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Introduction

The goal of these lectures is to present a survey of recent developments in
the practically important and challenging area of hedging credit risk. In a
companion work, Bielecki et al. (2004a), we presented techniques and results
related to the valuation of defaultable claims. It should be emphasized that
in most existing papers on credit risk, the risk-neutral valuation of defaultable
claims is not supported by any other argument than the desire to produce an
arbitrage-free model of default-free and defaultable assets. Here, we focus on
the possibility of a perfect replication of defaultable claims and, if the latter is
not feasible, on various approaches to hedging in an incomplete setting.

These lecture notes are organized as follows. Chapter 1 is devoted to methods
and results related to the replication of defaultable claims within the reduced-
form approach (also known as the intensity-based approach). Let us mention
that the replication of defaultable claims in the so-called structural approach,
which was initiated by Merton (1973) and Black and Cox (1976), is entirely
different (and rather standard), since the value of the firm is usually postulated
to be a tradeable underlying asset. Since we work within the reduced-form
framework, we focus on the possibility of an exact replication of a given de-
faultable claim through a trading strategy based on default-free and defaultable
securities.

First, we shall analyze (following, in particular, Vaillant (2001)) various
classes of self-financing trading strategies based on default-free and defaultable
primary assets. Subsequently, we present various applications of general results
to financial models with default-free and defaultable primary assets are given.
We develop a systematic approach to replication of a generic defaultable claim,
and we provide closed-form expressions for prices and replicating strategies for
several typical defaultable claims. Finally, we present a few examples of repli-
cating strategies for particular credit derivatives. In the last section, we present,
by means of an example, the PDE approach to the valuation and hedging of
defaultable claims within the framework of a complete model.

In Chapter 2, we formulate a new paradigm for pricing and hedging financial
risks in incomplete markets, rooted in the classical Markowitz mean-variance
portfolio selection principle and first examined within the context of credit risk
by Bielecki and Jeanblanc (2003). We consider an investor who is interested in
dynamic selection of her portfolio, so that the expected value of her wealth at
the end of the pre-selected planning horizon is no less then some floor value,
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6 CHAPTER 0. INTRODUCTION

and so that the associated risk, as measured by the variance of the wealth at
the end of the planning horizon, is minimized. If the perfect replication is not
possible, then the determination of a price that the investor is willing to pay for
the opportunity, will become subject to the investor’s overall attitude towards
trading. In case of our investor, the bid price and the corresponding hedging
strategy is to be determined in accordance with the mean-variance paradigm.

The optimization techniques used in Chapter 2 are based on the mean-
variance portfolio selection in continuous time. To the best of our knowl-
edge, Zhou and Li (2000) were the first to use the embedding technique and
linear-quadratic (LQ) optimal control theory to solve the continuous-time mean-
variance problem with assets having deterministic diffusion coefficients. Their
approach was subsequently developed in various directions by, among others, Li
et al. (2001), Lim and Zhou (2002), Zhou and Yin (2002), and Bielecki et al.
(2004b). For an excellent survey of most of these results, the interested reader
is referred to Zhou (2003).

In the final chapter, we present a few alternative ways of pricing defaultable
claims in the situation when perfect hedging is not possible. We study the indif-
ference pricing approach, that was initiated by Hodges and Neuberger (1989).
This method leads us to solving portfolio optimization problems in an incom-
plete market model, and we shall use the dynamic programming approach. In
particular, we compare the indifference prices obtained using strategies adapted
to the reference filtration to the indifference prices obtained using strategies
based on the enlarged filtration, which encompasses also the observation of the
default time. We also solve portfolio optimization problems for the case of the
exponential utility; our method relies here on the ideas of Rouge and El Karoui
(2000) and Musiela and Zariphopoulou (2004). Next, we study a particular
indifference price based on the quadratic criterion; it will be referred to as the
quadratic hedging price. In a default-free setting, a similar study was done
by Kohlmann and Zhou (2000). Finally, we present a solution to a specific
optimization problem, using the duality approach for exponential utilities.
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Chapter 1

Replication of Defaultable
Claims

The goal of this chapter is the present some methods and results related to the
replication of defaultable claims within the reduced-form approach (also known
as the intensity-based approach). In contrast to some other related works, in
which this issue was addressed by invoking a suitable version of the martingale
representation theorem (see, for instance, Bélanger et al. (2001) or Blanchet-
Scalliet and Jeanblanc (2004)), we analyze here the possibility of a perfect repli-
cation of a given defaultable claim through a trading strategy based on default-
free and defaultable securities. Therefore, the important issue of the choice of
primary assets that are used to replicate a defaultable claim (e.g., a vulnerable
option or a credit derivative) is emphasized. Let us stress that replication of de-
faultable claims within the structural approach to credit risk is rather standard,
since in this approach the default time is, typically, a predictable stopping time
with respect to the filtration generated by prices of primary assets.

By contrast, in the intensity-based approach, the default time is not a stop-
ping time with respect to the filtration generated by prices of default-free pri-
mary assets, and it is a totally inaccessible stopping time with respect to the
enlarged filtration, that is, the filtration generated by the prices of primary
assets and the jump process associated with the random moment of default.

Our research in the chapter was motivated, in particular, by the paper by
Vaillant (2001). Other related works include: Wong (1998), Arvanitis and Lau-
rent (1999), Greenfield (2000), Lukas (2001), Collin-Dufresne and Hugonnier
(2002) and Jamshidian (2002).

For a more exhaustive presentation of the mathematical theory of credit
risk, we refer to the monographs by Cossin and Pirotte (2000), Arvanitis and
Gregory (2001), Bielecki and Rutkowski (2002), Duffie and Singleton (2003), or
Schönbucher (2003).

The chapter is organized as follows. Section 1.1 is devoted to a brief de-
scription of the basic concepts that are used in what follows. In Section 1.2,
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8 CHAPTER 1. REPLICATION OF DEFAULTABLE CLAIMS

we formally introduce the definition of a generic defaultable claim (X, Z, C, τ)
and we examine the basic features of its ex-dividend price and pre-default value.
The well-known valuation results for defaultable claims are also provided. In
the next section, we analyze (following, in particular, Vaillant (2001)) various
classes of self-financing trading strategies based on default-free and defaultable
primary assets.

Section 1.4 deals with applications of results obtained in the preceding sec-
tion to financial models with default-free and defaultable primary assets. We
develop a systematic approach to replication of a generic defaultable claim,
and we provide closed-form expressions for prices and replicating strategies for
several typical defaultable claims. A few examples of replicating strategies for
particular credit derivatives are presented.

Finally, in the last section, we examine the PDE approach to the valuation
and hedging of defaultable claims.

1.1 Preliminaries

In this section, we introduce the basic notions that will be used in what follows.
First, we introduce a default-free market model; for the sake of concreteness we
focus on default-free zero-coupon bonds. Subsequently, we shall examine the
concept of a random time associated with a prespecified hazard process.

1.1.1 Default-Free Market

Consider an economy in continuous time, with the time parameter t ∈ R+. We
are given a filtered probability space (Ω,F,P∗) endowed with a d-dimensional
standard Brownian motion W ∗. It is convenient to assume that F is the P∗-
augmented and right-continuous version of the natural filtration generated by
W ∗. As we shall see in what follows, the filtration F will also play an important
role of a reference filtration for the intensity of default event. Let us recall that
any (local) martingale with respect to a Brownian filtration F is continuous;
this well-known property will be of frequent use in what follows.

In the first step, we introduce an arbitrage-free default-free market. In this
market, we have the following primary assets:

• A money market account B satisfying

dBt = rtBt dt, B0 = 1,

or, equivalently,

Bt = exp
(∫ t

0

ru du

)
,

where r is an F-progressively measurable stochastic process. Thus, B is
an F-adapted, continuous, and strictly positive process of finite variation.



1.1. PRELIMINARIES 9

• Default-free zero-coupon bonds with prices

B(t, T ) = Bt EP∗(B−1
T | Ft), ∀ t ≤ T,

where T is the bond’s maturity date. Since the filtration F is generated
by a Brownian motion, for any maturity date T > 0 we have

dB(t, T ) = B(t, T )
(
rt dt + b(t, T ) dW ∗

t

)

for some F-predictable, Rd-valued process b(t, T ), referred to as the bond’s
volatility.

For the sake of expositional simplicity, we shall postulate throughout that
the default-free term structure model is complete. The probability P∗ is thus the
unique martingale measure for the default-free market model. This assumption
is not essential, however. Notice that all price processes introduced above are
continuous F-semimartingales.

Remarks. The bond was chosen as a convenient and practically important
example of a tradeable financial asset. We shall be illustrating our theoretical
derivations with examples in which the bond market will play a prominent role.
Most results can be easily applied to other classes of financial models, such as:
models of equity markets, futures markets, or currency markets, as well as to
models of LIBORs and swap rates.

1.1.2 Random Time

Let τ be a non-negative random variable on a probability space (Ω,G,Q∗),
termed a random time (it will be later referred to as a default time). We intro-
duce the jump process Ht = 11{τ≤t} and we denote by H the filtration generated
by this process.

Hazard process. We now assume that some reference filtration F such that
Ft ⊆ G is given. We set G = F ∨H so that Gt = Ft ∨ Ht = σ(Ft,Ht) for every
t ∈ R+. The filtration G is referred to as to the full filtration: it includes the
observations of default event. It is clear that τ is an H-stopping time, as well
as a G-stopping time (but not necessarily an F-stopping time). The concept of
the hazard process of a random time τ is closely related to the process Ft which
is defined as follows:

Ft = Q∗{τ ≤ t | Ft}, ∀ t ∈ R+.

Let us denote Gt = 1 − Ft = Q∗{τ > t | Ft} and let us assume that Gt > 0 for
every t ∈ R+ (hence, we exclude the case where τ is an F-stopping time). Then
the process Γ : R+ → R+, given by the formula

Γt = − ln(1− Ft) = − ln Gt, ∀ t ∈ R+,

is termed the hazard process of a random time τ with respect to the reference
filtration F, or briefly the F-hazard process of τ .
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Notice that Γ∞ = ∞ and Γ is an F-submartingale, in general. We shall
only consider the case when Γ is an increasing process (for a construction of
a random time associated with a given hazard process Γ, see Section 1.1.2).
This indeed is not a serious compromise to generality. We refer to Blanchet-
Scalliet and Jeanblanc (2004) for a discussion regarding completeness of the
underlying financial market and properties of the process Γ. They show that if
the underlying financial market is complete then the so-called (H) hypothesis is
satisfied and, as a consequence, the process Γ is indeed increasing.

Remarks. The simplifying assumption thatQ∗{τ > t | Ft} > 0 for every t ∈ R+

can be relaxed. First, if we fix a maturity date T , it suffices to postulate that
Q∗{τ > T | FT } > 0. Second, if we have Q∗{τ ≤ T} = 1, so that the default
time is bounded by some U = ess sup τ ≤ T , then it suffices to postulate that
Q∗{τ > t | Ft} > 0 for every t ∈ [0, U) and to examine separately the event
{τ = U}. For a general approach to hazard processes, the interested reader is
referred to Bélanger et al. (2001).

Deterministic intensity. The study of a simple case when the reference fil-
tration F is trivial (or when a random time τ is independent of the filtration
F, and thus the hazard process is deterministic) may be instructive. Assume
that τ is such that the cumulative distribution function F (t) = Q∗{τ ≤ t} is an
absolutely continuous function, that is,

F (t) =
∫ t

0

f(u) du

for some density function f : R+ → R+. Then we have

F (t) = 1− e−Γ(t) = 1− e−
∫ t
0 γ(u) du, ∀ t ∈ R+,

where (recall that we postulated that G(t) = 1− F (t) > 0)

γ(t) =
f(t)

1− F (t)
, ∀ t ∈ R+.

The function γ : R+ → R is non-negative and satisfies
∫∞
0

γ(u) du = ∞. It
is called the intensity function of τ (or the hazard rate). It can be checked by
direct calculations that the process Ht −

∫ t∧τ

0
γ(u) du is an H-martingale.

Stochastic intensity. Assume that the hazard process Γ is absolutely continu-
ous with respect to the Lebesgue measure (and therefore an increasing process),
so that there exists a process γ such that Γt =

∫ t

0
γu du for every t ∈ R+. Then

the F-predictable version of γ is called the stochastic intensity of τ with respect
to F, or simply the F-intensity of τ . In terms of the stochastic intensity, the con-
ditional probability of the default event {t < τ ≤ T}, given the full information
Gt available at time t, equals

Q∗{t < τ ≤ T | Gt} = 11{τ>t} EQ∗
(
1− e−

∫ T
t

γu du
∣∣∣Ft

)
.
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Thus
Q∗{τ > T | Gt} = 11{τ>t} EQ∗

(
e−

∫ T
t

γu du
∣∣∣Ft

)
.

It can be shown (see, for instance, Jeanblanc and Rutkowski (2002) or Bielecki
and Rutkowski (2004)) that the process

Ht − Γτ∧t = Ht −
∫ τ∧t

0

γu du =
∫ t

0

(1−Hu)γu du, ∀ t ∈ R+,

is a (purely discontinuous) G-martingale

Construction of a Random Time

We shall now briefly describe the most commonly used construction of a random
time associated with a given hazard process Γ. It should be stressed that the
random time obtained through this particular method – which will be called the
canonical construction in what follows – has certain specific features that are
not necessarily shared by all random times with a given F-hazard process Γ. We
start by assuming that we are given an F-adapted, right-continuous, increasing
process Γ defined on a filtered probability space (Ω̃,F,P∗). As usual, we assume
that Γ0 = 0 and Γ∞ = +∞. In many instances, the hazard process Γ is given
by the equality

Γt =
∫ t

0

γu du, ∀ t ∈ R+,

for some non-negative, F-predictable, stochastic intensity γ. To construct a
random time τ such that Γ is the F-hazard process of τ, we need to enlarge
the underlying probability space Ω̃. This also means that Γ is not the F-hazard
process of τ under P∗, but rather the F-hazard process of τ under a suitable
extension Q∗ of the probability measure P∗. Let ξ be a random variable defined
on some probability space (Ω̂, F̂ , Q̂), uniformly distributed on the interval [0, 1]
under Q̂. We consider the product space Ω = Ω̃× Ω̂, endowed with the product
σ-field G = F∞ ⊗ F̂ and the product probability measure Q∗ = P∗ ⊗ Q̂. The
latter equality means that for arbitrary events A ∈ F∞ and B ∈ F̂ we have
Q∗{A×B} = P∗{A}Q̂{B}. We define the random time τ : Ω → R+ by setting

τ = inf { t ∈ R+ : e−Γt ≤ ξ } = inf { t ∈ R+ : Γt ≥ η },
where the random variable η = − ln ξ has a unit exponential law under Q∗. It
is not difficult to find the process Ft = Q∗{τ ≤ t | Ft}. Indeed, since clearly
{τ > t} = {ξ < e−Γt} and the random variable Γt is F∞-measurable, we obtain

Q∗{τ > t | F∞} = Q∗{ξ < e−Γt | F∞} = Q̂{ξ < e−x}x=Γt = e−Γt .

Consequently, we have

1− Ft = Q∗{τ > t | Ft} = EQ∗
(
Q∗{τ > t | F∞} | Ft

)
= e−Γt ,

and so F is an F-adapted, right-continuous, increasing process. It is also clear
that Γ is the F-hazard process of τ under Q∗. Finally, it can be checked that any
P∗-Brownian motion W ∗ with respect to F remains a Brownian motion under
Q∗ with respect to the enlarged filtration G = F ∨H.
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1.2 Defaultable Claims

A generic defaultable claim (X, C, Z, τ) with maturity date T consists of:

• The default time τ specifying the random time of default and thus also
the default events {τ ≤ t} for every t ∈ [0, T ]. It is always assumed that
τ is strictly positive with probability 1.

• The promised payoff X, which represents the random payoff received by
the owner of the claim at time T, if there was no default prior to or at time
T . The actual payoff at time T associated with X thus equals X11{τ>T}.

• The finite variation process C representing the promised dividends – that
is, the stream of (continuous or discrete) random cash flows received by
the owner of the claim prior to default or up to time T , whichever comes
first. We assume that CT − CT− = 0.

• The recovery process Z, which specifies the recovery payoff Zτ received by
the owner of a claim at time of default, provided that the default occurs
prior to or at maturity date T .

It is convenient to introduce the dividend process D, which represents all cash
flows associated with a defaultable claim (X, C,Z, τ). Formally, the dividend
process D is defined through the formula

Dt = X11{τ>T}11[T,∞)(t) +
∫

(0,t]

(1−Hu) dCu +
∫

(0,t]

Zu dHu,

where both integrals are (stochastic) Stieltjes integrals.

Definition 1.1 The ex-dividend price process U of a defaultable claim of the
form (X, C, Z, τ) which settles at time T is given as

Ut = Bt EQ∗
( ∫

(t,T ]

B−1
u dDu

∣∣∣Gt

)
, ∀ t ∈ [0, T ),

where Q∗ is the spot martingale measure and B is the savings account. In
addition, at maturity date we set UT = UT (X)+UT (Z) = X11{τ>T}+ZT 11{τ=T}
.

Observe that Ut = Ut(X)+Ut(Z)+Ut(C), where the meaning of Ut(X), Ut(Z)
and Ut(C) is clear. Recall also that the filtration G models the full information,
that is, the observations of the default-free market and of the default event.

1.2.1 Default Time

We assume from now on that we are given an F-adapted, right-continuous,
increasing process Γ on (Ω,F,P∗) with Γ∞ = ∞. The default time τ and the
probability measure Q∗ are constructed as in Section 1.1.2. The probability Q∗
will play the role of the martingale probability for the defaultable market. It is
essential to observe that:
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• The Wiener process W ∗ is also a Wiener process with respect to G under
the probability measure Q∗.

• We have Q∗|Ft
= P∗|Ft

for every t ∈ [0, T ].

If the hazard process Γ admits the integral representation Γt =
∫ t

0
γu du

then the process γ is called the (stochastic) intensity of default with respect to
the reference filtration F.

1.2.2 Risk-Neutral Valuation

We shall now present the well-known valuation formulae for defaultable claims
within the reduced-form setup (see, e.g., Lando (1998), Schönbucher (1998),
Bielecki and Rutkowski (2004) or Bielecki et al. (2004a)).

Terminal payoff. The valuation of the terminal payoff is based on the following
classic result.

Lemma 1.1 For any G-measurable, integrable random variable X and any t ≤
T we have

EQ∗(11{τ>T}X | Gt) = 11{τ>t}
EQ∗(11{τ>T}X | Ft)
Q∗(τ > t | Ft)

.

If, in addition, X is FT -measurable then

EQ∗(11{τ>T}X | Gt) = 11{τ>t} EQ∗(eΓt−ΓT X | Ft).

Let X be an FT -measurable random variable representing the promised pay-
off at maturity date T . We consider a defaultable claim of the form 11{τ>T}X
with zero recovery in case of default (i.e., we set Z = C = 0). Using the
definition of the ex-dividend price of a defaultable claim, we get the following
risk-neutral valuation formula

Ut(X) = Bt EQ∗(B−1
T 11{τ>T}X | Gt)

which holds for any t < T . The next result is a straightforward consequence of
Lemma 1.1.

Proposition 1.1 The price of the promised payoff X satisfies for t ∈ [0, T ]

Ut(X) = Bt EQ∗(B−1
T X11{τ>T} | Gt) = 11{τ>t}Ũt(X), (1.1)

where we define

Ũt(X) = Bt EQ∗(B−1
T eΓt−ΓT X | Ft) = B̂t EQ∗(B̂−1

T X | Ft),

where the risk-adjusted savings account B̂t equals B̂t = Bte
Γt . If, in addition,

the default time admits the intensity process γ then

B̂t = exp
(∫ t

0

(ru + γu) du

)
.
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The process Ũt(X) represents the pre-default value at time t of the promised
payoff X. Notice that ŨT (X) = X and the process Ũt(X)/B̂t, t ∈ [0, T ], is a con-
tinuous F-martingale (thus, the process Ũ(X) is a continuous F-semimartingale).

Remark. The valuation formula (1.1), as well as the concept of pre-default
value, should be supported by replication arguments. To this end, we need first
to construct a suitable model of a defaultable market. In fact, if we wish to use
formula (1.1), we need to know the joint law of all random variables involved,
and this appears to be a non-trivial issue, in general.

Recovery payoff. The following result appears to be useful in the valuation
of the recovery payoff Zτ which occurs at time τ . The process Ũ(Z) introduced
below represents the pre-default value of the recovery payoff.

For the proof of Proposition 1.2 we refer, for instance, to Bielecki and
Rutkowski (2004) (see Propositions 5.1.1 and 8.2.1 therein).

Proposition 1.2 Let the hazard process Γ be continuous, and let Z be an F-
predictable bounded process. Then for every t ∈ [0, T ] we have

Ut(Z) = Bt EQ∗(B−1
τ Zτ11 {t<τ≤T} | Gt)

= 11{τ>t}Bt EQ∗
( ∫ T

t

ZuB−1
u eΓt−Γu dΓu

∣∣∣Ft

)
= 11{τ>t}Ũt(Z).

where we set

Ũt(Z) = B̂t EQ∗
( ∫ T

t

ZuB̂−1
u dΓu

∣∣∣Ft

)
, ∀ t ∈ [0, T ].

If the default intensity γ with respect to F exists then we have

Ũt(Z) = EQ∗
( ∫ T

t

Zue−
∫ u

t
(rv+γv) dv γu du

∣∣∣Ft

)
.

Remark. Notice that ŨT (Z) = 0 while, in general, UT (Z) = ZT 11{τ=T} is non-
zero. Note, however, that if the hazard process Γ is assumed to be continuous
then we have Q∗{τ = T} = 0, and thus ŨT (Z) = 0 = UT (Z).

Promised dividends. To value the promised dividends C that are paid prior
to default time τ we shall make use of the following result. Notice that at any
date t < T the process Ũ(C) gives the pre-default value of future promised
dividends.

Proposition 1.3 Let the hazard process Γ be continuous, and let C be an F-
predictable, bounded process of finite variation. Then for every t ∈ [0, T ]

Ut(C) = Bt EQ∗
( ∫

(t,T ]

B−1
u (1−Hu) dCu

∣∣∣Gt

)

= 11{τ>t}Bt EQ∗
(∫

(t,T ]

B−1
u eΓt−Γu dCu

∣∣∣Ft

)
= 11{τ>t}Ũt(C),
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where we define

Ũt(C) = B̂t EQ∗
( ∫

(t,T ]

B̂−1
u dCu

∣∣∣Ft

)
, ∀ t ∈ [0, T ].

If, in addition, the default time τ admits the intensity γ with respect to F then

Ũt(C) = EQ∗
( ∫

(t,T ]

e−
∫ u

t
(rv+γv) dv dCu

∣∣∣Ft

)
.

1.2.3 Defaultable Term Structure

For a defaultable discount bond with zero recovery it is natural to adopt the
following definition (the superscript 0 refers to the postulated zero recovery
scheme) of the price

D0(t, T ) = Bt EQ∗(B−1
T 11{τ>T} | Gt) = 11{τ>t}D̃0(t, T ),

where D̃0(t, T ) stands for the pre-default value of the bond, which is given by
the following equality:

D̃0(t, T ) = B̂t EQ∗(B̂−1
T | Ft).

Since F is the Brownian filtration, the process D̃0(t, T )/B̂t is a continuous,
strictly positive, F-martingale. Therefore, the pre-default bond price D̃0(t, T )
is a continuous, strictly positive, F-semimartingale. In the special case, when Γ
is deterministic, we have D̃0(t, T ) = eΓt−ΓT B(t, T ).

Remark. The case zero recovery is, of course, only a particular example. For
more general recovery schemes and the corresponding bond valuation results,
we refer, for instance, to Section 2.2.4 in Bielecki et al. (2004a).

Let QT stand for the forward martingale measure, given on (Ω,GT ) (as well
as on (Ω,FT )) through the formula

dQT

dQ∗
=

1
BT B(0, T )

, Q∗-a.s.,

so that the process WT
t = W ∗

t −
∫ t

0
b(u, T ) du is a Brownian motion under QT .

Denote by F (t, U, T ) = B(t, U)(B(t, T ))−1 the forward price of the U -maturity
bond, so that

dF (t, U, T ) = F (t, U, T )
(
b(t, U)− b(t, T )

)
dWT

t .

Since the processes Bt and B(t, T ) are F-adapted, it can be shown (see, e.g.,
Jamshidian (2002)) that Γ is also the F-hazard process of τ under QT , and thus

QT {t < τ ≤ T | Gt} = 11{τ>t}EQT
(eΓt−ΓT | Ft).

Let us define an auxiliary process Γ(t, T ) = D̃0(t, T )(B(t, T ))−1 (for a fixed
T > 0). The next result examines the basic properties of the process Γ(t, T ).
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Lemma 1.2 Assume that the F-hazard process Γ is continuous. The process
Γ(t, T ), t ∈ [0, T ], is a continuous F-submartingale and

dΓ(t, T ) = Γ(t, T )
(
dΓt + β(t, T ) dWT

t

)
(1.2)

for some F-predictable process β(t, T ). The process Γ(t, T ) is of finite variation
if and only if the hazard process Γ is deterministic. In the latter case, we have
Γ(t, T ) = eΓt−ΓT .

Proof. Recall that B̂t = Bte
Γt and notice that

Γ(t, T ) =
D̃0(t, T )
B(t, T )

=
B̂t EQ∗(B̂−1

T | Ft)
Bt EQ∗(B−1

T | Ft)
= EQT

(eΓt−ΓT | Ft) = eΓtMt,

where we set Mt = EQT (e−ΓT | Ft). Recall that the filtration F is generated by
a process W ∗, which is a Wiener process with respect to P∗ and Q∗, and all
martingales with respect to a Brownian filtration are continuous processes.

We conclude that Γ(t, T ) is the product of a strictly positive, increasing,
right-continuous, F-adapted process eΓt , and a strictly positive, continuous, F-
martingale M . Furthermore, there exists an F-predictable process β̂(t, T ) such
that M satisfies

dMt = Mtβ̂(t, T ) dWT
t

with the initial condition M0 = EQT
(e−ΓT ). Formula (1.2) follows by an applica-

tion of Itô’s formula, by setting β(t, T ) = e−Γt β̂(t, T ). To complete the proof, it
suffices to recall that a continuous martingale is never of finite variation, unless
it is a constant process. ¤

Suppose that Γt =
∫ t

0
γu du. Then (1.2) yields

dΓ(t, T ) = Γ(t, T )
(
γt dt + β(t, T ) dWT

t

)
.

Consequently, the pre-default price D̃0(t, T ) = Γ(t, T )B(t, T ) is governed by

dD̃0(t, T ) = D̃0(t, T )
((

rt + γt + β(t, T )b(t, T )
)
dt + b̃(t, T ) dW ∗

t

)
, (1.3)

where the volatility process equals b̃(t, T ) = β(t, T ) + b(t, T ).

1.3 Properties of Trading Strategies

In this section, we shall examine the most basic properties of the wealth process
of a self-financing trading strategy. First, we concentrate on trading in default-
free assets. In the next step, we also include defaultable assets in our portfolio.
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1.3.1 Default-Free Primary Assets

Our goal in this section is to present some auxiliary results related to the concept
of a self-financing trading strategy for a market model involving default-free and
defaultable securities. For the sake of the reader’s convenience, we shall first
discuss briefly the classic concepts of self-financing cash and futures strategies in
the context of default-free market model. It appears that in case of defaultable
securities only minor adjustments of definitions and results are needed (see,
Vaillant (2001) or Blanchet-Scalliet and Jeanblanc (2004)).

Cash Strategies

Let Y 1
t and Y 2

t stand for the cash prices at time t ∈ [0, T ] of two tradeable assets.
We postulate that Y 1 and Y 2 are continuous semimartingales. We assume, in
addition, that the process Y 1 is strictly positive, so that it can be used as a
numeraire.

Remark. We chose the convention that price processes of default-free securities
are continuous semimartingales. Results of this section can be extended to the
case of general semimartingales (for instance, jump diffusions). Our choice was
motivated by the desire of providing relatively simple closed-form expressions.

Let φ = (φ1, φ2) be a trading strategy for default-free market so that, in
particular, processes φ1 and φ2 are predictable with respect to the reference
filtration F (the same measurability assumption will be valid for components
φ1, . . . , φk of a k-dimensional trading strategy). The component φi

t represents
the number of units of the ith asset held in the portfolio at time t.

Let Vt(φ) denote the wealth of the cash strategy φ = (φ1, φ2) at time t, so
that

Vt(φ) = φ1
t Y

1
t + φ2

t Y
2
t , ∀ t ∈ [0, T ].

We say that the cash strategy φ is self-financing if

Vt(φ) = V0(φ) +
∫ t

0

φ1
u dY 1

u +
∫ t

0

φ2
u dY 2

u , ∀ t ∈ [0, T ],

that is,
dVt(φ) = φ1

t dY 1
t + φ2

t dY 2
t .

This yields
dVt(φ) = (Vt(φ)− φ2

t Y
2
t )(Y 1

t )−1 dY 1
t + φ2

t dY 2
t .

Let us introduce the relative values:

V 1
t (φ) = Vt(φ)(Y 1

t )−1, Y 2,1
t = Y 2

t (Y 1
t )−1.

A simple application of Itô’s formula yields

V 1
t (φ) = V 1

0 (φ) +
∫ t

0

φ2
u dY 2,1

u .
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It is well known that a similar result holds for any finite number of cash assets.
Let Y 1

t , Y 2
t , . . . , Y k

t represent that cash values at time t of k assets. We postulate
that Y 1, Y 2, . . . , Y k are continuous semimartingales. Then the wealth Vt(φ) of
a trading strategy φ = (φ1, φ2, . . . , φk) equals

Vt(φ) =
k∑

i=1

φi
tY

i
t , ∀ t ∈ [0, T ], (1.4)

and φ is said to be a self-financing cash strategy if

Vt(φ) = V0(φ) +
k∑

i=1

∫ t

0

φi
u dY i

u, ∀ t ∈ [0, T ]. (1.5)

Suppose that the process Y 1 is strictly positive. Then by combining the last
two formulae, we obtain

dVt(φ) =
(
Vt(φ)−

k∑

i=2

φi
tY

i
t

)
(Y 1

t )−1 dY 1
t +

k∑

i=2

φi
t dY i

t .

The latter representation shows that the wealth process depends only on k − 1
components of φ. Choosing Y 1 as a numeraire asset, and denoting V 1

t (φ) =
Vt(φ)(Y 1

t )−1, Y i,1
t = Y i

t (Y 1
t )−1, we get the following well-known result.

Lemma 1.3 Let φ = (φ1, φ2, . . . , φk) be a self-financing cash strategy. Then we
have

V 1
t (φ) = V 1

0 (φ) +
k∑

i=2

∫ t

0

φi
u dY i,1

u , ∀ t ∈ [0, T ].

Cash-Futures Strategies

Let us first consider the special case of two assets. Assume that Y 1
t and Y 2

t

represent the cash and futures prices at time t ∈ [0, T ] of some assets, respec-
tively. As before, we postulate that Y 1 and Y 2 are continuous semimartingales.
Moreover, Y 1 is assumed to be a strictly positive process. In view of specific
features of a futures contract, it is natural to postulate that the wealth Vt(φ)
satisfies

Vt(φ) = φ1
t Y

1
t + φ2

t 0 = φ1
t Y

1
t , ∀ t ∈ [0, T ].

The cash-futures strategy φ = (φ1, φ2) is self-financing if

dVt(φ) = φ1
t dY 1

t + φ2
t dY 2

t , (1.6)

which yields, provided that Y 1 is strictly positive,

dVt(φ) = Vt(φ)(Y 1
t )−1 dY 1

t + φ2
t dY 2

t .

Remark. Let us recall that the futures price Y 2
t (that is, the quotation of a

futures contract at time t) has different features than the cash price of an asset.
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Specifically, we make the standard assumption that it is possible to enter a
futures contract at no initial cost. The gains or losses from futures contracts are
associated with marking to market (see, for instance, Duffie (2003) or Musiela
and Rutkowski (1997)). Note that the 0 in the formula defining Vt(φ) is aimed
to represent the value of a futures contract at time t, as opposed to the futures
price Y 2

t at this date.

Lemma 1.4 Let φ = (φ1, φ2) be a self-financing cash-futures strategy. Suppose
that the processes Y 1 and Y 2 are strictly positive. Then the relative wealth
process V 1

t (φ) = Vt(φ)(Y 1
t )−1 satisfies

V 1
t (φ) = V 1

0 (φ) +
∫ t

0

φ̂2,1
u dŶ 2,1

u , ∀ t ∈ [0, T ],

where φ̂2,1
t = φ2

t (Y
1
t )−1eα2,1

t , Ŷ 2,1
t = Y 2

t e−α2,1
t and

α2,1
t = 〈ln Y 2, ln Y 1〉t =

∫ t

0

(Y 2
u )−1(Y 1

u )−1 d〈Y 2, Y 1〉u.

Proof. For brevity, we write Vt = Vt(φ) and V 1
t = V 1

t (φ). The Itô formula,
combined with (1.6), yields

dV 1
t = (Y 1

t )−1dVt + Vt d(Y 1
t )−1 + d〈(Y 1)−1, V 〉t

= φ1
t (Y

1
t )−1 dY 1

t + φ2
t (Y

1
t )−1 dY 2

t + φ1
t Y

1
t d(Y 1

t )−1

− φ1
t (Y

1
t )−2 d〈Y 1, Y 1〉t − φ2

t (Y
1
t )−2 d〈Y 1, Y 2〉t

= φ2
t (Y

1
t )−1dY 2

t − φ2
t (Y

1
t )−2 d〈Y 1, Y 2〉t

= φ2
t e

α2,1
t (Y 1

t )−1
(
e−α2,1

t dY 2
t − Y 2

t e−α2,1
t dα2,1

t

)
= φ̂2,1

t dŶ 2,1
t

and the result follows. ¤
Let Y 1, . . . , Y l be the cash prices of l assets, and let Y l+1, . . . , Y k represent

the futures prices of k− l assets. Then the wealth process of a trading strategy
φ = (φ1, φ2, . . . , φk) is given by the formula

Vt(φ) =
l∑

i=1

φi
tY

i
t , ∀ t ∈ [0, T ], (1.7)

and φ is a self-financing cash-futures strategy whenever

Vt(φ) = V0(φ) +
k∑

i=1

∫ t

0

φi
u dY i

u, ∀ t ∈ [0, T ].

The proof of the next result relies on the similar calculations as the proofs of
Lemmas 1.3 and 1.4.
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Lemma 1.5 Let φ = (φ1, φ2, . . . , φk) be a self-financing cash-futures strategy.
Suppose that the processes Y 1 and Y l+1, . . . , Y k are strictly positive. Then the
relative wealth process V 1

t (φ) = Vt(φ)(Y 1
t )−1 satisfies, for every t ∈ [0, T ],

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY i,1

u +
k∑

i=l+1

∫ t

0

φ̂i,1
u dŶ i,1

u ,

where we denote Y i,1
t = Y i

t (Y 1
t )−1, φ̂i,1

t = φi
t(Y

1
t )−1eαi1

t , Ŷ i,1
t = Y i

t e−αi1
t , and

αi1
t = 〈ln Y i, ln Y 1〉t =

∫ t

0

(Y i
u)−1(Y 1

u )−1 d〈Y i, Y 1〉u.

Constrained Cash Strategies

We continue the analysis of cash strategies for some k ≥ 3. Price processes
Y 1, Y 2, . . . , Y k are assumed to be continuous semimartingales. We postulate,
in addition, that Y 1 and Y l+1, . . . , Y k are strictly positive processes, where
1 < l + 1 ≤ k. Let φ = (φ1, φ2, . . . , φk) be a self-financing trading strategy,
so that the wealth process V (φ) satisfies (1.4)-(1.5). We shall consider three
particular cases of increasing generality.

Strategies with zero net investment in Y l+1, . . . , Y k. Assume first that at
any time t there is zero net investment in assets Y l+1, . . . , Y k. Specifically, we
postulate that the strategy is subject to the following constraint:

k∑

i=l+1

φi
tY

i
t = 0, ∀ t ∈ [0, T ], (1.8)

so that the wealth process Vt(φ) is given by (1.7). Equivalently, we have φk
t =

−∑k−1
i=l+1 φi

tY
i
t (Y k

t )−1. Combining the last equality with (1.5), we obtain

dVt(φ) =
(
Vt(φ)−

l∑

i=2

φi
tY

i
t

)
(Y 1

t )−1 dY 1
t

+
l∑

i=2

φi
t dY i

t +
k−1∑

i=l+1

φi
t

(
dY i

t − Y i
t (Y k

t )−1 dY k
t

)
.

It is thus clear that the wealth process V (φ) depends only on k− 2 components
φ2, . . . , φk−1 of the k-dimensional trading strategy φ. The following result,
which can be seen as an extension of Lemma 1.4, provides a more convenient
representation for the (relative) wealth process.

Lemma 1.6 Let φ = (φ1, φ2, . . . , φk) be a self-financing cash strategy such that
(1.8) holds. Assume that the processes Y 1, Y l+1, . . . , Y k are strictly positive.
Then the relative wealth process V 1

t (φ) = Vt(φ)(Y 1
t )−1 satisfies

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY i,1

u +
k−1∑

i=l+1

∫ t

0

φ̂i,k,1
u dŶ i,k,1

u , ∀ t ∈ [0, T ],
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where we denote

φ̂i,k,1
t = φi

t(Y
1,k
t )−1eαi,k,1

t , Ŷ i,k,1
t = Y i,k

t e−αi,k,1
t , (1.9)

with Y i,k
t = Y i

t (Y k
t )−1 and

αi,k,1
t = 〈ln Y i,k, ln Y 1,k〉t =

∫ t

0

(Y i,k
u )−1(Y 1,k

u )−1 d〈Y i,k, Y 1,k〉u. (1.10)

Proof. Let us consider the relative values of all processes, with the price Y k

chosen as a numeraire, and let us consider the process

V k
t (φ) := Vt(φ)(Y k

t )−1 =
k∑

i=1

φi
tY

i,k
t .

In view of the constraint (1.8) we have that V k
t (φ) =

∑l
i=1 φi

tY
i,k
t . In addition,

similarly as in Lemma 1.3, we obtain

dV k
t (φ) =

k−1∑

i=1

φi
t dY i,k

t .

