B(x) = B0 = B. Furthermore, if x = 0, then xB0,b
t = xB0,l

t = 0
for all t ∈ [0, T ] and thus the choice of either B0,l or B0,b in the right-hand side of (3.1) will be
in fact immaterial. It is natural to postulate that the initial endowment x ≥ 0 (resp. x < 0) has

the future value xB0,l
t (resp. xB0,b

t ) at time t ∈ [0, T ] when invested in the cash account B0,l (resp.
B0,b). We henceforth work under the following assumption.

Assumption 3.1. We postulate that:
(i) for any initial endowment x ∈ R of the hedger, the null contract N = (0, 0) belongs to C ,

(ii) for any x ∈ R, the trading strategy (x, 0, ϕ̂,N ), where all components of ϕ̂ vanish except for
either ψ0,l, if x ≥ 0, or ψ0,b, if x < 0, belongs to Φ0,x(C ) and V p

t (x, 0, ϕ̂,N ) = Vt(x, 0, ϕ̂,N ) =
xBt(x) for all t ∈ [0, T ].

At the first glance, Assumption 3.1 may look trivial or even redundant but it should be made
and it will be useful in the derivation of fundamental properties of fair prices. Condition (i) is
indeed a rather obvious formal requirement. Note, however, that condition (ii) cannot be deduced
directly from the self-financing condition, since it hinges on the additional postulate that there are
no trading adjustments (such as: taxes, transactions costs, margin account, etc.) when the initial
endowment is invested in the cash account. It is needed to show that the null contract has fair price
zero at any date t ∈ [0, T ]. Also, the trading strategy introduced in condition (ii) will serve as a
natural benchmark for assessment of profits or losses incurred by the hedger. A natural extension of
Assumption 3.1 to the case where we study trading strategies on [t, T ] is also implicitly postulated
without stating it explicitly.

In the next necessary step, we follow the standard approach of introducing the concept of
admissibility for the discounted wealth. Towards this end, for any fixed t ∈ [0, T ), we consider a
hedger who starts trading at time t with the initial endowment xt and uses a self-financing trading
strategy (xt, pt, ϕ

t, Ct), where the price pt ∈ Gt at which the contract Ct is traded at time t is
arbitrary. We also consider the strictly positive discounting process Bt(xt), which is defined for all
u ∈ [t, T ] by

Bt
u(xt) := 1{xt≥0}B

0,l
u (B0,l

t )−1 + 1{xt<0}B
0,b
u (B0,b

t )−1, (3.2)

so that, in particular, Bt
t(xt) = 1. Then the wealth process discounted back to time t satisfies, for

all u ∈ [t, T ],
Ṽu(xt, pt, ϕ

t, Ct) := (Bt
u(xt))

−1Vu(xt, pt, ϕ
t, Ct) (3.3)

and we have the following natural concept of admissibility of a trading strategy on [t, T ].

Definition 3.2. For any fixed t ∈ [0, T ), we say that a trading strategy (xt, pt, ϕ
t, Ct) ∈ Φt,xt(C )

is admissible if the discounted wealth Ṽu(xt, pt, ϕ
t, Ct) is bounded from below by a constant. We

denote by Ψt,xt(pt, C
t) the class of admissible strategies corresponding to (xt, pt, ϕ

t, Ct) and we
denote by

Ψt,xt(C ) := ∪C∈C ∪pt∈Gt
Ψt,xt(pt, C

t)

the class of all admissible trading strategies on [t, T ] relative to the class C of contracts for the
hedger with the initial endowment xt at time t. In particular, Ψ0,x(C ) is the class of all trading
strategies that are admissible for the hedger with the initial endowment x at time t = 0.
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3.3 No-arbitrage with Respect to the Null Contract

A minimal no-arbitrage requirement for an underlying market model is that it should be arbitrage-
free with respect to the null contract. Note that, consistently with Assumption 3.1 and the concept
of replication (for the general formulation of replication of a non-null contract, see Definition 4.8),
it is implicitly assumed in Definition 3.4 that the price at which the null contract is traded at time
zero equals zero. Needless to say, this is a rather indisputable feature of any trading model.

Definition 3.3. Consider an underlying market model M = (S,D,B,C ,Ψ0,x(C )). An arbitrage
opportunity with respect to the null contract (or a primary arbitrage opportunity) for the hedger
with an initial endowment x is a strategy (x, 0, ϕ,N ) ∈ Ψ0,x(0,N ) such that

P(ṼT (x, 0, ϕ,N ) ≥ x) = 1, P(ṼT (x, 0, ϕ,N ) > x) > 0. (3.4)

Definition 3.4. If no primary arbitrage opportunity exists in the market model M, then we say
that M has the no-arbitrage property with respect to the null contract for the hedger with an initial
endowment x.

For an arbitrary linear market model, Definition 3.4 reduces to the classical definition of an
arbitrage opportunity. It is well known that the no-arbitrage property introduced in this definition
is a sufficiently strong tool for the development of arbitrage-free pricing for financial derivatives in
the linear framework. This does not mean, however, that Definition 3.4 is sufficiently strong to
allow us to develop nonlinear arbitrage-free pricing theory, which would enjoy the properties, which
are desirable from either mathematical or financial perspective.

On the one hand, a natural definition of a hedger’s fair value (see Definition 4.1) is consistent
with the concept of no-arbitrage with respect to the null contract and thus Definition 3.4 seems to
be theoretically sound. On the other hand, however, Definition 3.4 is inadequate for an efficient
valuation and hedging approach in a general nonlinear market for the following reasons. First, it
may occur that the replication cost of a contract does not satisfy the definition of a fair price, since
the possibility of selling of a contract at the hedger’s replication cost may generate an arbitrage
opportunity for him. An explicit example of a market model, which is arbitrage-free in the sense of
Definition 3.4, but suffers from this deficiency, is given in Section 4.2.3. Second, and perhaps even
more importantly, no well established method for finding a fair price in a general nonlinear market
satisfying Definition 3.4 is available.

We contend that the drawback of the definition of an arbitrage-free model with respect to the
null contract is that it does not make an explicit reference to a class C of contracts under study.
Indeed, it relies on the specification of the class Ψ0,x(0,N ) of trading strategies, but it makes no
reference to the larger class Ψ0,x(C ). To amend that drawback of Definition 3.4, Bielecki and
Rutkowski [8] proposed to consider the concept of the no-arbitrage property for the trading desk
with respect to a predetermined family C of contracts.

3.4 No-arbitrage for the Trading Desk

Following Bielecki and Rutkowski [8], we will now examine a stronger no-arbitrage property of a
market model, which is intimately related to a predetermined family C of financial contracts. Our
goal is here to propose a more stringent no-arbitrage condition, which not only accounts for the
nonlinearity of the market, but also explicitly refers to a family of contracts under consideration.
Unfortunately, the class of models that are arbitrage-free in the sense of Definition 3.10 seems to
be too encompassing and thus it is still unclear whether valuation irregularities commented upon
in the preceding section will be completely eliminated (for an example, see Section 4.2.3).
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For simplicity of notation, we consider here the case of t = 0, but all definitions can easily be ex-
tended to the case of any date t. The symbols X = X (A) and Y = Y(−A) are used to emphasize that
there is no reason to expect that the trading adjustments will satisfy the equality X (−A) = −X (A),
in general. Therefore, we denote by Y = (Y 1, . . . , Y n;α1(Y), . . . , αn(Y);β1(Y), . . . , βn(Y)) the trad-
ing adjustments associated with the cumulative cash flows process −A. In order to avoid confusion,
we will use the full notation for the wealth process, for instance, V (x, p, ϕ, C) = V (x, p, ϕ,A,X ),
etc.

Remark 3.5. As already mentioned above, it is not necessarily true that the equality Y k = −Xk,
holds for all k = 1, 2, . . . , n. For instance, this equality is satisfied by the variation margin, but it
is not met by the initial margin and the regulatory capital, which are always non-negative.

Definition 3.6. For a contract C = (A,X ) and an initial endowment x, the combined wealth is
defined as

V com(x1, x2, ϕ, ϕ̄, A,X ,Y) := V (x1, 0, ϕ,A,X ) + V (x2, 0, ϕ̄,−A,Y), (3.5)

where x1, x2 are arbitrary real numbers such that x = x1 + x2, ϕ ∈ Ψ0,x1(0, A,X ), and ϕ̄ ∈
Ψ0,x2(0,−A,Y). In particular, V com

0 (x1, x2, ϕ, ϕ̄, A,X ,Y) = x1 + x2 = x.

The motivation for the name combined wealth is fairly transparent, since it comes directly from
the financial interpretation of the process given by the right-hand side in (3.5). We argue below
that it can be seen as the aggregated wealth of the two traders, who are members of the same
trading desk, and who are supposed to proceed as follows:

• The first trader takes the long position in a contract (A,X ), whereas the second one takes the
short position in the same contract, so that his position is formally represented by (−A,Y).
Since we assume that the long and short positions have exactly opposite prices, the corre-
sponding cash flows p and −p coming to the trading desk (and not to individual traders)
offset each other and thus the initial endowment x of the trading desk remains unchanged.

• In addition, it is assumed that after the cash flows p and −p have already been netted, so
they are no longer relevant, the initial endowment x is split into arbitrary amounts x1 and x2
meaning that x = x1 + x2. Then each trader is allocated the respective amount x1 or x2 as
his initial endowment and each of them undertakes active hedging of his respective position.
It is now clear that the level of the initial price p at which the contract is traded at time
zero is immaterial for both hedging strategies and the total (i.e., combined) wealth of the two
traders is given by the right-hand side in (3.5).

Alternatively, the combined wealth may be used to describe the situation where a single trader
takes long and short positions with two external counterparties and hedges them independently
using his initial endowment x split into x1 and x2. Of course, in that case it is even more clear
that the initial price p does not affect his trading strategies since the amount of cash received at
time 0 from one of the counterparties is immediately transferred to the second one.

Remark 3.7. One can also observe that the following equality holds for any real number p

V (x1, 0, ϕ,A,X ) + V (x2, 0, ϕ̄,−A,Y) = V (x̃1, p, ϕ,A,X ) + V (x̃2,−p, ϕ̄,−A,Y),

where x̃1 = x1 − p and x̃2 = x2 + p is another decomposition of x such that x = x̃1 + x̃2. However,
equation (3.5) better reflects the actual trading arrangements and it has a clear advantage that a
number p, which is not known a priori, does not appear in the expression for the combined wealth.
Hence (3.5) emphasizes the crucial feature that the combined wealth is independent of p. In fact,
one can remark that the fact whether the trading desk is aware about the actual level of the price
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p is immaterial for the question whether an arbitrage opportunity for the trading desk exists in a
particular market model.

Definition 3.8. A pair (x1, ϕ;x2, ϕ̄) of trading strategies introduced in Definition 3.6 is admissible
for the trading desk if the discounted combined wealth process

Ṽ com(x1, x2, ϕ, ϕ̄, A,X ,Y) := (B(x))−1V com(x1, x2, ϕ, ϕ̄, A,X ,Y) (3.6)

is bounded from below by a constant. The class of strategies admissible for the trading desk is
denoted by Ψ0,x1,x2(A,X ,Y).

We are in a position to formalize the concept of an arbitrage-free model for the trading desk
with respect to a particular family of contracts.

Definition 3.9. A pair (x1, ϕ;x2, ϕ̄) ∈ Ψ0,x1,x2(A,X ,Y) is an arbitrage opportunity for the trading
desk with respect to a contract (A,X ) if the following conditions are satisfied

P(Ṽ com
T (x1, x2, ϕ, ϕ̄, A,X ,Y) ≥ x) = 1, P(Ṽ com

T (x1, x2, ϕ, ϕ̄, A,X ,Y) > x) > 0.