Since
Y i,k

t (Y 1,k
t )−1 = Y i,1

t , V 1
t (φ) = V k

t (φ)(Y 1,k
t )−1,

using argument analogous as in proof of Lemma 1.4, we obtain

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY i,1

u +
k−1∑

i=l+1

∫ t

0

φ̂i,k,1
u dŶ i,k,1

u , ∀ t ∈ [0, T ],

where the processes φ̂i,k,1
t , Ŷ i,k,1

t and αi,k,1
t are given by (1.9)-(1.10). ¤

Strategies with a pre-specified net investment Z in Y l+1, . . . , Y k. We
shall now postulate that the strategy φ is such that

k∑

i=l+1

φi
tY

i
t = Zt, ∀ t ∈ [0, T ], (1.11)

for a pre-specified, F-progressively measurable, process Z. The following result
is a rather straightforward extension of Lemma 1.6.

Lemma 1.7 Let φ = (φ1, φ2, . . . , φk) be a self-financing cash strategy such that
(1.11) holds. Assume that the processes Y 1, Y l+1, . . . , Y k are strictly positive.
Then the relative wealth process V 1

t (φ) = Vt(φ)(Y 1
t )−1 satisfies

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY i,1

u +
k−1∑

i=l+1

∫ t

0

φ̂i,k,1
u dŶ i,k,1

u

+
∫ t

0

Zu(Y k
u )−1 d(Y 1,k

u )−1,

where φ̂i,k,1
t , Ŷ i,k,1

t and αi,k,1
t are given by (1.9)-(1.10).
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Proof. Let us sketch the proof of the lemma for k = 3. Then l = 2 and
φ2

t Y
2
t + φ3

t Y
3
t = Zt for every t ∈ [0, T ]. Consequently, for the process V 3(φ) =

V (φ)(Y 3)−1 we get

V 3
t (φ) =

3∑

i=1

φi
tY

i
t (Y 3

t )−1 = φ1
t Y

1,3
t + Zt(Y 3

t )−1, ∀ t ∈ [0, T ].

Furthermore, the self-financing condition yields

dV 3
t (φ) = φ1

t dY 1,3
t + φ2

t dY 2,3
t .

Proceeding in an analogous way as in the proof of Lemma 1.4, we obtain for
V 1

t (φ) = V 3
t (φ)(Y 1,3

t )−1

dV 1
t (φ) = φ2

t e
α2,3,1

t (Y 1,3
t )−1

(
e−α2,3,1

t dY 2,3
t − Y 2,3

t e−α2,3,1
t dα2,3,1

t

)

+ Zt(Y 3
t )−1d(Y 1,3

t )−1

= φ̂2,3,1
u dŶ 2,3,1

u + Zt(Y 3
t )−1d(Y 1,3

t )−1,

where φ̂2,3,1
t = φ2

t (Y
1,3
t )−1eα2,3,1

t , Ŷ 2,3,1
t = Y 2,3

t e−α2,3,1
t and

α2,3,1
t = 〈ln Y 2,3, ln Y 1,3〉t =

∫ t

0

(Y 2,3
u )−1(Y 1,3

u )−1 d〈Y 2,3, Y 1,3〉u.

The proof for the general case is based on similar calculations. ¤
Strategies with consumption A and a pre-specified net investment Z
in Y l+1, . . . , Y k. Let A be an F-adapted process of finite variation, with A0 = 0.
We consider a self-financing cash strategy φ with consumption process A, so that
the wealth process V (φ) satisfies:

Vt(φ) =
k∑

i=1

φi
tY

i
t =

l∑

i=1

φi
tY

i
t + Zt, ∀ t ∈ [0, T ],

and

Vt(φ) = V0(φ) +
k∑

i=1

∫ t

0

φi
u dY i

u + At, ∀ t ∈ [0, T ].

Then it suffices to modify the formula established in Lemma 1.7 by adding a term
associated with the consumption process A. Specifically, for the relative wealth
process V 1

t (φ) = Vt(φ)(Y 1
t )−1 we obtain the following integral representation,

which is valid for every t ∈ [0, T ]

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY i,1

u +
k−1∑

i=l+1

∫ t

0

φ̂i,k,1
u dŶ i,k,1

u

+
∫ t

0

Zu(Y k
u )−1 d(Y 1,k

u )−1 +
∫ t

0

(Y 1
u )−1 dAu.
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Remark. We use here a generic term ‘consumption’ to reflect the impact
of A on the wealth. The financial interpretation of A depends on particular
circumstances. For instance, an increasing process A represents the inflows of
cash, rather than the outflows of cash (the latter case is commonly referred to
as consumption in the financial literature).

1.3.2 Defaultable and Default-Free Primary Assets

Let Y 1, . . . , Y m be prices of m defaultable assets, and let Y m+1, . . . , Y k repre-
sent prices of k−m default-free assets. Processes Y m+1, . . . , Y k are assumed to
be continuous semimartingales. We make here an essential assumption that τ
is the default time for each defaultable asset Y i, i = 1, . . . , m. Of course, in the
case of defaultable assets with different default times (e.g., when dealing with
the first-to-default claim), some definitions should be modified in a natural way.
A special case of first-to-default claims is examined in Section 1.4.4.

Self-Financing Trading Strategies

The following definition is a rather obvious extension of conditions (1.4)-(1.5).
We postulate here that the processes φ1, . . . , φk are G-predictable processes, in
general.

Definition 1.2 The wealth Vt(φ) of a trading strategy φ = (φ1, φ2, . . . , φk)
equals Vt(φ) =

∑k
i=1 φi

tY
i
t for every t ∈ [0, T ]. A strategy φ is said to be

self-financing if for every t ∈ [0, T ]

Vt(φ) = V0(φ) +
m∑

i=1

∫ t

0

φi
u− dY i

u +
k∑

i=m+1

∫ t

0

φi
u dY i

u.

Although Definition 1.2 is formulated in a general setup, it can be simplified
for our further purposes. Indeed, since we shall deal only with defaultable claims
with default time τ , we shall only examine a particular trading strategy φ prior
to and at default time τ or, more precisely, on the stochastic interval [[0, τ ∧T ]],
where [[0, τ ∧ T ]] = {(t, ω) ∈ R+ × Ω : 0 ≤ t ≤ τ(ω) ∧ T}.

In fact, we shall examine separately the following issues: (i) the behavior of
the wealth process V (φ) on the random interval [[0, τ ∧ T [[= {(t, ω) ∈ R+ × Ω :
0 ≤ t < τ(ω) ∧ T} and (ii) the size of its jump at the random time moment
τ ∧ T or, equivalently, the value of Vτ∧T . Such a study is, of course, sufficient
in our setup, since we only consider the case where a recovery payment (if any)
is made at the default time (and not after this date). Consequently, since we
never deal with a trading strategy after the random time τ ∧ T , we may and
do assume from now on that all components φ1, φ2, . . . , φk of a portfolio φ are
F-predictable, rather than G-predictable processes.

It is worthwhile to mention, that in the next two chapters we will examine
the importance of the measurability property of an admissible trading strategy
within the framework of optimization problems in incomplete market.
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Remark. It can be formally shown that for any Rk-valued G-predictable pro-
cess φ there exists a unique F-predictable process ψ such that the equality
11{τ≥t}φt = 11{τ≥t}ψt holds for every t ∈ [0, T ]. In addition, we find it conve-
nient to postulate, by convention, that the price processes Y m+1, . . . , Y k are
also stopped at the random time τ ∧ T .

We have the following definition of a trading strategy.

Definition 1.3 By a trading strategy φ = (φ1, φ2, . . . , φk) we mean a family
φ1, φ2, . . . , φk of F-predictable stochastic processes.

Let us stress that if a trading strategy considered in this section is self-
financing on [[0, τ ∧T [[ then it is also self-financing on [[0, τ ∧T ]]. At the intuitive
level, the portfolio is not rebalanced at time τ ∧ T , but it is rather sold out
in order to cover liabilities. Let Ỹ i

t stands for the pre-default value of the ith

defaultable asset at time t. We postulate throughout that processes Ỹ i, i =
1, . . . , m are continuous F-semimartingales.

Definition 1.4 The pre-default wealth process Ṽ (φ) of a trading strategy φ =
(φ1, φ2, . . . , φk) equals, for every t ∈ [0, T ],

Ṽt(φ) =
m∑

i=1

φi
tỸ

i
t +

k∑

i=m+1

φi
tY

i
t .

A strategy φ is said to be self-financing prior to default if for every t ∈ [0, T ]

Ṽt(φ) = Ṽ0(φ) +
m∑

i=1

∫ t

0

φi
u dỸ i

u +
k∑

i=m+1

∫ t

0

φi
u dY i

u.

Note that Ṽ0(φ) = V0(φ), since P∗{τ > 0} = 1. Let us stress that if a
trading strategy φ is self-financing prior to default then φ is also self-financing
on [0, T ]. Indeed, we always postulate that trading ceases at time of default,
and the terminal wealth at time τ ∧ T equals

Vτ∧T (φ) =
k∑

i=1

φi
τ∧T Y i

τ∧T .

Of course, on the event {τ > T} we also have

Vτ∧T (φ) = VT (φ) = ṼT (φ) =
m∑

i=1

φi
T Ỹ i

T +
k∑

i=m+1

φi
T Y i

T .

Hence, we shall not distinguish in what follows between the concept of a self-
financing trading strategy and a trading strategy self-financing prior to default.
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Zero Recovery for Defaultable Assets

The following assumption corresponds to the simplest situation of zero recovery
for all defaultable primary assets that are used for replication. Manifestly, this
assumption is not practical, and thus it will be later relaxed.

Assumption (A). The defaultable primary assets Y 1, . . . , Y m are all subject
to the zero recovery scheme, and they have a common default time τ.

By virtue of Assumption (A), the prices Y 1, . . . , Y m vanish at default time
τ , and thus also after this date. Consequently, for every i = 1, . . . ,m we have
Y i

t = 11{τ>t}Ỹ i
t for every t ∈ [0, T ] for some F-predictable processes Ỹ 1, . . . , Ỹ m.

In other words, for any i = 1, . . . ,m the price Y i jumps from Ỹ i
τ− to Ỹ i

τ = 0
at the time of default. We make a technical assumption that the pre-default
values Ỹ 1, . . . , Ỹ m are continuous F-semimartingales.

In order to be able to use the price Y 1 as a numeraire prior to default,
we assume that the pre-default price Ỹ 1 is a strictly positive continuous F-
semimartingale. Notice that Ỹ 1

0 = Y 1
0 .

Assume first zero recovery for the defaultable contingent claim we wish to
replicate. Thus, at time τ the wealth process of any strategy that is capable
to replicate the claim 11{τ>T}X should necessarily jump to zero, provided that
τ ≤ T . We can achieve this by considering only self-financing strategies φ =
(φ1, φ2, . . . , φk) such that at any time the net investment in default-free assets
Y m+1, . . . , Y k equals zero, so that we have

k∑

i=m+1

φi
tY

i
t = 0, ∀ t ∈ [0, T ]. (1.12)

In the general case, that is, when Z is a pre-specified non-zero recovery process
for a defaultable claim under consideration, it suffices to consider self-financing
strategies φ = (φ1, φ2, . . . , φk) such that

k∑

i=m+1

φi
tY

i
t = Zt, ∀ t ∈ [0, T ]. (1.13)

Notice that prior to default time (that is, on the event {τ > t}) we have Vt(φ) =∑m
i=1 φi

tỸ
i
t +Zt, and the self-financing property of φ prior to default time τ takes

the following form

dVt(φ) =
m∑

i=1

φi
t dỸ i

t +
k∑

i=m+1

φi
t dY i

t . (1.14)

At default time τ , we have Vτ (φ) = Zτ on the set {τ ≤ T}.
The next goal is to examine the existence of φ with the properties described

above. To this end, we denote Ỹ i,1
t = Ỹ i

t (Ỹ 1
t )−1 for i = 2, . . . , m and Ỹ 1,k

t =
Ỹ 1

t (Y k
t )−1. As before, we write Y i,k

t = Y i
t (Y k

t )−1. Using Lemma 1.7, we obtain
the following auxiliary result that will be later used to establish the existence
of a replicating strategy for a defaultable claim.
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Proposition 1.4 (i) Let φ = (φ1, φ2, . . . , φk) be a self-financing strategy such
that (1.13) holds. Assume that the processes Ỹ 1, Y m+1, . . . , Y k are strictly pos-
itive. Then the pre-default wealth process Ṽ (φ) satisfies for every t ∈ [0, T ]

Ṽt(φ) = Ỹ 1
t

(
Ṽ 1

0 (φ) +
m∑

i=2

∫ t

0

φi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

φ̃i,k,1
u dŶ i,k,1

u

+
∫ t

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1
)
,

where we denote

φ̃i,k,1
t = φi

t(Ỹ
1,k
t )−1eα̃i,k,1

t , Ŷ i,k,1
t = Y i,k

t e−α̃i,k,1
t ,

and

α̃i,k,1
t = 〈ln Y i,k, ln Ỹ 1,k〉t =

∫ t

0

(Y i,k
u )−1(Ỹ 1,k

u )−1 d〈Y i,k, Ỹ 1,k〉u.

In addition, at default time the wealth of φ equals Vτ (φ) = Zτ on the event
{τ ≤ T}.
(ii) Suppose that the F-predictable processes ψi, i = 2, . . . , m and ψ̃i,k,1, i =
m + 1, . . . , k − 1 are given. For an arbitrary constant c ∈ R, we define the
process Ṽ by setting, for t ∈ [0, T ],

Ṽt = c +
m∑

i=2

∫ t

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u +
∫ t

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1.

Then there exists a self-financing trading strategy φ = (φ1, φ2, . . . , φk) such
that:
(a) φi

t = ψi
t for i = 2, . . . , m and φi

t = ψ̃i,k,1
t Ỹ 1,k

t e−α̃i,k,1
t for i = m+1, . . . , k−1,

(b) φ satisfies (1.13), so that
∑k

i=m+1 φi
tY

i
t = Zt for every t ∈ [0, T ],

(c) the pre-default wealth Ṽ (φ) of φ equals Ṽ ,
(d) at default time the wealth of φ equals Vτ (φ) = Zτ on the event {τ ≤ T}.

Proof. Part (i) is an almost immediate consequence of Lemma 1.7. Therefore,
we shall focus on the second part. The idea of the proof of part (ii) is also rather
clear. First, let φi, i = 2, . . . , m and φi, i = m + 1, . . . , k − 1 be defined from
processes ψi and ψ̃i,k,1

t as in (a). Given the processes φi for i = m+1, . . . , k−1,
we observe that the component φk is uniquely specified by condition (1.13).
Thus, it remains to check that there exists a (unique) component φ1 such that
the resulting k-dimensional trading strategy is self-financing prior to default, in
the sense of Definition 1.4. Let us set

φ1
t =

(
Ṽt −

m∑

i=2

φi
tY

i
t − Zt

)
(Ỹ 1

t )−1 =
(
Ṽt −

k∑

i=2

φi
tY

i
t

)
(Ỹ 1

t )−1.
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It is clear that Ṽt(φ) = Ṽt for every t ∈ [0, T ]. To show that the strategy
(φ1, φ2, . . . , φk) described above is self-financing prior to default, it suffices to
show that for the discounted pre-default wealth

Ṽ 1
t (φ) =

m∑

i=1

φi
tỸ

i,1
t +

k∑

i=m+1

φi
tY

i,1
t

we have for every t ∈ [0, T ]

Ṽ 1
t (φ) = Ṽ 1

0 (φ) +
m∑

i=2

∫ t

0

φi
udỸ i,1

u +
k∑

i=m+1

∫ t

0

φi
udY i,1

u .

Towards this end, it is enough observe that Ṽ 1
t (φ) = (Ỹ 1

t )−1Ṽt = Ṽ 1
t , and then

to verify that

Ṽ 1
t = Ṽ 1

0 +
m∑

i=2

∫ t

0

φi
udỸ i,1

u +
k∑

i=m+1

∫ t

0

φi
udY i,1

u

for every t ∈ [0, T ]. To establish that last equality, it suffices to use the definition
of the process Ṽ 1 and to observe that

k−1∑

i=m+1

ψ̃i,k,1
t dŶ i,k,1

t =
k∑

i=m+1

φi
t dY i,1

t ,

which follows by direct calculations, using the definitions of φi, i = m+1, . . . , k.
It is easy to see that the strategy φ satisfies conditions (a)-(d). ¤

Remarks. Let us observe that the equality established in Proposition 1.4 is
in fact valid on the random interval [[0, τ [[ on the event {τ ≤ T} and on the
interval [0, T ] on the event {τ > T}. It is also important to notice that the
assumption of zero recovery for Y 1, . . . , Y m is not essential for the validity of
the statements in the last result, except for the last part, that is, the equality
Vτ (φ) = Zτ . Indeed, the proof of Proposition 1.4 relies on conditions (1.13)
and (1.14). Therefore, if defaultable primary assets Y 1, . . . , Y m are subject to
non-zero recovery, it will be possible to modify Proposition 1.4 accordingly (see
Section 1.3.2 below).

When dealing with defaultable claims with no recovery, that is, claims for
which the recovery process Z vanishes, it will be convenient to use directly the
following corollary to Proposition 1.4.

Corollary 1.1 Let φ = (φ1, φ2, . . . , φk) be a self-financing strategy such that
condition (1.12) holds.
(i) Assume that the processes Ỹ 1, Y m+1, . . . , Y k are strictly positive. Then the
wealth process V (φ) satisfies for every t ∈ [0, T ]

Vt(φ) = Y 1
t

(
V 1

0 (φ) +
m∑

i=2

∫ t

0

φi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

φ̃i,k,1
u dŶ i,k,1

u

)
.



28 CHAPTER 1. REPLICATION OF DEFAULTABLE CLAIMS

(ii) Assume that all primary assets are defaultable, that is, m = k, and the
pre-default value Ỹ 1 is a strictly positive process. Then the wealth process V (φ)
satisfies for every t ∈ [0, T ]

Vt(φ) = Y 1
t

(
V 1

0 (φ) +
m∑

i=2

∫ t

0

φi
u dỸ i,1

u

)
.

Of course, the counterparts of part (ii) in Proposition 1.4 are also valid and
they will be used in what follows, although they are not explicitly formulated
here.

Remark. Consider the special case of two primary assets, defaultable and
default-free, with prices Y 1

t = 11{τ>t}Ỹ 1
t and Y 2

t , respectively, where Ỹ 1 and
Y 2 are strictly positive, continuous, F-semimartingales. Suppose we wish to
replicate a defaultable claim with zero recovery. We have

Vt(φ) = φ1
t Y

1
t + φ2

t Y
2
t = φ1

t 11{τ>t}Ỹ 1
t + φ2

t Y
2
t

and
dVt(φ) = (Vt−(φ)− φ2

t Y
2
t )(Ỹ 1

t )−1dY 1
t + φ2

t dY 2
t .

It is rather clear that the equality Vt(φ) = 0 on {τ ≤ t} implies that φ2
t = 0 for

every t ∈ [0, T ]. Therefore,

dVt(φ) = Vt−(φ)(Ỹ 1
t )−1dY 1

t

and the existence of replicating strategy for a defaultable claim with zero-
recovery is unlikely within the present setup (except for some trivial cases).

Non-Zero Recovery for Defaultable Assets

In this section, the assumption of zero recovery for defaultable primary assets
Y 1, . . . , Y m is relaxed. To be more specific, Assumption (A) is replaced by the
following weaker restriction.

Assumption (B). We assume that the defaultable assets Y 1, . . . , Y m are sub-
ject to an arbitrary recovery scheme, and they have a common default time
τ.

Under Assumption (B), condition (1.13) no longer implies that Vτ (φ) = Zτ

on the set {τ ≤ T}. We can achieve this requirement by substituting (1.13)
with the following constraint

m∑

i=1

φi
tȲ

i
t +

k∑

i=m+1

φi
tY

i
t = Zt, ∀ t ∈ [0, T ], (1.15)

where Ȳ i represents the recovery payoff of the defaultable asset Y i, so that
Y i

τ = Ȳ i
τ for i = 1, 2, . . . ,m. In this general setup, condition (1.15) does not

seem to be sufficiently restrictive for more explicit calculations. It is plausible,
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however, that it can be used to derive a replicating strategy in several non-trivial
and practically interesting cases.

It is not difficult to see that Proposition 1.4 can be extended to the case
of non-zero recovery for defaultable assets, provided, of course, that we are in
a position to find a priori the wealth invested in non-defaultable assets, that
is, if the process βt :=

∑k
i=m+1 φi

tY
i
t is known beforehand. By arguing as in

Proposition 1.4, we then obtain for every t ∈ [0, T ]

Ṽt(φ) = Ỹ 1
t

(
Ṽ 1

0 (φ) +
m∑

i=2

∫ t

0

φi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

φ̃i,k,1
u dŶ i,k,1

u

+
∫ t

0

βu(Y k
u )−1 d(Ỹ 1,k

u )−1
)
.

In view of (1.15), we also have that

ᾱt :=
m∑

i=1

φi
tȲ

i
t = Zt − βt, ∀ t ∈ [0, T ], (1.16)

thereby imposing an additional constraint on the wealth invested in defaultable
assets. Condition (1.16) is not directly accounted for in the last formula for
Ṽ (φ), however, and thus the problem at hand is not completely solved. For
further considerations related to non-zero recovery of defaultable primary assets,
see Section 1.4.1 and 1.4.2.

Fractional recovery of market value. As an example of a non-zero recovery
scheme, we consider the so-called fractional recovery of (pre-default) market
value (FRMV) scheme with constant recovery rates δi 6= 1 (typically, 0 ≤ δi <

1). Then we have Ȳ i
t = δiỸ

i
t for every i = 1, 2, . . . ,m, and thus (1.15) becomes

m∑

i=1

φi
tδiỸ

i
t +

k∑

i=m+1

φi
tY

i
t = Zt, ∀ t ∈ [0, T ]. (1.17)

Let us mention that in the case of a defaultable zero-coupon bond, the FRMV
scheme results in the following expression for the pre-default value of a default-
able bond with unit face value (see, for instance, Section 2.2.4 in Bielecki et al.
(2004a))

D̃δ
M (t, T ) = EQ∗

(
e−

∫ T
t

(ru+(1−δ)γu)du
∣∣∣Ft

)
,

where the recovery rate δ may depend on the bond’s maturity T , in general. In
particular, if the default intensity γ is deterministic then we have

D̃δ
M (t, T ) = e−

∫ T
t

(1−δ)γ(u) du B(t, T ).

Manifestly, we always have Dδ
M (τ, T ) = δDδ

M (τ−, T ) on the set {τ ≤ T} under
the FRMV scheme.
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1.4 Replication of Defaultable Claims

We are in a position to examine the issue of an exact replication of a generic
defaultable claim. By a replicating strategy we mean here a self-financing trading
strategy φ such that the wealth process V (φ) matches exactly the pre-default
value of the claim at any time prior to default (and prior to the maturity date),
as well as coincides with the claim’s payoff at default time or at maturity date,
whichever comes first. Using our notation introduced in Section 1.2, this can
be formalized as follows.

Definition 1.5 A self-financing trading strategy φ is a replicating strategy for
a defaultable claim (X, 0, Z, τ) if and only if the following hold:
(i) Vt(φ) = Ũt(X) + Ũt(Z) on the random interval [[0, τ ∧ T [[,
(ii) Vτ (φ) = Zτ on the set {τ ≤ T},
(iii) VT (φ) = X on the set {τ > T}.
We say that a defaultable claim is attainable if it admits at least one replicating
strategy.

The last definition is suitable only in the case of a defaultable claim with
no promised dividends. Some comments regarding replication of promised div-
idends are given in Section 1.4.3.

1.4.1 Replication of a Promised Payoff

We shall first examine the possibility of an exact replication of a defaultable
contingent claim of the form (X, 0, 0, τ), that is, a defaultable claim with zero
recovery and with no promised dividends. Our approach will be based on Propo-
sition 1.4. Thus, we assume that processes Y 1, . . . , Y m represent prices of de-
faultable primary assets and Y m+1, . . . , Y k are prices of default-free primary
assets. Processes Ỹ 1, . . . , Ỹ m, Y m+1, . . . , Y k are assumed to be continuous F-
semimartingales, and processes Ỹ 1, Y m+1, . . . , Y k are strictly positive.

Zero Recovery for Defaultable Primary Assets

Unless explicitly stated otherwise, we postulate that Assumption (A) is valid.
Recall that Ũt(X) stands for the pre-default value at time t ∈ [0, T ] of a de-
faultable claim (X, 0, 0, τ). In the statement of following result we preserve the
notation of Proposition 1.4.

Proposition 1.5 Suppose that there exist a constant Ṽ 1
0 , and F-predictable pro-

cesses ψi, i = 2, . . . , m and ψ̃i,k,1, i = m + 1, . . . , k − 1 such that

Ỹ 1
T

(
Ṽ 1

0 +
m∑

i=2

∫ T

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ T

0

ψ̃i,k,1
u dŶ i,k,1

u

)
= X. (1.18)
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Let Ṽt = Ỹ 1
t Ṽ 1

t , where the process Ṽ 1
t is defined as, for every t ∈ [0, T ],

Ṽ 1
t = Ṽ 1

0 +
m∑

i=2

∫ t

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u .

Then the trading strategy φ = (φ1, φ2, . . . , φk) defined by

φ1
t =

(
Ṽt −

m∑

i=2

ψi
tY

i
t

)
(Ỹ 1

t )−1,

φi
t = ψi

t, i = 2, . . . ,m,

φi
t = ψ̃i,k,1

t Ỹ 1,k
t e−α̃i,k,1

t , i = m + 1, . . . , k − 1,

φk
t = −

k−1∑

i=m+1

ψi
tY

i
t (Y k

t )−1,

is self-financing and it replicates the claim (X, 0, 0, τ). In particular, we have
Ṽt(φ) = Ṽt = Ũt(X), so that Ṽ represents the pre-default value of (X, 0, 0, τ).

Proof. The statement is an almost immediate consequence of part (ii) of Propo-
sition 1.4 (see also Corollary 1.1). The strategy (φ1, φ2, . . . , φk) introduced in
the statement of the proposition is self-financing, and at the default time τ the
wealth V (φ) jumps to zero. Finally, VT (φ) = ṼT (φ) = X on the event {τ > T}.
We conclude that φ is self-financing and it replicates (X, 0, 0, τ). ¤

The following corollary to Proposition 1.5 provides the risk-neutral charac-
terization of the process Ũt(X), and thereby it furnishes a convenient method
for the valuation of a promised payoff.

Corollary 1.2 Assume that a defaultable claim (X, 0, 0, τ) is attainable. Sup-
pose that there exists a probability measure Q̃ such that the processes Ỹ i,1, i =
2, . . . , m− 1 and processes Ŷ i,k,1, i = m + 1, . . . , k − 1 are F-martingales under
Q̃. If all stochastic integrals in (1.18) are Q̃-martingales, rather than Q̃-local
martingales, then the pre-default value of (X, 0, 0, τ) equals, for every t ∈ [0, T ],

Ũt(X) = Ỹ 1
t EQ̃

(
X(Ỹ 1

T )−1
∣∣Ft

)
.

Defaultable asset and two default-free assets. In the case when m = 1
and k = 2, Proposition 1.5 reduces to the following result. Recall that we denote

α̃2,3,1
t = 〈ln Y 2,3, ln Ỹ 1,3〉t =

∫ t

0

(Y 2,3
u )−1(Ỹ 1,3

u )−1 d〈Y 2,3, Ỹ 1,3〉u,

where in turn Ỹ 1,3
t = Ỹ 1

t (Y 3
t )−1 and Y 2,3

t = Y 2
t (Y 3

t )−1. Moreover, Ŷ 2,3,1
t =

Y 2,3
t e−α̃2,3,1

t . We postulate that the processes Ỹ 1, Y 2 and Y 3 are strictly posi-
tive.
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Corollary 1.3 Suppose that there exists a constant Ṽ 1
0 and an F-predictable

process ψ̃2,3,1 such that

Ỹ 1
T

(
Ṽ 1

0 +
∫ T

0

ψ̃2,3,1
u dŶ 2,3,1

u

)
= X. (1.19)

Let us set Ṽt = Ỹ 1
t Ṽ 1

t , where for every t ∈ [0, T ] the process Ṽ 1
t is given by

Ṽ 1
t = Ṽ 1

0 +
∫ t

0

ψ̃2,3,1
u dŶ 2,3,1

u . (1.20)

Then the trading strategy φ = (φ1, φ2, φ3), given by the expressions

φ1
t = Ṽt(Ỹ 1

t )−1, φ2
t = ψ̃2,3,1

t Ỹ 1,3
t e−α̃2,3,1

t , φ3
t = −φ2

t Y
2
t (Y 3

t )−1,

is self-financing prior to default and it replicates a claim (X, 0, 0, τ).

Assume that a claim (X, 0, 0, τ) is attainable, and let Q̃ be a probability
measure such that Ŷ 2,3,1 is an F-martingale under Q̃. Then the pre-default
value of (X, 0, 0, τ) equals, for every t ∈ [0, T ],

Ut(X) = Ỹ 1
t EQ̃

(
X(Ỹ 1

T )−1
∣∣Ft

)
, (1.21)

provided that the integral in (1.20) is also a Q̃-martingale.

Example 1.1 Assume that

dỸ 1
t = Y 1

t (µt dt + σ1
t dWt)

and
dY i

t = Y i
t (rt dt + σi

t dW ∗
t )

for i = 2, 3, where W ∗ is a one-dimensional standard Brownian motion with
respect to the filtration F = FW∗

under the martingale measure Q∗. Then for
the processes Ỹ 1,3

t = Ỹ 1
t (Y 3

t )−1 and Y 2,3
t = Y 2

t (Y 3
t )−1 we get

dỸ 1,3
t = Ỹ 1,3

t

((
µt − rt + σ3

t (σ3
t − σ1

t )
)
dt + (σ1

t − σ3
t ) dW ∗

t

)
,

dY 2,3
t = Y 2,3

t

(
σ3

t (σ3
t − σ2

t ) dt + (σ2
t − σ3

t ) dW ∗
t

)
,

and thus

α̃2,3,1
t =

∫ t

0

(σ3
u − σ1

u)(σ3
u − σ2

u) du.

Hence, the process Ŷ 2,3,1
t = Y 2,3

t e−α̃2,3,1
t satisfies

dŶ 2,3,1
t = Ŷ 2,3,1

t

(
σ1

t (σ3
t − σ2

t ) dt + (σ2
t − σ3

t )dW ∗
t

)
.
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If σ2 6= σ3 then, under mild technical assumptions, there exists a probability
measure Q̃ such that Ŷ 2,3,1 is a martingale. To conclude, it suffices to use the
fact that an FT -measurable random variable X(Ỹ 1

T )−1 can be represented (by
virtue of the predictable representation theorem) as follows

X(Ỹ 1
T )−1 = Ũ0(X) +

∫ T

0

φ̃2,3,1
u dŶ 2,3,1

u

for some F-predictable process φ̃2,3,1. It is natural to conjecture that within
the present setup all defaultable claims with zero recovery and no promised
dividends will be attainable, provided that the underlying default-free market
is assumed to be complete, and provided we can use in our hedging portfolio
a defaultable asset that is sensitive to the same default risk as the defaultable
claim that we want to hedge.

Two defaultable assets. Let us examine the case when m = k = 2. We
thus consider two defaultable primary assets Y 1 and Y 2 with zero recovery at
default.

Corollary 1.4 Suppose that there exists a constant Ṽ 1
0 and an F-predictable

process ψ2 such that

Ỹ 1
T

(
Ṽ 1

0 +
∫ T

0

ψ2
u dỸ 2,1

u

)
= X, (1.22)

where Ỹ 2,1
t = Ỹ 2

t (Ỹ 1
t )−1. Let us set Ṽt = Ỹ 1

t Ṽ 1
t , where for every t ∈ [0, T ] the

process Ṽ 1
t is given by

Ṽ 1
t = Ṽ 1

0 +
∫ t

0

ψ2
u dỸ 2,1

u . (1.23)

Then the trading strategy φ = (φ1, φ2) where, for every t ∈ [0, T ],

φ1
t = (Ṽ 1

t − ψ2
t Ỹ 2

t )(Ỹ 1
t )−1, φ2

t = ψ2
t ,

is self-financing and it replicates a defaultable claim (X, 0, 0, τ).

Suppose that (X, 0, 0, τ) is an attainable claim. Let Q̃ be a probability
measure such that Ỹ 2,1 is an F-martingale under Q̃. If the stochastic integral in
(1.23) is a Q̃-martingale, then the pre-default value of (X, 0, 0, τ) satisfies, for
every t ∈ [0, T ],

Ũt(X) = Ỹ 1
0 EQ̃

(
X(Ỹ 1

T )−1
∣∣Ft

)
. (1.24)

Remark. Under the assumptions of Corollary 1.4, a defaultable claim (X, 0, 0, τ)
is attainable since the associated promised payoff X can be achieved by trading
in the pre-default values Ỹ 1 and Ỹ 2. If we introduce, in addition, some default-
free assets, a replicating strategy for an arbitrary defaultable claim (X, 0, 0, τ)
will typically have a zero net investment in default-free assets. Therefore,
default-free assets are not relevant if we restrict our attention to defaultable
claims of the form (X, 0, 0, τ).



34 CHAPTER 1. REPLICATION OF DEFAULTABLE CLAIMS

Non-Zero Recovery for Defaultable Primary Assets

We relax Assumption (A), and we postulate instead that Assumption (B) is
valid. Specifically, let us consider m defaultable primary assets with a common
default time τ that are subject to a fractional recovery of market value (see
Section 1.3.2) with δi = δ 6= 1 for i = 1, 2, . . . , m. Let us denote

α̃t =
m∑

i=1

φi
tỸ

i
t , βt =

k∑

i=m+1

φi
tY

i
t .

so that α̃t+βt represents the pre-default wealth of φ. As usual, Ũt(X) stands for
the pre-default value at time t of the promised payoff X. It is rather clear that
the processes α̃t and βt should be chosen in such a way that α̃t + βt = Ũt(X)
and ᾱt +βt = δα̃t +βt = 0 for every t ∈ [0, T ] (for the latter equality, see (1.16)
and (1.17)). By solving these equations, we obtain, for every t ∈ [0, T ],

α̃t = (1− δ)−1Ũt(X), βt = (δ − 1)−1δŨt(X).

We end up with the following equation

Ỹ 1
T

(
Ũ0(X) +

m∑

i=2

∫ T

0

φi
u dỸ i,1

u +
k−1∑

i=m+1

∫ T

0

φ̃i,k,1
u dŶ i,k,1

u

+
∫ T

0

βu(Y k
u )−1 d(Ỹ 1,k

u )−1
)

= X.

Using the latter equation, one may try to establish a suitable extension of Propo-
sition 1.5. Notice that the process β depends explicitly on the pre-default value
Ũ(X). In addition, we need to take care of the constraint α̃t = (1− δ)−1Ũt(X)
for every t ∈ [0, T ]. Thus, the problem of replication of a promised payoff under
non-zero recovery for defaultable primary assets seems to be rather difficult to
solve, in general.

1.4.2 Replication of a Recovery Payoff

Let us now focus on the recovery payoff Z at time of default. As before, we write
Ũt(Z) to denote the pre-default value at time t ∈ [0, T ] of the claim (0, 0, Z, τ).
Recall that ŨT (Z) = 0 (and UT (Z) = 0 on the event {τ > T}.

Zero Recovery for Defaultable Primary Assets

In order to examine the replicating strategy, we shall once again make use of
Proposition 1.4. As already explained, in this case we need to assume that
condition (1.11) is imposed on a strategy φ we are looking for, that is, we
necessarily have

∑k
i=m+1 φi

tY
i
t = Zt for every t ∈ [0, T ].
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Proposition 1.6 Suppose that there exist a constant Ṽ 1
0 , and F-predictable pro-

cesses ψi, i = 2, . . . ,m and ψ̃i,k,1, i = m + 1, . . . , k − 1 such that

Ỹ 1
T

(
Ṽ 1

0 +
m∑

i=2

∫ T

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ T

0

ψ̃i,k,1
u dŶ i,k,1

u

+
∫ T

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1
)

= 0. (1.25)

Let Ṽt = Ỹ 1
t Ṽ 1

t , where the process Ṽ 1
t is defined as

Ṽ 1
t = Ṽ 1

0 +
m∑

i=2

∫ t

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u

+
∫ t

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1.

Then the replicating strategy φ = (φ1, φ2, . . . , φk) for (0, 0, Z, τ) is given by

φ1
t =

(
Ṽt − Zt −

m∑

i=2

φi
tY

i
t

)
(Ỹ 1

t )−1,

φi
t = ψi

t, ∀ i = 2, . . . , m,

φi
t = ψ̃i,k,1

t Ỹ 1,k
t e−α̃i,k,1

t , ∀ i = m + 1, . . . , k − 1,

φk
t =

(
Zt −

k−1∑

i=m+1

φi
tY

i
t

)
(Y k

t )−1.

Proof. The proof is based on an application of part (ii) of Proposition 1.4. First,
notice that by virtue of the specification of the strategy φ we have Ṽt(φ) = Ṽt

for every t ∈ [0, T ]. Moreover, Vτ (φ) = Zτ on the set {τ ≤ T}. Finally,
VT (φ) = ṼT (φ) = 0 on the event {τ > T}. ¤

Defaultable asset and two default-free assets. For the ease of reference,
we consider here a special case of Proposition 1.6. We take m = 1 and k = 3,
and we postulate that the processes Ỹ 1, Y 2 and Y 3 are strictly positive. Recall
that the recovery process Z, and thus also its pre-default value process Ũ(Z),
are prespecified.

Corollary 1.5 Suppose that there exists a constant Ṽ 1
0 and an F-predictable

process ψ̃2,3,1 such that

Ỹ 1
T

(
Ṽ 1

0 +
∫ T

0

ψ̃2,3,1
u dŶ 2,3,1

u +
∫ T

0

Zu(Y 3
u )−1 d(Ỹ 1,3

u )−1
)

= 0. (1.26)

Let Ṽt = Ỹ 1
t Ṽ 1

t , where the process Ṽ 1
t is defined as

Ṽt = Ṽ 1
0 +

∫ t

0

ψ̃2,3,1
u dŶ 2,3,1

u +
∫ t

0

Zu(Y 3
u )−1 d(Ỹ 1,3

u )−1.
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Then the replicating strategy for the claim (0, 0, Z, τ) equals

φ1
t = (Ṽt − Zt)(Ỹ 1

t )−1, φ2
t = ψ̃2,3,1

t Ỹ 1,3
t e−α̃2,3,1

t , φ3
t = (Zt − φ2

t Y
2
t )(Y 3

t )−1.

The existence of ψ̃2,3,1, as well as the possibility of deriving a closed-form
expression for φ are not obvious. One needs to impose more specific assumptions
on the price processes of primary assets and the recovery process in order to
obtain results that would be more practical.