Definition 3.10. We say that the market model M = (S,D,B,C ,Ψ0,x(C )) has the no-arbitrage
property for the trading desk if there are no arbitrage opportunities for the trading desk with respect
to any contract C from C .

Our main purpose in Sections 3.3 and 3.4 was to provide some simple and financially meaningful
criteria that would allow us to detect and eliminate market models in which some particular form
of arbitrage appears. Definition 3.4 and Definition 3.10 provide such criteria for accepting or
rejecting any tentative nonlinear market model. It is easy to see that a model which is rejected
according to Definition 3.10 will also be rejected if Definition 3.4 is applied. We do not claim,
however, that these tentative tests are sufficient for an effective discrimination between acceptable
and non-acceptable nonlinear models for valuation of derivatives. Therefore, in Definition 4.9, we
will formulate additional conditions that should be satisfied by an acceptable model, which is then
called a regular model.

3.5 Dynamics of the Discounted Wealth Process

It is natural to ask whether the no-arbitrage for the trading desk can be checked for a given market
model. Before we illustrate a simple verification method for this property, we need to introduce
additional notation. Let us write

B̃i,l(x) := (B(x))−1Bi,l, B̃i,b(x) := (B(x))−1Bi,b,

β̃k(x,X ) := (B(x))−1βk(X ), β̃k(x,Y) := (B(x))−1βk(Y),

X̂k := (βk(X ))−1Xk, Ŷ k := (βk(Y))−1Y k,

B0,b,l := (B0,l)−1B0,b, B0,l,b := (B0,b)−1B0,l.
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Lemma 3.11. The discounted combined wealth satisfies

dṼ com

t (x1, x2, ϕ, ϕ̄, A,X ,Y) =
d∑

i=1

(ξit + ξ̄it) dS̃
i,cld
t (x) +

d∑

i=1

(ψi,l
t + ψ̄i,l

t ) dB̃i,l
t (x)

+

d∑

i=1

(ψi,b
t + ψ̄i,b

t ) dB̃i,b
t (x) + 1{x≥0}(ψ

0,b
t + ψ̄0,b

t ) dB0,b,l
t + 1{x<0}(ψ

0,l
t + ψ̄0,l

t ) dB0,l,b
t

−
n∑

k=1

X̂k
t dβ̃

k
t (x,X ) −

n∑

k=1

Ŷ k
t dβ̃

k
t (x,Y)

+

n∑

k=1

(
(1− αk

t (X ))Xk
t + (1− αk

t (Y))Y
k
t

)
d(Bt(x))

−1,

(3.7)

where we set

S̃i,cld
t (x) := (Bt(x))

−1Si
t +

∫ t

0
(Bu(x))

−1 dDi
u. (3.8)

Proof. For an arbitrary decomposition x = x1 + x2, we write (note that the notation introduced in
equation (3.3) is extended here, since x 6= xi, in general)

Ṽ (x1, p, ϕ,A,X ) := (B(x))−1Ṽ (x1, p, ϕ,A,X ),

Ṽ (x2, p, ϕ̄,−A,Y) := (B(x))−1Ṽ (x2, p, ϕ̄,−A,Y).

From (2.10) and (2.11), using the Itô integration by parts formula, we obtain

dṼt(x1, p, ϕ,A,X ) =

d∑

i=1

ξit dS̃
i,cld
t (x) +

d∑

i=1

(
ψi,l
t dB̃

i,l
t (x) + ψi,b

t dB̃i,b
t (x)

)

+ 1{x≥0}ψ
0,b
t dB0,b,l

t + 1{x<0}ψ
0,l
t dB0,l,b

t + (Bt(x))
−1 dAt −

n∑

k=1

X̂k
t dβ̃

k
t (x,X ) (3.9)

+

n∑

k=1

(1− αk
t (X ))Xk

t d(Bt(x))
−1,

and an analogous equality holds for Ṽ (x2, p, ϕ̄,−A,Y). Hence (3.7) follows from (3.5) and (3.6).

We deduce from (3.9) that condition (ii) in Assumption 3.1 is satisfied, provided that no ad-
ditional portfolio constraints are imposed (recall that condition (i) in Assumption 3.1 is always
postulated to hold).

Assume now, in addition, that Bi,l = Bi,b = Bi for i = 1, 2, . . . , d. We define the processes Si,cld

and Ŝi,cld

Si,cld
t := Si

t +Bi
t

∫ t

0
(Bi

u)
−1 dDi

u, Ŝi,cld
t := (Bi

t)
−1Si,cld

t = Ŝi
t +

∫ t

0
(Bi

u)
−1 dDi

u,

where in turn Ŝi := (Bi)−1Si. It is easy to check that

dS̃i,cld
t (x) = B̃i

t(x) dŜ
i,cld
t + Ŝi

t dB̃
i
t(x), (3.10)

where B̃i(x) := (B(x))−1Bi.
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Corollary 3.12. Assume that Bi,l = Bi,b = Bi for i = 1, 2, . . . , d. Then the discounted combined
wealth satisfies

dṼ com

t (x1, x2, ϕ, ϕ̄, A,X ,Y) =
d∑

i=1

(ξit + ξ̄it)B̃
i
t(x) dŜ

i,cld
t +

d∑

i=1

(
(ξit + ξ̄it)Ŝ

i
t + (ψi

t + ψ̄i
t)
)
dB̃i

t(x)

+ 1{x≥0}(ψ
0,b
t + ψ̄0,b

t ) dB0,b,l
t + 1{x<0}(ψ

0,l
t + ψ̄0,l

t ) dB0,l,b
t −

n∑

k=1

X̂k
t dβ̃

k
t (x,X ) (3.11)

−
n∑

k=1

Ŷ k
t dβ̃

k
t (x,Y) +

n∑

k=1

(
(1− αk

t (X ))Xk
t + (1− αk

t (Y))Y
k
t

)
d(Bt(x))

−1.

Proof. It suffices to combine (3.7) with (3.10).

3.6 Sufficient Conditions for the Trading Desk No-Arbitrage

The following result gives a sufficient condition for a market model to be arbitrage-free for the
trading desk. The proof of Proposition 3.13 is pretty straightforward and thus it is omitted.

Proposition 3.13. Assume that there exists a probability measure Q, equivalent to P on (Ω,GT ),
and such that for any decomposition x = x1+x2 and any admissible combination of trading strategies
(x1, ϕ,A,X ) and (x2, ϕ̄,−A,Y) for any contract (A,X ) belonging to C the discounted combined
wealth Ṽ com(x1, x2, ϕ, ϕ̄, A,X ,Y) is a supermartingale under Q. Then the market model M =
(S,D,B,C ,Ψ0,x(C )) is arbitrage-free for the trading desk.

Although Proposition 3.13 is fairly abstract, the sufficient condition formulated there can readily
be verified, as soon as a specific market model is adopted (see, for instance, Bielecki and Rutkowski
[8] and Nie and Rutkowski [40, 41, 43]). To support this claim, we will examine an example of a
market model with idiosyncratic funding for risky assets and rehypothecated cash collateral.

Example 3.14. We consider the special case where B0,l = B0,b = B = B(x) and Bi,l = Bi,b = Bi

for all i = 1, 2, . . . , d. If we temporarily assume that there are no additional portfolio constraints,
then from (3.11) we obtain (for a special case of this formula, see Corollary 2.1 in Bielecki and
Rutkowski [8])

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑

i=1

(ξit + ξ̄it)B̃
i
t(x) dŜ

i,cld
t +

d∑

i=1

(ξitS
i
t + ψi

tB
i
t)(B

i
t)

−1 dB̃i
t(x)

+
d∑

i=1

(ξ̄itS
i
t + ψ̄i

tB
i
t)(B

i
t)

−1 dB̃i
t(x)−

n∑

k=1

X̂k
t dβ̃

k
t (x,X )−

n∑

k=1

Ŷ k
t dβ̃

k
t (x,Y)

+
n∑

k=1

(
(1− αk

t (X ))Xk
t + (1− αk

t (Y))Y
k
t

)
dB−1

t .

We postulate that the cash collateral is rehypothecated, so that n1 = n = 2 in Lemma 2.5. Then
α1
t = α2

t = α1
t (Y) = α2

t (Y) = 1 and X1
t + Y 1

t = X2
t + Y 2

t = 0 for all t ∈ [0, T ]. Let us assume,
in addition, that ξitS

i
t + ψi

tB
i
t = ξ̄itS

i
t + ψ̄i

tB
i
t = 0 for all i and t ∈ [0, T ], which means that the ith

risky asset is fully funded using the repo account Bi (see Section 2.6.3). More generally, it suffices
to assume that the following equalities are satisfied for all t ∈ [0, T ]

d∑

i=1

∫ t

0
(ξiuS

i
u + ψi

uB
i
u)(B

i
u)

−1 dB̃i
u(x) =

d∑

i=1

∫ t

0
(ξ̄iuS

i
u + ψ̄i

uB
i
u)(B

i
u)

−1 dB̃i
u(x) = 0. (3.12)
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Finally, let the remuneration processes satisfy βk(X ) = βk(Y) (the symmetry of collateral rates).
Then the formula for the dynamics of the discounted combined wealth for the trading desk reduces
to

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑

i=1

(ξit + ξ̄it)B̃
i
t(x) dŜ

i,cld
t

and thus the model is arbitrage-free for the trading desk provided that there exists a probability
measure Q, which is equivalent to P on (Ω,GT ), and such that the processes Ŝi,cld, i = 1, 2, . . . , d are
Q-local martingales. This property is still a sufficient condition for the trading desk no-arbitrage
when the cash account B0,l and B0,b differ, but the borrowing rate dominates the lending rate.

4 Hedger’s Fair Pricing and Market Regularity

We now address the issue of a fair pricing in the nonlinear framework under the assumption that the
hedger has the initial endowment xt at time t. We assume that the model enjoys the no-arbitrage
property either with respect to the null contract or for the trading desk and we consider the hedger
who contemplates entering into the contract Ct at time t. The first goal is to describe the range
of the hedger’s fair prices for the contract Ct. Let pt ∈ Gt denote a generic price of a contract at
time t, as seen from the perspective of the hedger. Hence if pt is positive, then the hedger receives
at time t the cash amount pt from the counterparty, whereas a negative value of pt means that
he agrees to pay the cash amount −pt to the counterparty at time t. In the next definition, we
fix a date t ∈ [0, T ) and we assume that the contract Ct is traded at the price pt at time t. It is
natural to ask whether in this situation the hedger can make a risk-free profit by entering into the
contract and hedging it with an admissible trading strategy over [t, T ]. We propose to call it a
hedger’s pricing arbitrage opportunity. Recall that the arbitrage opportunities defined in Section 3
are related to the properties of a trading model, but they do not depend on the level of a price pt
for Ct.

Definition 4.1. A trading strategy (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) is a hedger’s pricing arbitrage oppor-

tunity on [t, T ] associated with a contract Ct traded at pt at time t (or, briefly, a secondary arbitrage
opportunity) if

P
(
ṼT (xt, pt, ϕ

t, Ct) ≥ xt
)
= 1 (4.1)

and

P
(
ṼT (xt, pt, ϕ

t, Ct) > xt
)
> 0. (4.2)

It is clear that (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) is not a hedger’s pricing arbitrage opportunity on [t, T ]

if either

P
(
ṼT (xt, pt, ϕ

t, Ct) = xt
)
= 1 (4.3)

or

P
(
ṼT (xt, pt, ϕ

t, Ct) < xt
)
> 0. (4.4)

We will refer to condition (4.4) as the hedger’s loss condition.