If there exists a probability Q∗ such that Ŷ 2,3,1 is an F-martingale, then the
(ex-dividend) value of Z0 equals

Ut(Z) = Y 1
t EQ∗

( ∫ T

t

Zu(Y 3
u )−1 d(Ỹ 1,3

u )−1
∣∣∣Ft

)
.

Two defaultable assets. Of course, if both defaultable primary assets are
subject to the zero recovery scheme, and no other asset is available for trade, no
replicating strategy exists in the case of a non-zero recovery process Z. Thus,
we need to postulate a more general recovery scheme for defaultable assets if
we wish to have a positive result.

Non-Zero Recovery for Defaultable Primary Assets

Suppose now that Assumption (B) is valid and Y 1, . . . , Y m are defaultable
primary assets with a fractional recovery of market value. We assume that
δi = δ 6= 1 for i = 1, 2, . . . ,m, and we proceed along the similar lines as in
Section 1.4.1. Recall that we denote

α̃t =
m∑

i=1

φi
tỸ

i
t , βt =

k∑

i=m+1

φi
tY

i
t .

We now postulate that α̃t + βt = Ũt(Z) and ᾱt + βt = δα̃t + βt = Zt for every
t ∈ [0, T ], where Ũt(Z) is the pre-default value of (0, 0, Z, τ). Consequently, for
every t ∈ [0, T ] we have

α̃t = (δ − 1)−1(Zt − Ũt(Z)), βt = (δ − 1)−1(δŨt(Z)− Zt).

To find a replicating strategy for a defaultable claim (0, 0, Z, τ), we need, in
particular, to find F-predictable processes ψi and ψ̃i,k,1 such that the equality

Ũt(Z) = Ỹ 1
t

(
U0(Z) +

m∑

i=2

∫ t

0

ψi
u dỸ i,1

u +
k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u

+
∫ t

0

βu(Y k
u )−1 d(Ỹ 1,k

u )−1
)

is satisfied for every t ∈ [0, T ]. Similarly as in Section 1.4.2, we conclude that
the considered problem is non-trivial, in general.
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1.4.3 Replication of Promised Dividends

We return to the case of zero recovery for defaultable primary assets, and we
consider a defaultable claim (0, C, 0, τ). In principle, replication of the stream
of promised dividends can reduced to previously considered cases (that’s why it
was possible to postulate in Definition 1.5 that C = 0). Specifically, it suffices to
introduce the recovery process ZC generated by C by setting, for every t ∈ [0, T ],

ZC
t =

∫

(0,t)

B−1(u, t) dCu,

and to combine it with the terminal payoff 11{τ>T}XC , where the promised
payoff XC associated with C equals

XC =
∫

(0,T ]

B−1(u, T ) dCu.

It should be stressed, however, that the pre-default price of an “equivalent”
defaultable claim (XC , 0, ZC , τ) introduced above does not coincide with the
pre-default price of the original claim (0, C, 0, τ), that is, processes Ũ(C) and
Ũ(ZC)+ Ũ(XC) are not identical. But, clearly, the equality U0(C) = U0(ZC)+
U0(XC) is satisfied, and thus at time 0 the replicating strategies for both claims
coincide.

Remark. It is apparent that the concept of the (ex-dividend) pre-default price
Ũ(C) does not fit well into study of replication of promised dividends if one only
considers non-dividend paying primary assets. It would be much more conve-
nient to use in the case of dividend-paying (default-free or defaultable) primary
assets. For instance, it is sometimes legitimate to postulate the existence of a
default-free version of the defaultable claim (0, C, 0, τ), that is, a default-free
asset with the dividend stream C.

If we insist on working directly with the process Ũ(C), then we derive the
following set of necessary conditions for a self-financing trading strategy φ with
the consumption process A = −C

k∑

i=m+1

φi
tY

i
t = 0, Vt(φ) =

m∑

i=1

φi
tỸ

i
t = Ũt(C), (1.27)

and

dVt(φ) =
m∑

i=1

φi
t dỸ i

t +
k∑

i=m+1

φi
t dY i

t − dCt = dŨt(C). (1.28)

The existence of a strategy φ = (φ1, φ2, . . . , φk) with consumption process A =
−C, which satisfies (1.27)-(1.28) is not evident, however.

Example 1.2 Let us take, for instance, m = 1 and k = 3. Then conditions
(1.27)-(1.28) become:

φ1
t Ỹ

1
t = Ũt(C), φ2

t Y
2
t + φ3

t Y
3
t = 0,
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and
φ1

t dỸ 1
t + φ2

t dY 2
t + φ3

t dY 3
t = dŨt(C) + dCt.

Assume that under Q∗ we have

dỸ 1 = µt dt + σ1
t dW ∗

t ,

dY i
t = rt dt + σi

t dW ∗
t , i = 2, 3,

dŨt(C) = at dt + bt dW ∗
t .

If, in addition, dCt = ctdt then we obtain the following system of equations for
φ = (φ1, φ2, φ3)

φ1
t Ỹ

1
t = Ũt(C),

φ2
t Y

2
t + φ3

t Y
3
t = 0,

φ1
t µ

1
t + φ2

t µ
2
t + φ3

t µ
3
t = at + ct,

φ1
t σ

1
t + φ2

t σ
2
t + φ3

t σ
3
t = bt.

1.4.4 Replication of a First-to-Default Claim

Until now, we have always postulated that a random time τ represents a com-
mon default time for all defaultable primary assets, as well as for a defaultable
contingent claim under consideration. This simplifying assumptions manifestly
fails to hold in the case of a credit derivative that explicitly depends on default
times of several (possibly independent) reference entities. Consequently, the
issue of replication of a so-called first-to-default claim is more challenging, and
the approach presented in the preceding sections needs to be extended.

Let the random times τ1, . . . , τm represent the default times of m reference
entities that underlie a given first-to-default claim. We assume that Q∗{τi =
τj} = 0 for every i 6= j, and we denote by τ(1) the random moment of the
first default, that is, we set τ(1) = min {τ1, τ2, . . . , τn} = τ1 ∧ τ2 ∧ . . . ∧ τn. A
first-to-default claim (X, C, Z1, . . . , Zm, τ1, . . . , τm) with maturity date T can be
described as follows. If τ(1) = τi ≤ T for some i = 1, . . . , m, then it pays at time
τ(1) the amount Zi

τ(1)
, where Zi is an F-predictable recovery process. Otherwise,

that is, if τ(1) > T , the claim pays at time T an FT -measurable promised amount
X. Finally, a claim pays promised dividends stream C prior to the default time
τ(1), more precisely, on the random interval 11{τ(1)≤T}[[0, τ(1)[[∪ 11{τ(1)>T}[0, T ].
It is clear the dividend process of a generic first-to-default claim equals, for
every t ∈ [0, T ],

Dt = X11{τ(1)>T}11[T,∞)(t) +
∫

(0,t]

(1−H(1)
u ) dCu +

∫

(0,t]

Zi
u11{τ(1)=τi} dH(1)

u ,

where H
(1)
t = 1 −∏m

i=1(1 − Hi
t) or, equivalently, H

(1)
t = 11{τ(1)≤t}. Let Hi be

the filtration generated by the process Hi
t = 11{τi≤t} for i = 1, 2, . . . , m, and let
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the filtration G be given as G = F∨H1∨H2∨ . . .∨Hm. Then, by definition, the
(ex-dividend) price of (X,C, Z1, . . . , Zm, τ1, . . . , τm) equals, for every t ∈ [0, T ],

Ut = Bt EQ∗
( ∫

(t,T ]

B−1
u dDu

∣∣∣Gt

)
.

By a pre-default value of a claim we mean an F-adapted process Ũ such that Ut =
Ũt11{τ(1)>t} for every t ∈ [0, T ]. The following definition is a direct extension
of Definition 1.5 (thus, we maintain the assumption that C = 0). By a self-
financing strategy we mean here a strategy which is self-financing prior to the
first default (cf. Definition 1.4), and thus it is self-financing on [0, T ] as well.

Definition 1.6 A self-financing strategy φ is a replicating strategy for a first-
to-default contingent claim (X, 0, Z1, . . . , Zm, τ1, . . . , τm) if and only if the fol-
lowing hold:
(i) Vt(φ) = Ũt on the random interval [[0, τ(1) ∧ T [[,
(ii) Vτ (φ) = Zi

τ on the event {τ(1) = τi ≤ T},
(iii) VT (φ) = X on the event {τ(1) > T}.

In order to provide a replicating strategy for a first-to-default claim we pos-
tulate the existence of m defaultable primary assets Y 1, . . . , Y m with the cor-
responding default times τ̃1, . . . , τ̃m. It is natural to postulate that the default
times τ̃1, . . . , τ̃m are also the default times of m reference entities that underlie
a first-to-default claim under consideration, so that, τ̃i = τi for i = 1, 2, . . . , m.
It should be stressed that, typically, the pre-default value Ỹ j will follow a dis-
continuous process (for instance, it may have jumps at default times of other
entities). Finally, let us recall that Ȳ i

t represents the recovery payoff of the ith

defaultable asset if its default occurs at time t.

Case of zero promised dividends. We shall assume from now on that C = 0.
For arbitrary i 6= j, let Ŷ ij

t represent the pre-default value of the ith asset
conditioned on the event {τ(1) = τj = t}. More explicitly, Ŷ ij

t is equal to Ỹ i
t on

the random interval [[τ(1)11D, τ(2)11D[[, where D = {τ(1) = τj} and τ(2) is the time
of the second default (Ŷ ij

t is not defined outside the random interval introduced
above). At the intuitive level, the process Ŷ ij

t gives the value at time t of the
ith defaultable asset, provided that the first default has occurred at time t, and
the jth entity is the first defaulting entity. Hence, Ŷ ij

t is not a new process, but
rather an additional notation introduced in order to simplify the formulae that
follow.

Remark. It is important to stress that the notion of a ‘defaultable asset’ should
not be understood literally. For instance, if the case of the so-called flight to
quality the price of a default-free bond is discontinuous, and it jumps at the
moment τ associated with some ‘default event’ (see, e.g., Collin-Dufresne et
al. (2003)). Thus, from the perspective of hedging a default-free bond may be
formally classified as a ‘defaultable asset’.

In order to find a replicating strategy φ for a first-to-default claim within the
present setup, we need to impose the following m conditions on its components
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φ1, . . . , φk: for every j = 1, . . . , m and every t ∈ [0, T ]

m∑

i=1, i 6=j

φi
tŶ

ij
t + φj

t Ȳ
j
t +

k∑

i=m+1

φi
tY

i
t = Zj

t , (1.29)

where Z1, . . . , Zm is a given family of recovery processes. Recall that Zj specifies
the payoff received by the owner of a claim if the first default occurs prior to or
at T , and the first defaulting entity is the jth entity.

For the sake of concreteness, assume that

Zj
t = gj(t, Ỹ 1

t , . . . , Ỹ m
t , Ȳ 1

t , . . . , Ȳ m
t , Y m+1

t , . . . , Y k
t )

for some function g : Rk+m+1 → R. Under some additional assumptions, the
system of equations (1.29) can be solved explicitly for φ1, . . . , φm. In the second
step, we need to choose processes φm+1, . . . , φk in such a way that a strategy φ
is self-financing prior to the first default, and thus also on the random interval
[[0, τ(1) ∧ T ]]. Finally, the wealth of a strategy φ should match the promised
payoff X at time T on the event {τ(1) > T}. Equivalently, the wealth of φ
should coincide with the value of a considered claim prior to and at default, or
up to time T if there is no default in [0, T ]. It is apparent that the problem of
existence of a replicating strategy is non-trivial, but it can be solved in some
circumstances.

A detailed analysis of an explicit replication result for a particular example
of a first-to-default claim is given in Section 1.5.2.

1.5 Vulnerable Claims and Credit Derivatives

In this section, we present a few examples of models and simple defaultable
claims for which there exists explicit replicating strategy. We maintain our
assumption that the default time τ admits a continuous hazard process Γ with
respect to F under Q∗, where F = FW∗

is generated by a Brownian motion W ∗.
Recall that Γ is also assumed to be an increasing process.

1.5.1 Vulnerable Claims

Let us fix T > 0. We postulate that the T -maturity default-free bond and
defaultable zero-coupon bond with zero recovery are also traded assets. As
before, we assume that the risk-neutral dynamics of the discount default-free
bond are

dB(t, T ) = B(t, T )
(
rt dt + b(t, T ) dW ∗

t

)

for some F-predictable volatility process b(t, T ).

Vulnerable Call Options

For a fixed U > T , we assume that the U -maturity default-free bond is also
traded, and we consider a vulnerable European call option with the terminal
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payoff
ĈT = 11{τ>T}(B(T,U)−K)+ = 11{τ>T}X.

We thus deal with a defaultable claim (X, 0, 0, τ) with the promised payoff
X = (B(T,U) − K)+. The same method can be applied to an arbitrary FT -
measurable promised payoff X = g(B(T,U)), where a function g : R → R
satisfies usual technical assumptions.

We consider here the situation when one defaultable asset and two default-
free assets are traded; we thus place ourselves within the framework of Corollary
1.3. Specifically, we take Y 1

t = D0(t, T ), Y 2
t = B(t, U) and Y 3

t = B(t, T ). Con-
sider a strategy φ = (φ1, φ2, φ3) such that Vt(φ) = φ1

t D̃
0(t, T ) and φ2

t B(t, U) +
φ3

t B(t, T ) = 0 for every t ∈ [0, T ]. Observe that in view of the definition of
Γ(t, T ) (see Section 1.2.3) we have

Ỹ 1,3
t = D̃0(t, T )(B(t, T ))−1 = Γ(t, T ).

Moreover, Y 2,3
t = F (t, U, T ) and Ŷ 2,3,1

t = F (t, U, T )e−α̃2,3,1
t , where we denote

F (t, U, T ) = B(t, U)(B(t, T ))−1 and, by virtue of formula (1.2),

α̃2,3,1
t = 〈ln F (·, U, T ), ln Γ(·, T )〉t =

∫ t

0

(
b(u,U)− b(u, T )

)
β(u, T ) du.

Therefore, the dynamics of Ŷ 2,3,1 under QT are

dŶ 2,3,1
t = Ŷ 2,3,1

t

((
b(t, T )− b(t, U)

)
β(t, T ) dt +

(
b(t, U)− b(t, T )

)
dWT

t

)

= Ŷ 2,3,1
t

(
b(t, U)− b(t, T )

) (
dWT

t − β(t, T ) dt
)
.

Let Q̃ be a probability measure such that Ŷ 2,3,1 is a martingale under Q̃. By
virtue of Girsanov’s theorem, it is clear that the process W̃ , given by the formula

W̃t = WT
t −

∫ t

0

β(u, T ) du, ∀ t ∈ [0, T ],

is a Brownian motion under Q̃. Thus, the process F (t, U, T ) satisfies under Q̃

dF (t, U, T ) = F (t, U, T )
(
b(t, U)− b(t, T )

)(
dW̃t + β(t, T ) dt

)
. (1.30)

Since D̃0(T, T ) = 1, equation (1.19) becomes

C̃0 +
∫ T

0

φ̃2,3,1
u dŶ 2,3,1

u = X = (F (T, U, T )−K)+. (1.31)

By a simple extension of (1.21), for any t ∈ [0, T ] the pre-default value of the
option equals

C̃t = D̃0(t, T )EQ̃
(
(F (T,U, T )−K)+

∣∣Ft

)
, (1.32)
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provided that the integral in (1.31) is a Q̃-martingale, rather than a Q̃-local
martingale. Let us denote

f(t) = β(t, T )(b(t, U)− b(t, T )), ∀ t ∈ [0, T ], (1.33)

and let us assume that f is a deterministic function. Then we have the following
result, which extends the valuation formula for a call option written on a default-
free zero-coupon bond within the framework of the Gaussian HJM model.

Proposition 1.7 The pre-default price C̃t of a vulnerable call option written
on a default-free zero-coupon bond equals

C̃t = D̃0(t, T )
(
F (t, U, T )e

∫ T
t

f(u) duN
(
h+(t, U, T )

)−KN
(
h−(t, U, T )

))
,

where

h±(t, U, T ) =
ln F (t, U, T )− ln K +

∫ T

t
f(u) du± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

|b(u,U)− b(u, T )|2 du.

The replicating strategy φ = (φ1, φ2, φ3) for the option satisfies

φ1
t = C̃t(D̃0(t, T ))−1,

φ2
t = eα̃2,3,1

T −α̃2,3,1
t Γ(t, T )N

(
h+(t, U, T )

)
,

φ3
t = −φ2

t F (t, U, T ).

Proof. Considering the Itô differential d(C̃t/D̃0(t, T )), and identifying terms in
expression (1.31), we obtain that the process φ̃2,3,1 in the integral representation
(1.31) is given by the formula

φ̃2,3,1
t = e

∫ T
0 f(u) duN

(
h+(t, U, T )

)
= eα̃2,3,1

T N
(
h+(t, U, T )

)
.

Consequently the valuation formula presented in the proposition is a rather
straightforward consequence of (1.30) and (1.32). ¤

Remark. Although we consider here the bond B(t, U) as the underlying asset,
it is apparent that the method (and thus also the result) can be applied to a
much wider class of underlying assets. For instance, a zero-coupon bond can
be substituted with a non-dividend paying stock with the price S (this case
was examined in Jeanblanc and Rutkowski (2003)). A suitable modification of
formulae established in Proposition 1.7 can also be used to the valuation and
hedging of vulnerable caplets, swaptions, and other vulnerable derivatives in
lognormal market models of (non-defaultable) LIBORs and swap rates.

Case of a deterministic hazard process. Assume now that the F-hazard
process Γ of τ is deterministic. Then β(t, T ) = 0 for every t ∈ [0, T ], and thus
α̃2,3,1

t = 0 and Ŷ 2,3,1
t = F (t, U, T ) for every t ∈ [0, T ]. We thus obtain the

following result.
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Corollary 1.6 Let the F-hazard process Γ and the volatility b(t, U)− b(t, T ) of
the forward price F (t, U, T ) be deterministic. Then the pre-default price C̃t of a
vulnerable option satisfies C̃t = Γ(t, T )Ct, where Ct is the price of an equivalent
non-vulnerable option

Ct = B(t, U)N
(
h+(t, U, T )

)−KB(t, T )N
(
h−(t, U, T )

)
,

where

h±(t, U, T ) =
ln F (t, U, T )− ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

|b(u, U)− b(u, T )|2 du.

The replicating strategy φ = (φ1, φ2, φ3) is given by

φ1
t = C̃t(Γ(t, T )B(t, T ))−1,

φ2
t = Γ(t, T )N

(
h+(t, U, T )

)
,

φ3
t = −φ2

t F (t, U, T ).

Vulnerable Bonds

Let us consider the payoff of the form 11{τ>T} which occurs at some date U > T .
This payoff is, of course, equivalent to the payoff B(T, U)11{τ>T} at time T . We
interpret this claim as a vulnerable bond; Vaillant (2001) proposes to term such
a delayed defaultable bond. Although vulnerable bonds are not traded, under
suitable assumptions one can show that they can be replicated by other liquid
assets. Indeed, to replicate this claim within the framework of this section, it
suffices to assume that default-free bonds with maturities T and U , as well as
the defaultable bond with maturity T are among primary traded assets.

Specifically, we postulate that φ2
t B(t, U) + φ3

t B(t, T ) = 0 for every t ∈ [0, T ]
and thus the total wealth is invested in defaultable bonds of maturity T , so that
φ1

t D̃
0(t, T ) = Ũt(X) for every t ∈ [0, T ], where X = B(T, U) = F (T, U, T ). Let

D̃0(t, T, U) stand for the pre-default value of a vulnerable bond at time t < T .
Then formulae (1.31) and (1.32) become

D̃0(0, T, U) +
∫ T

0

φ̃2,3,1
u dŶ 2,3,1

u = F (T, U, T )

and
D̃0(t, T, U) = D̃0(t, T )EQ̃

(
F (T, U, T ) | Ft

)
,

respectively. Using dynamics (1.30), we obtain

D̃0(t, T, U) = D̃0(t, T )F (t, T, U) e
∫ T

t
f(u) du

= D̃0(t, T )F (t, T, U) eα̃2,3,1
T −α̃2,3,1

t (1.34)

provided that α̃2,3,1 is deterministic.
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1.5.2 Credit Derivatives

The most widely traded credit derivatives are credit default swaps and swap-
tions, total rate of return swaps and credit linked notes. Furthermore, a large
class of basket credit derivatives have a special feature of being linked to the
default risk of several reference entities. We shall consider here only two exam-
ples: a credit default swap and a first-to-default contract. Before proceeding
to the analysis of more complex contract, we shall first examine a standard
(non-vulnerable) option written on a defaultable asset.

Options on a Defaultable Asset

We shall now consider a non-vulnerable call option written on a defaultable
bond with maturity date U and zero recovery. Let T be the expiration date and
let K > 0 stand for the strike. Formally, we deal with the terminal payoff C̄T

given by
C̄T = (D0(T,U)−K)+.

To replicate this option, we postulate that defaultable bonds of maturities U
and T are primary assets. Notice also that

C̄T =
(
11{τ>T}D̃0(T, U)−K

)+ = 11{τ>T}
(
D̃0(T, U)−K

)+ = 11{τ>T}X,

where X = (D̃0(T, U)−K)+, so that once again we deal with a defaultable claim
of the form (X, 0, 0, τ). It should be stressed, however, that since the underlying
asset is now defaultable, the valuation result will differ from Proposition 1.7.

We shall use two defaultable primary assets for replication. Specifically, we
shall now apply Corollary 1.4, by choosing Y 1

t = D0(t, T ) and Y 2
t = D0(t, U) as

primary assets. As before, we denote by C̃t the pre-default value of the option
under consideration. By virtue of Corollary 1.4, it suffices to show that there
exists a process φ2 such that

C̃0 +
∫ T

0

φ2
u dỸ 2,1

u = X = (D̃0(T, U)−K)+ = (Ỹ 2,1
T −K)+, (1.35)

where Ỹ 2,1
t = D̃0(t, U)(D̃0(t, T ))−1. Then the trading strategy φ = (φ1, φ2)

where
φ1

t = (C̃t − φ2
t D̃

0(t, U))(D̃0(t, T ))−1

is self-financing and it replicates the option. To derive the valuation formula,
it suffices to find the probability measure Q̃ such that the process Ỹ 2,1 is a
Q̃-martingale, and to use the generic representation

C̃t = D̃0(t, T )EQ̃
(
(Ỹ 2,1

T −K)+
∣∣Ft

)
.

Recall that the price process D0(t, U) admits the representation D0(t, U) =
11{τ>t}D̃0(t, U) where D̃0(t, U) = Γ(t, U)B(t, T ). Assume that τ has a stochas-
tic intensity γ. Then we have (see (1.3))

dD̃0(t, U) = D̃0(t, U)
((

rt + γt + β(t, U)b(t, U)
)
dt +

(
β(t, U) + b(t, U)

)
dW ∗

t

)
,
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and the dynamics of Ỹ 2,1
t = D̃0(t, U)(D̃0(t, T ))−1 under Q∗ are

dỸ 2,1
t = Ỹ 2,1

t

((
rt + γt + β(t, U)b(t, U)

)
dt

+
(
β(t, U) + b(t, U)− b(t, T )

) (
dW ∗

t − b(t, T )dt
))

.

As we said above, it suffices to find the probability measure Q̃ such that the pro-
cess Ỹ 2,1 is a Q̃-martingale. By applying standard Girsanov’s transformation,
we can construct a measure Q̃ so that we have

dỸ 2,1
t = Ỹ 2,1

t

(
β(t, U) + b(t, U)− b(t, T )

)
dW̃t,

where W̃ is a Brownian motion under Q̃.

Proposition 1.8 Assume that β(t, U) + b(t, U)− b(t, T ), t ∈ [0, T ], is a deter-
ministic function. Then the pre-default price C̃t of a call option written on a
U -maturity defaultable bond equals

C̃t = D̃0(t, U)N
(
k+(t, U, T )

)−KD̃0(t, T )N
(
k−(t, U, T )

)
,

where

k±(t, U, T ) =
ln D̃0(t, U)− ln D̃0(t, T )− ln K ± 1

2 ṽ2(t, T )
ṽ(t, T )

and

ṽ2(t, T ) =
∫ T

t

|β(u,U) + b(u,U)− b(u, T )|2 du.

The replicating strategy φ = (φ1, φ2) for the option is given by

φ1
t = (C̃t − φ2

t D̃
0(t, U))(D̃0(t, T ))−1, φ2

t = N
(
k+(t, U, T )

)
.

Case of a deterministic hazard process. Assume that the F-hazard process
Γ and the volatility b(t, U) − b(t, T ), t ∈ [0, T ], of the forward price F (t, U, T )
are deterministic.

Corollary 1.7 The pre-default price C̃t of a call option written on a U -maturity
defaultable bond equals

C̃t = e−
∫ U

t
γ(u) duB(t, U)N

(
k+(t, U, T )

)

−Ke−
∫ T

t
γ(u) duB(t, T )N

(
k−(t, U, T )

)
,

where

k±(t, U, T ) =
ln B(t, U)− ln B(t, T )− ln K − ∫ U

T
γ(u) du± 1

2v2(t, T )
v(t, T )
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and

v2(t, T ) =
∫ T

t

|b(u,U)− b(u, T )|2 du.

The replicating strategy φ = (φ1, φ2) for the option is given by

φ1
t = (C̃t − φ2

t D̃
0(t, U))(D̃0(t, T ))−1, φ2

t = N
(
k+(t, U, T )

)
.

Notice that this is exactly the same result as in the case of a call option
written on a zero-coupon bond in a default-free term structure model with the
interest rate rt substituted with the default-risk adjusted rate rt + γ(t).

Credit Default Swaps

A generic credit default swap (CDS, for short) is a derivative contract which
allows to directly transfer the credit risk of the reference entity from one party
(the risk seller) to another party (the risk buyer). The contingent payment is
triggered by the pre-specified default event, provided that it happens before the
maturity date T . The standard version of a credit default swap stipulates that
the contract is settled at default time τ of the reference entity, and the recovery
payoff equals Zτ = 1− δB(τ, T ) where δ represents the recovery rate at default
of a reference entity. It is usually assumed that 0 ≤ δ < 1 is non-random, and
known in advance. This convention corresponds to the fractional recovery of
Treasury value scheme for a defaultable bond issued by the reference entity.
Otherwise, that is, in case of no default prior to or at T , the contract expires at
time T worthless. The following alternative market conventions are encountered
in practice:

• The buyer of the insurance pays a lump sum at inception, and the contract
is termed a default option,

• The buyer of the insurance pays annuities κ at the predetermined dates
0 < T1 < . . . < Tn−1 < Tn = T prior to τ , so that the contract represents
a plain-vanilla default swap.

In the former case, the (pre-default) value Ũ0(Z) at time 0 of the default
option equals

Ũ0(Z) = EQ∗
(
B−1

τ

(
1− δB(τ, T )

)
11{τ≤T}

)
. (1.36)

In the latter case, the level of the annuity κ should be chosen in such a way
that the value of the contract at time 0 equals zero. The annuity κ can thus be
specified by solving the following equation

Ũ0(Z) = κEQ∗
( n∑

i=1

B−1
Ti

11{τ>Ti}
)
,

where the value Ũ0(Z) is given by (1.36).
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Digital credit default swap. The fixed leg of a CDS can be represented as the
sequence of payoffs ci = κ11{τ>Ti} at the dates Ti for i = 1, . . . , n. The fixed leg
of a CDS can thus be seen as a portfolio of defaultable zero-coupon bonds with
zero recovery, and thus the valuation of the fixed leg is rather straightforward.
To simplify the valuation of the floating leg, we shall consider a digital CDS.
Specifically, we postulate that the constant payoff δ is received at time Ti+1 if
default occurs between Ti and Ti+1. Therefore, the floating leg is represented
by the following sequence of payoffs:

di = δ11{Ti<τ≤Ti+1} = δ11{τ≤Ti+1} − δ11{τ≤Ti}

at the dates Ti+1 for i = 1, . . . , n− 1. Clearly

di = δ(1− 11{τ>Ti+1})− δ(1− 11{τ>Ti}).

We conclude that in order to analyze the floating leg of a digital CDS, it suffices
to focus on the valuation and replication of the payoff 11{τ>Ti} that occurs at
time Ti+1, that is, a vulnerable bond. The latter problem was already examined
in Section 1.5.1, however (see, in particular, the valuation formula (1.34)).

First-to-Default Claims

We shall now focus on the issue of modeling dependent (“correlated”) defaults,
which arises in the context of basket credit derivatives. In order to model depen-
dent default times, we shall employ Kusuoka’s (1999) setting with n = 2 default
times (for related results, see Jarrow and Yu (2001), Gregory and Laurent (2002,
2003), Bielecki and Rutkowski (2003), or Collin-Dufresne et al. (2003)). Our
main goal is to show that the jump risk of a first-to-default claim can be per-
fectly hedged using the underlying defaultable zero-coupon bonds. Recovery
schemes and the associated values of (deterministic) recovery rates should be
specified a priori.

Construction of dependent defaults. Following Kusuoka (1999), we postu-
late that under the original probability Q the random times τi, i = 1, 2, given on
a probability space (Ω,G,Q), are assumed to be mutually independent random
variables with exponential laws with parameters λ1 and λ2, resp. Let F be some
reference filtration (generated by a Wiener process W, say) such that τ1 and τ2

are independent of F under Q. We write Hi to denote the filtration generated
by the process Hi

t = 11{τi≤t} for i = 1, 2, and we set G = F ∨ H1 ∨ H2. Notice
that the process M i

t = Hi
t −

∫ t∧τi

0
λi du = Hi

t − λ(τi ∧ t) is a G-martingale for
i = 1, 2.

For a fixed T > 0, we define a probability measure Q∗ on (Ω,GT ) by setting

dQ∗

dQ
= ηT , Q-a.s.,

where the Radon-Nikodym density process ηt, t ∈ [0, T ], satisfies

ηt = 1 +
2∑

i=1

∫

(0,t]

ηu−κi
u dM i

u
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with auxiliary processes κ1, κ2 given by

κ1
t = 11{τ2<t}

(
α1

λ1
− 1

)
, κ2

t = 11{τ1<t}

(
α2

λ2
− 1

)
.

Let B(t, T ) be the price of zero-coupon bond, and let QT be the forward martin-
gale measure for the date T . It appears that the ‘martingale intensities’ under
Q∗ and under QT are

λ1
t = λ111{τ2>t} + α111{τ2≤t}, λ2

t = λ211{τ1>t} + α211{τ1≤t}.

Specifically, the process M̄ i
t = Hi

t −
∫ t∧τi

0
λi

u du is a G-martingale under Q∗ and
under QT for i = 1, 2. Moreover, it is easily seen that the random times τ1 and
τ2 are independent of the filtration F under Q∗ and QT . The following result
shows that intensities λ1 and λ2 can be interpreted as local intensities of default
with respect to the information available at time t. Therefore, the model can
be reformulated as a two-dimensional Markov chain.

Proposition 1.9 For i = 1, 2 and every t ∈ [0, T ] we have

λi = lim
h↓0

h−1QT {t < τi ≤ t + h | Ft, τ1 > t, τ2 > t}.

Moreover

α1 = lim
h↓0

h−1QT {t < τ1 ≤ t + h | Ft, τ1 > t, τ2 ≤ t}

and
α2 = lim

h↓0
h−1QT {t < τ2 ≤ t + h | Ft, τ2 > t, τ1 ≤ t}.

Assume that defaultable zero-coupon bonds are subject to zero recovery rule.
Then the price of the bond issued by the ith entity is given by

D0
i (t, T ) = B(t, T )QT {τi > T | Gt} = 11{τi>t}D̃0

i (t, T ),

where, as usual, D̃0
i (t, T ) stands for the pre-default value of the bond. Let us

denote λ = λ1 + λ2 and let us assume that λ − α1 6= 0. Then straightforward
calculations lead to an explicit formula for D̃0

i (t, T ) (for details, see Bielecki and
Rutkowski (2003)). Of course, an analogous expression holds for the pre-default
price D̃0

2(t, T ) provided that λ− α2 6= 0.

Proposition 1.10 Assume that λ − α1 6= 0. Then for every t ∈ [0, T ] the
pre-default price D̃0

1(t, T ) equals

D̃0
1(t, T ) = 11{τ2>t}D∗

1(t, T ) + 11{τ2≤t} D̂1(t, T ),

where

D∗
1(t, T ) =

B(t, T )
λ− α1

(
λ2e

−α1(T−t) + (λ1 − α1)e−λ(T−t)
)



1.5. VULNERABLE CLAIMS AND CREDIT DERIVATIVES 49

represents the value of the bond prior to the first default, that is, on the random
interval [[0, τ(1) ∧ T [[, and D̂1(t, T ) = B(t, T )e−α1(T−t) is the value of the bond
after the default of the second entity, but prior to default of the issuer, that is,
on [[τ2 ∧ T, τ1 ∧ T [[.

Let τ(1) = τ1 ∧ τ2 be the date of the first default. Consider a first-to-
default claim with the terminal payoff X11{τ(1)>T}, where X is an FT -adapted
random variable, and F-predictable recovery processes Z1 and Z2. As primary
traded assets, we take defaultable zero-coupon bonds D0

1(t, T ) and D0
2(t, T ) with

respective default times τ1 and τ2, as well as the default-free zero-coupon bond
B(t, T ).

In Section 1.4.4, we have examined the basic features of a replicating strategy
for a first-to-default claim. Under the present assumptions, (1.29) yields

φ1
t B(t, T )e−α1(T−t) + φ3

t B(t, T ) = Z2
t

and
φ2

t B(t, T )e−α2(T−t) + φ3
t B(t, T ) = Z1

t .

A strategy φ should be self-financing prior to the first default (and thus also
on the random interval [[0, τ(1) ∧ T ]]). In other words, we are looking for φ such
that the pre-default wealth process Ṽ (φ), given by the formula

Ṽt(φ) = φ1
t D

∗
1(t, T ) + φ2

t D
∗
2(t, T ) + φ3

t B(t, T ), ∀ t ∈ [0, T ],

satisfies
dṼt(φ) = φ1

t dD∗
1(t, T ) + φ2

t dD∗
2(t, T ) + φ3

t dB(t, T ). (1.37)

Finally, at time T the wealth of φ should coincide with the promised payoff X
on the event {τ(1) > T}. This means that the pre-default wealth needs to satisfy
ṼT (φ) = X, so that (1.37) becomes

Ṽ0(φ) +
∫ T

0

φ1
t dD∗

1(t, T ) +
∫ T

0

φ2
t dD∗

2(t, T ) +
∫ T

0

φ3
t dB(t, T ) = X.

Equivalently, the pre-default wealth should coincide with the pre-default value
of a first-to-default claim on the random interval [[0, τ(1) ∧ T [[ and the jump of
the wealth at default time τ(1) should adequately reproduce the behavior at τ(1)

of a first-to-default claim.

First-to-default credit swap. For the sake of concreteness, let us consider a
first-to-default credit swap. Specifically, we shall examine replication of a first-
to-default claim with X = 0 and Zi

t = δB(t, T ) for i = 1, 2, where 0 ≤ δ ≤ 1.
Let Ut be the value of this claim at time t ∈ [0, T ]. It can be shown that

QT {τ(1) > T | Gt} = 11{τ(1)>t} e−λ(T−t).

Consequently, for every t ∈ [0, T ] we have

Ut = 11{τ(1)>t} δ
(
1− e−λ(T−t)

)
B(t, T ) + 11{τ(1)≤t} δB(t, T ),
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and thus the pre-default value equals

Ũt = δ(1− e−λ(T−t))B(t, T ).

To find the replicating strategy φ, we first observe that φ needs to satisfy, for
every t ∈ [0, T ],

φ1
t e
−α1(T−t) + φ3

t = δ, φ2
t e
−α2(T−t) + φ3

t = δ, (1.38)

Moreover, the pre-default wealth process Ṽ (φ), given by

Ṽt(φ) = φ1
t D

∗
1(t, T ) + φ2

t D
∗
2(t, T ) + φ3

t B(t, T ), (1.39)

should satisfy Ṽt(φ) = Ũt and

dṼt(φ) = φ1
t dD∗

1(t, T ) + φ2
t dD∗

2(t, T ) + φ3
t dB(t, T ). (1.40)

It is convenient to work with relative prices, by taking B(t, T ) as a numeraire,
so that (1.39)-(1.40) become

Ṽ B
t (φ) = φ1

t Y
1
t + φ2

t Y
2
t + φ3

t = δ
(
1− e−λ(T−t)

)
(1.41)

and

Ṽ B
t (φ) = Ṽ B

0 (φ) +
∫ t

0

φ1
u dY 1

u +
∫ t

0

φ2
u dY 2

u , (1.42)

where Ṽ B
t (φ) = Ṽt(φ)B−1(t, T ) and

Y 1
t =

D∗
1(t, T )

B(t, T )
=

1
λ− α1

(
λ2e

−α1(T−t) + (λ1 − α1)e−λ(T−t)
)

and

Y 2
t =

D∗
2(t, T )

B(t, T )
=

1
λ− α2

(
λ1e

−α2(T−t) + (λ2 − α2)e−λ(T−t)
)

.

Working with relative values is here equivalent to setting B(t, T ) = 1 for ev-
ery t ∈ [0, T ] in equations (1.39)-(1.40), as well as in the pricing formulae of
Proposition 1.10.

¿From (1.38) it follows that φ3 equals

φ3
t = δ − φ1

t e
−α1(T−t) = δ − φ2

t e
−α2(T−t), (1.43)

where φ1 and φ2 are related to each other through the formula

φ2
t = φ1

t e
(α2−α1)(T−t), ∀ t ∈ [0, T ]. (1.44)

By substituting the last equality in (1.41), we obtain the following expression
for φ1

φ1
t = −δe−λ(T−t)

(
Y 1

t + Y 2
t e(α2−α1)(T−t) − e−α1(T−t)

)−1

.



1.6. PDE APPROACH 51

More explicitly,
φ1

t = −δξ1ξ2e
−ξ1(T−t)(g(t))−1, (1.45)

where we denote ξi = λ− αi for i = 1, 2 and where g(t) equals

g(t) = λ2ξ2 + (λ1 − α1)ξ2e
−ξ1(T−t) + λ1ξ1 + (λ2 − α2)ξ1e

−ξ2(T−t) − ξ1ξ2.

To determine φ2 we may either use (1.44) with (1.45), or to observe that by the
symmetry of the problem

φ2
t = −δe−λ(T−t)

(
Y 2

t + Y 1
t e(α1−α2)(T−t) − e−α2(T−t)

)−1

.

Of course, both methods yield, as expected, the same expression for φ2, namely,

φ2
t = −δξ1ξ2e

−ξ2(T−t)(g(t))−1.

Moreover, straightforward calculations show that for φ1, φ2 as above, we have

φ1
t dY 1

t + φ2
t dY 2

t = dṼ B
t (φ) = −δλe−λ(T−t).

Finally, the component φ3 can be found from (1.43), and thus the calculation of
a replicating strategy for the considered example of first-to-default credit swap
is completed.

1.6 PDE Approach

Let us assume that two (defaultable, in general) assets are tradeable, with re-
spective price processes

dY 1
t = Y 1

t−
(
ν1 dt + σ1 dWt + %1 dMt

)
, Y 1

0 > 0, (1.46)

dY 2
t = Y 2

t−
(
ν2 dt + σ2 dWt + %2 dMt

)
, Y 2

0 > 0, (1.47)

under the real-world probability Q, where W is a one-dimensional standard
Brownian motion and the G-martingale M is given by

Mt = Ht −
∫ t

0

11{τ>u}ςu du, ∀ t ∈ [0, T ],

and the F-adapted intensity ς of the default time τ is strictly positive. We
postulate that the interest rate is equal to a constant r, so that the money
market account equals Y 3

t = Bt = ert. We assume that σ1 6= 0, σ2 6= 0 and the
constants %1 and %2 are greater or equal to −1 so that the price process Y i is
non-negative for i = 1, 2.

Remark. It may happen that either %1 or %2 equals 0, and thus the correspond-
ing asset is default-free. The case when %1 = %2 = 0 will be excluded, however
(see condition (1.48) below).
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We shall now examine the no-arbitrage property of this market. Specifically,
we shall impose additional conditions on the model’s coefficients that will ensure
the existence of an equivalent martingale measure. From Kusuoka’s (1999)
representation theorem, any equivalent martingale measure Q∗ on (Ω,GT ) is of
the form dQ∗|Gt = η̃t dQ|Gt for t ∈ [0, T ], where

dη̃t = η̃t−(ψt dWt + κt dMt), η̃0 = 1,

for some G-predictable processes ψ and κ. By applying Itô’s formula, we obtain
for i = 1, 2,

Y i
t η̃te

−rt = Y i
0 +

∫ t

0

Y i
u η̃ue−ru

(
νi − r + ψuσ1 + κu%iξu

)
du + martingale,

where we denote ξt = ςt11{τ>t}. Hence, the process Y i
t η̃te

−rt is a (local) G-
martingale under Q for i = 1, 2 if and only if

νi − r + ψtσi + κt%iξt = 0

for i = 1, 2 and almost every t ∈ [0, T ]. Hence, a density process η̃ determines
an equivalent martingale measure Q∗ for the processes Y i

t e−rt, i = 1, 2 if and
only if the processes ψ and κ are such that for every t ∈ [0, T ]

ν1 − r + ψtσ1 + κt%1ξt = 0,

ν2 − r + ψtσ2 + κt%2ξt = 0.

Assume that %1σ2− %2σ1 6= 0. Then the unique solution is the pair of processes
(ψt, κt), t ∈ [0, T ], such that

ψt =
(ν2 − r)%1 − (ν1 − r)%2

%1σ2 − %2σ1

and

κtξt =
(ν2 − r)σ1 − (ν1 − r)σ2

%1σ2 − %2σ1
.

Since η̃ is a strictly positive process, we restrict our attention to parameters
such that the process κ is greater than −1. Obviously, the value of the process
κ after the default time τ is irrelevant. However, the pre-default value of κ is
uniquely given as

κt =
(ν2 − r)σ1 − (ν1 − r)σ2

ςt(%1σ2 − %2σ1)
,

and thus we postulate that the last formula holds for every t ∈ [0, T ]. We thus
have the following auxiliary result. Let us set γt = ςt(1 + κt).

Lemma 1.8 Assume that %1σ2 − %2σ1 6= 0 and

(ν2 − r)σ1 − (ν1 − r)σ2

ςt(%1σ2 − %2σ1)
> −1, ∀ t ∈ [0, T ]. (1.48)
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Then the market model defined by (1.46)-(1.47) and the money market account
Y 3

t = ert is complete and arbitrage-free. Moreover, under the unique equivalent
martingale measure Q∗ we have

dY 1
t = Y 1

t−
(
r dt + σ1 dW ∗

t + %1 dM∗
t

)
,

dY 2
t = Y 2

t−
(
r dt + σ2 dW ∗

t + %2 dM∗
t

)
, (1.49)

dY 3
t = rY 3

t dt,

where W ∗ is a Brownian motion under Q∗, and where the process M∗, given by

M∗
t = Mt −

∫ t

0

ξuκu du = Ht −
∫ t

0

11{τ>u}γu du,

follows a martingale under Q∗.

¿From now on, we shall conduct the analysis of the model given by (1.49)
under the martingale measure Q∗.

1.6.1 Markovian Case

To proceed further it would be convenient to assume that ς, and thus also κ,
are deterministic functions of the time parameter. In this case, the default
intensity γ under Q∗ would be a deterministic function as well. More generally,
it suffices to postulate that the F-intensity of default under Q∗ is of the form γt =
γ(t, Y 1

t , Y 2
t ) for some sufficiently smooth function γ. For instance, γ(t, x, y) may

be assumed to be piecewise continuous with respect to t and Lipschitz continuous
with respect to x and y. Under this assumption, the process (Y 1, Y 2,H), where
the two-dimensional process (Y 1, Y 2) is the unique solution to the SDE (1.49),
is Markovian under Q∗ (since Y 3 is deterministic, it is not essential here).

For the sake of concreteness, we shall frequently focus on a defaultable claim
represented by the following payoff at the maturity date T

Y = 11{τ>T}g(Y 1
T , Y 2

T ) + 11{τ≤T}h(Y 1
T , Y 2

T ) (1.50)

for some functions g, h : R2
+ → R satisfying suitable integrability conditions.

Hence, the price of Y is given by the risk-neutral valuation formula

πt(Y ) = Bt EQ∗(B−1
T Y | Gt), ∀ t ∈ [0, T ]. (1.51)

Notice that πt(Y ) represents the standard (cum-dividend) price of a European
contingent claim Y , which settles at time T . Our goal is to find a quasi-explicit
representation for a self-financing trading strategy ψ such that πt(Y ) = Vt(ψ)
for every t ∈ [0, T ], where Vt(ψ) =

∑3
i=1 ψi

tY
i
t (see Section 1.6.3).

We shall first prove an auxiliary result, which shows that the arbitrage price
of the claim Y splits in a natural way into the pre-default price and the post-
default price.
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Lemma 1.9 The price πt(Y ) of the claim Y given by (1.50) satisfies

πt(Y ) = (1−Ht)ṽ(t, Y 1
t , Y 2

t ) + Htv̄(t, Y 1
t , Y 2

t ), ∀ t ∈ [0, T ], (1.52)

for some functions ṽ, v̄ : [0, T ] × R2
+ → R such that ṽ(T, x, y) = g(x, y) and

v̄(T, x, y) = h(x, y).

Proof. We have

πt(Y ) = Bt EQ∗
(
B−1

T Y
∣∣Gt

)

= Bt EQ∗
(
B−1

T 11{τ>T}g(Y 1
T , Y 2

T )
∣∣Gt

)
+ Bt EQ∗

(
B−1

T 11{τ≤T}h(Y 1
T , Y 2

T )
∣∣Gt

)

= 11{τ>t}Bt EQ∗
(
11{τ>T}B

−1
T g(Y 1

T , Y 2
T ) + 11{t<τ≤T}B

−1
T h(Y 1

T , Y 2
T )

∣∣Gt

)

+ 11{τ≤t}Bt EQ∗
(
11{τ≤t}B

−1
T h(Y 1

T , Y 2
T )

∣∣Gt

)
.

This shows that

πt(Y ) = 11{τ>t}ũ(t, Y 1
t , Y 2

t , 0) + 11{τ≤t}ū(t, Y 1
t , Y 2

t , 1),

where

ũ(t, Y 1
t , Y 2

t ,Ht) = Bt EQ∗
(
11{τ>T}B

−1
T g(Y 1

T , Y 2
T )

∣∣Gt

)

+ Bt EQ∗
(
11{t<τ≤T}B

−1
T h(Y 1

T , Y 2
T )

∣∣Gt

)

= Bt EQ∗
(
(1−HT )B−1

T g(Y 1
T , Y 2

T )

+ (HT −Ht)B−1
T h(Y 1

T , Y 2
T )

∣∣ Y 1
t , Y 2

t ,Ht

)

and

ū(t, Y 1
t , Y 2

t ,Ht) = Bt EQ∗
(
11{τ≤t}B

−1
T h(Y 1

T , Y 2
T )

∣∣Gt

)

= Bt EQ∗
(
HtB

−1
T h(Y 1

T , Y 2
T )

∣∣ Y 1
t , Y 2

t ,Ht

)
.

Let us set

ṽ(t, Y 1
t , Y 2

t ) = ũ(t, Y 1
t , Y 2

t , 0)
= Bt EQ∗

(
B−1

T Y
∣∣ Y 1

t , Y 2
t , Ht = 0

)
(1.53)

and

v̄(t, Y 1
t , Y 2

t ) = ū(t, Y 1
t , Y 2

t , 1)
= Bt EQ∗

(
B−1

T h(Y 1
T , Y 2

T )
∣∣ Y 1

t , Y 2
t ,Ht = 1

)
. (1.54)

It is clear that ṽ(T, Y 1
T , Y 2

T ) = g(Y 1
T , Y 2

T ) and v̄(T, Y 1
T , Y 2

T ) = h(Y 1
T , Y 2

T ). We
conclude that the price of the claim Y is of the form v(t, Y 1

t , Y 2
t ), where

v(t, Y 1
t , Y 2

t ) = 11{τ>t}ṽ(t, Y 1
t , Y 2

t ) + 11{τ≤t}v̄(t, Y 1
t , Y 2

t ).

Notice that ṽ(t, Y 1
t , Y 2

t ) and v̄(t, Y 1
t , Y 2

t ) represent the pre-default and post-
default values of Y , respectively. ¤
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Post-default value. It should be stressed that the conditional expectation in
(1.53) is to be evaluated using the dynamics of (Y 1, Y 2, Y 3) given by (1.49). To
compute the conditional expectation in (1.54), however, it is manifestly sufficient
to make use of the post-default dynamics of (Y 1, Y 2, Y 3), which is given by the
following expressions, which are valid if %1 > −1 and %2 > −1,

dY 1
t = Y 1

t−
(
r dt + σ1 dW ∗

t

)
,

dY 2
t = Y 2

t−
(
r dt + σ2 dW ∗

t

)
, (1.55)

dY 3
t = rY 3

t dt.

Using standard arguments, we conclude that if the function v̄ = v̄(t, x, y) is
sufficiently regular then it satisfies the following PDE:

−rv̄ + ∂tv̄ + rx∂xv̄ + ry∂y v̄ + 1
2

(
σ2

1x2∂2
xxv̄ + σ2

2y2∂2
yy v̄

)

+ σ1σ2xy∂2
xy v̄ = 0 (1.56)

with the terminal condition v̄(T, x, y) = h(x, y). Hence, the equation (1.56)
can be referred to as the post-default pricing PDE for our claim. Of course,
since after the default time our model becomes a default-free model, the use of
a such a PDE to arbitrage valuation of path-independent European claims is
fairly standard.

If %1 > −1 and %2 = −1, then the process Y 2 jumps to zero at time of
default, and thus the post-default pricing PDE becomes:

−rv̄ + ∂tv̄ + rx∂xv̄ + 1
2σ2

1x2∂2
xxv̄ = 0 (1.57)

with the terminal condition v̄(T, x) = h̄(x) for some function h̄ : R+ → R
(formally, h̄(x) = h(x, 0)).

Recovery process. Following Jamshidian (2002) (see Theorem 2.1), one may
check that for any t ∈ [0, T ] we have

Bt EQ∗
(
B−1

T 11Dh(Y 1
T , Y 2

T )
∣∣Gt

)
= Bt EQ∗

(
B−1

τ 11Dv̄(τ, Y 1
τ , Y 2

τ )
∣∣Gt

)
,

where D = {t < τ ≤ T}. Hence, if we wish to compute the pre-default value
of Y , it is tempting to consider the process v̄(t, Y 1

t , Y 2
t ) as the recovery process

Z. According to our convention, the recovery process Z should necessarily be
an F-predictable process, and the process v̄(t, Y 1

t , Y 2
t ) is not F-predictable, in

general. Therefore, we formally define the recovery process Z associated with
the claim Y by setting

Zt = z(t, Ỹ 1
t (1 + %1), Ỹ 2

t (1 + %2)) = v̄(t, Ỹ 1
t (1 + %1), Ỹ 2

t (1 + %2))), (1.58)

where Ỹ i is the pre-default value of the ith asset (so that Ỹ i is manifestly an
F-adapted, continuous process). It is clear that

Zτ = v̄(τ, Ỹ 1
τ (1 + %1), Ỹ 2

τ (1 + %2)) = v̄(τ, Y 1
τ , Y 2

τ ), Q∗-a.s.

Notice that the pre-default value of the claim Y given by (1.50) coincides with
the pre-default value of (X,Z, 0, τ), where the promised payoff X = g(Y 1

T , Y 2
T )

and the F-predictable recovery process Z is given by (1.58).
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1.6.2 Pricing PDE for the Pre-Default Value

Recall that the price process of the claim Y given by (1.50) admits the following
representation, for every t ∈ [0, T ],

πt(Y ) = (1−Ht)ṽ(t, Y 1
t , Y 2

t ) + Htv̄(t, Y 1
t , Y 2

t ) (1.59)

for some functions ṽ, v̄ : [0, T ] × R2
+ → R such that ṽ(T, x, y) = g(x, y) and

v̄(T, x, y) = h(x, y). We assume that processes ṽ(t, Y 1
t , Y 2

t ) and v̄(t, Y 1
t , Y 2

t )
are semimartingales. We shall need the following simple version of the Itô
integration by parts formula for (discontinuous) semimartingales.

Lemma 1.10 Assume that Z is a semimartingale and A is a bounded process
of finite variation. Then

ZtAt = Z0A0 +
∫ t

0

Zu− dAu +
∫ t

0

Au dZu

= Z0A0 +
∫ t

0

Zu dAu +
∫ t

0

Au− dZu.

Proof. Both formulae are almost immediate consequences of the general Itô
formula for semimartingales (see, for instance, Protter (2003)), and the fact
that under the present assumptions we have [Z, A]t =

∑
0<s≤t ∆Zs∆As. ¤

Our next goal is to derive the partial differential equation satisfied by the pre-
default pricing function ṽ. The post-default pricing function v̄ (or, equivalently,
the recovery function z) is taken here as an input. Hence, the only unknown
function at this stage is the pre-default pricing function ṽ.

In view of the financial interpretation of the function ṽ, the PDE derived
in Proposition 1.11 will be referred to as the pre-default pricing PDE for a
defaultable claim Y . For a related result, see Proposition 3.4 in Lukas (2001).

Proposition 1.11 Suppose that the function ṽ = ṽ(t, x, y) belong to the class
C1,2,2([0, T ]× R+ × R+). Assume, in addition, that ṽ satisfies the PDE

−rṽ + ∂tṽ + rx∂xṽ + ry∂y ṽ + 1
2

(
σ2

1x2∂2
xxṽ + σ2

2y2∂2
yy ṽ

)
+ σ1σ2xy∂2

xy ṽ

+ γ(t, x, y)
(
v̄(t, x(1 + %1), y(1 + %2))− ṽ − %1x∂xṽ − %2y∂y ṽ

)
= 0

with the terminal condition ṽ(T, x, y) = g(x, y). Let the process π(Y ) be given
by (1.59). Then the process V ∗

t = B−1
t πt(Y ) stopped at τ is a G-martingale

under Q∗.

Proof. By applying the Itô integration by parts formula to both terms in the
right-hand side of (1.59), we obtain

dπt(Y ) = (1−Ht) dṽ(t, Y 1
t , Y 2

t )− ṽ(t, Y 1
t−, Y 2

t−) dHt

+ Ht− dv̄(t, Y 1
t , Y 2

t ) + v̄(t, Y 1
t , Y 2

t ) dHt

= 11{τ>t} dṽ(t, Y 1
t , Y 2

t ) +
(
v̄(t, Y 1

t , Y 2
t )− ṽ(t, Y 1

t−, Y 2
t−)

)
dHt

+ 11{τ<t} dv̄(t, Y 1
t , Y 2

t ).
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Hence, the process V ∗
t = e−rtπt(Y ) satisfies for every t ∈ [0, T ]

V ∗
t = V ∗

0 −
∫ τ∧t

0

re−ruṽ(u, Y 1
u , Y 2

u ) du +
∫

(0,τ∧t)

e−ru dṽ(u, Y 1
u , Y 2

u )

+
∫

(0,τ∧t]

e−ru
(
v̄(u, Y 1

u , Y 2
u )− ṽ(u, Y 1

u−, Y 2
u−)

)
dHu

+
∫

(τ∧t,t]

e−ru dv̄(u, Y 1
u , Y 2

u ).

It is clear that if π(Y ) is given by (1.51) then the process V ∗ is a G-martingale
under Q∗ (see also Corollary 1.8 below). To derive the pre-default pricing PDE,
it suffices to make use of the martingale property of the stopped process

V ∗
τ∧t = 11{τ>t}e−rtṽ(t, Y 1

t , Y 2
t ) + 11{τ≤t}e−rτ v̄(τ, Y 1

τ , Y 2
τ ).

By applying Itô’s formula to ṽ(t, Y 1
t , Y 2

t ) on {τ > t}, we obtain

V ∗
τ∧t = V ∗

0

+
∫ τ∧t

0

e−ru
(
− rṽu + ∂tṽu + rY 1

u ∂xṽu + rY 2
u ∂y ṽu

)
du

+
∫ τ∧t

0

1
2

e−ru
(
σ2

1(Y 1
u )2∂xxṽu + σ2

2(Y 2
u )2∂yy ṽu + 2σ1σ2Y

1
u Y 2

u ∂xy ṽu

)
du

−
∫ τ∧t

0

e−ru
(
%1Y

1
u ∂xṽu + %2Y

2
u ∂y ṽu

)
γu du

+
∫

(0,τ∧t]

e−ru
(
v̄(u, Y 1

u−(1 + %1), Y 2
u−(1 + %2))− ṽ(u, Y 1

u−, Y 2
u−)

)
dHu

+
∫ τ∧t

0

e−ru
(
σ1Y

1
u ∂xṽu + σ2Y

2
u ∂y ṽu

)
dW ∗

u ,

where ṽu = ṽ(u, Y 1
u , Y 2

u ), ∂xṽu = ∂xṽ(u, Y 1
u , Y 2

u ), γu = γ(u, Y 1
u , Y 2

u ), etc. The
last formula can be rewritten as follows:

V ∗
τ∧t = V ∗

0

+
∫ τ∧t

0

e−ru
(
− rṽu + ∂tṽu + rY 1

u ∂xṽu + rY 2
u ∂y ṽu

)
du

+
∫ τ∧t

0

1
2

e−ru
(
σ2

1(Y 1
u )2∂xxṽu + σ2

2(Y 2
u )2∂yy ṽu + 2σ1σ2Y

1
u Y 2

u ∂xy ṽu

)
du

−
∫ τ∧t

0

e−ru
(
%1Y

1
u ∂xṽu + %2Y

2
u ∂y ṽu

)
γu du

+
∫ τ∧t

0

e−ru
(
v̄(u, Y 1

u−(1 + %1), Y 2
u−(1 + %2))− ṽ(u, Y 1

u−, Y 2
u−)

)
γu du

+
∫

(0,τ∧t]

e−ru
(
v̄(u, Y 1

u−(1 + %1), Y 2
u−(1 + %2))− ṽ(u, Y 1

u−, Y 2
u−)

)
dM∗

u

+
∫ τ∧t

0

e−ru
(
σ1Y

1
u ∂xṽu + σ2Y

2
u ∂y ṽu

)
dW ∗

u .
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Recall that the processes W ∗ and M∗ are G-martingales under Q∗. Thus, the
stopped process V ∗

t∧τ is a G-martingale if and only if for every t ∈ [0, T ]
∫ τ∧t

0

e−ru
(
− rṽu + ∂tṽu + rY 1

u ∂xṽu + rY 2
u ∂y ṽu

)
du

+
∫ τ∧t

0

1
2

e−ru
(
σ2

1(Y 1
u )2∂xxṽu + σ2

2(Y 2
u )2∂yy ṽu + 2σ1σ2Y

1
u Y 2

u ∂xy ṽu

)
du

−
∫ τ∧t

0

e−ru
(
%1Y

1
u ∂xṽu + %2Y

2
u ∂y ṽu

)
γu du

+
∫ τ∧t

0

e−ru
(
v̄(u, Y 1

u (1 + %1), Y 2
u (1 + %2))− ṽ(u, Y 1

u , Y 2
u )

)
γu du = 0.

The last equality is manifestly satisfied if the function ṽ solves the PDE given in
the statement of the proposition. Conversely, if the function ṽ in representation
(1.59) is sufficiently regular, then it necessarily satisfies the last equation. ¤

Corollary 1.8 Assume that the pricing functions v̄ and ṽ belong to the class
C1,2,2([0, T ] × R+ × R+) and satisfy the post-default and pre-default pricing
PDEs, respectively. Then the discounted price process V ∗

t , t ∈ [0, T ], is a G-
martingale under Q∗ and the dynamics of V ∗ under Q∗ are

dV ∗
t = 11{τ>t}e−rt(σ1Y

1
t ∂xṽt + σ2Y

2
t ∂y ṽt) dW ∗

t

+ 11{τ<t}e−rt(σ1Y
1
t ∂xv̄t + σ2Y

2
t ∂y v̄t) dW ∗

t

+ e−rt
(
v̄(t, Y 1

t−(1 + %1), Y 2
t−(1 + %2))− ṽ(t, Y 1

t−, Y 2
t−)

)
dM∗

t .

Generic defaultable claim. Technique described above can be applied to
the case of a general defaultable claim. Consider a generic defaultable claim
(X, Z, 0, τ) with the promised payoff X = g(Y 1

T , Y 2
T ) and the recovery process

Zt = z(t, Y 1
t , Y 2

t ), where z is a continuous function. Then the discounted price
process stopped at τ equals

V ∗
τ∧t = 11{τ>t}e−rtṽ(t, Y 1

t , Y 2
t ) + 11{τ≤t}e−rτz(τ, Y 1

τ , Y 2
τ ).

The latter formula can also be rewritten as follows (note that the pre-default
prices Ỹ 1 and Ỹ 2 are continuous)

V ∗
τ∧t = 11{τ>t}e−rtṽ(t, Ỹ 1

t , Ỹ 2
t ) + 11{τ≤t}e−rτz(τ, Ỹ 1

τ (1 + %1), Ỹ 2
τ (1 + %2)).

In this case, the pre-default pricing PDE reads

−rṽ + ∂tṽ + rx∂xṽ + ry∂y ṽ + 1
2

(
σ2

1x2∂2
xxṽ + σ2

2y2∂2
yy ṽ

)
+ σ1σ2xy∂2

xy ṽ

+ γ(t, x, y)
(
z(t, x(1 + %1), y(1 + %2))− ṽ − %1x∂xṽ − %2y∂y ṽ

)
= 0

with the terminal condition ṽ(T, x, y) = g(x, y). According to our interpretation
of the pre-default value Ũ = Ũ(X)+ Ũ(Z) of the claim (X, Z, 0, τ), the solution
to the last equation is expected to satisfy ṽ(t, Ỹ 1

t , Ỹ 2
t ) = Ũt for every t ∈ [0, T ].
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1.6.3 Replicating Strategy

Consider a claim Y of the form (1.50), and assume that any t ∈ [0, T ] we have

πt(Y ) = ṽ(t, Ỹ 1
t , Ỹ 2

t )11{τ>t} + v̄(t, Y 1
t , Y 2

t )11{τ≤t},

where the functions v̄ and ṽ satisfy the post-default and pre-default pricing
PDEs, respectively. It view of Corollary 1.8, we have (recall that the process
M∗ is stopped at τ and processes Ỹ 1 and Ỹ 2 are continuous)

dV ∗
t = 11{τ≥t}e−rtṼt dW ∗

t + 11{τ<t}e−rtV̄t dW ∗
t

+ e−rt
[
v̄(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2))− ṽ(t, Ỹ 1

t , Ỹ 2
t )

]
dM∗

t ,

where the F-adapted process Ṽ is given by

Ṽt = σ1Ỹ
1
t ∂xṽ(t, Ỹ 1

t , Ỹ 2
t ) + σ2Ỹ

2
t ∂y ṽ(t, Ỹ 1

t , Ỹ 2
t ) (1.60)

and V̄ is the G-adapted process:

V̄t = σ1Y
1
t ∂xv̄(t, Y 1

t , Y 2
t ) + σ2Y

2
t ∂y v̄(t, Y 1

t , Y 2
t ). (1.61)

As before, we denote the discounted prices by

Y 1,3
t = Y 1

t /Y 3
t = Y 1

t e−rt, Y 2,3
t = Y 2

t /Y 3
t = Y 2

t e−rt.

Some algebra leads to

dW ∗
t =

1
%2σ1 − %1σ2

(
%2

Y 1,3
t−

dY 1,3
t − %1

Y 2,3
t−

dY 2,3
t

)
,

dM∗
t =

1
%1σ2 − %2σ1

(
σ2

Y 1,3
t−

dY 1,3
t − σ1

Y 2,3
t−

dY 2,3
t

)
.

It should be stressed that the above representation for W ∗ and M∗ is always
valid, under the present assumptions, on the stochastic interval [[0, τ ∧ T ]]. It
also holds after default, provided that neither Y 1 nor Y 2 jumps to zero at time
τ . Hence, the case when Y 1 (or Y 2) becomes worthless at time τ (and thus also
after τ) should be considered separately. It is worthwhile to emphasize that
the strategy φ derived below is always the replicating strategy for the claim Y
up to default time τ . Recall that we work under the standing assumption that
c = %2σ1 − %1σ2 6= 0. Hence, under the assumption that %1 > −1 and %2 > −1,
we obtain

V ∗
t = V ∗

0 +
1
c

∫

(0,t]

[
%2

(
11{τ≥u}Ṽu + 11{τ<u}V̄u

)

− σ2

(
v̄(u, Ỹ 1

u (1 + %1), Ỹ 2
u (1 + %2))− ṽ(u, Ỹ 1

u , Ỹ 2
u )

)] dY 1,3
u

Y 1
u−
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−1
c

∫

(0,t]

[
%1

(
11{τ≥u}Ṽu + 11{τ<u}V̄u

)

− σ1

(
v̄(u, Ỹ 1

u (1 + %1), Ỹ 2
u (1 + %2))− ṽ(u, Ỹ 1

u , Ỹ 2
u )

)] dY 2,3
u

Y 2
u−

= V ∗
0 +

∫

(0,t]

ψ1
u dY 1,3

u +
∫

(0,t]

ψ2
u dY 2,3

u ,

where the processes ψ1 and ψ2 are G-predictable. If we do not postulate that
%1 > −1 and %2 > −1, then we obtain

V ∗
t∧τ = V ∗

0 +
∫ t∧τ

0

Ṽu dW ∗
u

+
∫

(0,t∧τ ]

e−ru
[
v̄(u, Ỹ 1

u (1 + %1), Ỹ 2
u (1 + %2))− ṽ(u, Ỹ 1

u , Ỹ 2
u )

]
dM∗

u

or, equivalently,

V ∗
t∧τ = V ∗

0 +
1
c

∫

(0,t∧τ ]

%2Ṽu
dY 1,3

u

Ỹ 1
u

− 1
c

∫

(0,t∧τ ]

%1Ṽu
dY 2,3

u

Ỹ 2
u

− σ2

c

∫

(0,t∧τ ]

(
v̄(u, Ỹ 1

u (1 + %1), Ỹ 2
u (1 + %2))− ṽ(u, Ỹ 1

u , Ỹ 2
u )

) dY 1,3
u

Ỹ 1
u

+
σ1

c

∫

(0,t∧τ ]

(
v̄(u, Ỹ 1

u (1 + %1), Ỹ 2
u (1 + %2))− ṽ(u, Ỹ 1

u , Ỹ 2
u )

) dY 2,3
u

Ỹ 2
u

= V ∗
0 +

∫

(0,t∧τ ]

φ1
u dY 1,3

u +
∫

(0,t∧τ ]

φ2
u dY 2,3

u ,

where the processes φ1 and φ2 are F-predictable.
We are in a position to state the following result, which establishes the

formula for the replicating strategy for Y .

Proposition 1.12 Assume that %1 > −1 and %2 > −1. Then the replicat-
ing strategy for the defaultable claim Y defined by (1.50) is given as ψ =
(ψ1, ψ2, π(Y ) − ψ1Y 1 − ψ2Y 2), where the G-predictable processes ψ1 and ψ2

are given by the expressions

ψ1
t = (cY 1

t−)−1
(
%2

(
11{τ≥t}Ṽt + 11{τ<t}V̄t

)

− σ2

(
v̄(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2))− ṽ(t, Ỹ 1

t , Ỹ 2
t )

))

and

ψ2
t = −(cY 2

t−)−1
(
%1

(
11{τ≥t}Ṽt + 11{τ<t}V̄t

)

− σ1

(
v̄(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2))− ṽ(t, Ỹ 1

t , Ỹ 2
t )

))

with the processes Ṽ and V̄ given by (1.60) and (1.61), respectively. The wealth
process of ψ satisfies Vt(ψ) = πt(Y ) for every t ∈ [0, T ].
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It is worthwhile to stress that the replicating strategy ψ is understood in the
standard sense, that is, it duplicates the payoff Y at the maturity date T . If
we wish instead to use the convention adopted in Section 1.4, then we should
focus on the defaultable claim (X, Z, 0, τ) associated with Y through equality
(1.58) (in this case, z(t, x, y) = v̄(t, x, y)), and thus it is a replicating strategy for
the associated defaultable claim (X, Z, τ). The latter convention is particularly
convenient if the assumption that both %1 and %2 are strictly greater than -1
is relaxed. Let us focus on the replication of the claim (X, Z, 0, τ) with the
pre-default value

Ũt = Ũt(X) + Ũt(Z) = ṽ(t, Ỹ 1
t , Ỹ 2

t ).

Proposition 1.13 Assume that either %1 > −1 or %2 > −1, and let the process
Ṽ be given by (1.60). Then the replicating strategy for the defaultable claim
(X,Z, 0, τ) is φ = (φ1, φ2, Ũ − φ1Ỹ 1 − φ2Ỹ 2), where the F-predictable processes
φ1 and φ2 are given by the formulae

φ1
t = (cỸ 1

t )−1
(
%2Ṽt − σ2

(
z(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2))− Ũt

))

φ2
t = −(cỸ 2

t )−1
(
%1Ṽt − σ1

(
z(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2))− Ũt

))
.

Survival claim. Assume that the first tradeable asset is a default-free asset
(that is, %1 = 0), and the second asset is a defaultable asset with zero recovery
(hence, %2 = −1). Then we have

dY 1
t = Y 1

t

(
r dt + σ1 dW ∗

t

)
, Y 1

0 > 0,

dY 2
t = Y 2

t−
(
r dt + σ2 dW ∗

t − dM∗
t

)
, Y 2

0 > 0,

dY 3
t = rY 3

t dt, Y 3
0 = 1.

Notice that c = %2σ1−%1σ2 = −σ1 6= 0. Consider a survival claim Y of the form
Y = 11{τ>T}g(Y 1

T ), that is, a vulnerable claim with zero recovery written on the
default-free asset Y 1. It is obvious that we may formally identify Y with the
defaultable claim (X, 0, 0, τ) with the promised payoff X = g(Y 1

T ) and Z = 0.
For the replicating strategy φ we obtain that

φ2
t Y

2
t = ṽ(t, Ỹ 1

t , Ỹ 2
t )− v̄(t, Ỹ 1

t (1 + %1), Ỹ 2
t (1 + %2)y) = Ũt,

since v̄(t, x, y) = 0. We conclude that the net investment in default-free assets
equals 0 at any time t ∈ [0, T ]. One can check, by inspection, that the strategy
φ replicates the claim Y also after default (formally, we set ψi

t = 0 for i = 1, 2, 3
on the event {τ > t}).

Suppose that the risk-neutral intensity of default is of the form γt = γ(t, Y 1
t ).

In this case, it is rather obvious that the pre-default pricing function ṽ does not
depend on the variable y. In particular, the volatility coefficient σ2 of the second
asset plays no role in the risk-neutral valuation of Y ; only the properties of the
default time τ really matter. This feature of the function ṽ can be formally
deduced from the representation (1.53) and the observation that if γt = γ(t, Y 1

t )
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then the two-dimensional process (Y 1,H) is Markovian with respect to the
filtration G. We conclude that the function ṽ = ṽ(t, x) satisfies the following
simple version of the pre-default pricing PDE

−rṽ + ∂tṽ + rx∂xṽ + 1
2σ2

1x2∂2
xxṽ − γ(t, x)ṽ = 0

with the terminal condition ṽ(T, x) = g(x).

1.6.4 Generalizations

For the sake of simplicity, we have postulated that the prices Y 1, Y 2 and Y 3

are given by the SDE (1.49) with constant coefficients. In order to cover a
large class of defaultable assets, we should relax these restrictive assumptions
by postulating, for instance, that the processes Y 1 and Y 2 are governed under
Q∗ by

dY i
t = Y i

t−
(
rt dt + σi

t dW ∗
t + %i

t dM∗
t

)
, Y i

0 > 0,

where
σi

t = σ̃i(t, T )11{τ<t} + σ̄2(t, T )11{τ≥t}
for some pre-default and post-default volatilities σ̃i(t, T ) and σ̄i(t, T ), and where
%i

t = %i(t, Y 1
t−, Y 2

t−, Y 3
t−) for some functions %i : [0, T ] × R3

+ → [−1,∞). The
proposed dynamics for Y 1 and Y 2 has the following practical consequences.
First, the choice of σ̃i and σ̄i allows us to model the real-life fact that the
character of a defaultable security may change essentially after default. Second,
through a judicious specification of the function %i, we are able to examine
various alternative recovery schemes at time of default. As the process Y 3, we
may take the price of a zero-coupon default-free bond. Hence, Y 3 = B(t, T )
satisfies under Q∗

dY 3
t = Y 3

t

(
rt dt + b(t, T ) dW ∗

t

)
.

Example 1.3 Suppose that the process Y 1 represents the price of a generic
defaultable zero-coupon bond with maturity date T . Then the bond is subject
to the fractional recovery of market value scheme with recovery rate δ1 ∈ [0, 1]
if the process %1 is constant, specifically,

%1
t = %1(t, Y 1

t−, Y 2
t−, Y 3

t−) = δ1 − 1.

To model a defaultable bond with the fractional recovery of par value at default,
we set

%1
t = %1(t, Y 1

t−, Y 2
t−, Y 3

t−) = δ1(Y 1
t−)−1 − 1.

Finally, the fractional recovery of Treasury value scheme corresponds to the
following choice of the process %1

t (recall that Y 3
t = B(t, T ), and thus it is a

continuous process)

%1
t = %1(t, Y 1

t−, Y 2
t−, Y 3

t−) = δ1Y
3
t (Y 1

t−)−1 − 1.

In all cases, the post-default volatility σ̄1(t, T ) should coincide with the volatil-
ity of the default-free zero-coupon bond of maturity T . This corresponds to
the natural interpretation that after default the recovery payoff is invested in
default-free bonds.



Chapter 2

Mean-Variance Approach

In this chapter, we formulate a new paradigm for pricing and hedging financial
risks in incomplete markets, rooted in the classical Markowitz mean-variance
portfolio selection principle. We consider an underlying market of liquid fi-
nancial instruments that are available to an investor (also called an agent) for
investment. We assume that the underlying market is arbitrage-free and com-
plete. We also consider an investor who is interested in dynamic selection of her
portfolio, so that the expected value of her wealth at the end of the pre-selected
planning horizon is no less then some floor value, and so that the associated risk,
as measured by the variance of the wealth at the end of the planning horizon,
is minimized.

When a new investment opportunity becomes available for the agent, in a
form of some contingent claim, she needs to decide how much she is willing to
pay for acquiring the opportunity. More specifically, she has to decide what
portion of her current endowment she is willing to invest in a new opportunity.
It is assumed that the new claim, if acquired, is held until the horizon date,
and the remaining part of the endowment is dynamically invested in primary
(liquid) assets. If the cash-flows generated by the new opportunity can be per-
fectly replicated by the existing liquid market instruments already available for
trading, then the price of the opportunity will be uniquely determined by the
wealth of the replicating strategy. However, if perfect replication is not possible,
then the determination of a purchase (or bid) price that the investor is willing
to pay for the opportunity, will become subject to the investor’s overall attitude
towards trading. In case of our investor, the bid price and the correspond-
ing hedging strategy will be determined in accordance with the mean-variance
paradigm. Analogous remarks apply to an investor who engages in creation of
an investment opportunity and needs to decide about its selling (or ask) price.

As explained above, it suffices to focus on a situation when the newly avail-
able investment opportunity can not be perfectly replicated by the instruments
existing in the underlying market. Thus, the emerging investment opportunity
is not attainable, and consequently the market model (that is the underlying
market and new investment opportunities) is incomplete.

63
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It is well known (see, e.g., El Karoui and Quenez (1995) or Kramkov (1996))
that when a market is incomplete, then for any non-attainable contingent claim
X there exists a non-empty interval of arbitrage prices, referred to as the no-
arbitrage interval, determined by the maximum bid price πu(X) (the upper
price) and the minimum ask price πl(X) (the lower price) The maximum bid
price represents the cost of the most expensive dynamic portfolio that can be
used to perfectly hedge the long position in the contingent claim. The minimum
ask price represents the initial cost of the cheapest dynamic portfolio that can
be used to perfectly hedge the short position in the contingent claim.

Put another way, the maximum bid price is the maximum amount that the
agent purchasing the contingent claim can afford to pay for the claim, and still
be sure to find an admissible portfolio that would fully manage her debt and
repay it with cash flows generated by the strategy and the contingent claim, and
end up with a non-negative wealth at the maturity date of the claim. Likewise,
the minimum ask price is the minimum amount that the agent selling the claim
can afford to accept to charge for the claim, and still be sure to find an admissible
portfolio that would generate enough cash flow to make good on her commitment
to buyer of the claim, and end up with a non-negative wealth at the maturity
date of the claim.