Definition 4.2. We say that pft = pft (xt, C
t) is a fair hedger’s price at time t for Ct if there is

no hedger’s secondary arbitrage opportunity (xt, p
f
t , ϕ

t, Ct) ∈ Ψt,xt(C ). A fair hedger’s price pft
such that the loss condition holds for every trading strategy (xt, p

f
t , ϕ

t, Ct) ∈ Ψt,xt(C ) is called a
loss-generating cost.
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It is clear from Definitions 4.1 and 4.2 that if pft is a fair price, then any trading strategy
(xt, pt, ϕ

t, Ct) ∈ Ψt,xt(C ) necessarily satisfies either condition (4.3) or condition (4.4). Obviously,
a fair hedger’s price depends both on the given endowment xt and the contract Ct and thus the
notation pft (xt, C

t) is appropriate, but it will be frequently simplified to pft when no danger of
confusion may arise.

A fair price prevents the hedger from making a sure profit with a positive probability and with
no risk of suffering a loss. In contrast, it does not prevent the hedger from losing money, in general.
It is thus natural to search for the highest level of a fair price. This idea motivates the following
definition of the upper bound for the hedger’s fair prices pft (xt, C

t) = ess supHf
t (xt, C

t), where

Hf
t (xt, C

t) :=
{
pft ∈ Gt | p

f
t is a fair hedger’s price for Ct

}
. (4.5)

We find it useful to study also the upper bound for the loss-generating costs, which is given by
plt(xt, C

t) = ess supHl
t(xt, C

t) where

Hl
t(xt, C

t) :=
{
plt ∈ Gt | p

l
t is a loss-generating cost for Ct

}
. (4.6)

Definition 4.3. A trading strategy (xt, p
s
t , ϕ

t, Ct) ∈ Ψt,xt(C ) is said to be the superhedging strat-
egy for the contract Ct if (4.1) holds, whereas the strict superhedging means that (4.1) and (4.2)
are satisfied. If pst = pst(xt, C

t) is such that there exists a superhedging strategy (resp. a strict
superhedging strategy) (xt, p

s
t , ϕ

t, Ct) ∈ Ψt,xt(C ), then it is called a superhedging cost (resp. strict
superhedging cost) at time t for Ct.

The lower bound for superhedging costs is given by ps
t
(xt, C

t) = ess infHs
t (xt, C

t) where

Hs
t (xt, C

t) :=
{
pst ∈ Gt | p

s
t is a superhedging cost for Ct

}
(4.7)

and the lower bound for strict superhedging costs equals pa
t
(xt, C

t) = ess infHa
t (xt, C

t) where

Ha
t (xt, C

t) :=
{
pat ∈ Gt | p

a
t is a strict superhedging cost for Ct

}
. (4.8)

From Definitions 4.2 and 4.3, it is obvious that Hl
t(xt, C

t) ⊆ Hf
t (xt, C

t) and Ha
t (xt, C

t) ⊆

Hs
t (xt, C

t). Moreover, the set Hf
t (xt, C

t) is the complement of Ha
t (xt, C

t) and the set Hl
t(xt, C

t)

is the complement of Hs
t (xt, C

t) so that, obviously, we have that Hf
t (xt, C

t) ∩ Ha
t (xt, C

t) = ∅ and
Hl

t(xt, C
t) ∩Hs

t (xt, C
t) = ∅. Consequently, it is easy to see that

pl0(x, C) ≤ pf0(x, C), ps
0
(x, C) ≤ pa

0
(x, C), (4.9)

where, in principle, it may happen that ps
0
(x, C) = −∞ or pf0(x, C) = ∞.

The next assumption looks fairly natural, but it is not necessarily satisfied by every nonlinear
market model, so it should be checked on a case-by-case basis.

Assumption 4.4. For every C ∈ C and t ∈ [0, T ), all xt, pt, qt ∈ Gt, and every trading strategy
(xt, pt, ϕ

t, Ct) ∈ Ψt,xt(C ), if qt ≥ pt on some event D ∈ Gt such that P(D) > 0, then there
exists a trading strategy (xt, qt, ψ

t, Ct) ∈ Ψt,xt(C ) such that the inequality VT (xt, qt, ψ
t, Ct) ≥

VT (xt, pt, ϕ
t, Ct) holds on D.

One may try to argue that if the hedger can enter into a contract at a higher price, then
he can invest the cash difference qt − pt in the bank account till the contract’s maturity and
trade according to the trading strategy ϕ corresponding to pt, and thus yielding a higher terminal
wealth. However, this is not necessarily possible, since it may happen that ϕ requires borrowing
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from the bank account at some future times, while we postulated that simultaneous borrowing
and lending of cash is prohibited in our model. More generally, selling at a higher price means
essentially that the hedger starts with a different initial capital, which may change the trading
strategy significantly. Formally, a simple combination of two self-financing strategies is no longer
a self-financing strategy, in general. Furthermore, if we take into account the limited supply of
investment grade assets (perhaps also inclusive of the bank account), then any strategy needs to
satisfy suitable portfolio constraints, which could imply that the additional cash amount received by
the hedger will necessarily be used to purchase assets with a much higher exposure to substantial
losses. To sum up, due to the presence of portfolio constraints and trading adjustments, the
monotonicity of the terminal wealth with respect to the price pt is by no means guaranteed, in
general.

Assumption 4.4 is not explicitly stated in most existing papers devoted to the nonlinear valuation
of derivatives. Note, however, that if the wealth process happens to be governed by some simple
dynamics with no portfolio constraints or trading adjustments, then there is no need to postulate
that this property holds, since it can be deduced from a suitable comparison theorem for ordinary
differential equations. For a particular example of a model where Assumption 4.4 is satisfied, see
Lemma 6.2 in the paper by Dumitrescu et al. [24] who postulate that the wealth process satisfies

dVt = −g(t, Vt, Zt) dt+ Z1
t dWt + Z2

t dMt,

where W is the Wiener process and M is the compensated martingale of the default indicator
process. Let us stress that if the validity of Assumption 4.4 is not ensured, then one may only
claim that the inequalities given in (4.9) are satisfied. In contrast, if Assumption 4.4 is met, then
one obtains more informative conditions (4.10).

Under Assumption 4.4, it is easy to see that if pft is a fair hedger’s price (resp. a loss-generating

cost) at time t for Ct, then any pt ∈ Gt such that pt ≤ pft is also a fair hedger’s price (resp. a
loss-generating cost) at time t for that contract. Similarly, if a superhedging (resp. strict super-
hedging) strategy exists when Ct is entered into at the price pst , then a superhedging (resp. strict
superhedging) strategy exists as well for any pt satisfying pt ≥ pst . Therefore, if we postulate that
Assumption 4.4 is met, then we have the following result in which we focus on the case where t = 0,
but it is easy to check that analogous properties are valid for any t ∈ (0, T ) as well.

Lemma 4.5. Let Assumption 4.4 be satisfied. Then for every contract C ∈ C such that pa
0
(x, C) >

−∞ and pf0 (x, C) <∞, we obtain the following intervals:

(i) the interval I l0(x, C) := (−∞, pl0(x, C)) of loss generating costs,

(ii) the interval Ir0(x, C) := (pl0(x, C), p
a
0
(x, C)) = (ps

0
(x, C), pf0(x, C)) where for every p ∈ Ir0(x, C)

there exists a trading strategy (x, p, ϕ, C) ∈ Ψt,x(C ) such that P(ṼT (x, p, ϕ, C) = x) = 1,

(iii) the interval Ia0 (x, C) := (pa
0
(x, C),+∞) of strict superhedging costs (arbitrage range),

where, in particular, the interval Ir0(x, C) may be empty. Consequently,

pl0(x, C) = ps
0
(x, C) ≤ pf0(x, C) = pa

0
(x, C). (4.10)

Proof. Under Assumption 4.4, if p ∈ Hl
0(x, C) (resp. p ∈ Hf

0 (x, C)) and q < p, then q ∈ Hl
0(x, C)

(resp. q ∈ Hf
0 (x, C)). Also, if p ∈ Hs

0(x, C) (resp. p ∈ Hs
0(x, C)) and q > p, then q ∈ Hs

0(x, C) (resp.
q ∈ Ha

0(x, C)). Using, in particular, it is now easy to see that the asserted properties are valid.
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Observe that nothing specific can be said about the end points of the three intervals introduced
in Lemma 4.5, in general. Obviously, we have that either (a) Ir0(x, C) = ∅ and the equalities

pl0(x, C) = pf0 (x, C) = ps
0
(x, C) = pa

0
(x, C) hold or (b) Ir0(x, C) 6= ∅ and thus ps

0
(x, C) < pf0 (x, C). One

may also consider the following stronger version of Assumption 4.4 under which case (b) cannot
occur, by virtue of the postulated strict monotonicity of the terminal wealth with respect to the
price pt.

Assumption 4.6. For every C ∈ C and t ∈ [0, T ), all xt, pt, qt ∈ Gt, and every trading strategy
(xt, pt, ϕ

t, Ct) ∈ Ψt,xt(C ), if qt > pt on some event D ∈ Gt such that P(D) > 0, then there
exists a trading strategy (xt, qt, ψ

t, Ct) ∈ Ψt,xt(C ) such that the inequalities VT (xt, qt, ψ
t, Ct) ≥

VT (xt, pt, ϕ
t, Ct) and VT (xt, qt, ψ

t, Ct) 6= VT (xt, pt, ϕ
t, Ct) are valid on D.

It is clear that, under Assumption 4.6, the equality ps
0
(x, C) = pa

0
(x, C) holds and thus the

following corollary to Lemma 4.5 is valid where, by convention, inf ∅ = ∞ and sup ∅ = −∞.

Lemma 4.7. If Assumption 4.6 is satisfied, then for any contract C ∈ C we have that

pl0(x, C) = pf0(x, C) = ps
0
(x, C) = pa

0
(x, C). (4.11)

4.1 Replication on [0, T ] and the Gained Value

Admittedly, the most commonly used technique for valuation of derivatives hinges on the concept
of replication. In the present framework, it is given by the following definition, in which we consider
the hedger with the initial endowment x at time 0 and where pr0 stands for an arbitrary real number.

Definition 4.8. A trading strategy (x, pr0, ϕ, C) ∈ Ψ0,x(C ) is said to replicate the contract C on

[0, T ] whenever VT (x, p
r
0, ϕ, C) = xBT (x) or, equivalently, ṼT (x, p

r
0, ϕ, C) = x. Then a real number

pr0 = pr0(x, C) is said to be a hedger’s replication cost for C at time 0 and the process pg(x, C) given
by

pgt (x, C) := Vt(x, p
r
0(x, C), ϕ, C) − xBt(x) (4.12)

is called the hedger’s gained value associated with the replicating strategy (x, pr0, ϕ, C).

Note that the equality pg0(x, C) = pr0(x, C) is always satisfied since V0(x, p
r
0(x, C), ϕ, C) = x +

pr0(x, C). The financial interpretation of a hedger’s replication cost pr0(x, C) for a given contract
C ∈ C is fairly straightforward. It represents either an increase or a reduction of the hedger’s initial
endowment x, which is required to implement a trading strategy ensuring that the hedger’s wealth
at time T , after the terminal payoff of the contract has been settled, perfectly matches the value
at time T of the original initial endowment x invested in the cash account.