As is well known, the arbitrage opportunities are precluded if and only if the
actual price of the contingent claim belongs to the no-arbitrage interval. But
this means, of course, that perfect hedging will not be accomplished by neither
the short party, nor by the long party. Thus, any price that precludes arbitrage,
enforces possibility of a financial loss for either party at the maturity date. This
observation gave rise to quite abundant literature regarding the judicious choice
of a specific price within the no-arbitrage interval by means of minimizing some
functional that assesses the risk associated with potential losses.

We shall not be discussing this extensive literature here. Let us only ob-
serve that much work within this line of research has been done with regard to
the so-called mean-variance hedging; we refer to the recent paper by Schweizer
(2001) for an exhaustive survey of relevant results. It is worth stressing that the
interpretation of the term “mean-variance hedging”, as defined in these works,
is entirely different from what is meant here by mean-variance hedging.

The optimization techniques used in this chapter are based on mean-variance
portfolio selection in continuous time. Probably the first work in this area was
the paper by Zhou and Li (2000) who used the embedding technique and linear-
quadratic (LQ) optimal control theory to solve the continuous-time, mean-
variance problem with assets having deterministic diffusion coefficients. They
essentially ended up with a problem that was inherently an indefinite stochastic
LQ control problem, the theory of which has been developed only very recently
(see, e.g., Yong and Zhou (1999), Chapter 6). In subsequent works, the tech-
niques of stochastic LQ optimal control were heavily exploited in order to solve
more sophisticated variants of the mean-variance portfolio selection in continu-
ous time. For instance, Li et al. (2001) introduced a constraint on short-selling,
Lim and Zhou (2002) allowed for stocks which are modeled by processes having
random drift and diffusion coefficients, Zhou and Yin (2004) featured assets in
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a regime switching market, and Bielecki et al. (2004b) solved the problem with
positivity constraint imposed on the wealth process. An excellent survey of
most of these results is presented in Zhou (2003), who also provided a number
of examples that illustrate the similarities as well as differences between the
continuous-time and single-period settings.

2.1 Mean-Variance Pricing and Hedging

We consider an economy in continuous time, t ∈ [0, T ∗], and the underlying
probability space (Ω,G,P) endowed with a one-dimensional standard Brownian
motion W (with respect to its natural filtration). The probability P plays the
role of the statistical probability. We denote by F the P-augmentation of the
filtration generated by W . Consider an agent who initially has two liquid assets
available to invest in:

• a risky asset whose price dynamics are

dZ1
t = Z1

t

(
ν dt + σ dWt

)
, Z1

0 > 0,

for some constants ν and σ > 0,

• a money market account whose price dynamics under P are

dZ2
t = rZ2

t dt, Z2
0 = 1,

where r is a constant interest rate.

Suppose for the moment that G = FT∗ . It is well known that in this case the
underlying market, consisting of the two above assets, is complete. Thus the
fair value of any claim contingent X which settles at time T ≤ T ∗, and thus is
formally defined as an FT -measurable random variable, is the (unique) arbitrage
price of X, denoted as π0(X) in what follows.

Now let H be another filtration in (Ω,G,P), which satisfies the usual con-
ditions. We consider the enlarged filtration G = F ∨ H and we postulate that
G = GT∗ . We shall refer to G as to the full filtration; the Brownian filtration F
will be called the reference filtration. We make an important assumption that
W is a standard Brownian motion with respect to the full filtration G under
the probability P.

Let φi
t represent the number of shares of asset i held in the agent’s portfolio

at time t. We consider trading strategies φ = (φ1, φ2), where φ1 and φ2 are
G-predictable processes. A strategy φ is self-financing if

Vt(φ) = V0(φ) +
∫ t

0

φ1
u dZ1

u +
∫ t

0

φ2
u dZ2

u, ∀ t ∈ [0, T ∗],

where Vt(φ) = φ1
t Z

1
t +φ2

t Z
2
t is the wealth of φ at time t. Thus, we postulate the

absence of outside endowments and/or consumption.
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Definition 2.1 We say that a self-financing strategy φ is admissible on the
interval [0, T ] if and only if for any t ∈ [0, T ] the wealth Vt(φ) is a P-square-
integrable random variable.

The condition

EP
(∫ T

0

(φi
uZi

u)2du
)

< ∞, i = 1, 2,

is manifestly sufficient for the admissibility of φ on [0, T ]. Let us fix T and let
us denote by Φ(G) the linear space of all admissible trading strategies on the
finite interval [0, T ].

Suppose that the agent has at time t = 0 a positive amount v > 0 available
for investment (we shall refer to v as the initial endowment). It is easily seen
that for any φ ∈ Φ(G) the wealth process satisfies the following SDE

dV v
t (φ) = rV v

t (φ) dt + φ1
t

(
dZ1

t − rZ1
t dt

)
, V v

0 (φ) = v.

This shows that the wealth at time t depends exclusively on the initial endow-
ment v and the component φ1 of a self-financing strategy φ.

Now, imagine that a new investment opportunity becomes available for the
agent. Namely, the agent may purchase at time t = 0 a contingent claim X,
whose corresponding cash-flow of X units of cash occurs at time T . We assume
that X is not an FT -measurable random variable. Notice that this requirement
alone may not suffice for the non-attainability of X. Indeed, in the present
setup, we have the following definition of attainability.

Definition 2.2 A contingent claim X is attainable if there exists a strategy
φ ∈ Φ(G) such that X = VT (φ) or, equivalently,

X = V0(φ) +
∫ T

0

φ1
u dZ1

u +
∫ T

0

φ2
u dZ2

u.

If a claim X can be replicated by means of a trading strategy φ ∈ Φ(F), we
shall say that X is F-attainable. According to the definition of admissibility,
the square-integrability of X under P is a necessary condition for attainability.
Notice, however, that it may happen that X is not an FT -measurable random
variable, but it represents an attainable contingent claim according to the defi-
nition above.

Suppose now that a considered claim X is not attainable. The main question
that we want to study is: how much would the agent be willing to pay at time
t = 0 for X, and how the agent should hedge her investment? A symmetric
study can be conducted for an agent creating such an investment opportunity
by selling the claim. In what follows, we shall first present our results in a
general framework of a generic GT -measurable claim; then we shall examine a
particular case of defaultable claims.



2.1. MEAN-VARIANCE PRICING AND HEDGING 67

2.1.1 Mean-Variance Portfolio Selection

We postulate that the agent’s objective for investment is based on the classical
mean-variance portfolio selection. Let VP(Z) be the variance under P of a ran-
dom variable Z. For any fixed date T , any initial endowment v > 0, and any
given d ∈ R, the agent is interested in solving the following problem:

Problem MV(d, v): Minimize VP(V v
T (φ)) over all strategies φ ∈ Φ(G), subject

to EPV v
T (φ) ≥ d.

We shall show that, given the parameters d and v satisfy certain additional
conditions, the above problem admits a solution, so that there exists an op-
timal trading strategy, say φ∗(d, v). Let V ∗(d, v) = V (φ∗(d, v)) stand for the
optimal wealth process, and let us denote by v∗(d, v) the value of the variance
VP(V ∗

T (d, v)).
For simplicity of presentation, we did not postulate above that agent’s wealth

should be non-negative at any time. Problem MV(d, v) with this additional
restriction has been recently studied in Bielecki et al. (2004b).

Remark. It is apparent that the problem MV(d, v) is non-trivial only if d >
verT . Otherwise, investing in the money market alone generates the wealth
process V v

t (φ) = vert, that obviously satisfies the terminal condition EPV v
T (φ) =

verT ≥ d, and for which the variance of the terminal wealth V v
T (φ) is zero.

Thus, when considering the problem MV(d, v) we shall always assume that
d > verT . Put another way, we shall only consider trading strategies φ for
which the expected return satisfies EP(V v

T (φ)/v) ≥ erT , that is, it is strictly
higher than the return on the money market account.

Assume that a claim X is available for purchase at time t = 0. We postulate
that the random variable X is GT -measurable and square-integrable under P.
The agent shall decide whether to purchase X, and what is the maximal price
she could offer for X. According to the mean-variance paradigm, her decision
will be based on the following reasoning. First, for any p ∈ [0, v] the agent needs
to solve the related mean-variance problem.

Problem MV(d, v, p, X): Minimize VP(V v−p
T (φ) + X) over all trading strate-

gies φ ∈ Φ(G), subject to EP(V v−p
T (φ) + X) ≥ d.

We shall show that if d, v, p and X satisfy certain sufficient conditions, then
there exists an optimal strategy, say φ∗(d, v, p, X), for this problem. We denote
by V ∗

T (d, v, p, X) the value of V v−p
T (φ∗(d, v, p, X)) and we set v∗(d, v, p,X) =

VP
(
V ∗

T (d, v, p, X) + X
)
.

It is reasonable to expect that the agent will be willing to pay for the claim
X the price that is no more than (by convention, sup ∅ = −∞)

pd,v(X) := sup { p ∈ [0, v] : MV(d, v, p, X) admits a solution
and v∗(d, v, p,X) ≤ v∗(d, v)}.

This leads to the following definition of mean-variance price and hedging strat-
egy.
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Definition 2.3 The number pd,v(X) is called the buying agent’s mean-variance
price of X. The optimal trading strategy φ∗(d, v, pd,v(X), X) is called the
agent’s mean-variance hedging strategy for X.

Of course, in order to make the last definition operational, we need to be
able to solve explicitly problems MV(d, v) and MV(d, v, p,X), at least in some
special cases of a common interest. These issues will be examined in some detail
in the remaining part of this note, first for the special case of F-adapted trading
strategies (see Section 2.2), and subsequently, in the general case of G-adapted
strategies (see Section 2.3).

Remark. Let us denote µX = EPX. Inequality EP(V v−p
T (φ) + X) ≥ d is

equivalent to EPV v−p
T (φ) ≥ d − µX . Observe that, unlike as in the case of

the problem MV(d, v), the problem MV(d, v, p, X) may be non-trivial even if
d−µX ≤ erT (v− p). Although investing in a money market alone will produce
in this case a wealth process for which the condition EPV v−p

T (φ) ≥ d − µX is
manifestly satisfied, the corresponding variance VP

(
V v−p

T (φ) + X
)

= VP(X) is
not necessarily minimal.

Financial Interpretation

Let us denote by N (X) the no-arbitrage interval for the claim X, that is,
N (X) = [πl(X), πu(X)]. It may well happen that the mean-variance price
pd,v(X) is outside this interval. Since this possibility may appear as an un-
wanted feature of the approach to pricing and hedging presented in this note,
we shall comment briefly on this issue. When we consider the valuation of a
claim X from the perspective of the entire market, then we naturally apply the
no-arbitrage paradigm.

According to the no-arbitrage paradigm, the financial market as a whole
will accept only those prices of a financial asset, which fall into the no-arbitrage
interval. Prices from outside this interval can’t be sustained in a longer term
due to market forces, which will tend to eliminate any arbitrage opportunity.

Now, let us consider the same issue from the perspective of an individual.
Suppose that an individual investor is interested in putting some of her initial
endowment v > 0 into an investment opportunity provided by some claim X.
Thus, the investor needs to decide whether to acquire the investment opportu-
nity, and if so then how much to pay for it, based on her overall attitude towards
risk and reward.

The number pd,v(X) is the price that investor is willing to pay for the invest-
ment opportunity X, given her initial capital v, given her attitude towards risk
and reward, and given the primary market. The investor “submits” her price
to the market. Now, suppose that the market recognized no-arbitrage interval
for X is N (X). If it happens that p ∈ N (X) then the investor’s bid price for
X can be accepted by the market. In the opposite case, the investor’s bid price
may not be accepted by the market, and the investor may not enter into the
investment opportunity.
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2.2 Strategies Adapted to the Reference Filtra-
tion

In this section, we shall solve the problem MV(d, v) under the restriction that
trading strategies are based on the reference filtration F. In other words, we
postulate that φ belongs to the class Φ(F) of all admissible and F-predictable
strategies φ. In this case, we shall say that a strategy φ is F-admissible. The
assumption that φ is F-admissible implies, of course, that the terminal wealth
V v

T (φ) is an FT -measurable random variable.

2.2.1 Solution to MV(d, v) in the Class Φ(F)

A general version of the problem MV(d, v) has been studied in Bielecki et al.
(2004b). Because our problem is a very special version of the general one, we
give below a complete solution tailored to present set-up.

Reduction to Zero Interest Rate Case

Recall our standing assumption that d > verT . Problem MV(d, v) is clearly
equivalent to: minimize the variance VP(e−rT VT (φ)) under the constraint

EP(e−rT VT (φ)) ≥ e−rT d.

For the sake of notational simplicity, we shall write Vt instead of V v
t (φ). We set

Ṽt = Vt(Z2
t )−1 = e−rtVt, so that

dṼt = φ1
t dZ̃1

t = φ1
t Z̃

1
t

(
ν̂ dt + σ dWt

)
, (2.1)

where we denote ν̂ = ν − r. So we can and do restrict our attention to the case
r = 0. Thus, in what follows, we shall have Z2

t = 1 for every t ∈ R+. In the
rest of this note, unless explicitly stated otherwise, we assume that d > v.

Decomposition of Problem MV(d, v)

Let Q be a (unique) equivalent martingale measure on (Ω,FT∗) for the under-
lying market. It is easily seen that

dQ
dP

∣∣∣
Ft

= ηt, ∀ t ∈ [0, T ∗],

where we denote by η the Radon-Nikodym density process. Specifically, we have

dηt = −θηt dWt, η0 = 1, (2.2)

or, equivalently,
ηt = exp

(− θWt − 1
2θ2t

)
,
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where θ = ν/σ (recall that we have formally reduced the problem to the case
r = 0). The process η is a F-martingale under P. Moreover,

EP(η2
T | Ft) = η2

t exp(θ2(T − t)), (2.3)

and thus EP(η2
t ) = exp(θ2t) for t ∈ [0, T ∗]. It is easily seen that the price Z1 is

an F-martingale under Q, since

dZ1
t = σZ1

t d(Wt + θt) = σZ1
t dW̃t (2.4)

for the Q-Brownian motion W̃t = Wt +θt. The measure Q is thus the equivalent
martingale measure for our primary market.

From (2.1), we have that

Vt = v +
∫ t

0

φ1
u dZ1

u = v +
∫ t

0

φ1
uσZ1

u dW̃u. (2.5)

Recall that if φ is an F-admissible strategy, that is, φ ∈ Φ(F), then VT is an
FT -measurable random variable, which is P-square-integrable.

Let X be a P-square-integrable and FT -measurable random variable. It is
easily seen that X is integrable with respect to Q (since ηT is square-integrable
with respect to P). The existence of a self-financing trading strategy that repli-
cates X can be justified by the predictable representation theorem combined
with the Bayes formula. We thus have the following result.

Lemma 2.1 Let X be a P-square-integrable and FT -measurable random vari-
able. Then X is an F-attainable contingent claim, i.e., there exists a strategy
φX in Φ(F) such that VT (φ) = X.

We shall argue that problem MV(d, v) can be split into two problems (see
also Pliska (2001) and Bielecki et al. (2004b) in this regard). We first focus on
the optimal terminal wealth V ∗

T (d, v). Let L2(Ω,FT ,P) denote the collection of
P-square-integrable random variables that are FT -measurable. Thus the first
problem we need to solve is:

Problem MV1: Minimize VP(ξ) over all ξ ∈ L2(Ω,FT ,P), subject to EPξ ≥ d
and EQξ = v.

Lemma 2.2 Suppose that φ∗ = φ∗(d, v) solves the problem MV(d, v), and let
V ∗(d, v) = V (φ∗). Then the random variable ξ∗ = V ∗

T (d, v) solves the problem
MV1.

Proof. We argue by contradiction. Suppose that there exists a random variable
ξ̂ ∈ L2(Ω,FT ,P) such that EPξ̂ ≥ d, EQξ̂ = v and VP(ξ̂) < VP(ξ∗). Since ξ̂ is
P-square-integrable and FT -measurable, it represents an attainable contingent
claim, so that there exists an F-admissible strategy φ̂ such that ξ̂ = VT (φ̂). Of
course, this contradicts the assumption that φ∗ solves MV(d, v). ¤

Denoting by ξ∗ the optimal solution to problem MV1, the second problem
is:
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Problem MV2: Find an F-admissible strategy φ∗ such that VT (φ∗) = ξ∗.

Since the next result is analogous to Theorem 2.1 in Bielecki et al. (2004b),
its proof is omitted. It demonstrates that solving problem MV(d, v) is indeed
equivalent to successful solving problems MV1 and MV2. In the formulation
of the result below we make use of a backward stochastic differential equation
(BSDE). The reader can refer to El Karoui and Mazliak (1997), El Karoui and
Quenez (1997), El Karoui et al. (1997), Ma and Yong (1999) or to the survey
by Buckdahn (2000) for an introduction to the theory of backward stochastic
differential equations and its applications in finance.

Proposition 2.1 Suppose that the problem MV1 has a solution ξ∗. The fol-
lowing BSDE

dvt = −θzt dt + zt dWt, vT = ξ∗, t ∈ [0, T ], (2.6)

has a unique, P-square-integrable solution, denoted as (v∗, z∗), which is adapted
to F. Moreover, if we define a process φ1∗ by

φ1∗
t = z∗t (σZ1

t )−1, ∀ t ∈ [0, T ],

then the F-admissible trading strategy φ∗ = (φ1∗, φ2∗) with the wealth process
Vt(φ∗) = v∗t solves the problem MV(d, v).

For the last statement, recall that if the first component of a self-financing
strategy φ and its wealth process V (φ) is known, then the component φ2 is
uniquely determined through the equality Vt(φ) = φ1

t Z
1
t + φ2

t Z
2
t .

Remark. In what follows, we shall derive closed-form expressions for φ∗ and
V (φ∗). It will be easily seen that the process V (φ∗) is not only P-square-
integrable, but also Q-square-integrable. It should be stressed that Proposition
2.1 will not be used in the derivation of a solution to problem MV(d, v). In fact,
we shall find a solution to MV(d, v) through explicit calculations.

Solution of Problem MV1

In order to make the problem MV1 non-trivial, we need to make an additional
assumption that θ 6= 0. Indeed, if θ = 0 then we have P = Q, and thus the
problem MV1 becomes:

Problem MV1: Minimize VP(ξ) over all ξ ∈ L2(Ω,FT ,P), subject to EPξ ≥ d
and EQξ = v.

It is easily seen that this problem admits a solution for d = v only, and
the optimal solution is trivial, in the sense that the optimal variance is null.
Consequently, for θ = 0, the solution to MV(d, v) exists if and only if d = v,
and it is trivial: φ∗ = (0, 1). Let us reiterate that we postulate that d > v in
order to avoid trivial solutions to MV(d, v).

¿From now on, we assume that θ 6= 0. We begin with the following auxiliary
problem:



72 CHAPTER 2. MEAN-VARIANCE APPROACH

Problem MV1A: Minimize VP(ξ) over all ξ ∈ L2(Ω,FT ,P), subject to EPξ =
d and EPξ = v.

The previous problem is manifestly equivalent to:

Problem MV1B: Minimize EPξ2 over all ξ ∈ L2(Ω,FT ,P), subject to EPξ = d
and EQξ = v.

Since EQξ = EP(ηT ξ), the corresponding Lagrangian is

EP(ξ2 − λ1ξ − λ2ηT ξ)− d2 + λ1d + λ2v.

The optimal random variable is given by 2ξ∗ = λ1 + λ2ηT , where the Lagrange
multipliers satisfy

2d = λ1 + λ2, 2v = λ1 + λ2 exp(θ2T ).

Hence, we have

ξ∗ =
(
deθ2T − v + (v − d)ηT

)(
eθ2T − 1

)−1
, (2.7)

and the corresponding minimal variance is

VP(ξ∗) = EP(ξ∗)2 − d2 = (d− v)2
(
eθ2T − 1

)−1
. (2.8)

Since we assumed that d > v, the minimal variance is an increasing function
of the parameter d for any fixed value of the initial endowment v, we conclude
that we have solved not only the problem MV1A, but the problem MV1 as well.
We thus have the following result.

Proposition 2.2 The solution ξ∗ to problem MV1 is given by (2.7) and the
minimal variance VP(ξ∗) is given by (2.8).

For an alternative approach to Problem MV1, in a fairly general setup, see
Jankunas (2001).

Solution of Problem MV2

We maintain the assumption that θ 6= 0. Thus, the optimal wealth for the
terminal time T is given by (2.7), that is, VT (φ∗) = ξ∗. Our goal is to determine
an F-admissible strategy φ∗ for which the last equality is indeed satisfied. In
view if (2.5), it suffices to find φ1∗ such that the process V ∗

t given by

V ∗
t = v +

∫ t

0

φ1∗
u dZ1

u (2.9)

satisfies VT = ξ∗, and the strategy φ∗ = (φ1∗, φ2∗), where φ2∗ is derived from
Vt = φ1∗

t Z1
t + φ2∗

t Z2
t , is F-admissible.

To this end, let us introduce an F-martingale V under Q by setting Vt =
EQ(ξ∗ | Ft) (the integrability of ξ∗ under Q is rather obvious).
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It is easy to see that V ∗
T = ξ∗ and V ∗

0 = v. It thus remains to find the
process φ1∗. Using (2.3), we obtain

V ∗
t =

(
deθ2T − v + (v − d)ηte

θ2(T−t)
)(

eθ2T − 1
)−1

.

Consequently, in view of (2.2) and (2.4), we have

dV ∗
t =

v − d

eθ2T − 1
(
eθ2(T−t)dηt − ηte

θ2(T−t)θ2 dt
)

= eθ2(T−t) θηt(v − d)
eθ2T − 1

(dWt − θdt)

= eθ2(T−t) d− v

eθ2T − 1
νηt

σ2

dZ1
t

Z1
t

.

This shows that we may choose

φ1∗
t = eθ2(T−t) d− v

eθ2T − 1
ν

σ2

ηt

Z1
t

. (2.10)

It is clear that φ∗ is F-admissible, since it is F-adapted, self-financing, and Vt(φ∗)
is P-square-integrable for every t ∈ [0, T ].

Solution of Problem MV(d, v)

By virtue of Lemma 2.2, we conclude that φ∗ solves MV(d, v). In view of (2.8),
the variance under P of the terminal wealth of the optimal strategy is

v∗(d, v) = EP(V ∗
T )2 − d2 =

(d− v)2

eθ2T − 1
.

Let us stress that since we did not impose any no-bankruptcy condition, that is
we do no require that the agent’s wealth is non-negative, we see that d can be
any number greater then v.

We are in a position to state the following result, which summarizes the
analysis above. For a fixed T > 0, we denote ρ(θ) = eθ2T (eθ2T − 1)−1 and
ηt(θ) = ηte

−θ2t, so that η0(θ) = 1.

Proposition 2.3 Assume that θ 6= 0 and let d > v. Then a solution φ∗(d, v) =
(φ∗1(d, v), φ∗2(d, v)) to MV(d, v) is given by

φ1∗
t (d, v) = (d− v)ρ(θ)

νηt(θ)
σ2Z1

t

(2.11)

and V ∗
t (d, v) = Vt(φ∗(d, v)) = φ∗1t (d, v)Z1

t + φ∗2t (d, v), where the optimal wealth
process equals

V ∗
t (d, v) = v + (d− v)ρ(θ)

(
1− ηt(θ)

)
. (2.12)

The minimal variance v∗(d, v) is given by

v∗(d, v) = EP(V ∗
T (d, v))2 − d2 =

(d− v)2

eθ2T − 1
. (2.13)
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Notice that the optimal trading strategy φ∗(d, v), the minimal variance
v∗(d, v) and the optimal gains process G∗t (d, v) = V ∗

t (d, v)−v depend exclusively
on the difference d− v > 0, rather than on parameters d and v themselves.

Efficient Portfolio

As it was observed above the function f(d) := v∗(d, v) is (strictly) increasing
for d ≥ v. Consider the following problem (as usual, for d ≥ v):

Problem ME(d, v): Maximize EPV v
T (φ) over all strategies φ ∈ Φ(G), subject

to VP(V v
T (φ)) = v∗(d, v).

Denote the maximal expectation in the above problem by µ∗(d, v). In view
of the strict monotonicity of the function f(d) for d ≥ v, it is clear that
µ∗(d, v) = d. Consequently, the minimum variance portfolio φ∗ is in fact an
efficient portfolio.

2.2.2 Solution to MV(d, v, p, X) in the Class Φ(F)

Consider first the special case of an attainable claim, which is FT -measurable.
Subsequently, we shall show that in general it suffices to decompose a gen-
eral claim X into an attainable component X̃ = EP(X | FT ) ∈ L2(Ω,FT ,P),
and a component X − X̃ which is orthogonal in L2(Ω,GT ,P) to the subspace
L2(Ω,FT ,P) of admissible terminal wealths.

Case of an Attainable Claim

We shall verify that the mean-variance price coincides with the (unique) arbi-
trage price for any contingent claim that is attainable. Of course, this feature is
a standard requirement for any reasonable valuation mechanism for contingent
claims. Since in this section we consider only F-adapted strategies, we postulate
here that a claim X is FT -measurable; the general case of a GT -measurable claim
is considered in Section 2.3.1. Let φX ∈ Φ(F) be a replicating strategy for X, so
that X is F-attainable, and let π0(X) = EQX be the arbitrage price of X. Since
Φ(F) is a linear space, it is easily seen that Φ(F) = Φ(F) + φX = Φ(F) − φX .
The following lemma is thus easy to prove.

Lemma 2.3 Let X be an F-attainable contingent claim. Then the problem
MV(d, v, p,X) is equivalent to the problem MV(d, v̂) with v̂ = v − p + π0(X).

Equivalence of problems MV(d, v, p, X) and MV(d, v̂) is understood in the
following way: first, the minimal variance for both problems is identical. Second,
if a strategy ψ∗ is a solution to MV(d, v − p + π0(X)), then a strategy φ∗ =
ψ∗ − φX is a solution to the original problem MV(d, v, p, X).

Corollary 2.1 Suppose that an FT -measurable random variable X represents
an F-attainable claim. (i) If the arbitrage price π0(X) satisfies π0(X) ∈ [0, v]
then pd,v(X) = π0(X).
(ii) If the arbitrage price π0(X) is strictly greater than v then pd,v(X) = v.
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Proof. By definition, the mean-variance price of X is the maximal value of
p ∈ [0, v] for which v∗(d, v, p,X) = v∗(d, v̂) ≤ v∗(d, v). Recall that we assume
that d > v so that, in view of (2.17),

v∗(d, v) =
(d− v)2

eθ2T − 1
.

By applying this result to MV(d, v̂) we obtain

v∗(d, v, p, X) =
(d− v + p− π0(X))2

eθ2T − 1

provided that d > v−p+π0(X). Assume that p > π0(X). Then d > v−p+π0(X)
and thus v∗(d, v, p,X) > v∗(d, v) since manifestly (d−v)2 > (d−v+p−π0(X))2

in this case. This shows that pd,v(X) ≤ π0(X). Of course, for p = π0(X) we
have the equality of minimal variances. We conclude that pd,v(X) = π0(X)
provided that π0(X) ∈ [0, v]. This completes the proof of part (i).

To prove part (ii), let us assume that π0(X) > v. In this case, it suffices to
take p = v and to check that v∗(d, v, v, X) = v∗(d, π0(X)) ≤ v∗(d, v). This is
again rather obvious since for v < π0(X) < d we have (d− π0(X))2 < (d− v)2,
and for π0(X) ≥ d we have v∗(d, π0(X)) = 0. ¤

Case of a Generic Claim

Consider an arbitrary GT -measurable claim X, which is P-square-integrable.
Recall that our goal is to solve the following problem for 0 ≤ p ≤ v.

Problem MV(d, v, p, X): Minimize VP(V v−p
T (φ) + X) over all trading strate-

gies φ ∈ Φ(F), subject to EP(V v−p
T (φ) + X) ≥ d.

Let us denote by X̃ the conditional expectation EP(X | FT ). Then, of course,
EPX̃ = EPX. Moreover, X̃ is an attainable claim and its arbitrage price at time
0 equals

π0(X̃) = EQX̃ = EP(ηTEP(X | FT )) = EP(ηT X) = EQX,

where Q is the martingale measure introduced in Section 2.2.1. Let φX̃ stand
for the replicating strategy for X̃ in the class Φ(F). Arguing as in the previous
case, we conclude that the problem MV(d, v, p, X) is equivalent to the following
problem. We set here p̃ = p− π0(X̃).

Problem MV(d, v, p̃,X−X̃): Minimize VP(V v−p̃
T (φ)+X−X̃) over all trading

strategies φ ∈ Φ(F), subject to EP(V v−p̃
T (φ) + X − X̃) ≥ d.

Recall that EPX̃ = EPX and denote γX = VP(X− X̃). Observe that for any
φ ∈ Φ(F) we have

VP(V v−p̃
T (φ) + X − X̃) = VP(V v−p̃

T (φ)) + VP(X − X̃) = VP(V v−p̃
T (φ)) + γX .
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The problem MV(d, v, p̃,X − X̃) can thus be represented as follows. We denote
ṽ = v − p̃.

Problem MV(d, ṽ; γX): Minimize VP(V ṽ
T (φ)) + γX over all trading strategies

φ ∈ Φ(F), subject to EP(V ṽ
T (φ)) ≥ d.

Observe that the problem MV(d, ṽ; γX) is formally equivalent to the original
problem MV(d, v, p, X) in the following sense: first, the minimal variances for
both problems are identical, more precisely, we have

v∗(d, v, p,X) = v∗(d, ṽ) + γX ,

where v∗(d, ṽ) is the minimal variance for MV(d, ṽ). Second, if a strategy ψ∗ is a
solution to problem MV(d, ṽ), then φ∗ = ψ∗−φX̃ is a solution to MV(d, v, p, X).

Remark. It is interesting to notice that a solution MV(d, ṽ; γX) does not
depend explicitly on the expected value of X under P. Hence, the minimal
variance for the problem MV(d, v, p, X) is independent of µX as well, but, of
course, it depends on the price π0(X̃) = EQX, which may in fact coincide with
µX under some circumstances.

In view of the arguments above, it suffices to consider the problem MV(d, ṽ),
where ṽ = v− p+EQX. Since the problem of this form has been already solved
in Section 2.2.1, we are in a position to state the following result, which is an
immediate consequence of Proposition 2.3. Recall that ρ(θ) = eθ2T (eθ2T − 1)−1

and ηt(θ) = ηte
−θ2t, so that η0(θ) = 1. Finally, ṽ = v−p+EQX = v−p+EQX̃.

Proposition 2.4 Assume that θ 6= 0. (i) Suppose that d > ṽ. Then a solution
φ∗(d, v, p,X) to MV(d, v, p, X) is given as φ∗(d, v, p, X) = ψ∗(d, ṽ)−φX̃ , where
ψ∗(d, ṽ) = (ψ1∗(d, ṽ), ψ2∗(d, ṽ)) is such that ψ1∗(d, ṽ) equals

ψ1∗
t (d, ṽ) = (d− ṽ)ρ(θ)

νηt(θ)
σ2Z1

t

(2.14)

and ψ2∗(d, ṽ) satisfies ψ∗1t (d, ṽ)Z1
t +ψ∗2t (d, ṽ) = V ∗

t (d, ṽ) for t ∈ [0, T ], where in
turn

V ∗
t (d, ṽ) = ṽ + (d− ṽ)ρ(θ)

(
1− ηt(θ)

)
. (2.15)

Thus the optimal wealth for the problem MV(d, v, p, X) equals

V ∗
t (d, v, p, X) = v − p + (d− ṽ)ρ(θ)

(
1− ηt(θ)

)
+ EQX̃ − EQ(X̃ | Ft) (2.16)

and the minimal variance v∗(d, v, p,X) is given by

v∗(d, v, p, X) =
(d− ṽ)2

eθ2T − 1
+ γX . (2.17)

(ii) If d ≤ ṽ then the optimal wealth process equals

V ∗
t (d, v, p, X) = v − p + EQX̃ − EQ(X̃ | Ft)

and the minimal variance equals γX .
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Remark. Let us comment briefly on the assumption θ 6= 0. Recall that if
it fails to hold, the problem MV(d, ṽ) has no solution, unless d = ṽ. Hence,
for θ = 0 we need to postulate that d = v − p + EPX (recall that θ = 0 if
and only if Q = P). The optimal strategy φ∗ = (0, 1) and thus the solution to
MV(d, v, p, X) is exactly the same as in part (ii) of Proposition 2.4.

Mean-Variance Pricing and Hedging of a Generic Claim

Our next goal is to provide explicit representations for the mean-variance price of
X. We maintain the assumption that the problem MV(d, v, p, X) is examined
in the class Φ(F). Thus, the mean-variance price considered in this section,
denoted as pd,v

F (X) in what follows, is relative to the reference filtration F.
Assume that d > ṽ = v − p + EQX (recall that EQX = EQX̃ = π0(X̃)).

Then, by virtue of Proposition 2.4, we see that the minimal variance for the
problem MV(d, v, p, X) equals

v∗(d, v, p,X) =
(d− v + p− EQX)2

eθ2T − 1
+ γX ,

where
γX = VP(X − X̃).

Of course, if d ≤ ṽ = v − p + EQX then we have v∗(d, v, p, X) = γX . Recall
that we postulate that d > v, and thus the minimal variance for the problem
MV(d, v) equals

v∗(d, v) =
(d− v)2

eθ2T − 1
.

Let us denote

κ = d− v − EQX, ρ = (d− v)2 − γX(eθ2T − 1).

Proposition 2.5 (i) Suppose that π0(X̃) ≥ d so that κ ≤ −v. If γX ≤ v∗(d, v)
then the mean variance price equals pd,v

F (X) = v. Otherwise, pd,v
F (X) = −∞.

(ii) Suppose that d− v ≤ π0(X̃) < d so that −v < κ ≤ 0. If, in addition, ρ ≥ 0
then we have

pd,v
F (X) = min{−κ +

√
ρ , v} ∨ 0. (2.18)

Otherwise, i.e., when ρ < 0, we have pd,v
F (X) = −κ if γX ≤ v∗(d, v), and

pd,v(X) = −∞ if γX > v∗(d, v).
(iii) Suppose that π0(X̃) < d − v so that κ > 0. If ρ ≥ 0 then pd,v

F (X) is given
by (2.18). Otherwise, we have pd,v

F (X) = −∞.

Proof. In case (i), we have d − v − EQX ≤ −p for every p ∈ [0, v]. Thus
d ≤ v − p + EQX, so that v∗(d, v, p, X) = γX . Therefore, if γX ≤ v∗(d, v) it is
clear that pd,v

F (X) = v. Otherwise, for every p ∈ [0, v] we have v∗(d, v, p, X) =
γX > v∗(d, v) and thus pd,v

F (X) = −∞.
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In case (ii), it suffices to notice that d ≤ v − p + EQX for any p ∈ [0,−κ],
and d > v− p+EQX for any p ∈ (−κ, v]. Thus the maximal p ∈ [0, v] for which
v∗(d, v, p,X) ≤ v∗(d, v) can be found from the equation

(κ + p)2 + γX

(
eθ2T − 1

)
= (d− v)2,

which admits the solution p = −κ +
√

ρ provided that ρ ≥ 0. If ρ < 0, then we
need to examine the case p ∈ [0,−κ], and we see that pd,v

F (X) equals either −κ
or −∞, depending on whether γX ≤ v∗(d, v) or γX > v∗(d, v).

In case (iii), we have d − v − EQX > 0, which yields d > v − p + EQX for
any p ∈ [0, v]. Inequality v∗(d, v, p, X) ≤ v∗(d, v) becomes

(d− v + p− EQX)2 + γX

(
eθ2T − 1

) ≤ (d− v)2

If ρ ≥ 0 then pd,v
F (X) is given by (2.18). Otherwise, we have pd,v

F (X) = −∞. ¤
The mean variance hedging strategy for a claim X is now obtained as φMV =

φ∗(d, v, pd,v
F (X), X) for all cases above when pd,v

F (X) 6= −∞.

2.2.3 Defaultable Claims

In order to provide a better intuition, we shall now examine in some detail two
special cases. First, we shall assume that X is independent of the σ-field FT .
Since X is GT -measurable, but obviously it is not GT -measurable, we shall refer
to X as a defaultable claim (a more general interpretation of X is possible,
however).

Although this case may look rather trivial at the first glance, we shall see
that some interesting conclusions can be obtained. Second, we shall analyze
the case of a defaultable zero-coupon bond with fractional recovery of Treasury
value. Of course, both examples are merely simple illustrations of Proposition
2.4, and thus they should not be considered as real-life applications.

Claim Independent of the Reference Filtration

Consider a GT -measurable contingent claim X, such that X is independent of
the σ-field FT . Then for any strategy φ ∈ Φ(F), the terminal wealth VT (φ) and
the payoff X are independent random variables, so that

VP
(
VT (φ) + X

)
= VP(VT (φ)) + VP(X).

It is clear that if the variance VP(X) satisfies VP(X) > v∗(d, v), then pd,v
F (X) =

−∞ for every v > 0. Moreover, if VP(X) ≤ v∗(d, v) and EPX ≥ d, then
pd,v(X) = v for every v > 0.

It thus remains to examine the case when VP(X) ≤ v∗(d, v) and EPX < d.
Notice that X̃ = EPX and thus π0(X̃) = EPX. In particular, since X̃ is
constant, its replicating strategy is trivial, i.e. φX̃ = 0.
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In view of Proposition 2.4, if d > v− p+EPX then the minimal variance for
the problem MV(d, v, p, X) equals

v∗(d, v, p, X) =
(d− v + p− µX)2

eθ2T − 1
+ σ2

X ,

where µX = EPX and σ2
X = VP(X) = γX . Let us denote

p̃d,v(X) = −d + v + µX +
√

(d− v)2 − σ2
X(eθ2T − 1).

Proposition 2.6 The mean variance price of the claim X equals

pd,v
F (X) = min {p̃d,v(X), v} ∨ 0

if (d− v)2 − σ2
X(eθ2T − 1) ≥ 0, and −∞ otherwise. The mean-variance hedging

strategy φMV = ψ∗, where ψ∗ is such that

ψ1∗
t = eθ2(T−t) d− v + pd,v(X)− µX

eθ2T − 1
ν

σ2

ηt

Z1
t

, ∀ t ∈ [0, T ].

The mean-variance price depends, of course, on the initial value v of the
investor’s capital. This dependence has very intuitive and natural properties,
though. Let us denote

k = d−
√

(d− µX)2 + σ2
X(eθ2T − 1), l = d− σX

√
eθ2T − 1.