As expected, for the null contract N = (0, 0), the self-financing strategy (x, 0, ϕ,N ), where
the portfolio ϕ hinges on keeping all money in the bank account B(x), is a replicating strategy for
N such that the gained value satisfies pgt (x,N ) = 0 for all t ∈ [0, T ]. The fact that the trading
strategy (x, 0, ϕ,N ) is self-financing was postulated in Section 3.2 but, obviously, this assumption
needs to be verified for each particular market model under study. Note also that the uniqueness of
a replication cost pr0(x, C) is not ensured and, in fact, there is no reason to expect that it will always
hold in every market model satisfying either Definition 3.4 or Definition 3.10 (for a counterexample,
see Proposition 4.12).

Let us make some comments on replication costs. Suppose first that Assumption 4.4 is met. Let
us assume that the interval Ir0(x, C) introduced in part (ii) in Lemma 4.5 is nonempty. We already
know that any number p ∈ (pl0(x, C), p

a
0
(x, C)) is necessarily a replication cost and a fair price for
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C but it is unclear whether the minimal replication cost is well defined. In principle, it may also
happen that there exists a replication cost either equal to, or strictly greater than, pa

0
(x, C).

Let us now examine the case where the interval Ir0 (x, C) is empty. If the contract C can
be replicated, then it may then happen that pl0(x, C) = pa

0
(x, C) = pr0(x, C). It is not obvious,

however, whether pr0(x, C) would be in that case a hedger’s fair price, since it may occur that a
strict superhedging strategy with the same initial cost exists. Furthermore, it is also possible that
pa
0
(x, C) < pr0(x, C) meaning that a strict superhedging may be in fact less expensive than replica-

tion. If the contract C cannot be replicated, then it is not clear whether pf0 (x, C) is a fair price,
although it coincides with the upper bound for loss-generating costs and with the lower bound for
strict superhedging costs.

If Assumption 4.6 is met, then one can be a bit more specific. If the set of replication costs is
nonempty, then only the lowest cost of replication can be a fair price (indeed, if p1 and p2 are two
replication costs such that p1 < p2, then p2 is also a strict superhedging cost and thus it is not a
fair price). Consequently, if the set of all possible replication costs for a given contract is bounded
from below then either (a) the lower bound for replication costs is not a replication cost and none
of replication costs is a fair price or (b) the lower bound is a replication cost and it is a candidate
for a maximal fair price for the contract.

To conclude, in a nonlinear market model, which is assumed to have the no-arbitrage prop-
erty with respect to the null contract (or even the no-arbitrage property for the trading desk),
a replication cost may fail to be a fair hedger’s price. To amend this shortcoming of a general
nonlinear setup, we introduce in the next section a particular class of models in which replication
yields a unique fair price for any contract C belonging to a predetermined family C and such that
a replicating strategy for C exists.

4.2 Market Regularity on [0, T ]

Once again, we consider the hedger with the initial endowment x at time 0. Intuitively, the concept
of regularity with respect to a given family C of contracts is motivated by our desire to ensure that,
for any contract from C , the cost of replication is never higher than the minimal cost of superhedging
and, in addition, the cost of replication is a fair hedger’s price, in the sense of Definition 4.1.

Definition 4.9. We say that the market model M = (S,D,B,C ,Ψ0,x(C )) is regular on [0, T ] with
respect to C if Assumption 4.4 is met and for every replicable contract C ∈ C and for any replicating
strategy (x, pr0(x), ϕ,X ) the following properties hold:

(i) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) satisfying

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1, (4.13)

then p ≥ pr0(x);

(ii) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) such that

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1 (4.14)

and

P
(
ṼT (x, p, ϕ, C) > x

)
> 0, (4.15)

then p > pr0(x).
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By applying Definition 4.9 to the null contract N = (0, 0), we deduce that any regular market
model is arbitrage-free for the hedger with respect to the null contract. It is not clear, however,
whether an arbitrage opportunity for the trading desk may arise in a regular model.

Condition (i) in Definition 4.9 means that superhedging cannot be less expensive than replica-
tion, whereas condition (ii) postulates that any strict superhedging has a strictly higher cost than
replication. It is important to observe that condition (i) implies that the replication cost pr0(x)
for C is unique. Moreover, if condition (i) holds, then condition (ii) is equivalent to the following
condition

(iii) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) satisfying

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1, (4.16)

then the following implication is valid: if p = pr0(x), then

P
(
ṼT (x, p, ϕ, C) = x

)
= 1. (4.17)

Remark 4.10. In the special case of European claims with maturity T and no trading adjustments,
conditions (i) and (ii) correspond to the comparison and strict comparison properties for solutions
to BSDEs satisfied by the wealth process with different terminal conditions. In fact, the same idea
underpins Definition 2.7 of the nonlinear pricing system introduced by El Karoui and Quenez [27].
Using similar arguments as El Karoui and Quenez [27], we will show that the regularity of a market
model can be established for a large variety of financial models using a BSDE approach.

4.2.1 Replicable Contracts in Regular Markets

In this section, we focus on contracts that can be replicated. Proposition 4.11 shows that, in a
regular market model, the cost of replication is the unique fair price of a contract C ∈ C that can
be replicated and the equalities pr0(x, C) = pa

0
(x, C) = pl0(x, C) hold for such a contract. This means

that the replication of a contract is indeed an effective method of valuation within the framework
of a regular model, although this statement is not necessarily true when dealing with an arbitrary
nonlinear market model.

Proposition 4.11. Let a market model M = (S,D,B,C ,Ψ0,x(C )) be regular on [0, T ] with respect
to C . Then for every contract C ∈ C that can be replicated on [0, T ] we have:

(i) the replication cost pr0(x, C) is unique,

(ii) pr0(x, C) is the maximal fair price and the upper bound for loss-generating costs, that is,

pr0(x, C) = pf0(x, C) = pl0(x, C),

(iii) pr0(x, C) is the lower bound for superhedging costs and strict superhedging costs, that is,
pr0(x, C) = ps

0
(x, C) = pa

0
(x, C).

Proof. As was mentioned, the uniqueness of the replication cost pr0(x, C) is an immediate conse-
quence of condition (i) in Definition 4.9. Hence the interval Ir0(x, C) defined in part (ii) in Lemma

4.5 is empty and thus, in particular, pr0(x, C) ≥ pf0(x, C). Condition (ii) in Definition 4.9 implies that
there is no trading strategy (x, pr0(x, C), ϕ, C) ∈ Ψ0,x(C ) such that conditions (4.14) and (4.15) are
satisfied. This means that no hedger’s arbitrage opportunity arises (that is, no strict superhedging
strategy for C exists) if C is traded at time 0 at its replication cost pr0(x, C) and thus we conclude

that pr0(x, C) is the maximal fair price meaning that pr0(x, C) = pf0 (x, C). The remaining equalities
are immediate consequences of Lemma 4.5.
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4.2.2 Nonreplicable Contracts

Let us make some comments on the properties of a contract C for which replication in M =
(S,D,B,C ,Ψ0,x(C )) is not feasible. If Assumption 4.4 is satisfied, then from Lemma 4.5 we obtain

the following equalities pl0(x, C) = pf0 (x, C) = ps
0
(x, C) = pa

0
(x, C). Obviously, it would be interesting

to know whether the common value is a fair price. Unfortunately, the definitive answer is not
available, in general, since it may happen that it is indeed the maximal fair price, but it may also
occur that it represents the cost of a strict superhedging strategy. Furthermore, it is not clear at
all how to proceed to compute the value of pf0(x, C) (it would be perhaps enough to know this value
since any strictly lower value is a loss-generating cost). Under either Assumption 4.6 or when we
postulate that the market model M is regular, we obtain the same conclusions as under Assumption
4.4 and thus they are not helpful when analyzing the valuation of nonreplicable contracts.

4.2.3 Nonregular Market Model

Our next goal is to illustrate the issue of regularity of a model by providing a simple, albeit
admittedly artificial, example of a model, which is not regular. We now assume that the hedger’s
endowment at time 0 is null and we start by placing ourselves within the framework of Bergman’s [3]
model with differential borrowing and lending interest rates (see also Korn [38], Nie and Rutkowski
[40] and Mercurio [39]). In particular, the stock price S1 is driven by the Black-Scholes dynamics
and constant interest rates satisfy rb > rl. It is straightforward to verify that Bergman’s model
MB = (S1, Bl, Bb,C ,Ψ0,0(C )) satisfies Definition 3.4 if, for instance, we take as C the class of
long and short positions in all European put options written on the stock S1 and maturing at T .
Moreover, the hedger is able to replicate, without borrowing any cash, the short position in the
European put option on S1 with maturity T and any strike K > 0. The hedger’s price of the
European put in Bergman’s model is thus given by the classical Black-Scholes formula with the
interest rate equal to rl and we henceforth denoted it as Pt(K) for every t ∈ [0, T ].

In the next step, we fix strike K > 0 and the date U ∈ (0, T ). For concreteness, we assume
that T − U = 1 and rl = 0. In particular, the class C comprise only short and long positions in
the put option with strike K. We complement the model MB by introducing an additional risky
asset with the following price process with nondecreasing sample paths

S2
t = 1[0,T ](t) + (K(t− U))(PU (K))−1

1{2PU (K)>K}1[U,T ](t).

Since rl = 0, we have that P(2PU (K) > K) > 0, due to the fact that 2PU (K) > K for SU
sufficiently close to zero. It is obvious that S2

T = 1 on the event {2PU (K) ≤ K}. On the other
hand, on the event {2PU (K) > K}, we have

1 < S2
T = 1 +K(PU (K))−1 < 3 = eln 3.

We henceforth assume that rb > ln 3 in order to ensure that the interest rate rb dominates the
rate of return on the asset S2. Obviously, the put option with strike K can be replicated in
M = (Bl, Bb, S1, S2,C ,Ψ0,0(C )) (through the same strategy as in MB , that is, using only Bl and
S1 for trading) and thus its replication cost in M is given by the Black-Scholes price P (K). We
are ready to prove the following proposition describing the properties of M. It is easy to check
that Assumption 4.4 (as well as Assumption 4.6) is satisfied by the model M.

Proposition 4.12. The market model M = (Bl, Bb, S1, S2,C ,Ψ0,0(C )) has the following proper-
ties:

(i) M has the no-arbitrage property with respect to the null contract,
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(ii) M has the no-arbitrage property for the trading desk,

(iii) M is nonregular and the extended model M̃ = (Bl, Bb, S1, S2, S3,C ,Ψ0,0(C )) where S3 =
P (K) does not have the no-arbitrage property with respect to the null contract.

(iv) replication cost for the put option is not unique and the minimal cost of replication is given
by the solution Y to the BSDE

dYt =

2∑

i=1

ξit dS
i
t , YT = (K − S1

T )
+. (4.18)

Proof. Assertion (i) is easy to check. Intuitively, the increasing process S2 can be seen as an
alternative (artificial) lending account to the constant lending account Bl = 1 and thus, if the
hedger has a surplus of cash, then he will invest it in the asset S2, rather than in the lending account
Bl. It is thus enough to note that the model (S1, B̄l = S2, Bb,C ,Ψ0,0(C )) satisfies Definition 3.4,
as it can be seen as another instance of Bergman’s setup with a random lending rate.

For part (ii), we focus on the model (S1, B̄l = S2, Bb,C ,Ψ0,0(C )) and we observe that equation
(3.7) reduces to

dṼ com
t (x1,−x1, ϕ, ϕ̄, A, 0, 0) = (ξ1t + ξ̄1t ) dS̃

1
t + (ψ0,b

t + ψ̄0,b
t ) dB0,b,l

t ,

where A represents the put option, S̃1 = S1(B̄l)−1 and B0,b,l = Bb(B̄l)−1. Since the process S̃1

admits a martingale measure, the process B0,b,l is non-increasing and, by assumption, the processes
ψ0,b and ψ̄0,b are nonnegative, it is clear that no arbitrage opportunity for the trading desk may
arise in the considered model, and thus also in M.

To prove (iii), we will show that the hedger who sells the put option at time 0 at its Black-Scholes
price P0(K) can construct an arbitrage opportunity. To see this, assume that the hedger uses the
replicating strategy for the put on the interval [0, U ]. If the event {2PU (K) ≤ K} occurs, then he
continues to replicate the put until its maturity date T . In contrast, if the event {2PU (K) > K}
occurs, then he buys PU (K)/S2

U = PU (K) of shares of the asset S2 and holds them till T . Then
the hedger’s wealth at T , after delivery of the cash amount (K − S1

T )
+ to the buyer of the option,

satisfies

VT (0, P0(K), ϕ,−P (K)) =

(
PU (K)

S2
U

S2
T − (K − S1

T )
+

)
1{2PU (K)>K} + 0 · 1{2PU (K)≤K}

=
(
PU (K)(1 +K(PU (K))−1)− (K − S1

T )
+
)
1{2PU (K)>K}

>
(
1.5K − (K − S1

T )
+
)
1{2PU (K)>K} > 0.5K1{2PU (K)>K}.

Since P(2PU (K) > K) > 0 and it is clear that the wealth is always non-negative (so that the
strategy is admissible), the strategy described above is an arbitrage opportunity for the hedger.
Also, a strict superhedging strategy for the claim PT (K) can be obtained using the initial wealth
equal to the replication cost. Indeed, using the premium P0(K), the hedger may either replicate
ζ1 := PT (K) or strictly superhedge PT (K) by producing the terminal payoff

ζ2 = PT (K)1{2PU (K)≤K} + PU (K)(1 +K(PU (K))−1)1{2PU (K)>K}.

It is easy to check that ζ2 ≥ ζ1 and P(ζ2 > ζ1) > 0. We thus conclude that the model M is

nonregular and the extended model M̃ does not satisfy Definition 3.4.
For the last assertion, we note that the put option can be replicated in the model (S1, B̄l =

S2,C ,Ψ0,0(C )), which is an extension of the Black-Scholes model in which the interest rate is
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random. This claim follows from the existence and uniqueness of a solution (Y, ϕ1, ϕ2) to BSDE
(4.18) with Lipschitz continuous coefficients and the bounded terminal condition. Furthermore, the
component ϕ2 of the replicating strategy is nonnegative and thus the same strategy replicates the
option in M and it is the least expensive replicating strategy in M.

4.3 Replication and Market Regularity on [t, T ]

The notion of the hedger’s gained value pgt (x, C), t ∈ [0, T ) reduces to the classical no-arbitrage
price obtained through replication in the linear setup provided that the only cash flow of A after
time 0 is the terminal payoff, which equals AT −AT−. Unfortunately, in a general nonlinear setup
considered in this work, the financial interpretation of the hedger’s gained value at time t > 0
is less transparent, since it depends on the hedger’s initial endowment, the past cash flows of a
contract and the strategy implemented by the hedger on [0, t]. The following definition mimics
Definition 4.8, but focuses on the restriction of a contract C to the interval [t, T ]. Note that here
the discounted wealth process is given by equation (3.3). It is assumed in this section that Ct can
be replicated on [t, T ) at some initial cost prt at time t, in the sense of the following definition.

Definition 4.13. For a fixed t ∈ [0, T ], let prt be a Gt-measurable random variable. If there exists
a trading strategy (xt, p

r
t , ϕ

t, Ct) ∈ Ψt,xt(C ) such that

ṼT (xt, p
r
t , ϕ

t, Ct) = xt, (4.19)

then prt = prt (xt, C
t) is called a replication cost at time t for the contract Ct relative to the hedger’s

endowment xt at time t.

As expected, Definition 4.9, and thus also Proposition 4.11, can be extended to any date t ∈
[0, T ).

Definition 4.14. We say that a market model M = (S,D,B,C ,Ψt,xt(C )) is regular on [t, T ] with
respect to C if Assumption 4.4 is met and the following properties hold for every contract C ∈ C

that can be replicated:

(i) if pt ∈ Gt and there exists (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) satisfying

P
(
ṼT (xt, pt, ϕ

t, Ct) ≥ xt
)
= 1, (4.20)

then pt ≥ prt (xt, C
t);

(ii) if pt ∈ Gt and there exists (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) such that for some D ∈ Gt

P
(
1DṼT (xt, pt, ϕ

t, Ct) ≥ 1Dxt
)
= 1 (4.21)

and
P
(
1DṼT (xt, pt, ϕ

t, Ct) > 1Dxt
)
> 0, (4.22)

then P(1D pt > 1Dp
r
t (xt, C

t)) > 0.

Similarly as for t = 0, if condition (i) holds, then condition (ii) is equivalent to the following
condition:

(iii) if pt ∈ Gt and there exists (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) such that for some event D ∈ Gt

P
(
1DṼT (xt, pt, ϕ

t, Ct) ≥ 1Dxt
)
= 1, (4.23)

then the following implication holds: if 1Dpt = 1Dp
r
t (xt, C

t), then

P
(
1DṼT (xt, pt, ϕ

t, Ct) = 1Dxt
)
= 1. (4.24)
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In the following extension of Proposition 4.11, we assume that the hedger’s endowment xt at
time t is given and the contract C has all cash flows on (t, T ] so that Ct = C. We now search for
the hedger’s fair price for C at time t assuming that a replication strategy exists. A closely related,
but not identical, valuation problem is studied in Section 5.1 where we study the valuation at time
t of a contract originated at time 0.

Proposition 4.15. Let a market model M = (S,D,B,C ,Ψt,xt(C )) be regular on [t, T ] with respect
to the class C . Then for every contract C ∈ C such that C = Ct and which can be replicated on
[t, T ], we have:

(i) the replication cost prt (xt, C) is unique,

(ii) prt (xt, C) is the maximal fair price and the upper bound for loss-generating costs, that is,

prt (xt, C) = pft (xt, C) = plt(xt, C),
(iii) prt (xt, C) is the lower bound for superhedging costs and strict superhedging costs, that is,

prt (xt, C) = ps
t
(xt, C) = pa

t
(xt, C).

The proof of Proposition 4.15 is very similar to the proof of Proposition 4.11 and thus it is
omitted. According to Proposition 4.15, in any market model regular on [t, T ], a replication cost is
unique and it is the maximal fair price at time t for the hedger with the endowment xt at time t.

5 Pricing by Replication in Regular Markets

In this section, it is assumed that a market model M is regular. Our goal is to examine the
properties of various kinds of prices for a contract C under the assumption that it can be replicated
on [t, T ] for every t ∈ [0, T ). Recall that for any fixed t ∈ [0, T ) we denote by (xt, pt, ϕ

t, Ct) a
hedger’s trading strategy starting at time t with a Gt-measurable endowment xt when a contract
Ct is traded at a Gt-measurable price pt. For simplicity, we focus on contracts C = (A,X ) with a
constant maturity date T , which correspond to non-defaultable contracts of European style. To deal
with the counterparty credit risk, it suffices to replace A with the process A♯ introduced in Section
2.8.1 and a fixed maturity T with the effective maturity of a contract at hand (for instance, by T ∧τ
where τ is the random time of the first default or, more generally, by the effective settlement date
of a contract in the presence of the gap risk). Furthermore, in the case of contracts of an American
style or game options, the effective settlement date is also affected by respective decisions of both
parties to prematurely terminate the contract.

5.1 Hedger’s Ex-dividend Price at Time t

Since it was postulated that the initial endowment of the hedger at time 0 equals x, it is clear
that any application of Definition 4.13 should be complemented by a financial interpretation of the
hedger’s endowment xt at time t and a relationship between the quantity xt and the hedger’s initial
endowment x should be clarified. One may consider several alternative specifications for xt, which
correspond to different financial interpretations of valuation problems under study:

1. A first natural choice is to set xt = xt(x) := xBt(x) meaning that the hedger has not been
dynamically hedging the contract between time 0 and time t (this particular convention was
adopted in Bielecki and Rutkowski [8] and Nie and Rutkowski [40, 41]). Then the quantity
prt (xt, C

t) is the future fair price at time t of the contract Ct, as seen at time 0 by the
hedger with the endowment x at time 0, who decided to postpone trading in C to time t.
This specification of xt could be convenient if one wishes to study, for instance, the issue of
valuation at time 0 of the option with the expiration date t written on the contract Ct.
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2. Alternatively, one may postulate that the contract was entered into by the hedger at time 0
at his replication cost pr0(x, C) and he decided to keep his position unhedged. In that case, the
initial price, the cash flows, and the adjustments should be appropriately accounted for when
computing the actual hedger’s endowment xt at time t using a particular market model.

3. Next, one may assume that the contract was entered into by the hedger at time 0 at the
price pr0(x, C) and was hedged by him on [0, t] through a replicating strategy ϕ, as given by
Definition 4.8. Then the hedger’s endowment at time t > 0 equals xt = Vt(x, p

r
0(x, C), ϕ, C)

and it is natural to expect that the equality prt (xt, C
t) = 0 will hold for all t ∈ (0, T ].

4. Finally, one can simply postulate that the hedger’s endowment xt at time t is exogenously
specified. Then Definition 4.13 reduces in fact to Definition 4.8 with essentially identical
financial interpretation: we define the hedger’s initial price at time t for the contract Ct given
his initial endowment xt at time t. Of course, under this convention no relationship between
the quantities x and xt exists.

In the next definition, we apply Definition 4.13 to the first of the above-mentioned specifications
of xt, that is, we set xt = xt(x) := xBt(x). As in Definition 4.13, the discounted wealth is given by
(3.3).

Definition 5.1. For a fixed t ∈ [0, T ], assume that pet is a Gt-measurable random variable. If there
exists a trading strategy (xt(x), p

e
t , ϕ

t, Ct) ∈ Ψt,xt(x)(C ) such that

ṼT (xt(x), p
e
t , ϕ

t, Ct) = xt(x), (5.1)

then pet = pet (x, C
t) is called the hedger’s ex-dividend price at time t for the contract Ct.

Note that pr0(x, C) = pg0(x, C) = pe0(x, C) and pgT (x, C) = peT (x, C
T ) = 0. The price given in

Definition 5.1 is suitable when dealing with derivatives written on the contract Ct as an underlying
asset or, simply, when the hedger would like to compute the future fair price for Ct without actually
entering into the contract at time 0. Furthermore, it can also be used to define a proxy for the exit
price of the contract Ct.

It is natural to ask whether the processes pgt (x, C) and pet (x, C
t) coincide for all t ∈ [0, T ]. We

will argue that the equality pgt (x, C) = pet (x, C
t) is valid for every t when the valuation problem is

local, but it is not necessarily true for a global valuation problem (see Proposition 6.5). The reason
is that in the former case the two processes satisfy identical BSDE, whereas in the latter case one
obtains a generalized BSDE for the former process and a classical BSDE for the latter. It is also
intuitively clear that in the case of the global valuation problem the two processes will typically
differ, since the value of pet (x, C

t) is clearly independent of the hedger’s trading strategy on [0, t], as
opposed to pgt (x, C), which may depend on the whole history of his trading. Since most valuation
problems encountered in the existing literature have a local nature, to the best of our knowledge,
this particular issue was not yet examined by other authors.