We fix all parameters, except for v. Notice that the function p(v) = pd,v
F (X) is

non-negative and finite for v ∈ [0, l∨0]. Moreover, the function p(v) is increasing
for v ∈ [0, k ∨ 0), and it is decreasing on the interval [k ∨ 0, l ∨ 0]. Specifically,

p(v) =
{

v, if 0 ≤ v < k ∨ 0,
µX − d + v +

√
(d− v)2 − σ2

X(eθ2T − 1), if k ∨ 0 ≤ v ≤ l ∨ 0 .

This conclusion is quite intuitive: once the initial level of investor’s capital is
big enough (that is, v ≥ l) the investor is less and less interested in purchasing
the claim X. This is because when the initial endowment is sufficiently close
to the expected terminal wealth level, the investor has enough leverage to meet
this terminal objective at minimum risk; therefore, the investor is increasingly
reluctant to purchase the claim X as this would introduce unwanted additional
risk (unless of course σX = 0). For example, if v = d then the investor is not
at all interested in purchasing the claim (pv,v

F (X) = −∞ if σX > 0 and θ 6= 0).
For further properties of the mean-variance price of a claim X independent of
FT , we refer to Bielecki and Jeanblanc (2003).

Defaultable Bond

Let τ be a random time on the underlying probability space (Ω,G,P). We define
the indicator process H associated with τ by setting Ht = 11{τ≤t} for t ∈ R+ ,
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and we denote by H the natural filtration of H (P-completed). We take H to
serve as the auxiliary filtration, so that G = F∨H. We assume that the default
time τ is defined as follows:

τ = inf { t ∈ R+ : Γt > ζ }, (2.19)

where Γ is an increasing, F-adapted process, with Γ0 = 0, and ζ is an expo-
nentially distributed random variable with parameter 1, independent of F. It
is well known that any Brownian motion W with respect to F is also a Brow-
nian motion with respect to G within the present setup (the latter property is
closely related to the so-called hypothesis (H) frequently used in the modeling
of default event, see Jeanblanc and Rutkowski (2000) or Bielecki et al. (2004)).

Now, suppose that a new investment opportunity becomes available for the
agent. Namely, the agent may purchase a defaultable bond that matures at
time T ∈ (0, T ∗]. We postulate that the terminal payoff at time T of the bond
is X = L11{τ>T} + δL11{τ≤T}, where L > 0 is the bond’s notional amount
and δ ∈ [0, 1) is the (constant) recovery rate. In other words, we deal with
a defaultable zero-coupon bond that is subject to the fractional recovery of
Treasury value.

Notice that the payoff X can be represented as follows X = δL + Y , where
Y = L(1− δ)11{τ>T}. According to our general definition, we associate to X an
FT -measurable random variable X̃ by setting

X̃ = EP(X | FT ) = δL + EP(Y | FT ).

In view of (2.19), we have

EP(Y |FT ) = P {τ > T | FT } = e−ΓT ,

and thus the arbitrage price at time 0 of the attainable claim X̃ equals (recall
that we have reduced our problem to the case r = 0)

π0(X̃) = EQX̃ = δL + EP
(
ηT e−ΓT

)
.

Since clearly

X − X̃ = L(1− δ)
(
11{τ>T} − P {τ > T | FT }

)
,

we obtain

γX = VP(X − X̃) = L2(1− δ)2 EP
(
11{τ>T} − e−ΓT

)2
.

In order to find the mean-variance price pd,v
F (X) at time 0 of a defaultable bond

with respect to the reference filtration F, it suffices to make use of Proposition
2.4 (or Proposition 2.5). If we wish to describe the mean-variance hedging
strategy with respect to F, we need also to know an explicit representation for
the replicating strategy φX̃ for the claim X̃. To this end, it suffices to find the
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integral representation of the random variable EP(Y | FT ) with respect to the
price process Z1 or, equivalently, to find a process φX̃ for which

X̃ = π0(X̃) +
∫ T

0

φX̃
t dZ1

t .

Example 2.1 In practical applications of the reduced-form approach, it is fairly
common to postulate that the F-hazard process Γ is given as Γt =

∫ t

0
γt dt, where

γ is a non-negative process, progressively measurable with respect to F, referred
to as the F-intensity of default. Suppose, for the sake of simplicity, that the
intensity of default γ is deterministic, and let us set

pγ = P{τ > T} = Q̃{τ > T} = exp
(
−

∫ T

0

γ(t) dt
)
.

Then we get
π0(X̃) = EQX̃ = δL + pγ

and
γX = L2(1− δ)2pγ

(
1− pγ

)
.

Of course, in the case of a deterministic default intensity γ, in order to replicate
the claim X̃, it suffices to invest the amount π0(X̃) in the savings account. For
a more detailed analysis of the mean-variance price of a defaultable bond, the
reader may consult Bielecki and Jeanblanc (2003).

2.3 Strategies Adapted to the Full Filtration

In this section, the mean-variance hedging and pricing is examined in the case of
trading strategies adapted to the full filtration. Recall that W is assumed to be
a one-dimensional Brownian motion with respect to F under P. We postulated,
in addition, that W is also a Brownian motion with respect to the filtration G
under the probability P. We define a new probability Q̃ on (Ω,GT∗) by setting

dQ̃
dP

∣∣∣
Gt

= ηt, ∀ t ∈ [0, T ∗],

where the process η is given by (2.2). Clearly, Q̃ is an equivalent martingale
probability for our primary market and the process η is a G-martingale under
P. Moreover, we have (cf. (2.3))

EP(η2
T | Gt) = η2

t eθ2(T−t),

and thus EP(η2
t ) = exp(θ2t) for every t ∈ [0, T ∗]. It is easy to check that the

process W̃t = Wt−θt is a martingale, and thus a Brownian motion, with respect
to G under Q̃.
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¿From the P-square-integrability of ηT , it follows that for any strategy φ ∈
Φ(G) the terminal wealth VT (φ) is Q̃-integrable. In fact, we have the following
useful result. Recall that a G-predictable process φ1 uniquely determines a self-
financing strategy φ = (φ1, φ2), and thus we may formally identify φ1 with the
associated strategy φ (and vice versa). The following lemma will prove useful.

Lemma 2.4 Let A(Q̃) be the linear space of all G-predictable processes ψ such
that the process

∫ t

0
ψu dZ1

u is a Q̃-martingale and the integral
∫ T

0
ψu dZ1

u is in
L2(Ω,GT ,P). Then A(Q̃) = Φ(G).

Proof. It is clear that A(Q̃) ⊆ Φ(G). For the proof of the inclusion Φ(G) ⊆
A(Q̃), see Lemma 9 in Rheinländer and Schweizer (1997). ¤

It is worthwhile to note that the class A(Q̃) corresponds to the set ΘGLP

(Θ̃, respectively) considered in Schweizer (2001) (in Rheinländer and Schweizer
(1997), respectively). The class Φ(G) corresponds with the class ΘS (Θ, respec-
tively) considered in Schweizer (2001) (in Rheinländer and Schweizer (1997),
respectively).

Let us denote by G1 the filtration generated by all wealth processes:

V v
t (φ) = v +

∫ t

0

φ1
u dZ1

u,

where v ∈ R and φ = (φ1, φ2) belongs to Φ(G). Equivalently, G1 is generated
by the processes

x +
∫ t

0

ψu dZ1
u

with x ∈ R and ψ ∈ A(Q̃). Also, we denote by P0 the following set of random
variables:

P0 =
{

ξ ∈ L2(Ω,G1
T ,P)

∣∣ ξ =
∫ T

0

ψu dZ1
u, ψ ∈ A(Q̃)

}
.

We write Π0
P to denote the orthogonal projection (in the norm of the space

L2(Ω,GT ,P)) from L2(Ω,GT ,P) on the space P0. A similar notation will be also
used for orthogonal projections on P0 under Q̃. Let us mention that, in general,
we shall have Π0

P(Y ) 6= EP(Y | G1
T ) for Y ∈ L2(Ω,GT ,P) and Π0

Q̃(Y ) 6= EQ̃(Y | G1
T )

for Y ∈ L2(Ω,GT , Q̃) (see Section 2.3.3 for more details).

2.3.1 Solution to MV(d, v) in the Class Φ(G)

Recall that our basic mean-variance problem has the following form:

Problem MV(d, v): Minimize VP(V v
T (φ)) over all strategies φ ∈ Φ(G), subject

to EPV v
T (φ) ≥ d.

As in Section 2.2.1, we postulate that d > v, since otherwise the problem is
trivial. We shall argue that it suffices to solve a simpler problem:
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Problem MVA(d, v): Minimize EP(V v
T (φ))2 over all strategies φ ∈ Φ(G),

subject to EPV v
T (φ) = d.

In view of the definition of class A(Q̃), Lemma 2.4, and the fact that EQξ = 0
for any ξ ∈ P0, we see that it suffices to solve the problem

Problem MVB(d, v): Minimize EP(v + ξ)2 over all random variables ξ ∈ P0,
subject to EPξ = d− v.

Solution to the last problem is exactly the same as in the case of strategies
from Φ(F). Indeed, by solving the last problem in the class L2(Ω,GT ,P) (rather
than in P0), and with additional constraint EQξ = 0, we see that the optimal
solution, given by (2.7), is in fact FT -measurable, and thus it belongs to the
class P0 as well. In view of (2.8), the same random variable is a solution to
MV(d, v), that is, it represents the optimal terminal wealth. We conclude that
a solution to MV(d, v) in the class Φ(G) is given by the formulae (2.11)-(2.13)
of Proposition 2.3, i.e., it coincides with a solution in the class Φ(F).

Assume that X is an attainable contingent claim, in the sense that there
exists a trading strategy φ ∈ Φ(G) which replicates X. Then, arguing along the
same lines as in Section 2.2.2, we get the following result.

Corollary 2.2 Let a GT -measurable random variable X represent an attainable
contingent claim. Then
(i) If the arbitrage price π0(X) satisfies π0(X) ∈ [0, v] then pd,v(X) = π0(X).
(ii) If the arbitrage price π0(X) is strictly greater than v then pd,v(X) = v.

2.3.2 Solution to MV(d, v, p, X) in the Class Φ(G)

We shall study the problem MV(d, v, p, X) for an arbitrary GT -measurable claim
X, which is P-square-integrable. Recall that we deal with the following problem:

Problem MV(d, v, p, X): Minimize VP(V v−p
T (φ) + X) over all trading strate-

gies φ ∈ Φ(G), subject to EP(V v−p
T (φ) + X) ≥ d.

Basic idea of solving the problem MV(d, v, p, X) with respect toG-predictable
strategies is similar to that used in the case of F-predictable strategies. The main
difference is that the auxiliary random variable X̃ will now be defined as the or-
thogonal projection ΠP(X) of X on P0, rather than the conditional expectation
EP(X | GT ).

Let us denote d̂ = d−v+p. The problem MV(d, v, p, X) can be reformulated
as follows:

Problem MV(d̂, 0, 0, X): Minimize VP(V 0
T (φ) + X) over all trading strategies

φ ∈ Φ(G), subject to EP(V 0
T (φ) + X) ≥ d̂.

That is, if V 0,∗
T is the optimal wealth in problem MV(d̂, 0, 0, X) then V v−p,∗

T =
V 0,∗

T + v − p is the optimal wealth in problem MV(d, v, p, X), and the optimal
strategies as well as the optimal variances are the same in both problems.
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Let X̃0 = Π0
P(X) stand for the orthogonal projection of X on P0, so that

ψX̃0
is a process from A(Q̃) = Φ(G), for which

X̃0 =
∫ T

0

ψ1,X̃0

t dZ1
t (2.20)

and X − X̃0 = X −Π0
P(X) is orthogonal to P0. The price of X̃0 equals

πt(X̃0) =
∫ t

0

ψ1,X̃0

u dZ1
u = EQ̃(X̃0 | Gt), ∀ t ∈ [0, T ]. (2.21)

Let ψX̃0 ∈ Φ(G) be a replicating strategy for the claim X̃0. Explicitly, ψX̃0
=

(ψ1,X̃0
, ψ2,X̃0

), where ψ2,X̃0
satisfies ψ1,X̃0

t Z1
t + ψ2,X̃0

t = πt(X̃0). Notice that
π0(X̃0) = EQ̃X̃0 = 0 and, of course, πT (X̃0) = X̃0. It thus suffices to consider
the following problem:

Problem MV(d̂, 0, 0, X−X̃0): Minimize VP(V 0
T (φ)+X−X̃0) over all trading

strategies φ ∈ Φ(G), subject to EP(V 0
T (φ) + X − X̃0) ≥ d̂.

Since X − X̃0 is orthogonal to P0, for any strategy φ ∈ Φ(G) we have

VP(V 0
T (φ) + X − X̃0) = VP(V 0

T (φ)) + VP(X − X̃0) = VP(V 0
T (φ)) + γ0

X ,

where γ0
X = VP(X − X̃0). Let us denote d̃ = d − v + p − EPX + EPX̃0. Then

the problem MV(d̂, 0, 0, X − X̃0) can thus be simplified as follows:

Problem MV(d̃, 0; γ0
X): Minimize VP(V 0

T (φ)) + γ0
X over all trading strategies

φ ∈ Φ(G), subject to EP(V 0
T (φ)) ≥ d̃ = d− v + p− EPX + EPX̃0.

Let us write ṽ = v− p−EPX +EPX̃0, so that d̃ = d− ṽ. Then the minimal
variance for the problem MV(d, v, p, X) equals

v∗(d, v, p,X) = v∗(d̃, 0) + γ0
X = v∗(d, ṽ) + γ0

X .

Moreover, if ψ∗ is an optimal strategy to MV(d̃, 0), then φ1∗ = ψ1∗ − ψX̃0
is

a solution to MV(d, v, p,X). The proof of the next proposition is based on
the considerations above, combined with Proposition 2.3. We use the standard
notation ρ(θ) = eθ2T (eθ2T − 1)−1 and ηt(θ) = ηte

−θ2t, so that η0(θ) = 1. Recall
that EQ̃X̃0 = 0.

Proposition 2.7 Assume that θ 6= 0 and let ψX̃0 ∈ Φ(G) be a replicating
strategy for X̃0 = Π0

P(X).
(i) Suppose that d > ṽ. Then an optimal strategy φ∗(d, v, p, X) for the problem
MV(d, v, p,X) is given as φ1∗(d, v, p, X) = ψ1∗(d̃, 0) − ψ1,X̃0

with ψ∗(d̃, 0) =
(ψ1∗(d̃, 0), ψ2∗(d̃, 0)) such that ψ1∗(d̃, 0) equals

ψ1∗
t (d̃, 0) = (d− ṽ)ρ(θ)

νηt(θ)
σ2Z1

t

(2.22)
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and ψ2∗(d̃, 0) satisfies ψ∗1t (d̃, 0)Z1
t + ψ∗2(d̃, 0) = V ∗

t (d̃, 0), where in turn

V ∗
t (d̃, 0) = (d− ṽ)ρ(θ)

(
1− ηt(θ)

)
. (2.23)

Thus the optimal wealth for the problem MV(d, v, p,X) equals

V ∗
t (d, v, p, X) = v − p + (d− ṽ)ρ(θ)

(
1− ηt(θ)

)− EQ̃(X̃0 | Gt). (2.24)

The minimal variance v∗(d, v, p,X) is given by

v∗(d, v, p, X) =
(d− ṽ)2

eθ2T − 1
+ γ0

X . (2.25)

(ii) If d ≤ ṽ then the optimal wealth process equals

V ∗
t (d, v, p, X) = v − p− EQ̃(X̃0 | Gt)

and the minimal variance equals γ0
X .

Remark. It is natural to expect that the optimal variance given in (2.25) is
not greater than the optimal variance given in (2.17). In fact, this is the case
(see Proposition 5.4 in Bielecki and Jeanblanc (2003)).

Of course, the practical relevance of the last result hinges on the availability
of explicit representation for the orthogonal projection X̃0 = Π0

P(X) of X on
the space P0. This important issue will be examined in the next section in a
general setup. We shall continue the study of this question in the framework of
defaultable claims in Section 2.3.5.

2.3.3 Projection of a Generic Claim

Let us first recall two well-known result concerning the decomposition of a GT -
measurable random variable, which represents a generic contingent claim in our
financial model.

Galtchouk-Kunita-Watanabe decomposition under Q̃. Suppose first that
we work under Q, so that the process Z1 is a continuous martingale. Recall that
by assumption W is a Brownian motion with respect to G under P; hence, the
process W̃ is a Brownian motion with respect to G under Q̃.

It is well known that any random variable Y ∈ L2(Ω,GT , Q̃) can be repre-
sented by means of the Galtchouk-Kunita-Watanabe decomposition with respect
to the martingale Z1 under Q̃. To be more specific, for any random variable
Y ∈ L2(Ω,GT , Q̃) there exists a G-martingale NY,Q̃, which is strongly orthogo-
nal in the martingale sense to Z1 under Q̃, and a G-adapted process ψY,Q̃, such
that Y can be represented as follows:

Y = EQ̃Y +
∫ T

0

ψY,Q̃
t dZ1

t + NY,Q̃
T . (2.26)
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Furthermore, the process ψY,Q̃ can be represented as follows:

ψY,Q̃
t =

d〈Y, Z1〉t
d〈Z1〉t , (2.27)

where the G-martingale Y is defined as Yt = EQ̃(Y | Gt).

Föllmer-Schweizer decomposition under P. Let us now consider the same
issue, but under the original probability P. The process Z1 is a (continuous)
semimartingale with respect to G under P, and thus it admits a unique contin-
uous martingale part under P.

Any random variable Y ∈ L2(Ω,GT ,P) can be represented by means of the
Föllmer-Schweizer decomposition. Specifically, there exists a G-adapted process
ψY,P, a (G,P)-martingale NY,P, strongly orthogonal in the martingale sense to
the continuous martingale part of Z1, and a constant yY,P, so that

Y = yY,P +
∫ T

0

ψY,P
t dZ1

t + NY,P
T . (2.28)

We shall see that it will be not necessary to compute the process ψY,P for the
purpose of finding a hedging strategy for the problem considered in this section.

Projection on P0. As already mentioned, Π0
Q̃(Y ) 6= EQ̃(Y | G1

T ) for Y ∈
L2(Ω,GT , Q̃), as well as Π0

P(Y ) 6= EP(Y | G1
T ) for Y ∈ L2(Ω,GT ,P), in gen-

eral. For instance, for any random variable Y as in (2.26) we get Π0
Q̃(Y ) =

∫ T

0
ψY,Q̃

t dZ1
t , whereas

EQ̃(Y | G1
T ) = Y = Π0

Q̃(Y )− EQ̃Y.

The projection Π0
Q̃(Y ) differs here from the conditional expectation just by

the expected value EQ̃Y . Consequently, we have Π0
Q̃(Y ) = EQ̃(Y | G1

T ) for any

Y ∈ L2(Ω,GT , Q̃) with EQ̃Y = 0. More importantly, observe that for Y as in
(2.28) we shall have, in general,

Π0
P(Y ) 6=

∫ T

0

ψY,P
t dZ1

t ,

so that, in particular, Π0
P(Y ) 6= EP(Y | G1

T ) even if EPY = 0.
Our next goal is to compute the projection Π0

P(Y ) for any random variable
Y ∈ L2(Ω,GT ,Q). We know that any such Y can be represented as in (2.26).
Due to linearity of the projection, it is enough to compute the projection of
each component in the right-hand side of (2.26). Let us set η̃t = EQ̃(ηT | Gt) for
every t ∈ [0, T ], so that, in particular, η̃T = ηT . Since η̃ is a square-integrable
G-martingale under Q̃, there exists a process ψ̃ in A(Q̃) such that

η̃t = EQ̃η̃T +
∫ t

0

ψ̃u dZ1
u = EQ̃η̃T + Zη

t , ∀ t ∈ [0, T ], (2.29)
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where we denote

Zη
t =

∫ t

0

ψ̃u dZ1
u.

Lemma 2.5 We have

ψ̃t = − θη̃t

σZ1
t

= −θeθ2T

σZ1
t

exp
(− θW̃t − 1

2 θ2(t− 2T )
)

(2.30)

and the process W̃t = Wt + θt is a Brownian motion under Q̃.

Proof. Direct calculations show that for every t ∈ [0, T ]

η̃t = exp
(
− θ

σ

∫ t

0

dZ1
u

Z1
u

− 1
2

θ2(t− 2T )
)

= eθ2T exp
(− θW̃t − 1

2 θ2t
)
. (2.31)

Hence, η̃ solves the SDE

dη̃t = −θη̃t dW̃t = − θ

σ

η̃t

Z1
t

dZ1
t

with the initial condition η̃0 = EQ̃η̃T = EQ̃ηT = eθ2T . ¤
In the next result, we provide a general representation for the projection

Π0
P(Y ) for a GT -measurable random variable Y , which is P-square-integrable.

Proposition 2.8 Let Y ∈ L2(Ω,GT ,P). Then we have

Π0
P(Y ) =

∫ T

0

ψ̃Y,P
t dZ1

t ,

where

ψ̃Y,P
t = ψY,Q̃

t − ψ̃t

(
η̃−1
0 EQ̃Y +

∫ t

0

η̃−1
u dNY,Q̃

u

)
(2.32)

and where processes ψY,Q̃ and NY,Q̃ are given by the Galtchouk-Kunita-Watanabe
decomposition (2.26) of Y under Q̃.

Proof. First, we compute projection of the constant c = EQ̃Y . To this end,
recall that η̃T = ηT and by virtue of (2.29) we have η̃T = η̃0 + Zη

T . Hence, for
any ψ ∈ A(Q̃) we obtain

EP
((

1 + η̃−1
0 Zη

T

) ∫ T

0

ψt dZ1
t

)
= η̃−1

0 EP
(
ηT

∫ T

0

ψt dZ1
t

)

= η̃−1
0 EQ̃

( ∫ T

0

ψt dZ1
t

)
= 0,

and thus Π0
P(1) = −η̃−1

0 Zη
T . We conclude that for any c ∈ R

Π0
P(c) = c Π0

P(1) = −cη̃−1
0 Zη

T = −cη̃−1
0

∫ T

0

ψ̃t dZ1
t . (2.33)
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Next, it is obvious that the projection of the second term, that is, the projection
of

∫ T

0
ψY,Q̃

t dZ1
t , on P0 is equal to itself, so that

Π0
P

( ∫ T

0

ψY,Q̃
t dZ1

t

)
=

∫ T

0

ψY,Q̃
t dZ1

t . (2.34)

Finally, we shall compute the projection Π0
P(N

Y,Q̃
T ). Recall that the process

NY,Q̃ is a Q̃-martingale strongly orthogonal to Z1 under Q̃. Hence, for any
NY,Q̃-integrable process ν and any process ψ ∈ A(Q̃) we have

EP
(
ηT

∫ T

0

νt dNY,Q̃
t

∫ T

0

ψt dZ1
t

)
= 0.

Thus, it remains to find processes ν̂ and ψ̂ ∈ A(Q̃) for which

ηT

∫ T

0

ν̂t dNY,Q̃
t = NY,Q̃

T −
∫ T

0

ψ̂t dZ1
t , (2.35)

in which case we shall have that Π0
P(N

Y,Q̃
T ) =

∫ T

0
ψ̂t dZ1

t .

Let us set Ut = η̃t

∫ t

0
νu dNY,Q̃

u for every t ∈ [0, T ]. Recall that (see (2.29))
there exists a process ψ̃ in Φ(G) = A(Q̃) such that dη̃t = ψ̃t dZ1

t . Using the
product rule, and taking into account the orthogonality of η̃ and NY,Q̃ under
Q̃, we find that U is a local martingale under Q̃, and it satisfies

Ut =
∫ t

0

η̃u−νu dNY,Q̃
u +

∫ t

0

( ∫ u

0

νs dNY,Q̃
s

)
ψ̃u dZ1

u. (2.36)

Consequently, upon letting

ν̂t = (η̃t−)−1, ∀ t ∈ [0, T ], (2.37)

we obtain from (2.36)

Ut = NY,Q̃
t +

∫ t

0

ψ̃u

( ∫ u

0

ν̂s dNY,Q̃
s

)
dZ1

u. (2.38)

Note that the left-hand side of (2.35) is equal to UT . Thus, comparing (2.35)
and (2.38), we see that we may take

ψ̂t = −ψ̃t

∫ t

0

ν̂u dNY,Q̃
u = −ψ̃t

∫ t

0

(η̃u−)−1 dNY,Q̃
u . (2.39)

It is clear that with ν̂ defined in (2.37) the integral
∫ t

0
ν̂u dNY,Q̃

u is a Q̃-martingale.
Thus, the process U is a martingale, rather than a local martingale, under Q̃.
Together with (2.38) this implies that the process

∫ t

0

ψ̃u

( ∫ u

0

ν̂s dNY,Q̃
s

)
dZ1

u
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is a Q̃-martingale. Consequently, the process ψ̂ defined in (2.39) belongs to the
class A(Q̃). To complete the proof, it suffices to combine (2.33), (2.34) and
(2.39). ¤

It should be acknowledged that the last result is not new. In fact, it is merely
a special case of Theorem 6 in Rheinländer and Schweizer (1997). We believe,
however, that our derivation of the result sheds a new light on the structure of
the orthogonal projection computed above.

Remark. Although the above proposition provides us with the structure of the
projection Π0

P(Y ), it is not easy in general to obtain closed-form expressions for
the components on the right-hand side of (2.32) in terms of the initial data for
the problem. Thus, one may need to resort to numerical approximations, which
in principle can be obtained by solving the following problem

min
ξ∈P0

EP(Y − ξ)2. (2.40)

An approximate solution to the last problem yields a process, say ψY,P, so that
Π0
P(Y ) ≈ ∫ T

0
ψY,P

t dZ1
t .

2.3.4 Mean-Variance Pricing and Hedging of a Generic
Claim

Let us define
κ̃ = d̃− v = d− v − EPX + EPX̃0.

For simplicity, we shall only consider the case when κ̃ > 0. This is equivalent
to assuming that d̃ > v − p for all p ∈ [0, v]. Thus, the results of Proposition
2.7 (i) apply. Consequently, denoting

ρ̃ = (d− v)2 − γ0
X(eθ2T − 1),

we obtain the following result.

Proposition 2.9 Suppose that γ0
X ≤ (d − v)2(eθ2T − 1)−1. Then the buyer’s

mean variance price is

pd,v(X) = min{−κ̃1 +
√

ρ̃, v} ∨ 0. (2.41)

Otherwise, pd,v(X) = −∞.

In case when γ0
X ≤ (d−v)2(eθ2T −1)−1, the mean-variance hedging strategy

for a generic claim X is given by φ∗(d, v, pd,v(X), X), where the process φ∗ is de-
fined in Proposition 2.7. The projection part of the strategy φ∗(d, v, pd,v(X), X),
that is, the process ψ1,X̃0

, can be computed according to (2.32).
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2.3.5 Projections of Defaultable Claims

In this section, we adopt the framework of Section 2.2.3. In particular, the
default time τ is a random time on (Ω,G,P) given by formula (2.19), and the
process H is given as Ht = 11{τ≤t} for every t ∈ [0, T ]. The natural filtration H
of H is an auxiliary filtration, so that G = F∨H. Recall that we have assumed
that τ admits the F-hazard process Γ under P and thus also, in view of the
construction (2.19), under Q̃. Suppose, in addition, that the hazard process
Γ is an increasing continuous process. Then the process Mt = Ht − Γt∧τ is
known to be a G-martingale under Q̃. Any GT -measurable random variable X
is referred to as a defaultable claim.

Recall that the process W̃t = Wt + θt is a Brownian motion with respect to
F under Q̃, and thus the process Z1 is a square-integrable G-martingale under
Q̃, since

dZ1
t = Z1

t σ dW̃t, Z1
0 > 0.

The following proposition is an important technical result.

Proposition 2.10 The filtration G1 is equal to the filtration G, that is, G1
t = Gt

for every t ∈ R+.

Proof. It is clear that G1 ⊆ G. For a fixed T > 0, let y1, y2 ∈ R and let the
processes ψ1, ψ2 belong to A(Q̃). Thus the processes

Y 1
t = y1 +

∫ t

0

ψ1
u dZ1

u, Y 2
t = y2 +

∫ t

0

ψ2
u dZ1

u

be G1-adapted processes. Then the process

Y 1
t Y 2

t = y1y2 +
∫ t

0

Y 1
u ψ2

u dZ1
u +

∫ t

0

Y 2
u ψ1

u dZ1
u +

∫ t

0

ψ1
uψ2

u d〈Z1〉u

is also G1-adapted. It is easy to check that the processes

∫ t

0

Y 1
u ψ2

u dZ1
u,

∫ t

0

Y 2
u ψ1

u dZ1
u

are G1-adapted. We thus conclude that for any processes φ and ψ from A(Q̃),
the process ∫ t

0

ψ1
uψ2

u d〈Z1〉u =
∫ t

0

ψ1
uψ2

u(Z1
u)2σ2du

is G1-adapted as well. In particular, it follows that for any bounded G-adapted
process ζ the integral

∫ t

0
ζu du defines a G1-adapted process. Let us take ζu =

Hu. Then we obtain that the process τ ∧ t is G1-adapted. Hence, it is easily
seen that Gt ⊆ G1

t for t ∈ [0, T ]. Since T was an arbitrary positive number, we
have shown that G = G1. ¤
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Projection of a Survival Claim

We shall now compute the process ψY,P, which occurs in the projection Π0
P(Y )

for a random variable Y = Z11{τ>T}, where Z ∈ L2(Ω,FT , Q̃). It is known that
any random variable Y from L2(Ω,GT , Q̃) = L2(Ω,G1

T , Q̃), which vanishes on
the set {τ > T}, can indeed be represented in this way. Any random variable
Y of the form Z11{τ>T} is referred to as a survival claim with maturity date T ,
and a random variable Z is said to be the promised payoff associated with Y .

It is known (see, e.g., Bielecki and Rutkowski (2004)) that

EQ̃(Y | Gt) = EQ̃(Z11{τ>T} | Gt) = EQ̃(Z11{τ>T} | G1
t )

= 11{τ>t}eΓt EQ̃(Ze−ΓT | Ft) = Ltm
Z
t ,

where Lt := 11{τ>t}eΓt is a G-martingale and mZ
t = EQ̃(Ze−ΓT | Ft) is an F-

martingale. From the predictable representation theorem for a Brownian motion
(or since the default-free market is complete), it follows that there exists an F-
adapted process µZ such that

mZ
t = mZ

0 +
∫ t

0

µZ
u dZ1

u. (2.42)

In Proposition 2.8, we have already described the structure of the process ψY,P

that specifies the projection of Y on P0. In the next two results, we shall give
more explicit formulae for ψY,Q̃ and NY,Q̃ within the present setup.

Lemma 2.6 Consider a survival claim Y = Z11{τ>T} with the promised payoff

Z ∈ L2(Ω,FT , Q̃). It holds that ψY,Q̃
t = Lt−µZ

t for every t ∈ [0, T ], where by
convention L0− = 0.

Proof. It is easy to check that dLt = −Lt−dMt. Since Γ is increasing, the
process L is of finite variation, and thus

d(Ltm
Z
t ) = Lt− dmZ

t + mZ
t dLt = Lt−µZ

t dZ1
t + mZ

t dLt,

and thus we obtain
d〈Y, Z1〉t = Lt−µZ

t d〈Z1〉t
and ψY,Q̃

t = Lt−µZ
t , which proves the result. ¤

For the proof of the next auxiliary result, the reader is referred, for instance,
to Jeanblanc and Rutkowski (2000) or Bielecki and Rutkowski (2004).

Lemma 2.7 Consider a survival claim Y = Z11{τ>T} with the promised pay-
off Z ∈ L2(Ω,FT , Q̃). The process NY,Q̃ in the Galtchouk-Kunita-Watanabe
decomposition of Y with respect to Z1 under Q̃ is given by the expression

NY,Q̃
t =

∫

[0,t)

nZ
u dMu,
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where the process Mt = Ht−Γt∧τ is a G-martingale, strongly orthogonal in the
martingale sense to W̃ under Q̃, and where

nZ
t = −EQ̃

(
ZeΓt−ΓT

∣∣Ft

)
. (2.43)

By combining Proposition 2.8 with the last two result, we obtain the follow-
ing corollary, which furnishes an almost explicit representation for the process
ψ̃Y,P associated with the projection on P0 of a survival claim.

Corollary 2.3 Let Y = Z11{τ>T} be a survival claim, where Z belongs to
L2(Ω,FT , Q̃). Then Π0

P(Y ) is given by the following expression

Π0
P(Y ) =

∫ T

0

ψ̃Y,P
t dZ1

t ,

where for every t ∈ [0, T ]

ψ̃Y,P
t = Lt−µZ

t − ψ̃t

(
η̃−1
0 EQ̃Y +

∫ t

0

η̃−1
u nZ

u dMu

)
(2.44)

where in turn Lt = 11{τ>t}eΓt and the processes ψ̃, η̃, µZ and nZ are given by
(2.30), (2.31), (2.42) and (2.43), respectively.

Projection of a Defaultable Bond

According to the adopted convention regarding the recovery scheme, the termi-
nal payoff at time T of a defaultable bond equals X = L11{τ>T} + δL11{τ≤T}
for some L > 0 and δ ∈ [0, 1). Notice that the payoff X can be represented as
follows X = δL + (1− δ)LY, where Y = 11{τ>T} is a simple survival claim, with
the promised payoff Z = 1. Using the linearity of the projection Π0

P, we notice
that Π0

P(X) can be evaluated as follows

Π0
P(X) = δL Π0

P(1) + (1− δ)L Π0
P(Y ).

By virtue of Corollary 2.3, we conclude that

Π0
P(X) = −δLeθ2T Π0

Q̃(ηT ) + (1− δ)L
∫ T

0

ψt dZ1
t ,

where (cf. (2.44))

ψt = 11{τ>t}eΓtµt − ψ̃t

(
e−θ2T EQ̃

(
e−ΓT

)
+

∫ t

0

η̃−1
u nu dMu

)
, (2.45)

where in turn the process ψ̃ is given by (2.30), the process n equals nt =
−EQ̃(eΓt−ΓT | Ft), and the process µ is such that

EQ̃(e−ΓT | Ft) = EQ̃Y +
∫ t

0

µu dZ1
u, ∀ t ∈ [0, T ].
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Example 2.2 Consider the special case when Γ is deterministic. It is easily
seen that we now have µ = 0 and nt = −eΓt−ΓT . Consequently, (2.45) becomes

ψt = −ψ̃te
−ΓT

(
e−θ2T −

∫ t

0

η̃−1
u eΓt dMu

)
,

and thus

Π0
P(X) = −δLeθ2T Π0

Q̃(ηT )

− (1− δ)L
∫ T

0

ψ̃te
−ΓT

(
e−θ2T −

∫ t

0

η̃−1
u eΓt dMu

)
dZ1

t ,

where the processes ψ̃ and η̃ are given by (2.30) and (2.31), respectively.

2.4 Risk-Return Portfolio Selection

In the preceding sections, we have examined the Markowitz-type mean-variance
hedging problem from the particular perspective of valuation of non-attainable
contingent claims. In view of the dependence of the mean-variance price ob-
tained through this procedure on agent’s preferences, (formally reflected, among
others, by the values of parameters d and v), this specific application of Marko-
witz-type methodology suffers from deficiencies, which may undermine its prac-
tical implementations.

In this section, we shall take a totally different perspective, and we shall as-
sume that a given claim X can be purchased by an agent (an asset management
fund, say) for some pre-specified price. For instance, the price of X can be given
by an investment bank that is able to hedge this claim using some arbitrage-free
model, or it can be simply given by the OTC market.

Let us emphasize that an agent is now assumed to be a pricetaker, so that
the issue of preference-based valuation of a non-attainable claim will not be
considered in this section.

We postulate that an agent would like to invest in X, but will not be able
(or willing) to hedge this claim using the underlying primary assets (if any such
assets are available). As a consequence, an agent will only have in its portfolio
standard instruments that are widely available for trading. The two important
issues we would like to address in this section are:

• What proportion of the initial endowment v should an agent invest in the
claim X if the goal is to lower the standard deviation (or, equivalently, the
variance) of return, and to keep the expected rate of return at the desired
level.

• How much should an agent invest in X in order to enhance the expected
rate of return, and to preserve at the same time the pre-specified level of
risk, as measured by the standard deviation of the rate of return.
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We shall argue that mathematical tools and results presented in the previous
sections are sufficient to solve both these problems. It seems to us that this
alternative application of the mean-variance methodology can be of practical
importance as well.

For the sake of simplicity, we shall solve the optimization problems formu-
lated above in the class Φ(F) of F-admissible trading strategies. A similar study
can be conducted for the case of G-admissible strategies. For any v > 0 and
any trading strategy φ ∈ Φ(F), let r(φ) be the simple rate of return, defined as

r(φ) =
V v

T (φ)− v

v
.

The minimization of the standard deviation of the rate of return, which equals

σ(r(φ)) =

√
VP

(V v
T (φ)− v

v

)
= v−1

√
VP(V v

T (φ)),

is, of course, equivalent to the minimization of the variance VP(V v
T (φ)). Within

the present context, it is natural to introduce the constraint

EP(v−1V v
T (φ)) ≥ d = 1 + dr,

where dr > 0 represents the desired minimal level of the expected rate of return.

2.4.1 Auxiliary Problems

The following auxiliary problem MV(dv, v) is merely a version of the previously
considered problem MV(d, v):

Problem MV(dv, v): For a fixed v > 0 and d > 1, minimize the variance
VP(V v

T (φ)) over all strategies φ ∈ Φ(F), subject to EPV v
T (φ) ≥ dv.

We assume from now on that θ 6= 0, and we denote by Θ the constant

Θ = (eθ2T − 1)−1 > 0.

Recall that for the problem MV(dv, v), the risk-return trade-off can be summa-
rized by the minimal variance curve v∗(dv, v). By virtue of Proposition 2.3, we
have

v∗(dv, v) = Θv2(d− 1)2 = Θv2d2
r. (2.46)

Equivalently, the minimal standard deviation of the rate of return satisfies

σ∗r = σ(r(φ∗(dv, v))) =
√

v∗(dv, v) =
√

Θdr,

so, as expected, it is independent of the value of the initial endowment v.
Suppose now that a claim X is available for some price pX 6= 0, referred to as

the market price. It is convenient to introduce the normalized claim X̄ = Xp−1
X .

Under this convention, by the postulated linearity property of the market price,
the price pX̄ of one unit of X̄ is manifestly equal to 1.
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The next auxiliary problem we wish to solve reads: find p ∈ R such that
the solution to the problem MV(dv, v, p, pX̄) has the minimal variance. This
means, of course, that we are looking for p ∈ R for which v∗(dv, v, p, pX̄) is
minimal. Notice that the constraint on the expected rate of return becomes

EP(v−1V v−p
T (φ) + pX̄) ≥ d = 1 + dr,

where dr > 0. It is clear that the curve v∗(dv, v, p, pX̄) can be derived from the
general expression for v∗(d, v, p, X), which was established in Proposition 2.4.
Let us denote

γX̄ = VP
(
X̄ − EP(X̄ | FT )

)

and
νX̄ = EQX̄ − 1.