5.2 Exit Price

The issue of valuation at time t is also important when we ask the following question: at which exit
price a contract entered into by the hedger at time 0 can be unwound by him at time t. In theory,
the easiest way to unwind at time t a contract originated at time 0 at the price pr0(x, C) = pg0(x, C)
would be to transfer all obligations associated with the remaining part of the contract on [t, T ]
to another trader. Accordingly, the gained value pgt (x, C) for 0 < t < T would be the amount of
cash, which the hedger would be willing to pay to another trader who would then take the hedger’s



38 T.R. Bielecki, I. Cialenco and M. Rutkowski

position from time t onwards. This argument leads to the following definition of the hedger’s exit
price.

Definition 5.2. The exit price for the contract C entered into at time 0 by the hedger with the
initial endowment x is given by the equality pmt (x, C) := −pgt (x, C) for every t ∈ [0, T ].

Definition 5.2 reflects the market practice where the exit price is related to the concept of
unwinding the existing contract at time t at its current market value. Note, in particular, that
the equality pgt (x, C) + pmt (x, C) = 0 holds for every t ∈ [0, T ], meaning that the net value of the
fully hedged position is null at any moment when the contract is marked to market. Unfortunately,
a practical implementation of Definition 5.2 could prove difficult, especially when dealing with a
global valuation problem, since it would require to keep track of past cash flows from the contract
and gains from the hedging strategy (of course, provided the hedging strategy was implemented
by the hedger). We thus contend that the proxy for the exit value pmt (x, C) := −pet (x, C) could
be more suitable for most practical purposes when facing a global valuation problem. Since the
equality pgt (x, C) = pet (x, C) holds when the valuation problem is local, the issue of the choice of a
marking to market convention is clearly immaterial in that case.

5.3 Offsetting Price

Assume that the hedger is unable to transfer to another trader his existing position in the contract
C entered into at time 0. Then he may attempt to offset his future obligations associated with C
by taking the opposite position in an “equivalent” contract. In the next definition, we postulate
that the hedger attempts to unwind his long position in C = (A,X ) at time t by entering into an
offsetting contract (−At,Yt). It is also assumed here that he liquidates at time t the replicating
portfolio for C so that his endowment at time t equals V̂t(x, C) := Vt(x, p

r
0(x, C), ϕ̂, C), where ϕ̂ is a

replicating strategy for C on [0, T ].

Definition 5.3. For a fixed t ∈ [0, T ], let pot be a Gt-measurable random variable. If there exists
an admissible trading strategy (V̂t(x, C), p

o
t , ϕ

t, 0,X t + Yt) on [t, T ] such that

ṼT (V̂t(x, C), p
o
t , ϕ

t, 0,X t + Yt) = x, (5.2)

then pot = pot (x, C
t) is called the offsetting price of Ct = (At,X t) through (−At,Yt) at time t.

Definition 5.3 takes into account the fact that the cash flows of At and −At (and perhaps also
some cash flows associated with the corresponding adjustments X t and Yt) offset one another and
thus only the residual cash flows need to be accounted for when computing the price at which the
contract C can be unwound by the hedger at time t.

In the special case where the equality X t +Yt = 0 holds for all t ∈ [0, T ] (that is, the offsetting
is perfect) we obtain the equality pot (x, C

t) = −pgt (x, C) since then, in view of (4.12), we have that

V̂t(x, C) + pot (x, C
t) = pgt (x, C) + xBt(x) + pot (x, C

t) = xBt(x),

where xBt(x) is the cash amount that is required to replicate the null contract (0, 0) on [t, T ].

6 A BSDE Approach to Nonlinear Pricing

For each definition of the price, one may attempt to derive the corresponding backward stochastic
differential equation (BSDE) by combining their definitions with dynamics (2.11) of the hedger’s
wealth or, even more conveniently, with dynamics (3.9) of his discounted wealth. Subsequently,
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each particular valuation problem can be addressed by solving a suitable BSDE. In addition, one
may use a BSDE approach to establish the regularity property of a market model at hand. To this
end, one may either use the existing (strict) comparison theorems for solutions to BSDEs or, if
needed, to establish original results. In this work, we are not analyzing these issues in detail since
our goal is merely to derive BSDEs for the gained value and the ex-dividend price in a particular
setup with trading adjustments and to emphasize the difference between local and global pricing
problems. We conclude the paper by outlining important issues related to a BSDE approach to the
counterparty credit risk.

6.1 BSDE for the Gained Value

We will first derive a generic BSDE associated with the hedger’s gained value pg(x, C) introduced
in Definition 4.8. For concreteness, we focus on the case of x ≥ 0 so that the equality B(x) = Bl is
valid. To simplify the presentation, we also postulate that Bi,l = Bi,b = Bi for i = 1, 2, . . . , d and
we consider trading strategies satisfying the funding constraint ξ̂itS

i
t+ψ̂

i
tB

i
t = 0 for all i = 1, 2, . . . , d

and every t ∈ [0, T ]. Of course, the case where x < 0 can be dealt with in an analogous manner.
Recall that (see (3.8))

S̃i,cld
t (x) := (Bt(x))

−1Si
t +

∫ t

0
(Bu(x))

−1 dDi
u.

It is worth recalling that pr0(x, C) = pg0(x, C) (see Definition 4.8).

Lemma 6.1. Assume that a trading strategy (x, pr0, ϕ̂, C) ∈ Ψ0,x(C ) replicates a contract C. Then

the processes Ŷ := Ṽ l(x, pr0, ϕ̂, C) := (B0,l)−1V (x, pr0, ϕ̂, C) and Ẑi := B̃i,lξ̂i satisfy the BSDE

dŶt =
d∑

i=1

Ẑi
t dŜ

i,cld
t − (B0,b

t )−1

(
ŶtB

0,l
t +

n∑

k=1

αk
tX

k
t

)−

dB0,b,l
t

+ (B0,l
t )−1 dAt −

n∑

k=1

X̂k
t dβ̃

k,l
t +

n∑

k=1

(1− αk
t )X

k
t d(B

0,l
t )−1

(6.1)

with the terminal condition ŶT = x.

Proof. Under the present assumptions, (3.9) and (3.10) imply

dṼ l
t (x, p

r
0, ϕ̂, C) =

d∑

i=1

ξ̂itB̃
i,l
t dŜi,cld

t + ψ̂0,b
t dB0,b,l

t + (B0,l
t )−1 dAt −

n∑

k=1

X̂k
t dβ̃

k,l
t

+
n∑

k=1

(1− αk
t )X

k
t d(B

0,l
t )−1, (6.2)

where B̃i,l := (B0,l)−1Bi, B0,b,l := (B0,l)−1B0,b, β̃k,l := (B0,l)−1βk. Equation (2.10) and conditions
ψ̂0,l ≥ 0, ψ̂0,b ≤ 0 and ψ̂0,lψ̂0,b = 0 yield

ψ̂0,l
t = (B0,l

t )−1

(
Vt(x, p

r
0, ϕ̂, C) +

n∑

k=1

αk
tX

k
t

)+

(6.3)

and

ψ̂0,b
t = −(B0,b

t )−1

(
Vt(x, p

r
0, ϕ̂, C) +

n∑

k=1

αk
tX

k
t

)−

. (6.4)
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Note that the process ψ̂0,l does not appear in (6.2) and the process ψ̂0,b can also be eliminated from
(6.2) by using (6.4). If we set Ŷ := Ṽ l(x, pr0, ϕ̂, C), then (6.2) can be represented as the BSDE

dŶt =

d∑

i=1

ξ̂itB̃
i,l
t dŜi,cld

t − (B0,b
t )−1

(
ŶtB

0,l
t −

d∑

i=1

ξ̂itS
i
t −

d∑

i=1

ψ̂i
tB

i
t +

n∑

k=1

αk
tX

k
t

)−

dB0,b,l
t

+ (B0,l
t )−1 dAt −

n∑

k=1

X̂k
t dβ̃

k,l
t +

n∑

k=1

(1− αk
t )X

k
t d(B

0,l
t )−1

(6.5)

with the terminal condition ŶT = Ṽ l
T (x, p

r
0, ϕ̂, C) = x. In view of equality (3.10), BSDE (6.5) further

simplifies to (6.1).

In the next result, we focus on a market model satisfying regularity conditions introduced in
Definition 4.14. From the regularity of a model, it follows that the hedger’s gained value pgt (x, C)
is unique for each fixed t ∈ [0, T ]. However, this does not suffice to define the process pg(x, C) and
thus in the next result we will make assumptions regarding BSDE (6.1). First, we postulate that
for a given x ≥ 0 and any contract C ∈ C there exists a unique solution (Ŷ , Ẑ) to (6.1) in a suitable
space of stochastic processes. Second, we assume that BSDE (6.1) enjoys the following variant of
the strict comparison property.

Definition 6.2. The strict comparison property holds for the BSDE (6.1) if for any contract C ∈ C

if (Ŷ 1, Ẑ1) and (Ŷ 2, Ẑ2) are solutions with GT -measurable terminal conditions ξ1T ≥ ξ2T , respectively,
then the equality 1DY

1
t = 1DY

2
t for some t ∈ [0, T ) and some D ∈ Gt implies that 1Dξ

1
T = 1Dξ

2
T .

It is also important to note that one needs to examine the manner in which the inputs in BSDE
(6.1) (that is, the stochastic processes introduced in Assumption 2.1) may possibly depend on the
unknown processes Ŷ and Ẑ.

According to Definition 2.12, the problem examined in this section will be an example of a
local valuation problem if we postulate that Xk and βk satisfy Xk

t = vk(t, Ŷt, Ẑt) and dβkt =
wk(t, Ŷt, Ẑt) dt for some G-progressively measurable mappings vk, wk : Ω × [0, T ] × Rd+1 → R for
every k = 1, 2, . . . , n. The same valuation problem becomes a global one if Xk

t = v̄k(t, Ŷ·, Ẑ·) and
dβkt = w̄k(t, Ŷ·, Ẑ·) dt for some G-non-anticipative functionals v̄k, w̄k : Ω× [0, T ]×D([0, T ],Rd+1) →
R for every k = 1, 2, . . . , n, where D([0, T ],Rd+1) is the space of Rd+1-valued, G-adapted, càdlàg
processes on [0, T ].

From Lemma 6.1, we deduce that a local valuation problem can be formulated it terms of
a classical BSDE. In contrast, the situation where the inputs depend on the past history of the
processes is harder to address, since a global valuation problem requires to study a generalized
BSDE with non-anticipative functionals. Since both situations are covered by Proposition 6.3,
we refer the reader to Cheridito and Nam [16] and Zheng and Zong [51] for the existence and
uniqueness results for generalized BSDEs. It is worth noting that, to the best of our knowledge, so
far no results on the strict comparison property for generalized BSDE are available. This should
be contrasted with the theory of classical BSDEs where the strict comparison theorem plays an
important role. In the next result, we suppose that the dynamics of the wealth process given by
(6.2) and (6.4) are such that Assumption 4.4 is satisfied.

Proposition 6.3. Assume that the BSDE (6.1) has a unique solution (Ŷ , Ẑ) for any contract C ∈ C

and the strict comparison property for solutions to (6.1) holds. Then the following assertions are
valid:

(i) the market model is regular on [t, T ] for every t ∈ [0, T ];
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(ii) the hedger’s gained value satisfies pg(x, C) = B0,l(Ŷ − x) where (Ŷ , Ẑ) is a solution to BSDE
(6.1) with the terminal condition ŶT = x;

(iii) the unique replicating strategy ϕ̂ for C satisfies ξ̂i = (B̃i,l)−1Ẑi and the cash components ψ̂0,l

and ψ0,b are given by (6.3) and (6.4), respectively, with V (x, pr0, ϕ̂, C) replaced by B0,lŶ .

Proof. In view of Definition 4.14, it is clear that the existence, uniqueness and the strict comparison
property for the BSDE (6.1) imply that the market model is regular on [t, T ] for every t ∈ [0, T ].
To establish (ii), we recall that the regularity of a model implies that the hedger’s gained value
pgt (x, C) is unique. Moreover, we also know that pg(x, C) satisfies for every t ∈ [0, T ] (see (4.12))

pgt (x, C) = Vt(x, p
g
0(x, C), ϕ̂, C)− xBt(x) = B0,l

t Ŷt − xBt(x) = B0,l
t (Ŷt − x),

which establishes the asserted equality pg(x, C) = B0,l(Ŷ −x). In particular, the hedger’s replication
cost pr0(x) satisfies pr0(x) = Ŷ0 − x for any fixed initial endowment x ≥ 0. Finally, part (iii) is an
immediate consequence of Lemma 6.1.

Of course, one needs to check for which models the assumptions of Proposition 6.3 are satisfied.
For general results regarding BSDEs driven by one- or multi-dimensional continuous martingales,
the reader is referred to Carbone et al. [15], El Karoui and Huang [25] and Nie and Rutkowski [42]
and the references therein. Typically, a suitable variant of the Lipschitz continuity of a generator
to a BSDE is sufficient to guarantee the desired properties of its solutions. Several instances of
nonlinear market models with BSDEs satisfying the comparison property were studied by Nie and
Rutkowski [40, 41, 43], although the concept of a regular model was not formally stated therein.
In particular, they analyzed contracts with an endogenous collateral, meaning that an adjustment
process Xk explicitly depends on a solution Ŷ (or even on solutions to the valuation problems for
the hedger and the counterparty).

Let us finally mention that since the model examined in this section is a special case of the
model studied in Sections 3.5 and 3.6, it follows from Proposition 3.13 that to ensure that the
model is arbitrage-free for the trading desk, it suffices to assume that there exists a probability
measure Q, which is equivalent to P on (Ω,GT ) and such that the processes Ŝi,cld, i = 1, 2, . . . , d
given by (4.23) are Q-local martingales. This assumption is also convenient if one wishes to prove
the existence and uniqueness result for BSDE (6.1).

6.2 BSDE for the Ex-dividend Price

Our next goal is to derive the BSDE for the ex-dividend price pe(x, C) introduced in Definition 5.1.
As in Section 6.1, we work under the assumption that x ≥ 0. Recall that, for a fixed t, the hedger’s
ex-dividend price is implicitly given by the equality Ṽ l

T (xt(x), p
e
t , ϕ

t, Ct) = xt(x) where xt(x) = xBl
t

and the discounting is done using the process Bt
· (xt(x)) given by (3.2). We henceforth assume

that the valuation problem is local. This assumption is essential for validity of Lemma 6.4 and
Proposition 6.5, so it cannot be relaxed.

Lemma 6.4. Assume that a trading strategy (xt(x), p
e
t , ϕ

t, Ct) ∈ Ψt,xt(x)(C ) replicates a contract Ct

on [t, T ]. Then the processes Ȳu := Ṽu(xt(x), p
e
t , ϕ

t, At,X t) and Z̄i
u := B̃i,l

u (ξtu)
i, u ∈ [t, T ], satisfy

the following BSDE, for all u ∈ [t, T ]

dȲu =
d∑

i=1

Z̄i
u dŜ

i,cld
u − (B0,b

u )−1

(
ȲuB

0,l
u +

n∑

k=1

αk
uX

k
u

)−

dB0,b,l
u

+ (B0,l
u )−1 dAu −

n∑

k=1

X̂k
u dβ̃

k,l
u +

n∑

k=1

(1− αk
u)X

k
u d(B

0,l
u )−1

(6.6)
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with the terminal condition ȲT = x.

Proof. Arguing as in the proof of Lemma 6.1, we conclude that the dynamics of the discounted
wealth Ṽu(xt(x), p

e
t , ϕ

t, At,X t) for u ∈ [t, T ] are given by (6.2) and thus (6.6) is satisfied by Ŷ and
Ẑ with the terminal condition ỸT = x.

Although BSDEs (6.1) and (6.6) have the same shape, the features of their solutions heavily
depend on a specification of the processes Xk and βk,l. The next result shows that the gained value
and the ex-dividend price coincide when the valuation problem is local, so that the corresponding
BSDEs are classical. In contrast, this property will typically fail to hold when a valuation problem
is global, so that (6.1) becomes a generalized BSDE. In that case, equation (6.6) needs to be
complemented by additional conditions regarding the processes Xk and βk,l.

Proposition 6.5. Under the assumptions of Proposition 6.3, if a valuation problem is local, then
for any contract C ∈ C the hedger’s gained value and the hedger’s ex-dividend price satisfy pet (x, C) =
pgt (x, C

t) for all t ∈ [0, T ].

Proof. On the one hand, under the postulate of uniqueness of solutions to BSDE (6.1) (and thus
also to BSDE (6.6)), the equality Ŷt = Ȳt is manifestly satisfied for all t ∈ [0, T ]. On the other
hand, from Definition 5.1, we obtain the equality xt(x) + pet(x, C

t) = Bl
tȲt, which in turn yields

pet (x, C
t) = Bl

t(Ȳt − x). Since Ŷt = Ỹt, we conclude that the gained value pgt (x, C) = Bl
t(Ŷt − x) and

the ex-dividend price pet (x, C
t) coincide for all t ∈ [0, T ].

The property of a local valuation problem established in Proposition 6.5 is fairly general: its
validity hinges on the existence and uniqueness of a solution to a common BSDE for the gained
value and the ex-dividend price. This should be contrasted with the case of the global valuation
problem where the equality pgt (x, C) = pet (x, C

t) is always satisfied for t = 0, but it is not likely to
hold for any t > 0.

6.3 BSDE for the CCR Price

We now address the question raised in Section 2.8.2: can we disentangle the counterparty risk-
free valuation of a credit risky contract from the CRR valuation? Although this is true in the
linear setup where the price additivity is known to hold, the answer to this question is unlikely to
be positive within a nonlinear framework. On the one hand, according to Proposition 2.11, the
counterparty risky contract (A♯,X ) admits the following decomposition

(A♯,X ) = (A,X ) + (ACCR, 0), (6.7)

where the first component is not subject to the counterparty credit risk (although it may include
the margin account) and thus it is referred to as the counterparty risk-free contract, whereas the
second component is concerned exclusively with the CCR (see Definition 2.10 for the specification
of the CCR cash flow ACCR). On the other hand, however, in a nonlinear framework, the price of
the full contract (A♯,X ) is unlikely to be equal to the sum of prices of its components appearing
in the additive decomposition of the full contract.

To examine this problem more closely, let us assume that the underlying market model is
sufficiently rich to allow for replication of the full contract (A♯,X ), as well as for replication of its
two components (A,X ) and (ACCR, 0). Of course, one can alternatively focus on the decomposition
(A♯,X ) = (A, 0)+ (ACCR,X ) in which the trading adjustments (in particular, the margin account)
are assumed to affect the CCR part, rather than the counterparty risk-free contract (A, 0). The
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choice of a decomposition should be motivated by practical considerations; one may argue that
collateralization is nowadays a standard covenant in most contracts, not necessarily directly related
to the actual level of exposure to the counterparty credit risk in a given contract.

If we denote by τh and τ c the default times of the hedger and the counterparty, respectively,
then τ = τh ∧ τ c is the moment of the first default and thus the effective maturity of (A♯,X )
and (ACCR, 0) is the random time τ̂ = τ ∧ T . For the counterparty risk-free contract (A,X ), it
is convenient to formally assume that its maturity date equals T , since this component of the full
contract is not exposed to the default risk.

By a minor extension of Lemma 6.1, we obtain the following BSDE for the full contract (A♯,X )
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Ẑi
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i,cld
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k
t d(B

0,l
t )−1

(6.8)

with the terminal condition Ŷτ̂ = x. Let x = x1+x2 be an arbitrary split of the hedger’s endowment.
Then we obtain the following BSDE corresponding to the counterparty risk-free contract (A,X )

dŶ 1
t =

d∑

i=1

Ẑ1,i
t dŜi,cld

t − (B0,b
t )−1

(
Ŷ 1
t B

0,l
t +

n∑

k=1

αk
tX

k
t

)−

dB0,b,l
t

+ (B0,l
t )−1 dAt −

n∑

k=1

X̂k
t dβ̃

k,l
t +

n∑

k=1

(1− αk
t )X

k
t d(B

0,l
t )−1

(6.9)

with Ŷ 1
T = x1. The BSDE associated with the CRR component (ACCR, 0) reads

dŶ 2
t =

d∑

i=1

Ẑ2,i
t dŜi,cld

t − (B0,b
t )−1

(
Ŷ 2
t B

0,l
t

)−
dB0,b,l

t + (B0,l
t )−1 dACRR

t (6.10)

with Ŷ 2
τ̂ = x2. If the initial endowment x = 0, then we may take x1 and x2 to be null as well.

The question formulated at the beginning of this section can be restated as follows: under which
conditions the equality Ŷ0 = Ŷ 1

0 + Ŷ 2
0 holds for solutions to BSDEs (6.8), (6.9) and (6.10), so that

the three replication costs satisfy the following equality

pr0(x,A
♯,X ) = pr0(x1, A,X ) + pr0(x2, A

CCR, 0),

which formally corresponds to decomposition (6.7) of the full contract and the split x = x1 + x2 of
the hedger’s initial endowment? Since this equality is unlikely to be satisfied (even when x = x1 =
x2 = 0, as it was implicitly assumed in most existing papers on the nonlinear approach to credit
risk modeling), one could ask, more generally, whether the quantities Ŷ0 and Ŷ 1

0 + Ŷ 2
0 are close to

each other, so that some approximate equality is satisfied by the replication costs. Of course, an
analogous question can also be formulated for the corresponding replicating strategies.

One needs first to address the issues of regularity and completeness of market models with
default times. To this end, one may employ the existence and uniqueness results, as well as
the strict comparison theorems, obtained for BSDEs with jumps generated by the occurrence of
random times. BSDEs of this form are relatively uncommon in the existing literature on the theory
of BSDEs, but they were studied in papers by Peng and Xu [46] and Quenez and Sulem [49]. Of
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course, to be in a position to use results established in those papers, one would need to explicitly
specify the price dynamics for non-defaultable risky assets S1, . . . , Sd−2 (usually, they are supposed
to be driven by a multidimensional Brownian motion), as well as the manner in which default times
(thus also the prices of defaultable assets Sd−1 and Sd) are defined. The latter issue is addressed in
Peng and Xu [46] or Quenez and Sulem [49] through the so-called intensity-based approach, which
was previously extensively studied in the credit risk literature. Furthermore, it would be convenient
to assume that the cash and funding accounts, as well as remuneration processes, have absolutely
continuous sample paths, so that BSDEs could be represented in the following generic form

dYt = −g(t, Zt, Yt) dt+

d−2∑

i=1

Zi
t dW

i
t +

d∑

i=d−1

Zi
t dM

i
t + dĀt,

whereM1 andM2 are purely discontinuous G-martingales associated with the price processes Sd−1

and Sd, respectively, and Ā is a fixed process. Note that the generator g can be obtained from
(6.8), (6.9) and (6.10) by straightforward computations.