Let us notice that the condition d−v+p−EQX > 0, which was imposed in part
(i) of Proposition 2.4, now corresponds to the following inequality: vdr > pνX̄ .
We shall assume from now on that X̄ 6= 1 (this assumption means simply that
the claim X̄ does not represent the savings account). Recall that v > 0 and
dr = d− 1 > 1.

Proposition 2.11 (i) Assume that γX̄ > 0 and νX̄ 6= 0. Then the problem
MV(dv, v, p, pX̄) has a solution with the minimal variance with respect to p.
The minimal variance equals

v∗(dv, v, p∗, p∗X̄) = Θv2d2
r

(
1− ν2

X̄

Θ−1γX̄ + ν2
X̄

)
(2.47)

and the optimal value of p equals

p∗ =
vdrνX̄

Θ−1γX̄ + ν2
X̄

. (2.48)

(ii) Let γX̄ > 0 and νX̄ = 0. Then we have p∗ = 0 and the minimal variance
equals

v∗(dv, v, p∗, p∗X̄) = Θv2d2
r.

(iii) Let γX̄ = 0 and νX̄ 6= 0. If the inequality νX̄ > 0 (νX̄ < 0, respectively)
holds then for any p ≥ vdrν

−1
X̄

(p ≤ vdrν
−1
X̄

, respectively) the minimal variance
v∗(dv, v, p, pX̄) is minimal with respect to p and it equals 0.
(iv) Let γX̄ = νX̄ = 0. Then X̄ is an attainable claim and EQX̄ = 1. In this
case, for any p ∈ R the minimal variance equals

v∗(dv, v, p, pX̄) = Θv2d2
r.

Proof. Let us first prove parts (i)-(ii). It suffices to observe that, by virtue of
Proposition 2.4, the minimal variance for the problem MV(dv, v, p, pX̄) is given
by the expression:

v∗(dv, v, p, pX̄) = Θ(drv − pνX̄)2 + p2γX̄ (2.49)
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provided that vdr > pνX̄ . A simple argument shows that the minimal value for
the right-hand side in (2.49) is obtained by setting p = p∗, where p∗ is given by
(2.48), and the minimal variance is given by (2.47). Moreover, it is easily seen
that for p∗ given by (2.48) the inequality vdr > p∗νX̄ is indeed satisfied, provided
that γX̄ > 0. Notice also that if EQX̄ = 1, we obviously have vdr > pνX̄ = 0
for any p ∈ R+, and thus we obtain the following optimal values:

p∗ = 0, v∗(dv, v, p∗, p∗X̄) = Θv2d2
r.

Assume now that vdr ≤ pνX̄ , so that the case νX̄ = 0 (i.e., the case EQX̄ = 1) is
excluded. Then, by virtue of part (ii) in Proposition 2.4, the minimal variance
equals p2γX̄ (notice that the assumption that γX̄ is strictly positive is not needed
here). Assume first that EQX̄ < 1, so that νX̄ < 0. Then the condition
vdr ≤ pνX̄ becomes p ≤ vdrν

−1
X̄

, and thus p is necessarily negative. The minimal
variance corresponds to p∗ = vdrν

−1
X̄

, and it equals

v∗(dv, v, p∗, p∗X̄) = (p∗)2γX̄ = v2d2
rν
−2
X̄

γX̄ . (2.50)

In, on the contrary, EQX̄ > 1, then νX̄ > 0 and we obtain p ≥ vdrν
−1
X̄

, so that
p is strictly positive. Again, the minimal variance corresponds to p∗ = vdrν

−1
X̄

,
and it is given by (2.50). It is easy to check that the following inequality holds:

Θv2d2
r

(
1− ν2

X̄

Θ−1γX̄ + ν2
X̄

)
< v2d2

rν
−2
X̄

γX̄ .

By combining the considerations above, we conclude that statements (i)-(ii) are
valid. The proof of part (iii) is also based on the analysis above. We thus
proceed to the proof of the last statement.

Notice that Θ−1γX̄ + ν2
X̄

= 0 if and only if γX̄ = 0 and νX̄ = 0. This
means that X̄ is FT -adapted (and thus F-attainable) and EQX̄ = 1 (so that the
arbitrage price of X̄ coincides with its market price pX̄). Condition vdr−pνX̄ >
0 is now satisfied, and thus the minimal variance is given by (2.49), which now
becomes

v∗(dv, v, p, pX̄) = Θv2d2
r, ∀ p ∈ R+.

Obviously, the result does not depend on p. This proves part (iv). ¤
In the last proposition, no a priori restriction on the value of the parameter

p was imposed. Of course, one can also consider a related constrained problem
by postulating, for instance, that the price p belongs to the interval [0, v].

2.4.2 Minimization of Risk

We are in a position to examine the first question, which reads: how much to
invest in the new opportunity in order to minimize the risk and to preserve at
the same time the pre-specified level dr > 0 of the expected rate of return.

Case of an attainable claim. Assume first that X̄ is an F-attainable con-
tingent claim, so that EP(X̄ | FT ) = X̄, and thus γX̄ = 0. If the claim X̄ is



2.4. RISK-RETURN PORTFOLIO SELECTION 97

correctly priced by the market, i.e., if EQX̄ = pX̄ = 1 then, by virtue of part
(iv) in Proposition 2.11, for any choice of p the minimal variance is the same
as in the problem MV(dv, v). Hence, as expected, the possibility of investing in
the claim X̄ has no bearing on the efficiency of trading.

Let us now consider the case where EQX̄ 6= 1, that is, the market price pX̄

does not coincide with the arbitrage price π0(X̄). Suppose first that EQX̄ > 1,
that is, X̄ is underpriced by the market. Then, in view of part (iii) in Proposition
2.11, the variance of the rate of return can be reduced to 0 by choosing p which
satisfies

p ≥ vdr(EQX̄ − 1)−1 > 0.

Similarly, if EQX̄ < 1 then for any p such that

p ≤ vdr(EQX̄ − 1)−1 < 0

the variance equals 0. Off course, this feature is due to the presence of arbitrage
opportunities in the market. We conclude that, as expected, in the case of an
attainable claim the solution to the problem considered is this section is rather
trivial, and thus it has no practical appeal.

Case of a non-attainable claim. We now assume that γX̄ > 0. Suppose first
that EQX̄ = 1. By virtue of part (ii) in Proposition 2.11, under this assumption
it is optimal not to invest in X̄. To better appreciate this result, notice that
for the conditional expectation X̃ = EP(X̄ | FT ) we have EQX̃ = EQX̄ = 1 and
EPX̃ = EPX̄ (cf. Section 2.2.2). Therefore, trading in X̄ is essentially equivalent
to trading in an attainable claim X̃, but trading in X̄ results in the residual
variance p2γX̄ . This observations explains why the solution p∗ = 0 is optimal.

Suppose now that EQX̄ 6= 1. Then part (i) of Proposition 2.11 shows that the
variance of the rate of return can always be reduced by trading in X̄. Specifically,
p∗ is strictly positive provided that EQX̄ > 1 = pX̄ , that is, the expected value
of X̄ under the martingale measure Q for the underlying market is greater than
its market price.

Case of an independent claim. Assume that the claim X̄ is independent of
FT , so that γX̄ > 0 is the variance of X̄. In this case EQX̄ = EPX̄ and thus
(2.47) becomes

v∗ = Θv2d2
r

(
1− (EPX̄ − 1)2

Θ−1VP(X̄) + (EPX̄ − 1)2

)
.

From the last formula, it is clear that an agent should always to invest either
a positive or negative amount of initial endowment v in an independent claim
X, except for the case where EPX̄ = 1. If EPX̄ 6= 1 then the optimal value of p
equals (cf. (2.48))

p∗ =
vdr(EPX̄ − 1)

Θ−1VP(X̄) + (EPX̄ − 1)2

so that it is positive if and only if EPX̄ > 1.



98 CHAPTER 2. MEAN-VARIANCE APPROACH

Case of a claim with zero market price. The case when the market price
of X is zero (that is, the equality pX = 0 holds) is also of practical interest,
since such a feature is typical for forward contracts. It should be stressed that
this particular case is not covered by Proposition 2.11, however.

In fact, we deal here with the following variant of the mean-variance problem:

Find α ∈ R such that the solution to the problem MV(dv, v, 0, αX) has the
minimal variance.

Under the assumption that vdr > αEQX, we have

v∗(dv, v, 0, αX) = Θ(vdr − αEQX)2 + α2γX .

If, on the contrary, the inequality vdr ≤ αEQX is valid, then the minimal
variance equals α2γX . Of course, we necessarily have α 6= 0 here (since vdr > 0).

2.4.3 Maximization of Expected Return

Let us focus on part (i) in Proposition 2.11, that is, let us assume that γX̄ > 0
and νX̄ 6= 0 (as was explained above, other cases examined in Proposition 2.11
are of minor practical interest). The question of maximization of the expected
rate return for a pre-specified level of risk, can be easily solved by comparing
(2.46) with (2.47). Indeed, for a given level dr of the expected rate of return,
and thus a given level v∗(dv, v) of the minimal variance, it suffices to find a
number d̂r which solves the following equation

Θv2d2
r = Θv2d̂2

r

(
1− ν2

X̄

Θ−1γX̄ + ν2
X̄

)
.

It is obvious that the last equation has the unique solution

d̂r = dr

√
1 +

ν2
X̄

Θ−1γX̄

> dr.

The corresponding value of p∗ is given by (2.48) with dr substituted with d̂r. It
is thus clear that, under the present assumptions, a new investment opportunity
can be used to enhance the expected rate of return. If we insist, in addition,
that p > 0, then the latter statement remains valid, provided that EQX̄ > 1.



Chapter 3

Indifference Pricing

In this chapter, we present a few alternative ways of pricing defaultable claims
in the situation when perfect hedging is not possible. In the previous chapter,
we have presented the mean-variance hedging framework. Now, we study the
indifference price approach that was initiated by Hodges and Neuberger (1989).
We shall refer to this approach as the “Hodges price” approach. This will lead
us to solving portfolio optimization problems in incomplete market, and we shall
use the dynamic programming (DP) approach.

We also present the Hamilton-Jacobi-Bellman (HJB) equations, when ap-
propriate, even though this method typically requires strong assumptions to
give closed-form solutions. In particular, when dealing with the general DP
approach, we need not make any Markovian assumption about the underlying
processes; such assumptions are fundamental for the HJB methodology to work.

In Section 3.1, we define the Hodges indifference price associated to strategies
adapted with the reference filtration F, and we solve the problem for exponential
preferences and for some particular defaultable claims. We shall use results
obtained here to provide basis for a comparison between the historical spread
and the risk-neutral one.

In Section 3.2, using backward stochastic differential equations (BSDEs), we
work with G-adapted strategies, and we solve portfolio optimization problems
for exponential utility functions. Our method relies on the ideas of Rouge and
El Karoui (2000) and Musiela and Zariphopoulou (2004). The reader can refer
to El Karoui and Mazliak (1997), El Karoui and Quenez (1997), El Karoui et al.
(1997), or to the survey by Buckdahn (2000) for an introduction to the theory
of backward stochastic differential equations and its applications in finance.

Section 3.3 is devoted to the study of a particular indifference price, based
on the quadratic criterion; we call such a price the quadratic hedging price
(see the introduction to Chapter 2). In particular, we compare the indifference
prices obtained using strategies adapted to the reference filtration F to the
indifference prices obtained using strategies based on the enlarged filtration G.
It is worthwhile to stress, though, that the quadratic utility alone is not quite
adequate for the pricing purposes, although it represents a good criterion for

99
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hedging purposes. This is one of the reasons we presented the mean-variance
approach to pricing and hedging of defaultable claims in Chapter 2.

In the last section, we present a very particular case of the duality approach
for exponential utilities.

We emphasize that in this chapter, similarly as in the previous chapter,
a very important aspect of our analysis is the distinction between the case
when admissible portfolios are adapted to the filtration F, and the case when
admissible portfolios are adapted to the filtration G.

3.1 Hedging in Incomplete Markets

We recall briefly the probabilistic setting of Chapter 2. The default-free asset
is Z1 with the dynamics

dZ1
t = Z1

t (νdt + σdWt), Z1
0 > 0,

and the price process of the money market account has the dynamics

dZ2
t = rZ2

t dt, Z2
0 = 1,

where r is the constant interest rate. The default-free market is complete and
arbitrage free: one can hedge perfectly any square-integrable contingent claim
X ∈ FT . The default time is some random time τ , and the default process
is denoted as Ht = 11{τ≤t}. The reference filtration is the Brownian filtration
Ft = σ(Wu, u ≤ t) and the enlarged filtration is Gt = Ft ∨ Ht where Ht =
σ(Hu, u ≤ t).

We assume that the hazard process Ft = P{τ ≤ t | Ft} is absolutely contin-
uous with respect to Lebesgue measure, so that Ft =

∫ t

0
fu du (hence, it is an

increasing process). Therefore, the process

Mt = Ht −
∫ t∧τ

0

γu du = Ht −
∫ t∧τ

0

fu

1− Fu
du

is a G-martingale, where γ is the default intensity. Note that the stochastic
intensity γ is the intensity of the default time τ with respect to the reference
filtration F generated by the Brownian motion W .

For a fixed T > 0, we introduce a risk-neutral probability Q for the market
model (Z1, Z2) by setting dQ|Gt = ηt dP|Gt for t ∈ [0, T ], where the Radon-
Nikodym density η is the F-martingale defined as

dηt = −θηt dWt, η0 = 1,

where θ = (ν − r)/σ. Under Q, the discounted process Z̃1
t = e−rtZ1

t is a
martingale. It should be emphasized that Q is not necessarily a martingale
measure for defaultable assets. Let us recall, however, that if Q̃ is any equivalent
martingale measure on G for the default-free and defaultable market, then the
restriction of Q̃ to F is equal to the restriction of Q to F. A defaultable claim
is simply any random variable X, which is GT -measurable. Hence, default-free
claims are formally considered as special cases of defaultable claims.
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3.1.1 Hodges Indifference Price

We present a general framework of the Hodges and Neuberger (1989) approach
with some strictly increasing, strictly concave and continuously differentiable
mapping u, defined on R. We solve explicitly the problem in the case of expo-
nential utility for portfolios adapted to the reference filtration.

The Hodges approach to pricing of unhedgeable claims is a utility-based
approach and can be summarized as follows: the issue at hand is to assess the
value of some (defaultable) claim X as seen from the perspective of an economic
agent who optimizes his behavior relative to some utility function, say u. In
order to provide such an assessment one can argue that one should first consider
the following possible modes of agent’s behavior and the associated optimization
problems:

Problem (P): Optimization in the default-free market.

The agent invests his initial wealth v > 0 in the default-free financial market
using a self-financing strategy. The associated optimization problem is,

(P) : V(v) := sup
φ∈Φ(F)

EP
{
u
(
V v

T (φ)
)}

,

where the wealth process Vt = V v
t (φ), t ∈ R+, is solution of

dVt = rVt dt + φt(dZ1
t − rZ1

t dt), V0 = v. (3.1)

Recall that Φ(F) is the class of all admissible, F-adapted, self-financing trading
strategies (for the definition of this class, see Chapter 2).

Problem (PX
F ): Optimization in the default-free market using F-adapted strate-

gies and buying the defaultable claim.

The agent buys the contingent claim X at price p, and invests the remaining
wealth v − p in the financial market, using a trading strategy φ ∈ Φ(F). The
resulting global terminal wealth will be

V v−p,X
T (φ) = V v−p

T (φ) + X.

The associated optimization problem is

(PX
F ) : VX(v − p) := sup

φ∈Φ(F)
EP

{
u
(
V v−p

T (φ) + X
)}

,

where the process V v−p(φ) is a solution of (3.1) with the initial condition
V v−p

0 (φ) = v − p. We emphasize that the class Φ(F) of admissible strategies is
the same as in the problem (P), that is, we restrict here our attention to trading
strategies that are adapted to the reference filtration F.

Problem (PX
G ): Optimization in the default-free market using G-adapted

strategies and buying the defaultable claim.
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The agent buys the contingent claim X at price p, and invests the remaining
wealth v − p in the financial market, using a strategy adapted to the enlarged
filtration G. The associated optimization problem is

(PX
G ) : VGX(v − p) := sup

φ∈Φ(G)

EP
{
u
(
V v−p

T (φ) + X
)}

,

where Φ(G) is the class of all G-admissible trading strategies (for the definition
of the class Φ(G), see Chapter 2). Next, the utility based assessment of the
value (price) of the claim X, as seen from the agent’s perspective, is given in
terms of the following definition.

Definition 3.1 For a given initial endowment v, the F-Hodges buying price of
a defaultable claim X is the real number p∗F(v) such that V(v) = VX

(
v−p∗F(v)

)
.

Similarly, the G-Hodges buying price of X is the real number p∗G(v) such that
V(v) = VGX

(
v − p∗G(v)

)
.

Remark. We can define the F-Hodges selling price pF∗(v) of X by considering
−p, where p is the buying price of −X, as specified in Definition 3.1.

If the contingent claim X is FT -measurable, then the F- and the G-Hodges
prices coincide with the hedging price of X, i.e., p∗F(v) = p∗G(v) = π0(X) =
EP(ζT X), where we denote ζt = ηtRt with Rt = (Z2

t )−1 = e−rt. Indeed, assume
that there exists a self-financing portfolio φ̂ such that X = V

π0(X)
T (φ̂), and let

h be the F-Hodges buying price. Suppose first that h < π0(X). Then for any φ
we obtain

V v−h
T (φ) + X = V v−h

T (φ) + V
π0(X)
T (φ̂) = V

v−h+π0(X)
T (ψ),

where we denote ψ = φ̂ + φ ∈ Φ(F). Hence

VX(v − h) = sup
φ∈Φ(F)

EP
{
u
(
V v−h

T (φ) + X
)}

= sup
ψ∈Φ(F)

EP
{
u
(
V

v−h+π0(X)
T (ψ)

)} ≥ V(v),

where the last inequality (which is a strict inequality) follows from v < v − h +
π0(X) and the arbitrage principle. Therefore, the supremum over φ ∈ Φ(F)
of EP(u(V v−h

T (φ) + X)) is greater than V(v). We conclude that the F-Hodges
buying price can not be smaller than the hedging price. Arguing in a similar
way, one can show that the F-Hodges selling price of an FT -measurable claim
can not be smaller than the hedging price. Finally, almost identical arguments
show that the G-Hodges buying and selling price of an FT -measurable claim are
equal to the hedging price of X (see Section 3.2.2).

Remark. It can be shown (see Rouge and El Karoui (2000), or Collin-Dufresne
and Hugonnier (2002)) that in the general case of non-hedgeable contingent
claim, the Hodges price belongs to the open interval

(
inf
Q̃
EQ̃(Xe−rT ), sup

Q̃
EQ̃(Xe−rT )

)
,
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where Q̃ runs over the set of all equivalent martingale measures, and thus it can
not induce arbitrage opportunities.

3.1.2 Solution of Problem (P)

We briefly recall one of the solution methods for the problem (P). To this end,
we first observe that in view of (3.1) the process e−rtV v−p

t (φ), t ∈ R+, is a
martingale under any equivalent martingale measure, hence ζtV

v−p
t (φ), t ∈ R+,

is a P-martingale and, in particular, EP(V v
T (φ)ζT ) = v. It follows that in order

to obtain a terminal wealth equal to, say V , the initial endowment v has to
be greater or equal to EP(V ζT ); this condition is commonly referred to as the
budget constraint.

Now, let us denote by I the inverse of the monotonic mapping u′ (the first
derivative of u). It is well known (see, e.g., Karatzas and Shreve (1998)) that
the optimal terminal wealth in the problem (P) is given by the formula

V v,∗
T = I(µζT ), P-a.s., (3.2)

where µ is a real number such that the budget constraint is binding, that is,

v = EP
(
ζT V v,∗

T

)
. (3.3)

Consequently, the optimal value of the objective criterion for the problem (P)
is V(v) = EP(u(V v,∗

T )).
The above results are obtained by means of convex duality theory. The dis-

advantage of this approach, however, is the fact that it is typically very difficult
to identify an optimal trading strategy. Thus, in general, using the convex du-
ality approach we can only partially solve the problem (P). Specifically, we can
compute the optimal value of the objective criterion, but we can’t identify the
optimal strategy. Later in this chapter, we shall use the BSDE approach in a
more general setting. It will be seen that this approach will allow us to identify
(at least in principle) an optimal trading strategy.

3.1.3 Solution of Problem (PX
F )

In this subsection, we shall examine the problem (PX
F ) for a defaultable claim

of a particular form. First, we shall provide a solution VX(v− p) to the related
optimization problem. Next, we shall establish a quasi-explicit representation
for the Hodges price of X in the case of exponential utility. Finally, we shall
compare the spread obtained via the risk-neutral valuation with the spread
determined by the Hodges price of a defaultable zero-coupon bond. The reader
can refer to Bernis and Jeanblanc (2003) for other comments.

Particular Form of a Defaultable Claim

We restrict our attention to the case when X is of the form

X = X111{τ>T} + X211{τ≤T}, (3.4)
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where Xi, i = 1, 2 are P-square-integrable and FT -measurable random variables.
In this case, we have

V v−p,X
T (φ) = V v−p

T (φ) + X1

if the default did not occur before maturity date T , that is, on the set {τ > T},
and

V v−p,X
T (φ) = V v−p

T (φ) + X2

otherwise. In other words,

V v−p,X
T (φ) = 11{τ>T}(V

v−p
T (φ) + X1) + 11{τ≤T}(V

v−p
T (φ) + X2).

Observe that the pay-off X2 is not paid at time of default τ , but at the terminal
time T .

Since the trading strategies are F-adapted, the terminal wealth V v−p
T (φ) is

an FT -measurable random variable. Consequently, it holds that

EP
{
u
(
V v−p,X

T (φ)
)}

= EP
{
u
(
V v−p

T (φ) + X1

)
11{τ>T} + u

(
V v−p

T (φ) + X2

)
11{τ≤T}

}

= EP
{
EP

(
u

(
V v−p

T (φ) + X1

)
11{τ>T} + u

(
V v−p

T (φ) + X2

)
11{τ≤T}|FT

)}

= EP
{
u
(
V v−p

T (φ) + X1

)
(1− FT ) + u

(
V v−p

T (φ) + X2

)
FT

}
,

where FT = P {τ ≤ T | FT }. Define, for every ω ∈ Ω and y ∈ R,

JX(y, ω) = u(y + X1(ω))(1− FT (ω)) + u(y + X2(ω))FT (ω).

Notice that under the present assumptions, the problem (PX
F ) is equivalent to

the following problem:

(PX
F ) : VX(v − p) := sup

φ∈Φ(F)
EP

{
JX

(
V v−p

T (φ), ω
)}

.

The mapping JX(·, ω) is a strictly concave and increasing real-valued mapping.
Consequently, for any ω ∈ Ω we can define the mapping IX(z, ω) by setting
IX(z, ω) =

(
J ′X(·, ω)

)−1(z) for z ∈ R, where (J ′X(·, ω))−1 denotes the inverse
mapping of the derivative of JX with respect to the first variable. To simplify
the notation, we shall usually suppress the second variable, and we shall write
IX(·) in place of IX(·, ω).

The following lemma provides the form of the optimal solution.

Lemma 3.1 The optimal terminal wealth for the problem (PX
F ) is given by

V v−p,∗
T = IX(λ∗ζT ), P-a.s., for some λ∗ such that

v − p = EP
(
ζT V v−p,∗

T

)
. (3.5)

Thus the optimal global wealth equals V v−p,X,∗
T = V v−p,∗

T + X = IX(λ∗ζT ) + X
and the optimal value of the objective criterion for the problem (PX

F ) is

VX(v − p) = EP(u(V v−p,X,∗
T )) = EP(u(IX(λ∗ζT ) + X)). (3.6)



3.1. HEDGING IN INCOMPLETE MARKETS 105

Proof. As a consequence of predictable representation property (see, e.g.,
Karatzas and Shreve (1991)), one knows that in order to find the optimal
wealth it is enough to maximize u(∆) over the set of square-integrable and
FT -measurable random variables ∆, subject to the budget constraint, given by

EP(ζT ∆) ≤ v − p.

The associated Lagrange multiplier, say λ∗, is non-negative. Moreover, by the
strict monotonicity of u, we know that, at optimum, the constraint is binding,
and thus λ∗ > 0. We check that IX(λ∗ζT ) is the optimal wealth.

The mapping JX(·) is strictly concave (for all ω). Hence, for every wealth
process V v−p(φ), starting from v − p, by tangent inequality, we have

EP
{
JX(V v−p

T (φ))− JX(V v−p,∗
T )

} ≤ EP
{
(V v−p

T (φ)− V v−p,∗
T )J ′X(V v−p,∗

T )
}
.

Replacing V v−p,∗ by its expression given in Lemma 3.1 yields for any φ ∈ Φ(F)

EP
{
JX(V v−p

T (φ))− JX(V v−p,∗
T )

} ≤ λ∗ EP
{
ζT (V v−p

T (φ)− V v−p,∗
T )

} ≤ 0,

where the last inequality follows from (3.5) and the budget constraint. To end
the proof, it remains to observe that the first order conditions are also sufficient
in the case of a concave criterion. Moreover, by virtue of strict concavity of the
function JX , the optimum is unique. ¤

Exponential Utility: Explicit Computation of the Hodges Price

For the sake of simplicity, we assume here that r = 0. Let us state the following
result, the proof of which stems from Lemma 3.1, by direct computations.

Proposition 3.1 Let u(x) = 1 − exp(−%x) for some % > 0. Assume that for
i = 1, 2 the random variable ζT e−%Xi

is P-integrable. Then we have

p∗F(v) = −1
%
EP

(
ζT ln

(
(1− FT )e−%X1 + FT e−%X2

))
= EP(ζT Ψ),

where the FT -measurable random variable Ψ equals

Ψ = −1
%

ln
(
(1− FT )e−%X1 + FT e−%X2

)
. (3.7)

Thus, the F-Hodges buying price p∗F(v) is the arbitrage price of the associated
claim Ψ. In addition, the claim Ψ enjoys the following meaningful property

EP
{
u
(
X −Ψ

) ∣∣FT

}
= 0. (3.8)

Proof. In view of the form of the solution to the problem (P), we obtain (cf.
(3.2))

V v,∗
T = −1

%
ln

(
µ∗ζT

%

)
.
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The budget constraint EP(ζT V v,∗
T ) = v implies that the Lagrange multiplier µ∗

satisfies

1
%

ln
(

µ∗

%

)
= −1

%
EP

(
ζT ln ζT

)− v. (3.9)

In the case of an exponential utility, we have (recall that the variable ω is
suppressed)

JX(y) = (1− e−%(y+X1))(1− FT ) + (1− e−%(y+X2))FT ,

so that
J ′X(y) = %e−%y(e−%X1(1− FT ) + e−%X2FT ).

Thus, setting
A = e−%X1(1− FT ) + e−%X2FT = e−%Ψ,

we obtain

IX(z) = −1
%

ln
(

z

A%

)
= −1

%
ln

(
z

%

)
−Ψ.

It follows that the optimal terminal wealth for the initial endowment v − p is

V v−p,∗
T = −1

%
ln

(
λ∗ζT

A%

)
= −1

%
ln

(
λ∗

%

)
− 1

%
ln ζT −Ψ,

where the Lagrange multiplier λ∗ is chosen to satisfy the budget constraint
EP(ζT V v−p,∗

T ) = v − p, that is,

1
%

ln
(

λ∗

%

)
= −1

%
EP

(
ζT ln ζT

)− EP
(
ζT Ψ

)− v + p. (3.10)

The F-Hodges buying price is a real number p∗ = p∗F(v) such that

EP
(
exp(−%V v,∗

T )
)

= EP
(
exp(−%(V v−p∗,∗

T + X))
)
,

where µ∗ and λ∗ are given by (3.9) and (3.10), respectively. After substitution
and simplifications, we arrive at the following equality

EP
{

exp
(
− %

(
EP(ζT Ψ)− p∗ + X −Ψ

))}
= 1. (3.11)

Using (3.4), it is easy to check that

EP
(
e−%(X−Ψ)

∣∣FT

)
= 1 (3.12)

so that equality (3.8) holds, and EP
(
e−%(X−Ψ)

)
= 1. Combining (3.11) and

(3.12), we conclude that p∗F(v) = EP(ζT Ψ). ¤
We briefly provide the analog of (3.7) for the F-Hodges selling price of X .

We have pF∗(v) = EP(ζT Ψ̃), where

Ψ̃ =
1
%

ln
(
(1− FT )e%X1 + FT e%X2

)
. (3.13)
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Remark. It is important to notice that the F-Hodges prices p∗F(v) and pF∗(v)
do not depend on the initial endowment v. This is an interesting property of
the exponential utility function. In view of (3.8), the random variable Ψ will be
called the indifference conditional hedge.

Comparison with the Davis price. Let us present the results derived from
the marginal utility pricing approach. The Davis price (see Davis (1997)) is
given by

d∗(v) =
EP

{
u′

(
V v,∗

T

)
X

}

V ′(v)
.

In our context, this yields

d∗(v) = EP
{
ζT

(
X1FT + X2(1− FT )

)}
.

In this case, the risk aversion % has no influence on the pricing of the contingent
claim. In particular, when F is deterministic, the Davis price reduces to the
arbitrage price of each (default-free) financial asset Xi, i = 1, 2, weighted by
the corresponding probabilities FT and 1− FT .

Risk-Neutral Spread Versus Hodges Spreads

Let us consider the case of a defaultable bond with zero recovery, so that X1 = 1
and X2 = 0. It follows from (3.13) that the F-Hodges buying and selling prices
of the bond are (it will be convenient here to indicate the dependence of the
Hodges price on maturity T )

D∗
F(0, T ) = −1

%
EP

{
ζT ln(e−%(1− FT ) + FT )

}

and
DF∗(0, T ) =

1
%
EP

{
ζT ln(e%(1− FT ) + FT )

}
,

respectively. Let Q̃ be a risk-neutral probability for the filtration G, that is, for
the enlarged market. The “market” price at time t = 0 of defaultable bond,
denoted as D0(0, T ), is thus equal to the expectation under Q̃ of its discounted
pay-off, that is,

D0(0, T ) = EQ̃
(
11{τ>T}RT

)
= EQ̃

(
(1− F̃T )RT

)
,

where F̃t = Q̃ {τ ≤ t | Ft} for every t ∈ [0, T ]. Let us emphasize that the risk-
neutral probability Q̃ is chosen by the market, via the price of the defaultable
asset. Hence, it should not be confused with the probability measure Q, which
combines, in a sense, the risk-neutral probability for the default-free market
(Z1, Z2) with the real-life intensity of default.

Let us recall that in our setting the price process of the T -maturity unit
discount Treasury (default-free) bond is B(t, T ) = e−r(T−t). The Hodges buying
and selling spreads at time t = 0 are defined as

S∗(0, T ) = − 1
T

ln
D∗
F(0, T )

B(0, T )
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and

S∗(0, T ) = − 1
T

ln
DF∗(0, T )
B(0, T )

,

respectively. Likewise, the risk-neutral spread at time t = 0 is given as

S0(0, T ) = − 1
T

ln
D0(0, T )
B(0, T )

.

Since D∗
F(0, 0) = DF∗(0, 0) = D0(0, 0) = 1, the respective backward short spreads

at time t = 0 are given by the following limits (provided the limits exist)

s∗(0) = lim
T↓0

S∗(0, T ) = −d+ ln D∗
F(0, T )

dT

∣∣∣
T=0

− r

and

s∗(0) = lim
T↓0

S∗(0, T ) = −d+ ln DF∗(0, T )
dT

∣∣∣
T=0

− r,

respectively. We also set

s0(0) = lim
T↓0

S0(0, T ) = −d+ ln D0(0, T )
dT

∣∣∣
T=0

− r.

Assuming, as we do, that the processes F̃T and FT are absolutely continuous
with respect to the Lebesgue measure, and using the observation that the re-
striction of Q̃ to FT is equal to Q, we find out that

D∗
F(0, T )

B(0, T )
= −1

%
EQ

{
ln

(
e−%(1− FT ) + FT

)}

= −1
%
EQ

{
ln

(
e−%

(
1−

∫ T

0

ft dt
)

+
∫ T

0

ft dt
)}

,

and

DF∗(0, T )
B(0, T )

=
1
%
EQ

{
ln

(
e%(1− FT ) + FT

)}

=
1
%
EQ

{
ln

(
e%

(
1−

∫ T

0

ft dt
)

+
∫ T

0

ft dt
)}

.

Furthermore,

D0(0, T )
B(0, T )

= EQ(1− F̃T ) = EQ
(
1−

∫ T

0

f̃t dt
)
.

Consequently,

s∗(0) =
1
%

(
e% − 1

)
f0, s∗(0) =

1
%

(
1− e−%

)
f0,
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and s0(0) = f̃0. Now, if we postulate, for instance, that s∗(0) = s0(0) (it would
be the case if the market price is the selling Hodges price), then we must have

γ̃0 = f̃0 =
1
%

(
1− e−%

)
f0 =

1
%

(
1− e−%

)
γ0

so that γ̃0 < γ0. Observe, however, that the case when the market price were
equal to the buying Hodges price, that is s∗(0) = s0(0) would necessitate that
γ̃0 > γ0. Similar calculations can be made for any t ∈ [0, T ).

3.2 Optimization Problems and BSDEs

The major distinction between this section and the previous one is that here
we consider strategies φ that are predictable with respect to the full filtration
G. Unless explicitly stated otherwise, the underlying probability measure is the
real-world probability P. We consider the following dynamics for the risky asset
Z1

dZ1
t = Z1

t−(νdt + σdWt + ϕdMt), (3.14)

where Mt = Ht−
∫ t∧τ

0
γs ds, and where we impose the condition ϕ > −1, which

ensures that the price Z1
t remains strictly positive.

In order to simplify notation, we shall denote by ξ the process such that
dMt = dHt − ξt dt is a G-martingale, i.e., ξt = γt(1−Ht). We assume that the
hypothesis (H) holds, that is, any F-martingale is a G-martingale as well.

Throughout most of the section, we shall deal with the same market model
as in the previous section, that is, we shall set ϕ = 0. Only in Section 3.4 we
generalize the dynamics of the risky asset to the case when ϕ 6= 0, so that the
dynamics of the risky asset Z1 are sensitive to the default risk. In particular,
the limit case ϕ = −1 corresponds to the case where the underlying risky asset
has value 0 after the default.

We assume for simplicity that r = 0, and we change the notational con-
vention for an admissible portfolio to the one that will be more suitable for
problems considered here: instead of using the number of shares φ as before, we
set π = φZ1, so that π represents the value invested in the risky asset. The port-
folio process πt should not be confused with the arbitrage price process πt(X).
In addition, we adopt here the following relaxed definition of admissibility of a
self-financing trading strategy.

Definition 3.2 The class Π(F) (the class Π(G), respectively) of F-admissible
(G-admissible, respectively) trading strategies is the set of all F-predictable (G-
predictable, respectively) processes π such that

∫ T

0
π2

t dt < ∞, P-a.s.

The wealth process of a strategy π satisfies

dVt(π) = πt

(
νdt + σdWt + ϕdMt

)
. (3.15)

Note that with the present definition of admissible strategies the “martingale
part” of the wealth process is a local martingale, in general.
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Let X be a given contingent claim, represented by a GT -measurable random
variable. We shall study the following problem:

sup
π∈Π(G)

EP
{
u
(
V v

T (π) + X
)}

.

3.2.1 Exponential Utility

In this section, we shall examine the problem introduced above in the case of
the exponential utility, and setting ϕ = 0 in dynamics (3.14). First, we examine
the existence and the form of a solution to the optimization problem, under
additional technical assumptions. Subsequently, we shall derive the expression
for the Hodges buying price.

Optimization Problem

Let X ∈ GT be a given non-negative contingent claim, and let v be the initial
endowment of an agent. Our first goal is to solve an optimization problem for an
agent who buys a claim X. To this end, it suffices to find a strategy π ∈ Π(G)
that maximizes EP(u(V v

T (π) + X)), where the wealth process Vt = V v
t (π) (for

simplicity, we shall frequently skip v and π from the notation) satisfies

dVt = φt dZ1
t = πt(νdt + σdWt), V0 = v.

We consider the exponential utility function u(x) = 1 − e−%x, with % > 0.
Therefore, we deal with the following problem:

sup
π∈Π(G)

EP
{
u(V v

T (π) + X)
}

= 1− inf
π∈Π(G)

EP
(
e−%V v

T (π)e−%X
)
.

Let us describe the idea of a solution. Suppose that we can find a process
Z with ZT = e−%X , which depends only on the claim X and parameters %, σ, ν,
and such that the process e−%V v

t (π)Zt is a G-submartingale under P for any
admissible strategy π and is a martingale under P for some admissible strategy
π∗ ∈ Π(G). Then, we would have

EP(e−%V v
T (π)ZT ) ≥ e−%V v

0 (π)Z0 = e−%vZ0

for any π ∈ Π(G), with equality for some strategy π∗ ∈ Π(G). Consequently,
we would obtain

inf
π∈Π(G)

EP
(
e−%V v

T (π)e−%X
)

= EP
(
e−%V v

T (π∗)e−%X
)

= e−%vZ0, (3.16)

and thus we would be in a position to conclude that π∗ is an optimal strategy.
In fact, it will turn out that in order to implement the above idea we shall need
to restrict further the class of G-admissible trading strategies.

We shall search for an auxiliary process Z in the class of all processes satis-
fying the following backward stochastic differential equation (BSDE)

dZt = ft dt + ẑt dWt + z̃t dMt, t ∈ [0, T ), ZT = e−%X , (3.17)
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where the process f will be determined later (see equation (3.19) below). By
applying Itô’s formula, we obtain

d(e−%Vt) = e−%Vt
((

1
2%2π2

t σ2 − %πtν
)
dt− %πtσ dWt

)
,

so that

d(e−%VtZt) = e−%Vt
(
ft + Zt( 1

2%2π2
t σ2 − %πtν)− %πtσẑt

)
dt

+ e−%Vt
(
(ẑt − %πtσZt) dWt + z̃t dMt

)
.

Let us choose π∗ such that it minimizes, for every t, the following expression

Zt

(
1
2%2π2

t σ2 − %πtν
)− %πtσẑt = −%πt(νZt + σẑt) + 1

2%2π2
t σ2Zt.