From the financial perspective, to ensure the completeness of the market model at hand, one
would need to postulate that some defaultable securities (typically, defaultable bonds issued by the
two parties or credit default swaps) are among primary traded assets. Finally, it is also necessary
to explicitly specify the closeout valuation process Q (see Remark 2.9) and the collateral process
C. When dealing with a local valuation problem, the most natural theoretical choice (albeit not
necessarily easy to implement in practice) would be to set (see Proposition 6.5)

Qt := pet (x1, C) = pgt (x1, C
t), Ct := pet (x,A

♯,X ) = pgt (x, (A
♯)t,X t)

although the latter convention of the endogenous collateral is slightly cumbersome to handle,
even when dealing with BSDEs driven by a multidimensional continuous martingale (see Nie and
Rutkowski [42]). Note also that it would require to replace Cτ by Cτ− when specifying the closeout
payoff K (hence also the process A♯) in Section 2.8.1. For technical problems for BSDEs with jumps
arising in this context and related to the classical immersion hypothesis and the way in which they
can be resolved, the interested reader is referred to recent papers by Crépey and Song [21, 22].

Within the framework of a linear model of credit risk, the issue of market completeness and
various methods for replication were studied in several works (see, in particular, Bielecki et al.
[5, 6, 7]). In contrast, only a few papers devoted to nonlinear models of credit risk are available.
More recently, Crépey [17, 18], Dumitrescu et al. [24] and Bichuch et al. [4] used BSDEs with jumps
to solve the valuation and hedging problems for derivative contracts exposed to the counterparty
credit risk. In Bichuch et al. [4] and Dumitrescu et al. [24], the authors focus on valuation of the
full contract, whereas Crépey [17, 18] examines the problem of the approximate additivity for the
credit valuation adjustments.

7 Nonlinear Valuation Versus Market Practice

Although the goal of this paper is to formulate questions and give preliminary answers regarding the
most fundamental issues pertinent to the theory of nonlinear arbitrage-free pricing, a few remarks
concerning the current market practice and its relationship to theoretical results on nonlinear pricing
could be appreciated by the reader. We also briefly describe some related recent papers where the
issue of the so-called valuation adjustments was examined in both linear and nonlinear setups.

According to the prevailing practice, the full price for a counterparty risky contract is obtained
by combining, at least implicitly, the so-called clean price of the basic contract (A, 0) with various
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valuation adjustments. The clean price and the corresponding hedge are computed by the trading
desk using the classical linear approach under a manifestly unrealistic, but obviously very conve-
nient, assumption that a proxy for the unique risk-free rate is available for funding of all trading
activities and the counterparty credit risk is ignored. It is thus clear that, from the theoretical
point of view, the clean price can be computed as a solution to a linear BSDE, as in the classical
arbitrage-free pricing theory. In contrast, various valuation adjustments are determined by the
dedicated CVA desk in such a way that they account for all other features of a contract and trading
conditions, such as: differential funding costs, the presence of the margin account, the counterparty
credit risk, regulatory requirements, etc.. This means that, according to practical approach adopted
by most banks, the full price of a new deal is implicitly represented as follows

full price (A♯,X ) := linear price (A, 0) + possibly nonlinear price (ACCR,X )

= clean price + total valuation adjustment (XVA),
(7.1)

where the clean price is given by a solution to a linear BSDE and the total valuation adjustment
(denoted as XVA) is determined by solving either a linear or a nonlinear BSDE. Of course, if all
three terms appearing in (7.1) (that is: the full price, the clean price, and the total valuation
adjustment) are given by solutions to particular linear BSDEs, then it is possible to argue that
decomposition (7.1) can be formally justified. However, if the valuation adjustment (and thus also
the full price) is given by a solution to a nonlinear BSDE, which is the case of our primary interest,
then the two terms appearing in the right-hand side in (7.1) cannot be computed separately and
subsequently aggregated to obtain the full price. This observation is valid, in general, despite the
fact that the clean price is always computed through a solution to linear BSDE or, equivalently, a
suitable version of the risk-neutral valuation formula, so that it enjoys the additivity property across
several (uncollateralized and non-defaultable) deals. Therefore, in our opinion, the introduction
of the concept of the clean price, although convenient in practice since it refers to the pre-crisis
experience and facilitates calibration of commonly used models for the underlying securities, may
further complicate the theoretical problem of searching for the full price of a contract and the
corresponding hedging strategy when working in a nonlinear setup.

Let us illustrate the issue of non-additivity by focusing on a specific nonlinear setup. We stress
that by the non-additivity of pricing we mean here the property that the clean price and the total
valuation adjustment cannot be computed separately by splitting the cash flows of a contract and
perhaps even using a different model to deal with each of the two (or more) components. Brigo
et al. [9] have recently shown that the risk-neutral valuation approach with adjusted cash flows
based on a proxy for the risk-free interest rate, which was introduced and studied by Pallavicini
et al. [44, 45], can be formally supported using the replication-based approach in which a proxy
for the risk-free interest rate can be chosen in a completely arbitrary way. Indeed, it is possible to
use any G-adapted and suitably integrable process α to play the role of a proxy for the risk-free
interest rate, since the financial interpretation (if any) of this process is irrelevant for the derivation
of decomposition (7.2). It was proven in Proposition 3.2 in [9], under the assumption of null initial
endowment (so that x = xt(x) = 0 for all t ∈ [0, T ]), that the ex-dividend hedger’s price of an
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attainable collateralized contract C = (A♯, C) equals, on the event {t < τ} for every t ∈ [0, T ],

pet(0, C
t) = pe,αt (A) +Bα

t EQα

(
1{τ≤T}

(
1{τc<τh}(1−Rc)Υ

+ − 1{τh<τc}(1−Rh)Υ
−
) ∣∣∣Gt

)

+Bα
t EQα

(∫ τ∧T

t
(αu − f̄u)Fu(B

α
u )

−1 du+
d∑

i=1

∫ τ∧T

t
(αu − h̄iu)F

i
u(B

α
u )

−1 du
∣∣∣Gt

)
(7.2)

+Bα
t EQα

(∫ τ∧T

t
(c̄u − αu)Cu(B

α
u )

−1 du
∣∣∣Gt

)
,

where we denote Ft = ψ0,l
t B0,l

t + ψ0,b
t B0,b

t , F i
t = ξitS

i
t , and

f̄t := f lt1{Ft≥0} + f bt 1{Ft<0}, h̄
i
t := hi,lt 1{F i

t
≥0} + hi,bt 1{F i

t
<0}, c̄t := clt1{Ct<0} + cbt1{Ct≥0},

where cl (resp. cb) is the remuneration rate for the cash collateral pledged (resp. received) by
the hedger. Furthermore, pe,αt (A) is the ex-dividend clean price and the probability measure Qα

is such that the processes Si(Bα)−1, i = 1, 2, . . . , d, are Qα-martingales. For more information on
the concept of a “martingale measure” in a nonlinear model, see Section 3.2.1 in [9]. Equality (7.2)
leads to the following formal additive decomposition of the ex-dividend price for (A♯,X ) into its
clean price and several complementary valuation adjustments (for their interpretation, see Section
3.2.2 in [9]), which can be aggregated into a single total valuation adjustment, denoted as XVAt,
so that we have

pet(0, C
t) = πe,αt (A) + CVAt −DVAt + FVAf̄

t +

d∑

i=1

FVAh̄i

t + LVAt

= πe,αt (A) + XVAt.

(7.3)

We stress that (7.3) is true for any choice as a proxy α for the risk-free interest rate, which further
supports the view that the clean price is an abstract concept dissociated from the actual trading
and the total valuation adjustment is a necessary mechanism needed to bring it back to reality.
More importantly, terms appearing in the right-hand side in (7.3) are intertwined so that various
valuation adjustments cannot be computed without the prior knowledge of the hedging strategy
for the full contract. We thus conclude that the additivity and separation of adjustments, which
is visibly suggested by the shape of equality (7.3), is in fact illusory, unless the underlying trading
model has fully linear features so that it is possible to use the theory of linear BSDEs in order to
justify separation. Obviously, this does not mean that separation cannot hold in some models with
certain nonlinear features but this should be an exceptional situation, rather than the rule.

As a concrete example of an explicit application of nonlinear pricing theory, we may quote
the recent paper by Bichuch et al. [4] who provide a thorough examination of valuation of path-
independent European claims in an extension of the classical Black-Scholes model to differential
funding rates and counterparty credit risk (for another example of pricing under asymmetric borrow-
ing and lending rates, see Brigo and Pallavicini [11]). In [4], the authors first verify the no-arbitrage
property of their trading model with respect to the null contract in the case of a nonnegative initial
endowment x. Subsequently, they apply the BSDE approach to unilateral valuation of a collat-
eralized European claim with bilateral default risk. The closeout payoff is specified in reference
to the third party valuation, which is based on a single risk-free rate (not available to the two
parties) and thus it is given by the standard Black-Scholes model. It is important to stress that
the total valuation adjustment for the hedger (or the counterparty) is not computed in [11] as a
separate quantity, but it is instead defined as the difference between the full unilateral price and
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the Black-Scholes price (see Definition 4.8 in [4]), which is hence supposed to play the role of the
clean price. Using our notation, the definition of the total valuation adjustment adopted in [4] reads
XVAt := pet(x, C

t) − πe,αt (A). It is thus clear that Bichuch et al. [4] do not advocate the practical
approach, where the clean price and valuations adjustment are supposed to be first independently
computed by trading and CVA desks and subsequently aggregated into the full price. It is also
observed in [4] that the total valuation adjustments are equal, and thus unilateral prices collapse
to a single full price, when the pricing BSDE is linear; otherwise, unilateral full prices computed
by the two counterparties, who are supposed to use identical trading model, are likely to differ.
Obviously, it is not our intention to suggest that the practice where separate desks are indepen-
dently dealing with components of a contract and then using the aggregate number as a plausible
candidate for the “full price” is wrong and thus should be discontinued. We have only argued
that this pragmatic approach, which can be justified within the framework of a linear market (see,
for instance, Burgard and Kjaer [12, 13], Fujii and Takahashi [30] or Kenyon and Green [37, 36])
is unlikely to result in a mathematically sound arbitrage-free pricing of derivatives in a nonlinear
setup, where the introduction of the concept of the clean price is no longer advantageous.

Let us finally mention the important issue of netting of outstanding deals between counterpar-
ties, which means that, in principle, every new deal should be valued not in isolation, but rather as
a new component added to the portfolio of existing contracts. Needless to say, this issue is highly
challenging, both in theory and practice, and thus it is left for future work. Last but not least,
it should be acknowledged that the valuation of derivatives based on arbitrage-free replication (or
superhedging) should not be seen as the most realistic pricing approach, but rather a mathemat-
ical idealization of a much more complex situation, and thus other pricing paradigms should also
be examined. The interested reader is referred to Kenyon and Green [35] for a discussion of a
regulatory-compliant derivatives pricing and to Albanese and Crépey [2] for a novel balance-sheet
approach to XVA with the special emphasis on KVA (capital value adjustment) computations.



48 T.R. Bielecki, I. Cialenco and M. Rutkowski

Acknowledgments

The research of I. Cialenco and M. Rutkowski was supported by the DVC Research Bridging
Support Grant BSDEs Approach to Models with Funding Costs. Part of the research was completed
while I. Cialenco and M. Rutkowski were visiting the Institute for Pure and Applied Mathematics
(IPAM) at UCLA, which is funded by the National Science Foundation. We would also like to
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[20] S. Crépey, R. Elie, and W. Sabbagh. When capital is the funding source: The XVA anticipated
BSDEs. Working paper, 2017.
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