It is easily seen that

π∗t =
νZt + σẑt

%σ2Zt
=

1
%σ

(
θ +

ẑt

Zt

)
. (3.18)

Now, let us choose the process f , by postulating that

ft = f(Zt, ẑt) = Zt

(
%π∗t ν − 1

2%2(π∗t )2σ2
)

+ %π∗t σẑt

= %π∗t (Ztν + σẑt)− 1
2%2(π∗t )2σ2Zt =

(νZt + σẑt)2

2σ2Zt
. (3.19)

In other words, we shall focus on the following BSDE:

dZt =
(νZt + σẑt)2

2σ2Zt
dt + ẑt dWt + z̃t dMt, t ∈ [0, T [, ZT = e−%X . (3.20)

Recall that W is a Brownian motion under P, and that the risk-neutral proba-
bility Q is given by dQ|Ft = ηt dP|Ft , where dηt = −ηtθ dWt with θ = ν/σ and
η0 = 1. Thus the process WQ

t = Wt + θt, t ∈ [0, T ], is a Brownian motion under
Q. It will be convenient to write equation (3.20) as

dZt =
(

1
2θ2Zt + θẑt + 1

2Z−1
t ẑ2

t

)
dt + ẑt dWt + z̃t dMt, t ∈ [0, T [, ZT = e−%X .

Equivalently,

dZt =
(

1
2θ2Zt + 1

2Z−1
t ẑ2

t

)
dt + ẑt dWQ

t + z̃t dMt, t ∈ [0, T [, ZT = e−%X . (3.21)

Remark. To the best of out knowledge, no general theorem, which would estab-
lish the existence of a solution to equation (3.21), is available. The comparison
theorem works for BSDEs driven by a jump process when the drift satisfies
some Lipschitz condition (see Royer (2003)). Hence, the proofs of Lepeltier and
San-Martin (1997) and Kobylanski (2000), which rely on comparison results,
may not be directly carried to the case of quadratic BSDEs driven by a jump
process. We shall solve the BSDE (3.21) under rather restrictive assumptions
on X. Hence, the general case remains an open problem.
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Lemma 3.2 Assume that there exists G-predictable processes k̂, k̃ > −1 and a
constant c such that

exp(KT )ET (M̃) = e−%X , (3.22)

where

Kt = c +
∫ t

0

k̂u dWQ
u , M̃t =

∫ t

0

k̃u dMu,

and E(M̃) is the Doléans exponential of M̃ . Then Ut = exp(Kt)Et(M̃) solves
the following BSDE

dUt = 1
2U−1

t û2
t dt + ût dWQ

t + ũt dMt, t ∈ [0, T [, UT = e−%X . (3.23)

Proof. Since dEt(M̃) = Et−(M̃) dM̃t, the process U defined above satisfies

dUt = 1
2Utk̂

2
t dt + Utk̂t dWQ

t + Ut−k̃t dMt

and thus
dUt = 1

2U−1
t û2

t dt + ût dWQ
t + ũt dMt

where we denote ût = Utk̂t and ũt = Ut−k̃t. Since obviously UT = e−%X , this
ends the proof. ¤

Corollary 3.1 Let X be a GT -measurable claim such that (3.22) holds for some
G-predictable processes k̂, k̃ > −1 and some constant c. Then there exists a
solution (Z, ẑ, z̃) of the BSDE (3.21). Moreover, the process Z is strictly positive.

Proof. Let us set Yt = e−(T−t)θ2/2 and let U be the process introduced in
Lemma 3.2. Then the process Zt = UtYt satisfies

dZt = Yt dUt + 1
2θ2YtUt dt

= 1
2θ2YtUt dt + 1

2YtU
−1
t û2

t dt + Ytût dWQ
t + Ytũt dMt

= 1
2θ2Zt dt + 1

2Z−1
t Y 2

t û2
t dt + Ytût dWQ

t + Ytũt dMt

= 1
2θ2Zt dt + 1

2Z−1
t ẑ2

t dt + ẑt dWQ
t + z̃t dMt

where we set ẑt = Ytût and z̃t = Ytũt. It is also clear that ZT = UT = e−%X

and Z is strictly positive. ¤
Recall that the process Z depends on the choice of a contingent claim X, as

well as on the model’s parameters %, σ and ν. The next lemma shows that the
processes Z and π∗ introduced above have indeed the desired properties that
were described at the beginning of this section. To achieve our goal, we need
to restrict the class of admissible trading strategies, however. We say that an
admissible strategy π is regular with respect to X if the martingale part of the
process e−%V v

t (π)Zt is a martingale under P, rather than a local martingale. We
denote by ΠX(G) the class of all admissible trading strategies, which are regular
with respect to X.
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Lemma 3.3 Let X be a GT -measurable claim such that (3.22) holds for some G-
predictable processes k̂, k̃ and some constant c. Assume that the default intensity
γ and the processes k̃, k̂ are bounded. Suppose that the process Z = Z(X, %, σ, ν)
is a solution to the BSDE (3.20) given in Corollary 3.1. Then:
(i) The process e−%V v

t (π)Zt is a submartingale for any strategy π ∈ ΠX(G).
(ii) The process e−%V v

t (π∗)Zt is a martingale for the process π∗ given by expres-
sion (3.18).
(iii) The process π∗ belongs to the class ΠX(G) of admissible trading strategies
regular with respect to X.

Proof. In view of the definition of π∗ and the choice of the process f (see
formula (3.19)), the validity of part (i) is rather clear. To establish (ii), we
shall first check that the process e−%V ∗t Zt is a martingale (and not only a local
martingale) under P, where V ∗

t = V v
t (π∗). From the choice of π∗, we obtain

d(e−%V ∗t Zt) = e−%V ∗t
(
(ẑt − %π∗t σZt) dWt + z̃t dMt

)

= −θe−%V ∗t Zt dWt + e−%V ∗t z̃t dMt.

This means that

e−%V ∗t Zt = e−%vZ0 exp
(− θWt − 1

2θ2t
)
exp

(
−

∫ t

0

z̃s

Zs
ξs ds

)(
1 +

z̃τ−
Zτ−

Ht

)
.

The quantity e−%vZ0 exp
( − θWt − 1

2θ2t
)

is clearly a continuous martingale
under P. Recall that

z̃t = Ytũt = k̃tZt.

and thus z̃t/Zt = k̃t is a bounded process. We conclude that the process

exp
(
−

∫ t

0

z̃s

Zs
ξs ds

)(
1 +

z̃τ−
Zτ−

Ht

)

is a bounded, purely discontinuous martingale under P. To complete the proof,
it remains to check that the process π∗ given by (3.18) is G-admissible, in the
sense of Definition 3.2. To this end, it suffices to check that

∫ T

0

ẑ2
t Z−2

t dt < ∞, P-a.s.

This is clear since the process ẑt/Zt = k̂t is bounded. We conclude that the
strategy π∗ belongs to the class ΠX(G). ¤

Recall now that in this section we examine the following problem:

sup
π∈ΠX(G)

EP
(
u(V v

T (π) + X)
)

= 1− inf
π∈ΠX(G)

EP
(
e−%V v

T (π)e−%X
)
.

We are in a position to state the following result.
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Proposition 3.2 Let X be a GT -measurable claim such that (3.22) holds for
some G-predictable processes k̂, k̃ and some constant c. Assume that the default
intensity γ and the processes k̃, k̂ are bounded. Then

inf
π∈ΠX(G)

EP
(
e−%V v

T (π)e−%X
)

= EP
(
e−%V v

T (π∗)e−%X
)

= e−%vZX
0 ,

where the optimal strategy π∗ ∈ ΠX(G) is given by the formula, for every t ∈
[0, T ],

π∗t =
1
%σ

(
θ +

ẑX
t

ZX
t

)
=

θ + k̂t

%σ
,

where ZX
t = Zt and ẑX

t = ẑt are the two first components of a solution (Zt, ẑt, z̃)
of the BSDE

dZt =
(νZt + σẑt)2

2σ2Zt
dt + ẑt dWt + z̃t dMt, ZT = e−%X . (3.24)

More explicitly (see Corollary 3.1), we have ẑt = k̂tZt and

Zt = e−(T−t)θ2/2 exp(Kt)Et(M̃).

Proof. The proof is rather straightforward. We know that the process Z which
solves (3.24) is such that: (i) the process Zte

−%V v
t (π∗) is a martingale, and (ii)

for any strategy π ∈ ΠX(G) the process Zte
−%V v

t (π) is equal to a martingale
minus an increasing process (since the drift term is non-positive), and thus it
is a submartingale. This shows that (3.16) holds with Π(G) substituted with
ΠX(G). ¤

It should be acknowledged that the assumptions of Proposition 3.2 are re-
strictive, so that it covers only a very special case of a claim X. Let us now
comment briefly on the case of a general claim; we do not pretend here to give
strict results, our aim is merely to give some hints how one can deal with the
general case.

Recall that our aim is to find a solution (Z, ẑ, z̃) of the following BSDE

dZt =
(

1
2θ2Zt + 1

2Z−1
t ẑ2

t

)
dt + ẑt dWQ

t + z̃t dMt, t ∈ [0, T [, ZT = e−%X ,

or equivalently, of the equation

dUt = 1
2U−1

t û2
t dt + ût dWQ

t + ũt dMt, t ∈ [0, T [, UT = e−%X ,

Assume that the process U is strictly positive and set Xt = ln Ut. Then, denot-
ing x̂t = ûtU

−1
t , x̃t = ũtU

−1
t− and applying Itô’s formula, we obtain (recall that

we denote ξt = γt11{τ>t})

dXt = x̂t dWQ
t + x̃t dMt + (ln(1 + x̃t)− x̃t) dHt

= x̂t dWQ
t + x̃t dMt + (ln(1 + x̃t)− x̃t)(dMt + ξt dt)

= x̂t dWQ
t + ln(1 + x̃t) dMt + (ln(1 + x̃t)− x̃t)ξt dt

= x̂t dWQ
t + x∗t dMt + (1− ex∗t + x∗t )ξt dt

= x̂t dWQ
t + x∗t dHt + (1− ex∗t )ξt dt,
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where x∗t = ln(1+ x̃t) and the terminal condition is XT = −%X. It thus suffices
to solve the following BSDE

dXt = x̂t dWQ
t + x∗t dHt + (1− ex∗t )ξt dt, t ∈ [0, T [, XT = −%X. (3.25)

Assume first that X ∈ FT . In that case, it is obvious that we may take
x̂ = x̃∗ = 0 and thus Xt = −EQ(%X | Gt) = −EQ(%X | Ft) is a solution. In the
general case, we note that the continuous G-martingales are stochastic integrals
with respect to the Brownian motion WQ. We may thus transform the problem:
it suffices to find a process x∗ such that the process R, defined through the
formula

Rt = EQ
(
− %X +

∫ T

0

(ex∗s − 1)ξs ds− x∗τ11{τ≤T}
∣∣∣Gt

)
,

is a continuous G-martingale, so that dRt = x̂t dWQ
t for some G-predictable

process x̂. Suppose that we can find a process x∗ for which the last property is
valid. Then, by setting

Xt = Rt −
∫ t

0

(ex∗s − 1)ξs ds− x∗τ11{τ≤t}

= EQ
(
− %X +

∫ T

t

(ex∗s − 1)ξs ds− x∗τ11{t<τ≤T}
∣∣∣Gt

)

we obtain a solution (X, x̂, x∗) to (3.25).

Case of a survival claim. From now on, we shall focus on a survival claim
X = Y 11{τ>T}, where Y is an FT -measurable random variable. Let us fix
t ∈ [0, T ]. On the set {t ≤ τ} we obtain

EQ(%Y 11{τ>T} | Gt) = eΓt EQ(e−ΓT %Y | Ft)

and on the set {τ < t}, we have EQ(%Y 11{τ>T} | Gt) = 0. The jump of the term
At, defined as

At = EQ
( ∫ T

t

(ex∗s − 1)ξs ds− x∗τ11{τ≤T}
∣∣∣Gt

)
,

can be computed as follows. On the set {t ≤ τ}, we obtain

At =
∫ T

t

EQ
(
(ex∗s − 1)γs11{τ>s} | Gt

)
ds− EQ

(
x∗τ11{τ≤T} | Gt

)

= 11{τ>t}eΓt EQ
( ∫ T

t

(
ex∗s − 1− x∗s

)
e−Γsγs ds

∣∣∣Ft

)
.

On the set {τ < t} for At we have

EQ
( ∫ T

t

(ex∗s − 1)γs11{τ>s} ds− x∗τ11{τ≤T}
∣∣∣Gt

)
= −EQ

(
x∗τ11{τ≤t}

∣∣Gt

)
= −x∗τ .
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We conclude that our problem is to find a process x∗ such that

−EQ
(
e−ΓT %Y |Ft) = −e−Γtx∗t − EQ

( ∫ T

t

(ex∗s − 1− x∗s)e
−Γsγs ds

∣∣∣Ft

)
.

In other words, we need to solve the following BSDE with F-adapted processes
x∗ and κ

d
(
x∗t e

−Γt
)

=
(
ex∗t − 1− x∗t

)
e−Γtγt dt + κt dWQ

t , t ∈ [0, T [, x∗T = %Y.

¿From integration by parts, this BSDE can be written

dx∗t =
(
ex∗t − 1

)
e−Γtγt dt + κt dWQ

t , t ∈ [0, T [, x∗T = %X.

Unfortunately, the standard results for existence of solutions to BSDEs do not
apply here because the drift term is not of a linear growth with respect to x∗.

3.2.2 Hodges Buying and Selling Prices

Particular case. Assume, as before, that r = 0 and let us check that the
Hodges buying price is the hedging price in case of attainable claims. Assume
that a claim X is FT -measurable. By virtue of the predictable representation
theorem, there exists a pair (x, x̂), where x is a constant and x̂t is an F-adapted
process, such that X = x+

∫ T

0
x̂u dWQ

u , where WQ
t = Wt +θt. Here x = EQX is

the arbitrage price π0(X) of X and the replicating portfolio is obtained through
x̂. Hence, the time t value of X is Xt = x +

∫ t

0
x̂u dWQ

u . Then dXt = x̂t dWQ
t

and the process
Zt = e−θ2(T−t)/2e−%Xt

satisfies

dZt = Zt

((
1
2θ2 + 1

2%2x̂2
t

)
dt + %x̂t dWQ

t

)

=
1

2σ2Zt
(νZt + σ%Ztx̂t)2 dt + %Ztx̂t dWt.

Hence (Zt, %Ztx̂t, 0) is the solution of (3.24) with the terminal condition e−%X ,
and

Z0 = e−θ2T/2e−%x

Note that, for X = 0, we get Z0 = e−θ2T/2, therefore

inf
π∈Π(G)

EP(e−%V v
T (π)) = e−%ve−θ2T/2.

The G-Hodges buying price of X is the value of p such that

inf
π∈Π(G)

EP
(
e−%V v

T (π)
)

= inf
π∈Π(G)

EP
(
e−%(V v−p

T (π)+X)
)
,
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that is,
e−%ve−θ2T/2 = e−%(v−p+π0(X))e−θ2T/2.

We conclude easily that pG∗ (X) = π0(X) = EQX. Similar arguments show that
p∗G(X) = π0(X).

General case. Assume now that a claim X is GT -measurable and the as-
sumptions of Proposition 3.2 are satisfied. Since the process Z introduced in
Corollary 3.1 is strictly positive, we can use its logarithm. Let us assume that
the processes k̂ and k̃ are strictly positive, and let us denote ψ̂t = Zt/ẑt =
k̂−1

t , ψ̃t = Zt/z̃t = k̃−1
t and

κt =
ψ̃t

ln(1 + ψ̃t)
≥ 0.

Then we get

d(ln Zt) = 1
2 θ2dt + ψ̂t dWQ

t + ln(1 + ψ̃t)
(
dMt + ξt(1− κt) dt

)
,

and thus
d(lnZt) = 1

2 θ2dt + ψ̂t dWQ
t + ln(1 + ψ̃t) dM̂t,

where
dM̂t = dMt + ξt(1− κt) dt = dHt − ξtκt dt.

The process M̂ is a martingale under the probability measure Q̂ defined as
dQ̂|Gt = η̂t dP|Gt , where η̂ satisfies

dη̂t = −η̂t−
(
θ dWt + ξt(1− κt) dMt

)

with η̂0 = 1.

Proposition 3.3 The G-Hodges buying price of X with respect to the expo-
nential utility is the real number p such that e−%(v−p)ZX

0 = e−%vZ0
0 , that is,

p∗G(X) = %−1 ln(Z0
0/ZX

0 ) or, equivalently, p∗G(X) = EQ̂X.

Our previous study establishes that the dynamic hedging price of a claim
X is the process Xt = EQ̂(X | Gt). This price is the expectation of the payoff,
under some martingale measure, as is any price in the range of no-arbitrage
prices.

3.3 Quadratic Hedging

We assume here that the wealth process follows

dV v
t (π) = πt

(
ν dt + σ dWt

)
, V v

0 (π) = v,

where we assume that π ∈ Π(F) or π ∈ Π(G), depending on the case studied
below. The more general case

dV v
t (π) = πt

(
ν dt + σ dWt + ϕ dMt

)
, V v

0 (π) = v
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is too long to be presented here. In this section, we examine the issue of the
quadratic pricing and hedging, specifically, for a given P-square-integrable claim
X we solve the following minimization problems:

• For a given initial endowment v, solve the minimization problem:

min
π
EP

(
(V v

T (π)−X)2
)
.

A solution to this problem provides the portfolio which, among the portfolios
with a given initial wealth, has the closest terminal wealth to a given claim X,
in sense of L2-norm under P.

• Solve the minimization problem:

min
π,v

EP
(
(V v

T (π)−X)2
)
.

The minimal value of v is called the quadratic hedging price and the optimal π
the quadratic hedging strategy.

The mean-variance hedging problem was examined in a fairly general frame-
work of incomplete markets by means of BSDEs in several papers; see, for ex-
ample, Mania (2000), Mania and Tevzadze (2003), Bobrovnytska and Schweizer
(2004), Hu and Zhou (2004) or Lim (2004). Since this list is by no means
exhaustive, the interested reader is referred to the references quoted in the
above-mentioned papers.

3.3.1 Quadratic Hedging with F-Adapted Strategies

We shall first solve, for a given initial endowment v, the following minimization
problem

min
π∈Π(F)

EP
(
(V v

T (π)−X)2
)
,

where the claim X ∈ GT is given as

X = X111{τ>T} + X211{τ≤T}

for some FT -measurable and P-square-integrable random variables X1 and X2.
Using the same approach as in the previous section, we define the auxiliary
function JX by setting

JX(y) = (y −X1)2(1− FT ) + (y −X2)2FT ,

so that its derivative equals

J ′X(y) = 2
(
y −X1(1− FT )−X2FT

)
.

Hence
IX(z) = 1

2z + X1(1− FT ) + X2FT ,
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and thus the optimal terminal wealth equals

V v,∗
T = 1

2λ∗ζT + X1(1− FT ) + X2FT ,

where λ∗ is specified through the budget constraint:

EP(ζT V v,∗
T ) = 1

2λ∗ EP(ζ2
T ) + EP(ζT X1(1− FT )) + EP(ζT X2FT ) = v.

We deduce that

min
π
EP((V v

T −X)2)

= EP
[(

1
2λ∗ζT + X1(1− FT ) + X2FT −X1

)2 (1− FT )
]

+EP
[(

1
2λ∗ζT + X1(1− FT ) + X2FT )−X2

)2
FT

]

= 1
4 (λ∗)2 EP(ζ2

T ) + EP
(
(X1 −X2)2FT (1− FT )

)

=
1

2EP(ζ2
T )

(
v − EP(ζT (X1 + FT (X2 −X1))

)2

+ EP((X1 −X2)2FT (1− FT )).

Therefore, we obtain the following result.

Proposition 3.4 If we restrict our attention to F-adapted strategies, the qua-
dratic hedging price of the claim X = X111{τ>T} + X211{τ≤T} equals

EP
(
ζT (X1 + FT (X2 −X1)

)
= EQ

(
X1(1− FT ) + FT X2

)
.

The optimal quadratic hedging of X is the strategy which duplicates the FT -
measurable contingent claim X1(1− FT ) + FT X2.

Let us now examine the case of a generic GT -measurable random variable X.
In this case, we shall only examine the solution of the second problem introduced
above, that is,

min
v,π

EP
(
(V v

T (π)−X)2
)
.

As we have explained in the previous chapter, this problem is essentially equiv-
alent to a problem where we restrict our attention to the terminal wealth. From
the properties of conditional expectations, we have

min
V ∈FT

EP
(
(V −X)2

)
= EP

(
(EP(X | FT )−X)2

)

and the initial value of the strategy with terminal value EP(X | FT ) is

EP(ζTEP(X | FT )) = EP(ζT X).

In essence, the latter statement is a consequence of the completeness of the
default-free market model. In conclusion, the quadratic hedging price equals
EP(ζT X) = EQX and the quadratic hedging strategy is the replicating strategy
of the attainable claim EP(X | FT ) associated with X.
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3.3.2 Quadratic Hedging with G-Adapted Strategies

Our next goal is to solve, for a given initial endowment v, the following mini-
mization problem

min
π∈Π(G)

EP
(
(V v

T (π)−X)2
)
.

We have seen in Chapter 2 that one way of solving this problem is to project
the random variable X on the set of stochastic integrals. Here, we present an
alternative approach.

We are looking for G-adapted processes X, Θ and Ψ such that the process

Jt(π) =
(
V v

t (π)−Xt

)2Θt + Ψt, ∀ t ∈ [0, T ], (3.26)

is a G-submartingale for any G-adapted trading strategy π and a G-martingale
for some strategy π∗. In addition, we require that XT = X, ΘT = 1, ΦT = 0.
Let us assume that the dynamics of these processes are of the form

dXt = xt dt + x̂t dWt + x̃t dMt, (3.27)

dΘt = Θt−
(
ϑt dt + ϑ̂t dWt + ϑ̃t dMt

)
, (3.28)

dΨt = ψt dt + ψ̂t dWt + ψ̃t dMt, (3.29)

where the drifts xt, ϑt and ψt are yet to be determined. From Itô’s formula, we
obtain (recall that ξt = γt11{τ>t})

d(Vt −Xt)2 = 2(Vt −Xt)(πtσ − x̂t) dWt − 2(Vt −Xt−)x̃t dMt

+
[
(Vt −Xt− − x̃t)2 − (Vt −Xt−)2

]
dMt

+
(
2(Vt −Xt)(πtν − xt) + (πtσ − x̂t)2

+ ξt

[
(Vt −Xt − x̃t)2 − (Vt −Xt)2

])
dt,

where we denote Vt = V v
t (π). The process J(π) is a martingale if and only if

its drift term k(t, πt, xt, ϑt, ψt) = 0 for every t ∈ [0, T ].
Straightforward calculations show that

k(t, πt, ϑt, xt, ψt) = ψt + Θt

[
ϑt(Vt −Xt)2

+ 2(Vt −Xt)
[
(πtν − xt) + ϑ̂t(πtσ − x̂t) + ξtx̃t

]

+ (πtσ − x̂t)2 + ξt(ϑ̃t + 1)
[
(Vt −Xt − x̃t)2 − (Vt −Xt)2

]]
.

In the first step, for any t ∈ [0, T ] we shall find π∗t such that the minimum
of k(t, πt, xt, ϑt, ψt) is attained. Subsequently, we shall choose the auxiliary
processes x = x∗, ϑ = ϑ∗ and ψ = ψ∗ in such a way that k(t, π∗t , x∗t , ϑ

∗
t , ψ

∗
t ) = 0.

This choice will imply that k(t, πt, x
∗
t , ϑ

∗
t , ψ

∗
t ) ≥ 0 for any trading strategy π

and any t ∈ [0, T ].
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The strategy π∗, which minimizes k(t, πt, xt, ϑt, ψt), is the solution of the
following equation:

(V v
t (π)−Xt)(ν + ϑ̂tσ) + σ(πtσ − x̂t) = 0, ∀ t ∈ [0, T ].

Hence, the strategy π∗ is implicitly given by

π∗t = σ−1x̂t − σ−2(ν + ϑ̂tσ)(V v
t (π∗)−Xt) = At −Bt(V v

t (π∗)−Xt),

where we denote
At = σ−1x̂t, Bt = σ−2(ν + ϑ̂tσ).

After some computations, we see that the drift term of the process J admits
the following representation:

k(t, πt, ϑt, xt, ψt) = ψt + Θt(Vt −Xt)2(ϑt − σ2B2
t )

+ 2Θt(Vt −Xt)
(
σ2AtBt − ϑ̂tx̂t − ϑ̃tx̃tξt − xt

)
+ Θtξt(ϑ̃t + 1)x̃2

t .

From now on, we shall assume that the auxiliary processes ϑ, x and ψ are chosen
as follows:

ϑt = ϑ∗t = σ2B2
t ,

xt = x∗t = σ2AtBt − ϑ̂tx̂t − ϑ̃tx̃tξt,

ψt = ψ∗t = −Θtξt(ϑ̃t + 1)x̃2
t .

It is rather clear that if the drift coefficients ϑ, x, ψ in (3.27)-(3.29) are chosen
as above, then the drift term in dynamics of J is always non-negative, and it is
equal to 0 for the strategy π∗, where π∗t = At −Bt(V v

t (π∗)−Xt).
Our next goal is to solve equations (3.27)-(3.29). Let us first consider equa-

tion (3.28). Since ϑt = σ2B2
t , it suffices to find the three-dimensional process

(Θ, ϑ̂, ϑ̃) which is a solution to the following BSDE:

dΘt = Θt

(
σ−2(ν + ϑ̂tσ)2 dt + ϑ̂t dWt + ϑ̃t dMt

)
, ΘT = 1.

It is obvious that the processes ϑ̂ = 0, ϑ̃ = 0 and Θ, given as

Θt = exp(−θ2(T − t)), ∀ t ∈ [0, T ], (3.30)

solve this equation.
In the next step, we search for a three-dimensional process (X, x̂, x̃), which

solves equation (3.27) with xt = x∗t = σ2At(ν/σ2) = θx̂t. It is clear that
(X, x̂, x̃) is the unique solution to the linear BSDE

dXt = θx̂t dt + x̂t dWt + x̃t dMt, XT = X.

The unique solution to this equation is Xt = EQ(X | Gt), where Q is the risk-
neutral probability measure, so that dQ = ηt dP, where

dηt = −θηt dWt, η0 = 1.
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The components x̂ and x̃ are given by the integral representation of the G-
martingale X with respect to WQ and M . Notice also that since ϑ̂ = 0, the
optimal portfolio π∗ is given by the feedback formula

π∗t = σ−1
(
x̂t − θ(V v

t (π∗)−Xt)
)
.

Finally, since ϑ̃ = 0, we have ψt = −ξtx̃
2
t Θt. Therefore, we can solve explicitly

the BSDE (3.29) for the process Ψ. Indeed, we are now looking for a three-
dimensional process (Ψ, ψ̂, ψ̃), which is the unique solution of the BSDE

dΨt = −Θtξtx̃
2
t dt + ψ̂t dWt + ψ̃t dMt, ΨT = 0.

Noting that the process

Ψt +
∫ t

0

Θsξsx̃
2
s ds

is a G-martingale under P, we obtain the value of Ψ in a closed form:

Ψt = EP
(∫ T

t

Θsξsx̃
2
s ds

∣∣∣Gt

)
. (3.31)

Substituting (3.30) and (3.31) in (3.26), we conclude that the value function
for our problem is J∗t = Jt(π∗), where in turn

Jt(π∗) = (V v
t (π∗)−Xt)2e−θ2(T−t) + EP

( ∫ T

t

Θsξsx̃
2
s ds

∣∣∣Gt

)

= (V v
t (π∗)−Xt)2e−θ2(T−t) +

∫ T

t

e−θ2(T−s) EP
(
γsx̃

2
s11{τ>s}

∣∣Gt

)
ds

= (V v
t (π∗)−Xt)2e−θ2(T−t)

+ 11{τ>t}

∫ T

t

e−θ2(T−s) EP
(
γsx̃

2
se

Γt−Γs
∣∣Ft

)
ds,

where we have identified the process x̃ with its F-adapted version (recall that
any G-predictable process is equal, prior to default, to an F-predictable process).
In particular,

J∗0 = e−θ2T
(
(v −X0)2 + EP

( ∫ T

0

eθ2sγsx̃
2
se
−Γs ds

))
.

From the last formula, it is obvious that the quadratic hedging price is X0 =
EQX. We are in a position to formulate the main result of this section. A
corresponding theorem for a default-free financial model was established by
Kohlmann and Zhou (2000).

Proposition 3.5 Let a claim X be GT -measurable and P-square-integrable. The
optimal trading strategy π∗, which solves the quadratic problem

min
π∈Π(G)

EP((V v
T (π)−X)2),
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is given by the feedback formula

π∗t = σ−1
(
x̂t − θ(V v

t (π∗)−Xt)
)
,

where Xt = EQ(X | Gt) for every t ∈ [0, T ], and the process x̂t is specified by

dXt = x̂t dWQ
t + x̃t dMt.

The quadratic hedging price of X is equal to EQX.

Survival Claim

Let us consider a simple survival claim X = 11{τ>T}, and let us assume that Γ is
deterministic, specifically, Γ(t) =

∫ t

0
γ(s) ds. In that case, from the well-known

representation theorem (see Bielecki and Rutkowski (2004), Page 159), we have
dXt = x̃t dMt with x̃t = −eΓ(t)−Γ(T ). Hence

Ψt = EP
( ∫ T

t

Θsξsx̃
2
s ds

∣∣∣Gt

)

= EP
( ∫ T

t

Θsγ(s)11{τ>s}e2Γ(s)−2Γ(T ) ds
∣∣∣Gt

)

= 11{τ>t} eΓ(t)−2Γ(T ) EP
( ∫ T

t

e−θ2(T−s)γ(s)eΓ(s) ds
∣∣∣Ft

)

= 11{τ>t} eΓ(t)−2Γ(T )

∫ T

t

e−θ2(T−s)γ(s)eΓ(s) ds.

One can check that, at time 0, the value function is indeed smaller that the one
obtained with F-adapted portfolios.

Case of an Attainable Claim

Assume now that a claim X is FT -measurable. Then Xt = EQ(X | Gt) is the
price of X, and it satisfies dXt = x̂t dWQ

t . The optimal strategy is, in a feedback
form,

π∗t = σ−1
(
x̂t − θ(Vt −Xt)

)

and the associated wealth process satisfies

dVt = π∗t (νdt + σdWt) = π∗t σ dWQ
t = σ−1

(
σx̂t − ν(Vt −Xt)

)
dWQ

t .

Therefore,
d(Vt −Xt) = −θ(Vt −Xt) dWQ

t .

Hence, if we start with an initial wealth equal to the arbitrage price π0(X) of
X, then we obtain that Vt = Xt for every t ∈ [0, T ], as expected.
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Hodges Price

Let us emphasize that the Hodges price has no real meaning here, since the
problem minEP((V v

T )2) has no financial interpretation. We have studied in the
preceding chapter a more pertinent problem, with a constraint on the expected
value of V v

T under P. Nevertheless, from a mathematical point of view, the
Hodges price would be the value of p such that

(v2 − (v − p)2) =
∫ T

0

eθ2sEP(γsx̃
2
se
−Γs)11{τ>t}ds

In the case of the example studied in Section 3.3.2, the Hodges price would be
the non-negative value of p such that

2vp− p2 = e−2ΓT

∫ T

0

eθ2sγse
Γs ds.

Let us also mention that our results are different from results of Lim (2004).
Indeed, Lim studies a model with Poisson component, and thus in his approach
the intensity of this process does not vanish after the first jump.

3.4 Optimization in Incomplete Markets

In this last section, we shall briefly (and rather informally) examine a specific
optimization problem associated with a defaultable claim. The interested reader
is referred to Lukas (2001) for more details on the approach examined in this
section. We now assume that the only risky asset available in the market is

dZ1
t = Z1

t

(
ν dt + σ dWt + ϕdMt

)
,

and we assume that r = 0. We deal with the following problem:

sup
π
EP

(
u(V v

τ∧T (π) + X)
)

for the claim X of the form

X = 11{τ>T}g(Z1
T ) + 11{τ≤T}h(Z1

τ )

for some functions g, h : R → R. Note that here the recovery payment is
paid at hit, that is, at the time of default. In addition, we assume that the
default intensity γ under P is constant (hence, it is constant under any equivalent
martingale measure as well). After time τ , the market reduces to a standard
Black-Scholes model, and thus the solution to the corresponding optimization
problem is well known.

In the particular case of the exponential utility u(x) = 1− exp(−%x), % > 0,
we are in a position to use the duality theory. This problem was studied by,
among others, Rouge and El Karoui (2000), Delbaen et al. (2002) and Collin-
Dufresne and Hugonnier (2002).
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Let H(Q |P) stand for the relative entropy of Q with respect to P. Recall
that if a probability measure Q is absolutely continuous with respect to P then

H(Q |P) = EP
(

dQ
dP

ln
dQ
dP

)
= EQ

(
ln

dQ
dP

)
.

Otherwise, the relative entropy H(Q |P) equals ∞.
It is well known that, under suitable technical assumptions (see Rouge and

El Karoui (2000) or Delbaen et al. (2002) for details), we have

sup
π
EP

(
1− e−%(V v

T (π)+X)
)

= 1− exp
(
− inf

π
inf
Q∈QT

(
H(Q |P) + %EQ(V v

T (π) + X)
))

,

where π runs over a suitable class of admissible portfolios, and QT stands for
the set of equivalent martingale measures on the σ-field GT .

Since for any admissible portfolio π the expected value under any martingale
measure Q ∈ QT of the terminal wealth V v

T (π) equals v , we obtain

sup
π
EP

(
1− e−%(V v

T (π)+X)
)

= 1− exp
(
− inf
Q∈QT

(
H(Q |P) + %EQX + %v

))
.

Furthermore, since, without loss of generality, we may stop all the processes
considered here at the default time τ , we end up with the following equality

inf
π
EP

(
e−%(V v

T∧τ (π)+X)
)

= exp
(
− inf
Q∈QT∧τ

(
H(Q |P) + %EQX + %v

))
,

where π runs over the class of all admissible trading strategies, and QT∧τ stands
the set of equivalent martingale measures on the σ-field GT∧τ . The following
result provides a description of the class QT∧τ .

Lemma 3.4 The class QT∧τ of all equivalent martingale measures on the space
(Ω,GT∧τ ) is the set of all probability measures Qk,h of the form

dQk,h|GT∧τ
= ηT∧τ (k, h) dP,

where the Radon-Nikodym density process η(k, h) is given by the formula

ηt(k, h) = Et(kM)Et(hW ), ∀ t ∈ [0, T ],

for some F-adapted process k such that the inequality kt > −1 holds for every
t ∈ [0, T ], and for the associated process ht = −θ−ϕγσ−1(1+kt), where θ = ν/σ.
Under the martingale measure Q = Qk,h the process

Wh
t∧τ = Wt∧τ −

∫ t∧τ

0

hs ds, ∀ t ∈ [0, T ],

is a stopped Brownian motion, and the process

Mk
t∧τ = Mt∧τ −

∫ t∧τ

0

γks ds, ∀ t ∈ [0, T ],

is a martingale stopped at τ .
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Straightforward calculations show that the relative entropy of a martingale
measure Q = Qk,h ∈ QT∧τ with respect to P equals

EQ
(∫ τ∧T

0

hs dWh
s +

∫ τ∧T

0

(
1
2h2

s − γks + γ(1 + ks) ln(1 + ks)
)
ds

)

+ EQ
( ∫ τ∧T

0

ln(1 + ks) dMk
s

)
.

Consequently, the optimization problem

inf
Q∈QT∧τ

(
H(Q |P) + %EQX

)

can be reduced to the following problem

inf
k,h
EQ

( ∫ τ∧T

0

(
1
2h2

s − γks + γ(1 + ks) ln(1 + ks)
)
ds + %X

)
, (3.32)

where the processes k and h are as specified in the statement of Lemma 3.4.
Let us set

`(ks) = 1
2h2

s − γks + γ(1 + ks) ln(1 + ks)

so that
`(k) = 1

2

(
θ + ϕγ(1 + k)

)2 − γk + γ(1 + k) ln(1 + k). (3.33)

Consider a dynamic version of the minimization problem (3.32)

inf
k,h
EQ

( ∫ τ∧T

t

`(ks) ds + %11{τ≤T}h(Z1
τ ) + %11{τ>T}g(Z1

T )
∣∣∣Gt

)
.

Let us denote Kt
s = e−

∫ s
t

γ(1+ku) du for t ≤ s. Then, on the pre-default event
{τ > t}, we obtain the following problem:

inf
k,h
EQ

( ∫ T

t

Kt
s

(
`(ks) + %γ(1 + ks)h(Z1

s (1 + ϕ))
)
ds + %Kt

T g(Z1
T )

∣∣∣Ft

)
.

The value function J(t, x) of the latter problem satisfies the HJB equation

∂tJ(t, x) + 1
2σ2x2∂xxJ(t, x)

+ inf
k>−1

(− ϕγ(1 + k)x∂xJ(t, x)− γ(1 + k)J(t, x) + ψ(k, x)
)

= 0

with the terminal condition J(T, x) = %g(x), where we denote

ψ(k, x) = `(k) + %γ(1 + k)h(x(1 + ϕ))

and where the function ` is given by (3.33). The minimizer is given by k =
k∗(t, x), which is the unique root of the following equation:

ϕ

σ2

(
ν + ϕγ(1 + k)

)
+ ln(1 + k) = J(t, x) + ϕx∂xJ(t, x)− %h(x(1 + ϕ)),
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and the optimal portfolio π∗ is given by the formula

π∗t = (%σ2)−1
(
ν + ϕγ(1 + k∗(t, Z1

t ))− σ2Z1
t−∂xJ(t, Z1

t−)
)
.

Remark. Note that in the case ϕ = 0 this result is consistent with our result
established in Section 3.2.1. When ϕ = 0, the process Z1 is continuous, and
thus we obtain

π∗t = (%σ)−1
(
θ − σZ1

t ∂xJ(t, Z1
t )

)
,

where the value function J(t, x) satisfies the simplified HJB equation

∂tJ(t, x) + 1
2σ2x2∂xxJ(t, x)

+ inf
k>−1

(
`(k)− γ(1 + k)J(t, x) + %γ(1 + k)h(x)

)
= 0,

where in turn
`(k) = 1

2θ2 − γk + γ(1 + k) ln(1 + k).
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Schönbucher, P.J. (1998) Pricing credit risk derivatives. Working paper, Uni-
versity of Bonn.
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